research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2-chloro-N-(4-meth­­oxy­phen­yl)acetamide

crossmark logo

aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco, bLaboratoire de Chimie et Biochimie, Institut Superieur des Techniques Medicales de Kinshasa, Republique Democratique du , Congo, cLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: alsubaripharmaco@21umas.edu.ye, y.ramli@um5r.ac.ma

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 18 May 2022; accepted 28 May 2022; online 7 June 2022)

In the title mol­ecule, C9H10ClNO2, the meth­oxy group lies very close to the plane of the phenyl ring while the acetamido group is twisted out of this plane by 28.87 (5)°. In the crystal, a three-dimensional structure is generated by N—H⋯O, C—H⋯O and C—H⋯Cl hydrogen bonds plus C—H⋯π(ring) inter­actions. A Hirshfeld surface analysis of the inter­molecular inter­actions was performed and indicated that C⋯H/H⋯C inter­actions make the largest contribution to the surface area (33.4%).

1. Chemical context

Amides play a very important role in organic synthesis, including the production of medicines, functional materials, and bioactive mol­ecules (Alcaide et al., 2007[Alcaide, B., Almendros, P. & Aragoncillo, C. (2007). Chem. Rev. 107, 4437-4492.]; Zhang et al., 2012[Zhang, D., Zhao, X., Hou, J. & Li, Z. (2012). Chem. Rev. 112, 5271-5316.]; García-Álvarez et al., 2013[García-Álvarez, R., Crochet, P. & Cadierno, V. (2013). Green Chem. 15, 46-66.]; Ramli & Essassi, 2015[Ramli, Y. & Essassi, E. M. (2015). Adv. Chem. Res. 27, 109-160.]; Álvarez-Pérez et al., 2019[Álvarez-Pérez, A., Esteruelas, M. A., Izquierdo, S., Varela, J. A. & Saá, C. (2019). Org. Lett. 21, 5346-5350.]). In particular, N-aryl­acetamides are significant inter­mediates for the synthesis of medicinal, agrochemical, and pharmaceutical compounds (Beccalli et al., 2007[Beccalli, E. M., Broggini, G., Martinelli, M. & Sottocornola, S. (2007). Chem. Rev. 107, 5318-5365.]; Valeur & Bradley, 2009[Valeur, E. & Bradley, M. (2009). Chem. Soc. Rev. 38, 606-631.]; Allen & Williams, 2011[Allen, C. L. & Williams, J. M. J. (2011). Chem. Soc. Rev. 40, 3405.]; Missioui et al., 2021[Missioui, M., Mortada, S., Guerrab, W., Serdaroğlu, G., Kaya, S., Mague, J. T., Essassi, E. M., Faouzi, M. E. A. & Ramli, Y. (2021). J. Mol. Struct. 1239, 130484.], 2022a[Missioui, M., Lgaz, H., Guerrab, W., Lee, H., Warad, I., Mague, J. T., Ali, I. H., Essassi, E. M. & Ramli, Y. (2022a). J. Mol. Struct. 1253, 132132.],b[Missioui, M., Said, M. A., Demirtaş, G., Mague, J. T., Al-Sulami, A., Al-Kaff, N. S. & Ramli, Y. (2022b). Arab. J. Chem. 15, 103595.],c[Missioui, M., Said, M. A., Demirtaş, G., Mague, J. T. & Ramli, Y. (2022c). J. Mol. Struct. 1247, 131420.]). Given the wide range of therapeutic applications for such compounds, and in a continuation of our research efforts to synthesize more N-aryl­acetamides (Missioui et al., 2020[Missioui, M., Guerrab, W., Mague, J. T. & Ramli, Y. (2020). Z. Kristallogr. New Cryst. Struct. 235, 1429-1430.]; Guerrab et al., 2021[Guerrab, W., Missioui, M., Zaoui, Y., Mague, J. T. & Ramli, Y. (2021). Z. Kristallogr. New Cryst. Struct. 236, 133-134.]), we report the synthesis, mol­ecular and crystal structure and Hirshfeld surface analysis of the title compound, 2-chloro-N-(4-meth­oxy­phen­yl)acetamide.

[Scheme 1]

2. Structural commentary

The meth­oxy group lies close to the mean plane of the phenyl ring C3–C8, as indicated by the C7—C6—O2—C9 torsion angle of −174.61 (10)° and atom C9 deviating by only 0.065 (1) Å from the mean plane through the C3–C8 ring. In contrast, the acetamido group is rotated out of the above plane with the dihedral angle between the mean plane through the C3–C8 ring and that defined by N1/C2/C1/O1 being 28.87 (5)° (Fig. 1[link]). The sum of the angles about N1 is 360.0 (9)°, indicating it to be planar (sp2 hybridization). The Cl1—C1—C2—O1 torsion angle is 52.89 (12)°, illustrating a + synclinal (+ gauche) conformation about the C1—C2 bond. This places atom Cl1 at 1.299 (1) Å from the plane defined by C1, C2, N1 and O1.

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecule with labelling scheme and 50% probability ellipsoids.

3. Supra­molecular features

In the crystal, N1—H1⋯O1 hydrogen bonds (Table 1[link]) form helical chains along the 21 axes. These chains are linked by C1—H1A⋯O2 hydrogen bonds (Table 1[link]), forming layers of mol­ecules parallel to the ab plane (Fig. 2[link]). The layers are linked by weak C4—H4⋯Cl1 hydrogen bonds as well as by C9—H9BCg1 inter­actions (Table 1[link]) to generate the final three-dimensional structure (Fig. 3[link]). As the shortest distance between parallel phenyl rings is 5.1075 (7) Å, there are no ππ stacking inter­actions present.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C3–C8 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.89 (1) 2.01 (1) 2.8910 (11) 171 (1)
C1—H1A⋯O2ii 0.99 2.48 3.3347 (13) 145
C4—H4⋯Cl1iii 0.95 2.83 3.7646 (10) 167
C9—H9BCg1iv 0.98 2.72 3.5020 (13) 137
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-1, y, z]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].
[Figure 2]
Figure 2
A portion of one layer of the crystal packing viewed along the c-axis direction with N—H⋯O and C—H⋯O hydrogen bonds depicted, respectively, by violet and black dashed lines. Non-inter­acting hydrogen atoms are omitted for clarity.
[Figure 3]
Figure 3
Packing viewed along the a-axis direction with N—H⋯O, C—H⋯O and C—H⋯Cl hydrogen bonds depicted, respectively by violet, black and light green dashed lines. C—H⋯π(ring) inter­actions are depicted by brown dashed lines and non-inter­acting hydrogen atoms are omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, updated to March 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using the fragment A (Fig. 4[link], R = undefined, X = halogen) yielded 15 hits of which 13 had X = Cl and R = OEt (DELZIE; Zhang et al., 2006[Zhang, S.-S., Wen, H.-L., Li, X.-M., Xu, L.-L. & Wen, Y.-H. (2006). Acta Cryst. E62, o3412-o3413.]), COOEt (HEGLOW; Behbehani & Ibrahim, 2012[Behbehani, H. & Ibrahim, H. M. (2012). Molecules, 17, 6362-6385.]), F (JODQEZ; Kang et al., 2008[Kang, S., Zeng, H., Li, H.. & Wang, H. (2008). Acta Cryst. E64, o1194.]), S(O)2NH(C3HNO(CH3)) (NULZEC; Murtaza et al., 2019[Murtaza, S., Altaf, A. A., Hamayun, M., Iftikhar, K., Tahir, M. N., Tariq, J. & Faiz, K. (2019). Eur. J. Chem. 10, 358-366.]), SO2NH2 (PINXAO; Florke & Saeed, 2018[Florke, U. & Saeed, A. (2018). Private Communication (refcode PINXAO). CCDC, Cambridge, England.]; QUYRIM; Akkurt et al., 2010[Akkurt, M., Yalçın, Ş. P., Türkmen, H. & Büyükgüngör, O. (2010). Acta Cryst. E66, o1596.]), SMe (QUGTEU; Mongkholkeaw et al., 2020[Mongkholkeaw, S., Songsasen, A., Duangthongyou, T., Chainok, K., Suramitr, S., Wattanathana, W. & Wannalerse, B. (2020). Acta Cryst. E76, 594-598.]), H (RIYWIG; Gowda et al., 2008[Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2008). Acta Cryst. E64, o987.]), NO2 (WEPGEE; Wen et al., 2006[Wen, Y.-H., Li, X.-M., Xu, L.-L., Tang, X.-F. & Zhang, S.-S. (2006). Acta Cryst. E62, o4427-o4428.]; WEPGEE01; Gowda et al., 2007a[Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2335-o2336.]), Cl (WINSUI; Gowda et al., 2007b[Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o4488.]), MeC(=O) (XABWEF; Ashraf et al., 2016[Ashraf, Z., Kim, D., Seo, S.-Y. & Kang, S. K. (2016). Acta Cryst. C72, 94-98.]) and Me (XICMAY; Gowda et al., 2007c[Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2333-o2334.]). The last two hits had X = Br and R = Br (FOWYIA; Gowda et al., 2009[Gowda, B. T., Svoboda, I., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o1955.]) and CH2CH2O2CC(F)(SPh)(NO2) (VAGCOV; Takeuchi et al., 1988[Takeuchi, Y., Nojiri, M., Koizumi, T. & Iitaka, Y. (1988). Tetrahedron Lett. 29, 4727-4730.]). In general, the conformation of the haloacetamide portion is quite similar in all structures, as is the formation of infinite chains by N—H⋯O hydrogen bonds and these are comparable to the features found in the title structure. In DELZIE and XABWEF, C—H⋯π(ring) inter­actions assist in the packing, as also observed for the title mol­ecule.

[Figure 4]
Figure 4
Fragment A used in the Cambridge Structural Database search.

5. Hirshfeld surface analysis

The analysis was performed with CrystalExplorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) with the details of the pictorial output described in a recent publication (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). Fig. 5[link] shows the dnorm surface for the asymmetric unit plotted over the range −0.5547 to 0.9665 arbitrary units together with two adjacent mol­ecules that are part of one infinite chain and two in adjacent chains (cf. Fig. 2[link]). The bright-red spots at the top and bottom indicate the N—H⋯O hydrogen bonds (blue arrows) while the fa­inter ones at the far right and left indicate the C— H⋯O hydrogen bonds linking the chains (curved black lines) while that below and to the right of the Cl atom represents the weak C—H⋯Cl hydrogen bonds. Fig. 6[link]a is the fingerprint plot showing all inter­molecular inter­actions while Fig. 6[link]b–6d show these resolved into C⋯H/H⋯C (33.4%), O⋯H/H⋯O (19.5%) and Cl⋯H/H⋯Cl (20%) inter­actions, respectively.

[Figure 5]
Figure 5
The Hirshfeld surface of the title mol­ecule with two adjacent mol­ecules involved in the N—H⋯O, hydrogen bonded chain and two involving the C1—H1A⋯O2 hydrogen bonds. The former inter­action is depicted by blue arrows and the latter by curved black lines.
[Figure 6]
Figure 6
Fingerprint plots for the title mol­ecule: (a), all inter­molecular inter­actions; (b), C⋯H/H⋯C inter­actions; (c), O⋯H/H⋯O inter­actions; (d), Cl⋯H/H⋯Cl inter­actions.

6. Synthesis and crystallization

0.047 mol of 4-methoxyaniline were dissolved in 40 mL of pure acetic acid and put in an ice bath. Subsequently, chloro­acetyl chloride (0.047 mol) was added portionwise under stirring. At the end of the reaction, a solution of sodium acetate (35 mL) was added and a solid precipitate appeared after 30 min of stirring at room temperature. The resulting solid was filtered and washed with cold water, dried and recrystallized from ethanol to give the title compound as colourless crystals.

Yield 80%, m.p. = 398.6–400.3 K, FT–IR (ATR, υ, cm−1) 3292 (υ N—H amide), 1029 (υ N—C amide), 1660 (υ C=O amide), 3073 (υ C—Harom), 827 (υ C—Cl), 2959 (υ C—H,CH2), 1H NMR (DMSO–d6) δ pm: 3.74 (3H, s, CH3); 4.24 (2H, s, CH2), 6.93–7.5 (4H, m, J = 1.3 Hz, Harom), 10.23 (1H, s, NH), 13C NMR (DMSO–d6) δ ppm: 43.48 (CH2), 55.23 (CH3), 131.53 (Carom—N), 155.51 (Carom—O), 113.92–120.92 (Carom), 164.13 (C=O); HRMS (ESI–MS) (m/z) calculated for C9H10ClNO2 199.04, found 199.0105.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms attached to carbon were placed in idealized positions and included as riding contributions with isotropic displacement parameters fixed at 1.2Ueq(C) (1.5 for the methyl group). The N-bound H atom was found in a difference-Fourier map and refined with a DFIX 0.91 0.01 instruction and an independent isotropic displacement parameter.

Table 2
Experimental details

Crystal data
Chemical formula C9H10ClNO2
Mr 199.63
Crystal system, space group Monoclinic, P21/c
Temperature (K) 172
a, b, c (Å) 10.0939 (5), 9.6423 (5), 10.2799 (5)
β (°) 115.531 (2)
V3) 902.83 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.39
Crystal size (mm) 0.29 × 0.25 × 0.09
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 3 diffractometer
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.91, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 43210, 2871, 2508
Rint 0.034
(sin θ/λ)max−1) 0.726
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.091, 1.10
No. of reflections 2871
No. of parameters 123
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.21
Computer programs: APEX3 and SAINT (Bruker, 2020[Bruker (2020). APEX3 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2020); cell refinement: SAINT (Bruker, 2020); data reduction: SAINT (Bruker, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2-Chloro-N-(4-methoxyphenyl)acetamide top
Crystal data top
C9H10ClNO2F(000) = 416
Mr = 199.63Dx = 1.469 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.0939 (5) ÅCell parameters from 9903 reflections
b = 9.6423 (5) Åθ = 2.2–31.1°
c = 10.2799 (5) ŵ = 0.39 mm1
β = 115.531 (2)°T = 172 K
V = 902.83 (8) Å3Plate, colourless
Z = 40.29 × 0.25 × 0.09 mm
Data collection top
Bruker D8 QUEST PHOTON 3
diffractometer
2871 independent reflections
Radiation source: fine-focus sealed tube2508 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 7.3910 pixels mm-1θmax = 31.1°, θmin = 3.1°
φ and ω scansh = 1414
Absorption correction: numerical
(SADABS; Krause et al., 2015)
k = 1313
Tmin = 0.91, Tmax = 0.97l = 1414
43210 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: mixed
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0462P)2 + 0.2203P]
where P = (Fo2 + 2Fc2)/3
2871 reflections(Δ/σ)max = 0.001
123 parametersΔρmax = 0.38 e Å3
1 restraintΔρmin = 0.21 e Å3
Special details top

Experimental. The diffraction data were obtained from 7 sets of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX3. The scan time was 6 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. That attached to nitrogen was placed in a location derived from a difference map and refined with a DFIX 0.91 0.01 instruction.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.30989 (3)0.41222 (3)0.90827 (3)0.03169 (9)
O10.43630 (10)0.27410 (8)0.71560 (10)0.03148 (19)
O20.99240 (9)0.34016 (9)0.56309 (9)0.03316 (19)
N10.53618 (9)0.48405 (8)0.70583 (9)0.02160 (17)
H10.5353 (17)0.5749 (9)0.7222 (16)0.034 (4)*
C10.32272 (11)0.47958 (10)0.75260 (11)0.02423 (19)
H1A0.2264440.4708860.6679090.029*
H1B0.3487250.5791980.7671500.029*
C20.43834 (11)0.40146 (10)0.72459 (10)0.02147 (19)
C30.64850 (11)0.44121 (10)0.66649 (10)0.02036 (18)
C40.63724 (11)0.32251 (10)0.58566 (11)0.02264 (19)
H40.5521260.2659060.5555120.027*
C50.75029 (11)0.28609 (10)0.54860 (10)0.02332 (19)
H50.7420240.2047730.4934370.028*
C60.87484 (11)0.36845 (11)0.59218 (11)0.02389 (19)
C70.88452 (12)0.48995 (11)0.66987 (12)0.0275 (2)
H70.9684620.5478430.6977120.033*
C80.77218 (12)0.52620 (10)0.70637 (11)0.0249 (2)
H80.7790970.6091740.7587440.030*
C90.97987 (13)0.22369 (13)0.47330 (13)0.0325 (2)
H9A1.0700190.2143610.4601540.049*
H9B0.8961600.2370450.3793040.049*
H9C0.9648030.1395140.5186580.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03574 (16)0.03273 (15)0.03447 (15)0.00576 (10)0.02258 (12)0.00686 (10)
O10.0429 (5)0.0163 (3)0.0466 (5)0.0005 (3)0.0300 (4)0.0011 (3)
O20.0278 (4)0.0390 (5)0.0389 (4)0.0049 (3)0.0202 (3)0.0107 (3)
N10.0247 (4)0.0154 (4)0.0269 (4)0.0001 (3)0.0133 (3)0.0006 (3)
C10.0259 (5)0.0214 (4)0.0278 (5)0.0031 (3)0.0139 (4)0.0043 (4)
C20.0253 (4)0.0181 (4)0.0226 (4)0.0010 (3)0.0118 (4)0.0022 (3)
C30.0228 (4)0.0177 (4)0.0213 (4)0.0002 (3)0.0102 (3)0.0013 (3)
C40.0239 (4)0.0204 (4)0.0240 (4)0.0033 (3)0.0107 (3)0.0022 (3)
C50.0275 (5)0.0206 (4)0.0232 (4)0.0013 (3)0.0121 (4)0.0027 (3)
C60.0252 (4)0.0255 (5)0.0229 (4)0.0010 (4)0.0122 (4)0.0002 (3)
C70.0278 (5)0.0256 (5)0.0320 (5)0.0071 (4)0.0156 (4)0.0051 (4)
C80.0286 (5)0.0194 (4)0.0283 (5)0.0041 (4)0.0139 (4)0.0042 (3)
C90.0336 (6)0.0345 (6)0.0336 (6)0.0051 (4)0.0184 (5)0.0027 (4)
Geometric parameters (Å, º) top
Cl1—C11.7828 (10)C4—C51.3947 (14)
O1—C21.2310 (12)C4—H40.9500
O2—C61.3704 (13)C5—C61.3880 (14)
O2—C91.4243 (14)C5—H50.9500
N1—C21.3457 (13)C6—C71.3973 (15)
N1—C31.4194 (13)C7—C81.3840 (15)
N1—H10.893 (9)C7—H70.9500
C1—C21.5172 (14)C8—H80.9500
C1—H1A0.9900C9—H9A0.9800
C1—H1B0.9900C9—H9B0.9800
C3—C41.3900 (13)C9—H9C0.9800
C3—C81.3989 (14)
C6—O2—C9117.06 (9)C6—C5—C4120.11 (9)
C2—N1—C3126.46 (8)C6—C5—H5119.9
C2—N1—H1119.0 (10)C4—C5—H5119.9
C3—N1—H1114.5 (10)O2—C6—C5124.39 (9)
C2—C1—Cl1110.42 (7)O2—C6—C7115.96 (9)
C2—C1—H1A109.6C5—C6—C7119.65 (9)
Cl1—C1—H1A109.6C8—C7—C6120.20 (9)
C2—C1—H1B109.6C8—C7—H7119.9
Cl1—C1—H1B109.6C6—C7—H7119.9
H1A—C1—H1B108.1C7—C8—C3120.30 (9)
O1—C2—N1124.69 (9)C7—C8—H8119.8
O1—C2—C1121.35 (9)C3—C8—H8119.8
N1—C2—C1113.91 (8)O2—C9—H9A109.5
C4—C3—C8119.36 (9)O2—C9—H9B109.5
C4—C3—N1122.71 (9)H9A—C9—H9B109.5
C8—C3—N1117.88 (9)O2—C9—H9C109.5
C3—C4—C5120.33 (9)H9A—C9—H9C109.5
C3—C4—H4119.8H9B—C9—H9C109.5
C5—C4—H4119.8
C3—N1—C2—O13.07 (17)C9—O2—C6—C54.72 (16)
C3—N1—C2—C1174.47 (9)C9—O2—C6—C7174.61 (10)
Cl1—C1—C2—O152.89 (12)C4—C5—C6—O2178.93 (10)
Cl1—C1—C2—N1129.47 (8)C4—C5—C6—C71.77 (15)
C2—N1—C3—C427.78 (15)O2—C6—C7—C8179.00 (10)
C2—N1—C3—C8154.97 (10)C5—C6—C7—C81.64 (16)
C8—C3—C4—C52.04 (15)C6—C7—C8—C30.34 (16)
N1—C3—C4—C5179.25 (9)C4—C3—C8—C72.17 (15)
C3—C4—C5—C60.08 (15)N1—C3—C8—C7179.52 (9)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C3–C8 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.89 (1)2.01 (1)2.8910 (11)171 (1)
C1—H1A···O2ii0.992.483.3347 (13)145
C4—H4···Cl1iii0.952.833.7646 (10)167
C9—H9B···Cg1iv0.982.723.5020 (13)137
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x1, y, z; (iii) x, y+1/2, z1/2; (iv) x, y1/2, z3/2.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. Author contributions are as follows: conceptualization, YR; methodology, WG and CKM; investigation, IN, AEMAA and MM; theoretical calculations, JTM; writing (original draft), JTM and YR; writing (review and editing of the manuscript), YR; formal analysis, AA and MM; supervision, YR; crystal-structure determination and validation, JTM.

References

First citationAkkurt, M., Yalçın, Ş. P., Türkmen, H. & Büyükgüngör, O. (2010). Acta Cryst. E66, o1596.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlcaide, B., Almendros, P. & Aragoncillo, C. (2007). Chem. Rev. 107, 4437–4492.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAllen, C. L. & Williams, J. M. J. (2011). Chem. Soc. Rev. 40, 3405.  Web of Science CrossRef PubMed Google Scholar
First citationÁlvarez-Pérez, A., Esteruelas, M. A., Izquierdo, S., Varela, J. A. & Saá, C. (2019). Org. Lett. 21, 5346–5350.  Web of Science PubMed Google Scholar
First citationAshraf, Z., Kim, D., Seo, S.-Y. & Kang, S. K. (2016). Acta Cryst. C72, 94–98.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBeccalli, E. M., Broggini, G., Martinelli, M. & Sottocornola, S. (2007). Chem. Rev. 107, 5318–5365.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBehbehani, H. & Ibrahim, H. M. (2012). Molecules, 17, 6362–6385.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2020). APEX3 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.  Google Scholar
First citationFlorke, U. & Saeed, A. (2018). Private Communication (refcode PINXAO). CCDC, Cambridge, England.  Google Scholar
First citationGarcía-Álvarez, R., Crochet, P. & Cadierno, V. (2013). Green Chem. 15, 46–66.  Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2335–o2336.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o4488.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2333–o2334.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2008). Acta Cryst. E64, o987.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Svoboda, I., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o1955.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuerrab, W., Missioui, M., Zaoui, Y., Mague, J. T. & Ramli, Y. (2021). Z. Kristallogr. New Cryst. Struct. 236, 133–134.  Web of Science CSD CrossRef CAS Google Scholar
First citationKang, S., Zeng, H., Li, H.. & Wang, H. (2008). Acta Cryst. E64, o1194.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMissioui, M., Guerrab, W., Mague, J. T. & Ramli, Y. (2020). Z. Kristallogr. New Cryst. Struct. 235, 1429–1430.  Web of Science CSD CrossRef CAS Google Scholar
First citationMissioui, M., Lgaz, H., Guerrab, W., Lee, H., Warad, I., Mague, J. T., Ali, I. H., Essassi, E. M. & Ramli, Y. (2022a). J. Mol. Struct. 1253, 132132.  Web of Science CSD CrossRef Google Scholar
First citationMissioui, M., Mortada, S., Guerrab, W., Serdaroğlu, G., Kaya, S., Mague, J. T., Essassi, E. M., Faouzi, M. E. A. & Ramli, Y. (2021). J. Mol. Struct. 1239, 130484.  Web of Science CSD CrossRef Google Scholar
First citationMissioui, M., Said, M. A., Demirtaş, G., Mague, J. T., Al-Sulami, A., Al-Kaff, N. S. & Ramli, Y. (2022b). Arab. J. Chem. 15, 103595.  Web of Science CSD CrossRef PubMed Google Scholar
First citationMissioui, M., Said, M. A., Demirtaş, G., Mague, J. T. & Ramli, Y. (2022c). J. Mol. Struct. 1247, 131420.  Web of Science CSD CrossRef Google Scholar
First citationMongkholkeaw, S., Songsasen, A., Duangthongyou, T., Chainok, K., Suramitr, S., Wattanathana, W. & Wannalerse, B. (2020). Acta Cryst. E76, 594–598.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMurtaza, S., Altaf, A. A., Hamayun, M., Iftikhar, K., Tahir, M. N., Tariq, J. & Faiz, K. (2019). Eur. J. Chem. 10, 358–366.  CSD CrossRef CAS Google Scholar
First citationRamli, Y. & Essassi, E. M. (2015). Adv. Chem. Res. 27, 109–160.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakeuchi, Y., Nojiri, M., Koizumi, T. & Iitaka, Y. (1988). Tetrahedron Lett. 29, 4727–4730.  CSD CrossRef CAS Web of Science Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationValeur, E. & Bradley, M. (2009). Chem. Soc. Rev. 38, 606–631.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWen, Y.-H., Li, X.-M., Xu, L.-L., Tang, X.-F. & Zhang, S.-S. (2006). Acta Cryst. E62, o4427–o4428.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, D., Zhao, X., Hou, J. & Li, Z. (2012). Chem. Rev. 112, 5271–5316.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhang, S.-S., Wen, H.-L., Li, X.-M., Xu, L.-L. & Wen, Y.-H. (2006). Acta Cryst. E62, o3412–o3413.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds