research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-ferrocenyl­thia­zole

crossmark logo

aInstituto de Química, Circuito Exterior Cd. Universitaria, PO Box 04510, Ciudad de México, Mexico, and bLab. Síntesis de Complejos, Fac. Cs. Quím.-BUAP, Ciudad Universitaria, PO Box 156, Puebla, Mexico
*Correspondence e-mail: pankajsh@unam.mx

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 8 March 2022; accepted 13 July 2022; online 19 July 2022)

The title compound, [Fe(C5H5)(C8H7N2S)], was synthesized by the direct reaction of acetyl­ferrocene, thio­urea and resublimed iodine. The structure shows one mol­ecule in the asymmetric unit. The amino­thia­zole ring makes an angle of 14.53 (13)° with the ferrocenyl ring to which it is attached. In the crystal, pairs of complex mol­ecules inter­act via inter­molecular N—H⋯N hydrogen bonds, forming a cyclic dimer which then inter­acts with other dimers through C—H⋯π inter­actions.

1. Chemical context

Recently, the synthesis of new hybrid compounds based on a ferrocenyl group linked to a five-membered heterocyclic unit has drawn attention (Sánchez-Rodríguez et al., 2017[Sánchez-Rodríguez, E. P., Hochberger-Roa, F., Corona-Sánchez, R., Barquera-Lozada, J. E., Toscano, R. A., Urrutigoïty, M., Gouygou, M., Ortega-Alfaro, M. C. & López-Cortés, J. G. (2017). Dalton Trans. 46, 1510-1519.]; Shao et al., 2006a[Shao, L., Zhou, X., Hu, Y., Jin, Z., Liu, J. & Fang, J. X. (2006a). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 36, 325-330.]). One important five-membered heterocycle is 2-amino­thia­zole, which is a versatile scaffold extensively used in various branches of chemistry including dyes and in the pharmaceutical industries. 2-Amino­thia­zole derivatives are widely used by medicinal chemists (Das et al., 2016[Das, D., Sikdar, P. & Bairagi, M. (2016). Eur. J. Med. Chem. 109, 89-98.]) and have various applications in medicinal, agriculture and analytical chemistry. They are known to exhibit a wide variety of biological activities such as anti­viral, anti­bacterial, anti­fungal, anti­tubercular, herbicidal and insecticidal (Mishra et al., 2017[Mishra, R., Sharma, P. K., Verma, P. K., Tomer, I., Mathur, G. & Dhakad, P. K. (2017). J. Heterocycl. Chem. 54, 2103-2116.]; Ji Ram et al., 2019[Ji Ram, V., Sethi, A., Nath, M. & Pratap, R. (2019). The Chemistry of Heterocycles, Vol. 5. pp. 149-478. Amsterdam: Elsevier.]; Dondoni, 2010[Dondoni, A. (2010). Org. Biomol. Chem. 8, 3366-3385.]). Thia­zoles are also used as precursors or inter­mediates for the synthesis of a variety of heterocyclic compounds (Zeng et al., 2003[Zeng, R.-S., Zou, J.-P., Zhi, S.-J., Chen, J. & Shen, Q. (2003). Org. Lett. 5, 1657-1659.]). We report here the crystal and mol­ecular structure of 2-amino-4-ferrocenyl­thia­zole, which has not previously been reported.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the monoclinic system, space group P21/c. The asymmetric unit contains one mol­ecular unit as shown in Fig. 1[link]. The C15—S11—C12 bond angle of 88.6 (2)° reflects the presence of a non-delocalized lone pair of electrons and is similar to that observed in other thia­zoles. The length of the C12=N13 double bond is 1.306 (4) Å. The torsion angles in the amino substituted thia­zole ring are: 1.1 (3)° for N13—C12—S11—C15 and 1.7 (4)° for N13—C14—C15—S11. All bond lengths and angles confirm the sp2 hybridization for all C and N atoms.

[Figure 1]
Figure 1
Structure of 2-amino-4-ferrocenyl­thia­zole. Displacement ellipsoids are drawn at the 30% probability level.

The ferrocene moiety is in the staggered conformation. The influence of the steric hindrance caused by the organic groups is reflected in the torsion angle C5—C1—C14—C15, 17.0 (5)°, compared with the C2—C1—C14—N13 torsion angle of 13.2 (4)°. The steric effect is also evident in the dihedral angle of 14.77 (17)° subtended by the planes of the heterocycle (C14/C15/S11/C12/N13) and the Cp plane (C1–C5).

3. Supra­molecular features

The structure is stabilized by inter­molecular hydrogen bonding (N—H⋯N) and C—H⋯π inter­actions. For C10—H10⋯Cg(C1–C5) the H-to-ring distance is 2.89 Å, as shown in Table 1[link]. As a result of inter­molecular N—H⋯N inter­actions, a pseudo six-membered (N16/C12/N13/N16/C12/N13) ring is formed and this hydrogen bond, in addition to the C—H⋯π inter­action, produces a packing into supra­molecular layers parallel to the bc plane (Fig. 2[link]). The structure presents very similar C=N distances and angles in the thia­zole ring, as reported earlier for some similar compounds (Sánchez-Rodríguez et al., 2017[Sánchez-Rodríguez, E. P., Hochberger-Roa, F., Corona-Sánchez, R., Barquera-Lozada, J. E., Toscano, R. A., Urrutigoïty, M., Gouygou, M., Ortega-Alfaro, M. C. & López-Cortés, J. G. (2017). Dalton Trans. 46, 1510-1519.]; Shao et al., 2006b[Shao, L., Hu, Y., Zhou, X., Zhang, Q. & Fang, J.-X. (2005). Acta Cryst. E61, m1269-m1271.]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C5 Cp ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N16—H16A⋯N13i 0.84 (2) 2.14 (2) 2.976 (4) 173 (4)
C10—H10⋯Cg1ii 0.98 2.89 3.703 (3) 141
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The packing of the title compound. The dotted lines indicate inter­molecular hydrogen bonds. All H atoms not involved in these inter­actions have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.43, update of November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 4-ferrocenyl thia­zoles gave eight hits. In six cases (GAVFIT, Yu et al., 2005[Yu, H.-B., Shao, L., Jin, Z., Liu, J.-B. & Fang, J.-X. (2005). Acta Cryst. E61, m2031-m2032.]; GAVFIT01, Yu et al., 2007[Yu, H., Shao, L. & Fang, J. (2007). J. Organomet. Chem. 692, 991-996.]; QAYSAL, Shao et al., 2006b[Shao, L., Zhou, X., Hu, Y. & Fang, J.-X. (2006b). Acta Cryst. E62, m49-m51.]; QAYSAL01, Shao et al., 2006a[Shao, L., Zhou, X., Hu, Y., Jin, Z., Liu, J. & Fang, J. X. (2006a). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 36, 325-330.]; RAPQAB, Shao et al., 2005[Shao, L., Hu, Y., Zhou, X., Zhang, Q. & Fang, J.-X. (2005). Acta Cryst. E61, m1269-m1271.]; RAPQAB01, Shao et al., 2006a[Shao, L., Zhou, X., Hu, Y., Jin, Z., Liu, J. & Fang, J. X. (2006a). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 36, 325-330.]), the thia­zole ring is substituted. In two cases there is no substitution in the thia­zole ring (GUPKAG, Xu et al., 2020[Xu, X., Zheng, B., Deng, H., Zhang, X. & Shuai, Q. (2020). Microchem. J. 158, 105257.] and PAWWEQ, Plazuk et al., 2005[Plażuk, D., Zakrzewski, J., Rybarczyk-Pirek, A. & Domagała, S. (2005). J. Organomet. Chem. 690, 4302-4308.]) with PAWWEQ being a diferrocenyl compound. In all eight cases, the bond lengths and angles confirm the sp2 hybridization for all C and N atoms.

5. Synthesis and crystallization

The title compound was synthesized according to the reported method (Chopra et al., 2015[Chopra, R., de Kock, C., Smith, P., Chibale, K. & Singh, K. (2015). Eur. J. Med. Chem. 100, 1-9.]). The crude product was purified by column chromatography over silica and suitable crystals were obtained after recrystallization of the solid from a 1:1 hexane-di­chloro­methane mixture by slow evaporation. The compound 2-amino-4-ferrocenyl­thia­zole was further characterized by 1H NMR and IR–ATR. FT–IR (ATR, cm−1) ν 3099 (ArCH), 2921 (CH3), 1658 (C=N); 1H NMR (300 MHz, CDCl3): 4.62 (2H, t, subst. Cp); 4.25 (2H, t, subst. Cp); 4.10 (5H, s, subst. Cp); 5.00 (2H, –NH2), 6.35 (1H, C—H).

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. N-bound H atoms were refined isotropically with Uiso(H) = 1.2Ueq(N). C-bound H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined with isotropically Uiso(H) = 1.2Ueq(C) using a riding model.

Table 2
Experimental details

Crystal data
Chemical formula [Fe(C5H5)(C8H7N2S)]
Mr 284.16
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 14.4024 (4), 7.9621 (2), 10.3584 (3)
β (°) 104.3453 (13)
V3) 1150.80 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.47
Crystal size (mm) 0.27 × 0.16 × 0.14
 
Data collection
Diffractometer Bruker D8 Venture κ-geometry diffractometer 208039-01
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.656, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 17487, 3214, 1805
Rint 0.102
(sin θ/λ)max−1) 0.694
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.091, 1.02
No. of reflections 3214
No. of parameters 160
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.44, −0.43
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP (Siemens, 1998[Siemens (1998). XP in SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) and CIFTAB (Sheldrick, 2013[Sheldrick, G. M. (2013). CIFTAB. University of Göttingen, Germany.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: APEX2 (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: XP (Siemens, 1998); software used to prepare material for publication: CIFTAB (Sheldrick, 2013).

2-Amino-4-ferrocenylthiazole top
Crystal data top
[Fe(C5H5)(C8H7N2S)]F(000) = 584
Mr = 284.16Dx = 1.640 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.4024 (4) ÅCell parameters from 5893 reflections
b = 7.9621 (2) Åθ = 2.9–30.0°
c = 10.3584 (3) ŵ = 1.47 mm1
β = 104.3453 (13)°T = 298 K
V = 1150.80 (5) Å3Prism, orange
Z = 40.27 × 0.16 × 0.14 mm
Data collection top
Bruker D8 Venture κ-geometry
diffractometer 208039-01
3214 independent reflections
Radiation source: micro-focus X-ray source1805 reflections with I > 2σ(I)
Helios multilayer mirror monochromatorRint = 0.102
Detector resolution: 52.0833 pixels mm-1θmax = 29.6°, θmin = 2.9°
φ and ω–scansh = 1919
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1111
Tmin = 0.656, Tmax = 0.746l = 1414
17487 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: mixed
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.024P)2 + 0.7338P]
where P = (Fo2 + 2Fc2)/3
3214 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.44 e Å3
1 restraintΔρmin = 0.43 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.17036 (3)0.50999 (5)0.21675 (4)0.02688 (13)
C10.2361 (2)0.7055 (3)0.3316 (3)0.0293 (7)
C20.2072 (2)0.5816 (4)0.4119 (3)0.0347 (7)
H20.2498510.5197840.4847650.042*
C30.1066 (2)0.5605 (4)0.3683 (3)0.0378 (8)
H30.0678010.4820580.4058070.045*
C50.1513 (2)0.7608 (4)0.2371 (3)0.0354 (8)
H50.1485940.8459060.1679310.043*
C40.0721 (2)0.6712 (4)0.2603 (3)0.0390 (8)
H40.0051440.6833010.2100310.047*
C60.2513 (2)0.4562 (4)0.0875 (3)0.0390 (8)
H60.3012240.5283020.0677880.047*
C70.2651 (2)0.3335 (4)0.1884 (3)0.0401 (8)
H70.3260280.3045220.2508240.048*
C80.1747 (2)0.2590 (4)0.1828 (3)0.0436 (9)
H80.1620600.1697870.2414010.052*
C90.1063 (2)0.3352 (4)0.0782 (3)0.0417 (8)
H90.0376550.3090440.0517340.050*
C100.1538 (2)0.4568 (4)0.0194 (3)0.0388 (8)
H100.1239120.5301160.0553750.047*
S110.48146 (6)0.92268 (11)0.31997 (10)0.0468 (3)
C120.4914 (2)0.7406 (4)0.4136 (3)0.0340 (7)
N130.41026 (17)0.6692 (3)0.4162 (3)0.0313 (6)
C140.3340 (2)0.7625 (4)0.3407 (3)0.0301 (7)
C150.3588 (2)0.9019 (4)0.2849 (3)0.0407 (8)
H150.3155060.9773920.2340510.049*
N160.5779 (2)0.6798 (4)0.4780 (4)0.0506 (9)
H16A0.580 (2)0.585 (3)0.514 (3)0.061*
H16B0.627 (2)0.732 (4)0.469 (4)0.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0253 (2)0.0294 (2)0.0264 (2)0.00356 (18)0.00735 (17)0.0012 (2)
C10.0303 (17)0.0283 (16)0.0294 (18)0.0051 (12)0.0075 (14)0.0029 (13)
C20.0349 (18)0.0426 (18)0.0263 (18)0.0062 (14)0.0071 (14)0.0018 (15)
C30.0341 (18)0.050 (2)0.035 (2)0.0000 (15)0.0180 (15)0.0075 (16)
C50.0387 (19)0.0287 (16)0.036 (2)0.0100 (14)0.0042 (16)0.0040 (14)
C40.0283 (18)0.048 (2)0.039 (2)0.0094 (15)0.0060 (15)0.0144 (17)
C60.042 (2)0.040 (2)0.042 (2)0.0015 (14)0.0252 (17)0.0056 (15)
C70.0376 (19)0.0400 (19)0.044 (2)0.0147 (15)0.0119 (16)0.0086 (16)
C80.056 (2)0.0291 (17)0.050 (2)0.0014 (16)0.0215 (19)0.0012 (16)
C90.0375 (19)0.0440 (19)0.042 (2)0.0034 (16)0.0062 (17)0.0154 (17)
C100.045 (2)0.044 (2)0.0284 (18)0.0079 (15)0.0102 (16)0.0009 (15)
S110.0426 (5)0.0386 (5)0.0569 (6)0.0050 (4)0.0081 (4)0.0175 (4)
C120.0351 (18)0.0308 (16)0.035 (2)0.0025 (14)0.0062 (15)0.0041 (14)
N130.0284 (14)0.0299 (13)0.0348 (16)0.0007 (11)0.0064 (12)0.0043 (12)
C140.0329 (17)0.0277 (16)0.0289 (18)0.0020 (13)0.0060 (14)0.0040 (13)
C150.0385 (19)0.0346 (18)0.045 (2)0.0035 (14)0.0029 (16)0.0112 (16)
N160.0283 (16)0.0447 (18)0.074 (2)0.0057 (13)0.0045 (16)0.0265 (17)
Geometric parameters (Å, º) top
Fe1—C62.027 (3)C6—C101.408 (4)
Fe1—C72.030 (3)C6—C71.408 (4)
Fe1—C82.033 (3)C6—H60.9800
Fe1—C52.034 (3)C7—C81.419 (4)
Fe1—C22.040 (3)C7—H70.9800
Fe1—C42.043 (3)C8—C91.408 (4)
Fe1—C12.043 (3)C8—H80.9800
Fe1—C102.043 (3)C9—C101.409 (4)
Fe1—C32.045 (3)C9—H90.9800
Fe1—C92.047 (3)C10—H100.9800
C1—C21.417 (4)S11—C151.721 (3)
C1—C51.432 (4)S11—C121.730 (3)
C1—C141.462 (4)C12—N131.306 (4)
C2—C31.417 (4)C12—N161.349 (4)
C2—H20.9800N13—C141.394 (3)
C3—C41.414 (4)C14—C151.340 (4)
C3—H30.9800C15—H150.9300
C5—C41.416 (4)N16—H16A0.84 (2)
C5—H50.9800N16—H16B0.84 (2)
C4—H40.9800
C6—Fe1—C740.61 (12)C4—C3—H3126.0
C6—Fe1—C868.33 (13)C2—C3—H3126.0
C7—Fe1—C840.88 (12)Fe1—C3—H3126.0
C6—Fe1—C5112.99 (13)C4—C5—C1108.4 (3)
C7—Fe1—C5143.86 (14)C4—C5—Fe170.02 (17)
C8—Fe1—C5173.68 (13)C1—C5—Fe169.79 (16)
C6—Fe1—C2131.49 (13)C4—C5—H5125.8
C7—Fe1—C2108.54 (13)C1—C5—H5125.8
C8—Fe1—C2115.77 (13)Fe1—C5—H5125.8
C5—Fe1—C268.37 (13)C3—C4—C5107.9 (3)
C6—Fe1—C4145.32 (14)C3—C4—Fe169.85 (17)
C7—Fe1—C4173.96 (14)C5—C4—Fe169.34 (17)
C8—Fe1—C4135.13 (14)C3—C4—H4126.0
C5—Fe1—C440.64 (12)C5—C4—H4126.0
C2—Fe1—C468.26 (12)Fe1—C4—H4126.0
C6—Fe1—C1106.63 (13)C10—C6—C7108.3 (3)
C7—Fe1—C1112.38 (13)C10—C6—Fe170.40 (18)
C8—Fe1—C1145.08 (13)C7—C6—Fe169.82 (18)
C5—Fe1—C141.12 (11)C10—C6—H6125.9
C2—Fe1—C140.62 (12)C7—C6—H6125.9
C4—Fe1—C168.84 (12)Fe1—C6—H6125.9
C6—Fe1—C1040.46 (12)C6—C7—C8107.5 (3)
C7—Fe1—C1068.14 (13)C6—C7—Fe169.56 (17)
C8—Fe1—C1067.91 (13)C8—C7—Fe169.66 (18)
C5—Fe1—C10108.79 (13)C6—C7—H7126.2
C2—Fe1—C10170.67 (13)C8—C7—H7126.2
C4—Fe1—C10115.84 (13)Fe1—C7—H7126.2
C1—Fe1—C10131.53 (13)C9—C8—C7108.1 (3)
C6—Fe1—C3171.70 (13)C9—C8—Fe170.36 (18)
C7—Fe1—C3133.85 (14)C7—C8—Fe169.46 (18)
C8—Fe1—C3111.39 (13)C9—C8—H8125.9
C5—Fe1—C368.26 (13)C7—C8—H8125.9
C2—Fe1—C340.58 (12)Fe1—C8—H8125.9
C4—Fe1—C340.48 (13)C8—C9—C10107.9 (3)
C1—Fe1—C368.58 (13)C8—C9—Fe169.26 (18)
C10—Fe1—C3147.70 (13)C10—C9—Fe169.70 (18)
C6—Fe1—C968.10 (13)C8—C9—H9126.1
C7—Fe1—C968.31 (13)C10—C9—H9126.1
C8—Fe1—C940.38 (12)Fe1—C9—H9126.1
C5—Fe1—C9133.72 (13)C6—C10—C9108.2 (3)
C2—Fe1—C9147.76 (14)C6—C10—Fe169.14 (18)
C4—Fe1—C9111.42 (13)C9—C10—Fe170.01 (18)
C1—Fe1—C9171.57 (13)C6—C10—H10125.9
C10—Fe1—C940.29 (13)C9—C10—H10125.9
C3—Fe1—C9117.46 (14)Fe1—C10—H10125.9
C2—C1—C5106.9 (3)C15—S11—C1288.62 (15)
C2—C1—C14126.6 (3)N13—C12—N16123.7 (3)
C5—C1—C14126.4 (3)N13—C12—S11115.2 (2)
C2—C1—Fe169.56 (17)N16—C12—S11121.1 (2)
C5—C1—Fe169.09 (16)C12—N13—C14110.0 (3)
C14—C1—Fe1125.0 (2)C15—C14—N13115.2 (3)
C3—C2—C1108.7 (3)C15—C14—C1125.8 (3)
C3—C2—Fe169.93 (17)N13—C14—C1119.0 (3)
C1—C2—Fe169.82 (17)C14—C15—S11111.0 (2)
C3—C2—H2125.6C14—C15—H15124.5
C1—C2—H2125.6S11—C15—H15124.5
Fe1—C2—H2125.6C12—N16—H16A118 (2)
C4—C3—C2108.0 (3)C12—N16—H16B118 (2)
C4—C3—Fe169.67 (18)H16A—N16—H16B123 (3)
C2—C3—Fe169.49 (17)
C5—C1—C2—C30.0 (3)C7—C8—C9—C100.2 (4)
C14—C1—C2—C3178.4 (3)Fe1—C8—C9—C1059.2 (2)
Fe1—C1—C2—C359.3 (2)C7—C8—C9—Fe159.4 (2)
C5—C1—C2—Fe159.2 (2)C7—C6—C10—C90.5 (3)
C14—C1—C2—Fe1119.1 (3)Fe1—C6—C10—C959.3 (2)
C1—C2—C3—C40.0 (3)C7—C6—C10—Fe159.8 (2)
Fe1—C2—C3—C459.2 (2)C8—C9—C10—C60.2 (4)
C1—C2—C3—Fe159.2 (2)Fe1—C9—C10—C658.8 (2)
C2—C1—C5—C40.0 (3)C8—C9—C10—Fe158.9 (2)
C14—C1—C5—C4178.4 (3)C15—S11—C12—N131.1 (3)
Fe1—C1—C5—C459.6 (2)C15—S11—C12—N16179.0 (3)
C2—C1—C5—Fe159.5 (2)N16—C12—N13—C14179.7 (3)
C14—C1—C5—Fe1118.8 (3)S11—C12—N13—C140.4 (3)
C2—C3—C4—C50.0 (3)C12—N13—C14—C150.9 (4)
Fe1—C3—C4—C559.1 (2)C12—N13—C14—C1179.3 (3)
C2—C3—C4—Fe159.1 (2)C2—C1—C14—C15165.0 (3)
C1—C5—C4—C30.0 (3)C5—C1—C14—C1517.0 (5)
Fe1—C5—C4—C359.4 (2)Fe1—C1—C14—C15105.6 (3)
C1—C5—C4—Fe159.4 (2)C2—C1—C14—N1313.2 (4)
C10—C6—C7—C80.6 (3)C5—C1—C14—N13164.9 (3)
Fe1—C6—C7—C859.6 (2)Fe1—C1—C14—N1376.2 (3)
C10—C6—C7—Fe160.1 (2)N13—C14—C15—S111.7 (4)
C6—C7—C8—C90.5 (4)C1—C14—C15—S11180.0 (2)
Fe1—C7—C8—C960.0 (2)C12—S11—C15—C141.6 (3)
C6—C7—C8—Fe159.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C5 Cp ring.
D—H···AD—HH···AD···AD—H···A
N16—H16A···N13i0.84 (2)2.14 (2)2.976 (4)173 (4)
C10—H10···Cg1ii0.982.893.703 (3)141
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z1/2.
 

Funding information

We thank the DGAPA (project IN209020) for financial support.

References

First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChopra, R., de Kock, C., Smith, P., Chibale, K. & Singh, K. (2015). Eur. J. Med. Chem. 100, 1–9.  CrossRef CAS PubMed Google Scholar
First citationDas, D., Sikdar, P. & Bairagi, M. (2016). Eur. J. Med. Chem. 109, 89–98.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDondoni, A. (2010). Org. Biomol. Chem. 8, 3366–3385.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJi Ram, V., Sethi, A., Nath, M. & Pratap, R. (2019). The Chemistry of Heterocycles, Vol. 5. pp. 149–478. Amsterdam: Elsevier.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMishra, R., Sharma, P. K., Verma, P. K., Tomer, I., Mathur, G. & Dhakad, P. K. (2017). J. Heterocycl. Chem. 54, 2103–2116.  CrossRef CAS Google Scholar
First citationPlażuk, D., Zakrzewski, J., Rybarczyk-Pirek, A. & Domagała, S. (2005). J. Organomet. Chem. 690, 4302–4308.  Google Scholar
First citationSánchez-Rodríguez, E. P., Hochberger-Roa, F., Corona-Sánchez, R., Barquera-Lozada, J. E., Toscano, R. A., Urrutigoïty, M., Gouygou, M., Ortega-Alfaro, M. C. & López-Cortés, J. G. (2017). Dalton Trans. 46, 1510–1519.  PubMed Google Scholar
First citationShao, L., Hu, Y., Zhou, X., Zhang, Q. & Fang, J.-X. (2005). Acta Cryst. E61, m1269–m1271.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShao, L., Zhou, X., Hu, Y. & Fang, J.-X. (2006b). Acta Cryst. E62, m49–m51.  CSD CrossRef IUCr Journals Google Scholar
First citationShao, L., Zhou, X., Hu, Y., Jin, Z., Liu, J. & Fang, J. X. (2006a). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 36, 325–330.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2013). CIFTAB. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiemens (1998). XP in SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationXu, X., Zheng, B., Deng, H., Zhang, X. & Shuai, Q. (2020). Microchem. J. 158, 105257.  CSD CrossRef Google Scholar
First citationYu, H., Shao, L. & Fang, J. (2007). J. Organomet. Chem. 692, 991–996.  Web of Science CSD CrossRef CAS Google Scholar
First citationYu, H.-B., Shao, L., Jin, Z., Liu, J.-B. & Fang, J.-X. (2005). Acta Cryst. E61, m2031–m2032.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZeng, R.-S., Zou, J.-P., Zhi, S.-J., Chen, J. & Shen, Q. (2003). Org. Lett. 5, 1657–1659.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds