research communications
2-Amino-4-ferrocenylthiazole
aInstituto de Química, Circuito Exterior Cd. Universitaria, PO Box 04510, Ciudad de México, Mexico, and bLab. Síntesis de Complejos, Fac. Cs. Quím.-BUAP, Ciudad Universitaria, PO Box 156, Puebla, Mexico
*Correspondence e-mail: pankajsh@unam.mx
The title compound, [Fe(C5H5)(C8H7N2S)], was synthesized by the direct reaction of acetylferrocene, thiourea and resublimed iodine. The structure shows one molecule in the The aminothiazole ring makes an angle of 14.53 (13)° with the ferrocenyl ring to which it is attached. In the crystal, pairs of complex molecules interact via intermolecular N—H⋯N hydrogen bonds, forming a cyclic dimer which then interacts with other dimers through C—H⋯π interactions.
Keywords: crystal structure; ferrocene; thiazole; aminothiazole.
CCDC reference: 1841501
1. Chemical context
Recently, the synthesis of new hybrid compounds based on a ferrocenyl group linked to a five-membered heterocyclic unit has drawn attention (Sánchez-Rodríguez et al., 2017; Shao et al., 2006a). One important five-membered heterocycle is 2-aminothiazole, which is a versatile scaffold extensively used in various branches of chemistry including dyes and in the pharmaceutical industries. 2-Aminothiazole derivatives are widely used by medicinal chemists (Das et al., 2016) and have various applications in medicinal, agriculture and analytical chemistry. They are known to exhibit a wide variety of biological activities such as antiviral, antibacterial, antifungal, antitubercular, herbicidal and insecticidal (Mishra et al., 2017; Ji Ram et al., 2019; Dondoni, 2010). Thiazoles are also used as precursors or intermediates for the synthesis of a variety of (Zeng et al., 2003). We report here the crystal and molecular structure of 2-amino-4-ferrocenylthiazole, which has not previously been reported.
2. Structural commentary
The title compound crystallizes in the monoclinic system, P21/c. The contains one molecular unit as shown in Fig. 1. The C15—S11—C12 bond angle of 88.6 (2)° reflects the presence of a non-delocalized lone pair of electrons and is similar to that observed in other thiazoles. The length of the C12=N13 double bond is 1.306 (4) Å. The torsion angles in the amino substituted thiazole ring are: 1.1 (3)° for N13—C12—S11—C15 and 1.7 (4)° for N13—C14—C15—S11. All bond lengths and angles confirm the sp2 for all C and N atoms.
The ferrocene moiety is in the
The influence of the caused by the organic groups is reflected in the torsion angle C5—C1—C14—C15, 17.0 (5)°, compared with the C2—C1—C14—N13 torsion angle of 13.2 (4)°. The is also evident in the dihedral angle of 14.77 (17)° subtended by the planes of the heterocycle (C14/C15/S11/C12/N13) and the Cp plane (C1–C5).3. Supramolecular features
The structure is stabilized by intermolecular hydrogen bonding (N—H⋯N) and C—H⋯π interactions. For C10—H10⋯Cg(C1–C5) the H-to-ring distance is 2.89 Å, as shown in Table 1. As a result of intermolecular N—H⋯N interactions, a pseudo six-membered (N16/C12/N13/N16/C12/N13) ring is formed and this hydrogen bond, in addition to the C—H⋯π interaction, produces a packing into supramolecular layers parallel to the bc plane (Fig. 2). The structure presents very similar C=N distances and angles in the thiazole ring, as reported earlier for some similar compounds (Sánchez-Rodríguez et al., 2017; Shao et al., 2006b).
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.43, update of November 2021; Groom et al., 2016) for 4-ferrocenyl thiazoles gave eight hits. In six cases (GAVFIT, Yu et al., 2005; GAVFIT01, Yu et al., 2007; QAYSAL, Shao et al., 2006b; QAYSAL01, Shao et al., 2006a; RAPQAB, Shao et al., 2005; RAPQAB01, Shao et al., 2006a), the thiazole ring is substituted. In two cases there is no substitution in the thiazole ring (GUPKAG, Xu et al., 2020 and PAWWEQ, Plazuk et al., 2005) with PAWWEQ being a diferrocenyl compound. In all eight cases, the bond lengths and angles confirm the sp2 for all C and N atoms.
5. Synthesis and crystallization
The title compound was synthesized according to the reported method (Chopra et al., 2015). The crude product was purified by over silica and suitable crystals were obtained after recrystallization of the solid from a 1:1 hexane-dichloromethane mixture by slow evaporation. The compound 2-amino-4-ferrocenylthiazole was further characterized by 1H NMR and IR–ATR. FT–IR (ATR, cm−1) ν 3099 (ArCH), 2921 (CH3), 1658 (C=N); 1H NMR (300 MHz, CDCl3): 4.62 (2H, t, subst. Cp); 4.25 (2H, t, subst. Cp); 4.10 (5H, s, subst. Cp); 5.00 (2H, –NH2), 6.35 (1H, C—H).
6. details
Crystal data, data collection and structure . N-bound H atoms were refined isotropically with Uiso(H) = 1.2Ueq(N). C-bound H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined with isotropically Uiso(H) = 1.2Ueq(C) using a riding model.
details are summarized in Table 2Supporting information
CCDC reference: 1841501
https://doi.org/10.1107/S2056989022007228/dj2046sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022007228/dj2046Isup3.hkl
Data collection: APEX2 (Bruker, 2014); cell
APEX2 (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: XP (Siemens, 1998); software used to prepare material for publication: CIFTAB (Sheldrick, 2013).[Fe(C5H5)(C8H7N2S)] | F(000) = 584 |
Mr = 284.16 | Dx = 1.640 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 14.4024 (4) Å | Cell parameters from 5893 reflections |
b = 7.9621 (2) Å | θ = 2.9–30.0° |
c = 10.3584 (3) Å | µ = 1.47 mm−1 |
β = 104.3453 (13)° | T = 298 K |
V = 1150.80 (5) Å3 | Prism, orange |
Z = 4 | 0.27 × 0.16 × 0.14 mm |
Bruker D8 Venture κ-geometry diffractometer 208039-01 | 3214 independent reflections |
Radiation source: micro-focus X-ray source | 1805 reflections with I > 2σ(I) |
Helios multilayer mirror monochromator | Rint = 0.102 |
Detector resolution: 52.0833 pixels mm-1 | θmax = 29.6°, θmin = 2.9° |
φ and ω–scans | h = −19→19 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −11→11 |
Tmin = 0.656, Tmax = 0.746 | l = −14→14 |
17487 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: mixed |
wR(F2) = 0.091 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.024P)2 + 0.7338P] where P = (Fo2 + 2Fc2)/3 |
3214 reflections | (Δ/σ)max < 0.001 |
160 parameters | Δρmax = 0.44 e Å−3 |
1 restraint | Δρmin = −0.43 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.17036 (3) | 0.50999 (5) | 0.21675 (4) | 0.02688 (13) | |
C1 | 0.2361 (2) | 0.7055 (3) | 0.3316 (3) | 0.0293 (7) | |
C2 | 0.2072 (2) | 0.5816 (4) | 0.4119 (3) | 0.0347 (7) | |
H2 | 0.249851 | 0.519784 | 0.484765 | 0.042* | |
C3 | 0.1066 (2) | 0.5605 (4) | 0.3683 (3) | 0.0378 (8) | |
H3 | 0.067801 | 0.482058 | 0.405807 | 0.045* | |
C5 | 0.1513 (2) | 0.7608 (4) | 0.2371 (3) | 0.0354 (8) | |
H5 | 0.148594 | 0.845906 | 0.167931 | 0.043* | |
C4 | 0.0721 (2) | 0.6712 (4) | 0.2603 (3) | 0.0390 (8) | |
H4 | 0.005144 | 0.683301 | 0.210031 | 0.047* | |
C6 | 0.2513 (2) | 0.4562 (4) | 0.0875 (3) | 0.0390 (8) | |
H6 | 0.301224 | 0.528302 | 0.067788 | 0.047* | |
C7 | 0.2651 (2) | 0.3335 (4) | 0.1884 (3) | 0.0401 (8) | |
H7 | 0.326028 | 0.304522 | 0.250824 | 0.048* | |
C8 | 0.1747 (2) | 0.2590 (4) | 0.1828 (3) | 0.0436 (9) | |
H8 | 0.162060 | 0.169787 | 0.241401 | 0.052* | |
C9 | 0.1063 (2) | 0.3352 (4) | 0.0782 (3) | 0.0417 (8) | |
H9 | 0.037655 | 0.309044 | 0.051734 | 0.050* | |
C10 | 0.1538 (2) | 0.4568 (4) | 0.0194 (3) | 0.0388 (8) | |
H10 | 0.123912 | 0.530116 | −0.055375 | 0.047* | |
S11 | 0.48146 (6) | 0.92268 (11) | 0.31997 (10) | 0.0468 (3) | |
C12 | 0.4914 (2) | 0.7406 (4) | 0.4136 (3) | 0.0340 (7) | |
N13 | 0.41026 (17) | 0.6692 (3) | 0.4162 (3) | 0.0313 (6) | |
C14 | 0.3340 (2) | 0.7625 (4) | 0.3407 (3) | 0.0301 (7) | |
C15 | 0.3588 (2) | 0.9019 (4) | 0.2849 (3) | 0.0407 (8) | |
H15 | 0.315506 | 0.977392 | 0.234051 | 0.049* | |
N16 | 0.5779 (2) | 0.6798 (4) | 0.4780 (4) | 0.0506 (9) | |
H16A | 0.580 (2) | 0.585 (3) | 0.514 (3) | 0.061* | |
H16B | 0.627 (2) | 0.732 (4) | 0.469 (4) | 0.061* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0253 (2) | 0.0294 (2) | 0.0264 (2) | 0.00356 (18) | 0.00735 (17) | −0.0012 (2) |
C1 | 0.0303 (17) | 0.0283 (16) | 0.0294 (18) | 0.0051 (12) | 0.0075 (14) | −0.0029 (13) |
C2 | 0.0349 (18) | 0.0426 (18) | 0.0263 (18) | 0.0062 (14) | 0.0071 (14) | −0.0018 (15) |
C3 | 0.0341 (18) | 0.050 (2) | 0.035 (2) | 0.0000 (15) | 0.0180 (15) | −0.0075 (16) |
C5 | 0.0387 (19) | 0.0287 (16) | 0.036 (2) | 0.0100 (14) | 0.0042 (16) | −0.0040 (14) |
C4 | 0.0283 (18) | 0.048 (2) | 0.039 (2) | 0.0094 (15) | 0.0060 (15) | −0.0144 (17) |
C6 | 0.042 (2) | 0.040 (2) | 0.042 (2) | 0.0015 (14) | 0.0252 (17) | −0.0056 (15) |
C7 | 0.0376 (19) | 0.0400 (19) | 0.044 (2) | 0.0147 (15) | 0.0119 (16) | −0.0086 (16) |
C8 | 0.056 (2) | 0.0291 (17) | 0.050 (2) | 0.0014 (16) | 0.0215 (19) | 0.0012 (16) |
C9 | 0.0375 (19) | 0.0440 (19) | 0.042 (2) | −0.0034 (16) | 0.0062 (17) | −0.0154 (17) |
C10 | 0.045 (2) | 0.044 (2) | 0.0284 (18) | 0.0079 (15) | 0.0102 (16) | −0.0009 (15) |
S11 | 0.0426 (5) | 0.0386 (5) | 0.0569 (6) | −0.0050 (4) | 0.0081 (4) | 0.0175 (4) |
C12 | 0.0351 (18) | 0.0308 (16) | 0.035 (2) | −0.0025 (14) | 0.0062 (15) | 0.0041 (14) |
N13 | 0.0284 (14) | 0.0299 (13) | 0.0348 (16) | 0.0007 (11) | 0.0064 (12) | 0.0043 (12) |
C14 | 0.0329 (17) | 0.0277 (16) | 0.0289 (18) | 0.0020 (13) | 0.0060 (14) | −0.0040 (13) |
C15 | 0.0385 (19) | 0.0346 (18) | 0.045 (2) | 0.0035 (14) | 0.0029 (16) | 0.0112 (16) |
N16 | 0.0283 (16) | 0.0447 (18) | 0.074 (2) | −0.0057 (13) | 0.0045 (16) | 0.0265 (17) |
Fe1—C6 | 2.027 (3) | C6—C10 | 1.408 (4) |
Fe1—C7 | 2.030 (3) | C6—C7 | 1.408 (4) |
Fe1—C8 | 2.033 (3) | C6—H6 | 0.9800 |
Fe1—C5 | 2.034 (3) | C7—C8 | 1.419 (4) |
Fe1—C2 | 2.040 (3) | C7—H7 | 0.9800 |
Fe1—C4 | 2.043 (3) | C8—C9 | 1.408 (4) |
Fe1—C1 | 2.043 (3) | C8—H8 | 0.9800 |
Fe1—C10 | 2.043 (3) | C9—C10 | 1.409 (4) |
Fe1—C3 | 2.045 (3) | C9—H9 | 0.9800 |
Fe1—C9 | 2.047 (3) | C10—H10 | 0.9800 |
C1—C2 | 1.417 (4) | S11—C15 | 1.721 (3) |
C1—C5 | 1.432 (4) | S11—C12 | 1.730 (3) |
C1—C14 | 1.462 (4) | C12—N13 | 1.306 (4) |
C2—C3 | 1.417 (4) | C12—N16 | 1.349 (4) |
C2—H2 | 0.9800 | N13—C14 | 1.394 (3) |
C3—C4 | 1.414 (4) | C14—C15 | 1.340 (4) |
C3—H3 | 0.9800 | C15—H15 | 0.9300 |
C5—C4 | 1.416 (4) | N16—H16A | 0.84 (2) |
C5—H5 | 0.9800 | N16—H16B | 0.84 (2) |
C4—H4 | 0.9800 | ||
C6—Fe1—C7 | 40.61 (12) | C4—C3—H3 | 126.0 |
C6—Fe1—C8 | 68.33 (13) | C2—C3—H3 | 126.0 |
C7—Fe1—C8 | 40.88 (12) | Fe1—C3—H3 | 126.0 |
C6—Fe1—C5 | 112.99 (13) | C4—C5—C1 | 108.4 (3) |
C7—Fe1—C5 | 143.86 (14) | C4—C5—Fe1 | 70.02 (17) |
C8—Fe1—C5 | 173.68 (13) | C1—C5—Fe1 | 69.79 (16) |
C6—Fe1—C2 | 131.49 (13) | C4—C5—H5 | 125.8 |
C7—Fe1—C2 | 108.54 (13) | C1—C5—H5 | 125.8 |
C8—Fe1—C2 | 115.77 (13) | Fe1—C5—H5 | 125.8 |
C5—Fe1—C2 | 68.37 (13) | C3—C4—C5 | 107.9 (3) |
C6—Fe1—C4 | 145.32 (14) | C3—C4—Fe1 | 69.85 (17) |
C7—Fe1—C4 | 173.96 (14) | C5—C4—Fe1 | 69.34 (17) |
C8—Fe1—C4 | 135.13 (14) | C3—C4—H4 | 126.0 |
C5—Fe1—C4 | 40.64 (12) | C5—C4—H4 | 126.0 |
C2—Fe1—C4 | 68.26 (12) | Fe1—C4—H4 | 126.0 |
C6—Fe1—C1 | 106.63 (13) | C10—C6—C7 | 108.3 (3) |
C7—Fe1—C1 | 112.38 (13) | C10—C6—Fe1 | 70.40 (18) |
C8—Fe1—C1 | 145.08 (13) | C7—C6—Fe1 | 69.82 (18) |
C5—Fe1—C1 | 41.12 (11) | C10—C6—H6 | 125.9 |
C2—Fe1—C1 | 40.62 (12) | C7—C6—H6 | 125.9 |
C4—Fe1—C1 | 68.84 (12) | Fe1—C6—H6 | 125.9 |
C6—Fe1—C10 | 40.46 (12) | C6—C7—C8 | 107.5 (3) |
C7—Fe1—C10 | 68.14 (13) | C6—C7—Fe1 | 69.56 (17) |
C8—Fe1—C10 | 67.91 (13) | C8—C7—Fe1 | 69.66 (18) |
C5—Fe1—C10 | 108.79 (13) | C6—C7—H7 | 126.2 |
C2—Fe1—C10 | 170.67 (13) | C8—C7—H7 | 126.2 |
C4—Fe1—C10 | 115.84 (13) | Fe1—C7—H7 | 126.2 |
C1—Fe1—C10 | 131.53 (13) | C9—C8—C7 | 108.1 (3) |
C6—Fe1—C3 | 171.70 (13) | C9—C8—Fe1 | 70.36 (18) |
C7—Fe1—C3 | 133.85 (14) | C7—C8—Fe1 | 69.46 (18) |
C8—Fe1—C3 | 111.39 (13) | C9—C8—H8 | 125.9 |
C5—Fe1—C3 | 68.26 (13) | C7—C8—H8 | 125.9 |
C2—Fe1—C3 | 40.58 (12) | Fe1—C8—H8 | 125.9 |
C4—Fe1—C3 | 40.48 (13) | C8—C9—C10 | 107.9 (3) |
C1—Fe1—C3 | 68.58 (13) | C8—C9—Fe1 | 69.26 (18) |
C10—Fe1—C3 | 147.70 (13) | C10—C9—Fe1 | 69.70 (18) |
C6—Fe1—C9 | 68.10 (13) | C8—C9—H9 | 126.1 |
C7—Fe1—C9 | 68.31 (13) | C10—C9—H9 | 126.1 |
C8—Fe1—C9 | 40.38 (12) | Fe1—C9—H9 | 126.1 |
C5—Fe1—C9 | 133.72 (13) | C6—C10—C9 | 108.2 (3) |
C2—Fe1—C9 | 147.76 (14) | C6—C10—Fe1 | 69.14 (18) |
C4—Fe1—C9 | 111.42 (13) | C9—C10—Fe1 | 70.01 (18) |
C1—Fe1—C9 | 171.57 (13) | C6—C10—H10 | 125.9 |
C10—Fe1—C9 | 40.29 (13) | C9—C10—H10 | 125.9 |
C3—Fe1—C9 | 117.46 (14) | Fe1—C10—H10 | 125.9 |
C2—C1—C5 | 106.9 (3) | C15—S11—C12 | 88.62 (15) |
C2—C1—C14 | 126.6 (3) | N13—C12—N16 | 123.7 (3) |
C5—C1—C14 | 126.4 (3) | N13—C12—S11 | 115.2 (2) |
C2—C1—Fe1 | 69.56 (17) | N16—C12—S11 | 121.1 (2) |
C5—C1—Fe1 | 69.09 (16) | C12—N13—C14 | 110.0 (3) |
C14—C1—Fe1 | 125.0 (2) | C15—C14—N13 | 115.2 (3) |
C3—C2—C1 | 108.7 (3) | C15—C14—C1 | 125.8 (3) |
C3—C2—Fe1 | 69.93 (17) | N13—C14—C1 | 119.0 (3) |
C1—C2—Fe1 | 69.82 (17) | C14—C15—S11 | 111.0 (2) |
C3—C2—H2 | 125.6 | C14—C15—H15 | 124.5 |
C1—C2—H2 | 125.6 | S11—C15—H15 | 124.5 |
Fe1—C2—H2 | 125.6 | C12—N16—H16A | 118 (2) |
C4—C3—C2 | 108.0 (3) | C12—N16—H16B | 118 (2) |
C4—C3—Fe1 | 69.67 (18) | H16A—N16—H16B | 123 (3) |
C2—C3—Fe1 | 69.49 (17) | ||
C5—C1—C2—C3 | 0.0 (3) | C7—C8—C9—C10 | −0.2 (4) |
C14—C1—C2—C3 | −178.4 (3) | Fe1—C8—C9—C10 | 59.2 (2) |
Fe1—C1—C2—C3 | −59.3 (2) | C7—C8—C9—Fe1 | −59.4 (2) |
C5—C1—C2—Fe1 | 59.2 (2) | C7—C6—C10—C9 | 0.5 (3) |
C14—C1—C2—Fe1 | −119.1 (3) | Fe1—C6—C10—C9 | −59.3 (2) |
C1—C2—C3—C4 | 0.0 (3) | C7—C6—C10—Fe1 | 59.8 (2) |
Fe1—C2—C3—C4 | −59.2 (2) | C8—C9—C10—C6 | −0.2 (4) |
C1—C2—C3—Fe1 | 59.2 (2) | Fe1—C9—C10—C6 | 58.8 (2) |
C2—C1—C5—C4 | 0.0 (3) | C8—C9—C10—Fe1 | −58.9 (2) |
C14—C1—C5—C4 | 178.4 (3) | C15—S11—C12—N13 | 1.1 (3) |
Fe1—C1—C5—C4 | 59.6 (2) | C15—S11—C12—N16 | −179.0 (3) |
C2—C1—C5—Fe1 | −59.5 (2) | N16—C12—N13—C14 | 179.7 (3) |
C14—C1—C5—Fe1 | 118.8 (3) | S11—C12—N13—C14 | −0.4 (3) |
C2—C3—C4—C5 | 0.0 (3) | C12—N13—C14—C15 | −0.9 (4) |
Fe1—C3—C4—C5 | −59.1 (2) | C12—N13—C14—C1 | −179.3 (3) |
C2—C3—C4—Fe1 | 59.1 (2) | C2—C1—C14—C15 | −165.0 (3) |
C1—C5—C4—C3 | 0.0 (3) | C5—C1—C14—C15 | 17.0 (5) |
Fe1—C5—C4—C3 | 59.4 (2) | Fe1—C1—C14—C15 | 105.6 (3) |
C1—C5—C4—Fe1 | −59.4 (2) | C2—C1—C14—N13 | 13.2 (4) |
C10—C6—C7—C8 | −0.6 (3) | C5—C1—C14—N13 | −164.9 (3) |
Fe1—C6—C7—C8 | 59.6 (2) | Fe1—C1—C14—N13 | −76.2 (3) |
C10—C6—C7—Fe1 | −60.1 (2) | N13—C14—C15—S11 | 1.7 (4) |
C6—C7—C8—C9 | 0.5 (4) | C1—C14—C15—S11 | 180.0 (2) |
Fe1—C7—C8—C9 | 60.0 (2) | C12—S11—C15—C14 | −1.6 (3) |
C6—C7—C8—Fe1 | −59.5 (2) |
Cg1 is the centroid of the C1–C5 Cp ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N16—H16A···N13i | 0.84 (2) | 2.14 (2) | 2.976 (4) | 173 (4) |
C10—H10···Cg1ii | 0.98 | 2.89 | 3.703 (3) | 141 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+3/2, z−1/2. |
Funding information
We thank the DGAPA (project IN209020) for financial support.
References
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chopra, R., de Kock, C., Smith, P., Chibale, K. & Singh, K. (2015). Eur. J. Med. Chem. 100, 1–9. CrossRef CAS PubMed Google Scholar
Das, D., Sikdar, P. & Bairagi, M. (2016). Eur. J. Med. Chem. 109, 89–98. Web of Science CrossRef CAS PubMed Google Scholar
Dondoni, A. (2010). Org. Biomol. Chem. 8, 3366–3385. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Ji Ram, V., Sethi, A., Nath, M. & Pratap, R. (2019). The Chemistry of Heterocycles, Vol. 5. pp. 149–478. Amsterdam: Elsevier. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Mishra, R., Sharma, P. K., Verma, P. K., Tomer, I., Mathur, G. & Dhakad, P. K. (2017). J. Heterocycl. Chem. 54, 2103–2116. CrossRef CAS Google Scholar
Plażuk, D., Zakrzewski, J., Rybarczyk-Pirek, A. & Domagała, S. (2005). J. Organomet. Chem. 690, 4302–4308. Google Scholar
Sánchez-Rodríguez, E. P., Hochberger-Roa, F., Corona-Sánchez, R., Barquera-Lozada, J. E., Toscano, R. A., Urrutigoïty, M., Gouygou, M., Ortega-Alfaro, M. C. & López-Cortés, J. G. (2017). Dalton Trans. 46, 1510–1519. PubMed Google Scholar
Shao, L., Hu, Y., Zhou, X., Zhang, Q. & Fang, J.-X. (2005). Acta Cryst. E61, m1269–m1271. Web of Science CrossRef IUCr Journals Google Scholar
Shao, L., Zhou, X., Hu, Y. & Fang, J.-X. (2006b). Acta Cryst. E62, m49–m51. CSD CrossRef IUCr Journals Google Scholar
Shao, L., Zhou, X., Hu, Y., Jin, Z., Liu, J. & Fang, J. X. (2006a). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 36, 325–330. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2013). CIFTAB. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siemens (1998). XP in SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Xu, X., Zheng, B., Deng, H., Zhang, X. & Shuai, Q. (2020). Microchem. J. 158, 105257. CSD CrossRef Google Scholar
Yu, H., Shao, L. & Fang, J. (2007). J. Organomet. Chem. 692, 991–996. Web of Science CSD CrossRef CAS Google Scholar
Yu, H.-B., Shao, L., Jin, Z., Liu, J.-B. & Fang, J.-X. (2005). Acta Cryst. E61, m2031–m2032. Web of Science CrossRef IUCr Journals Google Scholar
Zeng, R.-S., Zou, J.-P., Zhi, S.-J., Chen, J. & Shen, Q. (2003). Org. Lett. 5, 1657–1659. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.