research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of a zinc(II) coordination polymer of 5-phenyl-1,3,4-oxa­diazole-2-thiol­ate

crossmark logo

aNational University of Uzbekistan named after Mirzo Ulugbek, 4 University St, Tashkent, 100174, Uzbekistan, bS. Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Mirzo Ulugbek Str. 77, 100170, Tashkent, Uzbekistan, cPhysical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune-411008, India, and dInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str, 83, Tashkent, 100125, Uzbekistan
*Correspondence e-mail: torambetov_b@mail.ru

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 15 June 2022; accepted 6 July 2022; online 14 July 2022)

A new zinc coordination polymer with 5-phenyl-1,3,4-oxa­diazole-2-thiol­ate, namely, catena-poly[zinc(II)-bis­(μ2-5-phenyl-1,3,4-oxa­diazole-2-thiol­ato)-κ2N3:S;κ2S:N3], [Zn(C8H5N2OS)2]n, was synthesized. The single-crystal X-ray diffraction analysis shows that the polymeric structure crystallizes in the centrosymmetric monoclinic C2/c space group. The ZnII atom is coordinated to two S and two N atoms from four crystallographically independent (L) ligands, forming zigzag chains along the [001] direction. This polymer complex forms an eight-membered [Zn–S–C–N–Zn–S–C–N] chair-like ring with two ZnII atoms and two ligand mol­ecules. On the Hirshfeld surface, the largest contributions come from the short contacts such as van der Waals forces, including H⋯H, C⋯H and S⋯H. Inter­actions including N⋯H, O⋯H and C⋯C contacts were also observed; however, their contribution to the overall stability of the crystal lattice is minor.

1. Chemical context

Among heterocyclic organic compounds, 1,3,4-oxa­diazo­les have become an important class of heterocycles because of their broad spectrum of biological activity (De Oliveira et al., 2012[Oliveira, C. S. de, Lira, B. F., Barbosa-Filho, J. M., Lorenzo, J. G. F. & de Athayde-Filho, P. F. (2012). Molecules, 17, 10192-10231.]; Vaidya et al., 2020[Vaidya, A., Pathak, D. & Shah, K. (2020). Chem. Biol. Drug Des. 97, 572-591.]). Scientists have identified many properties of 1,3,4-oxa­diazole derivatives, such as anti­microbial (Bala et al., 2014[Bala, S., Kamboj, S., Kajal, A., Saini, V. & Prasad, D. N. (2014). BioMed Res. Int. 172791.]; Zachariah et al., 2015[Zachariah, S. M., Ramkumar, M., George, N. & Ashif, M. S. (2015). Res. J. Pharm. Biol. Chem. Sci, 6, 205-219.]; Ahmed et al., 2017[Ahmed, M. N., Yasin, K. A., Hameed, S., Ayub, K., Haq, I., Tahir, M. N. & Mahmood, T. (2017). J. Mol. Struct. 1129, 50-59.]; Razzoqova et al., 2019[Razzoqova, S. R., Kadirova, S., Ashurov, J. M., Rakhmonova, D. S., Ziyaev, A. & Parpiev, N. A. (2019). IUCrData, 4, x191532.]), anti­tuberculosis (Makane et al., 2019[Makane, V. B., Krishna, V. S., Krishna, E. V., Shukla, M., Mahizhaveni, B., Misra, S., Chopra, S., Sriram, D., Azger Dusthackeer, V. N. & Rode, H. B. (2019). Future Med. Chem. 11, 499-510.]; Wang et al., 2022[Wang, A., Xu, S., Chai, Y., Xia, G., Wang, B., Lv, K., Wang, D., Qin, X., Jiang, B., Wu, W., Liu, M. & Lu, Y. (2022). Bioorg. Med. Chem. 53, 116529.]), anti­cancer (Alam, 2022[Alam, M. M. (2022). Biointerface Res. Appl. Chem. 12, 5727-5744.]; Vaidya et al., 2020[Vaidya, A., Pathak, D. & Shah, K. (2020). Chem. Biol. Drug Des. 97, 572-591.]; Zhang et al., 2005[Zhang, H.-Z., Kasibhatla, S., Kuemmerle, J., Kemnitzer, W., Ollis-Mason, K., Qiu, L., Crogan-Grundy, C., Tseng, B., Drewe, J. & Cai, S. X. (2005). J. Med. Chem. 48, 5215-5223.]), anti-inflammatory (Abd-Ellah et al., 2017[Abd-Ellah, H. S., Abdel-Aziz, M., Shoman, M. E., Beshr, E. A. M., Kaoud, T. S. & Ahmed, A. F. F. (2017). Bioorg. Chem. 74, 15-29.]), analgesic (Husain & Ajmal, 2009[Husain, A. & Ajmal, M. (2009). Acta Pharm. 59, 223-233.]), herbicidal (Sun et al., 2014[Sun, G.-X., Yang, M.-Y., Sun, Z.-H., Wu, H.-K., Liu, X.-H. & Wei, Y.-Y. (2014). Phosphorus Sulfur Silicon, 189, 1895-1900.]; Duan et al., 2011[Duan, W.-G., Li, X.-R., Mo, Q.-J., Huang, J.-X., Cen, B., Xu, X.-T. & Lei, F.-H. (2011). Holzforschung, 65, 191-197.]) and anti­fungal (Zhang et al., 2013[Zhang, M.-Z., Mulholland, N., Beattie, D., Irwin, D., Gu, Y.-C., Chen, Q., Yang, G. F. & Clough, J. (2013). Eur. J. Med. Chem. 63, 22-32.]; Capoci et al., 2019[Capoci, I. R. G., Sakita, K. M., Faria, D. R., Rodrigues-Vendramini, F. A. V., Arita, G. S., de Oliveira, A. G. & Svidzinski, T. I. E. (2019). Front. Microbiol. 10, 1-11.]) activities. Heterocyclic thio­nes are an important type of compound in coordination chemistry because of their potential multifunctional donor sites, namely either exocyclic sulfur or endocyclic nitro­gen (Reddy et al., 2011[Reddy, M. A., Mallesham, G., Thomas, A., Srinivas, K., Rao, V. J., Bhanuprakash, K., Giribabu, L., Grover, R., Kumar, A., Kamalasanan, M. N. & Srivastava, R. (2011). Synth. Met. 161, 869-880.]; Wang et al., 2010[Wang, Y. T., Wan, W. Z., Tang, G. M., Qiang, Z. W. & Li, T. D. J. (2010). J. Coord. Chem. 63, 206-213.]). The presence of the 1,3,4-oxa­diazole ring affects the physicochemical and pharmacokinetic properties of the entire compound. An exciting feature of these metal complexes is that they can be mononuclear (Singh et al., 2008[Singh, M., Butcher, R. J. & Singh, N. K. (2008). Polyhedron, 27, 3151-3159.]; Ouilia et al., 2012[Ouilia, S., Beghidja, C., Beghidja, A. & Michaud, F. (2012). Acta Cryst. E68, m943.]), binuclear (Xiao et al., 2011[Xiao, J., Ma, J.-P., Huang, R.-Q. & Dong, Y.-B. (2011). Acta Cryst. C67, m90-m92.]; Wang et al., 2007[Wang, Y.-T., Tang, G.-M. & Qiang, Z.-W. (2007). Polyhedron, 26, 4542-4550.]) and/or polymeric (Beghidja et al., 2007[Beghidja, C., Rogez, G. & Welter, R. (2007). New J. Chem. 31, 1403-1406.]).

Oxa­diazole ligands are ideal objects for creating new coordination compounds with great potential in various fields. Scientists have written extensive literature on the biological properties of oxa­diazole-based complex compounds, especially on their anti­cancer effects. In addition to these, in the field of electrical engineering, metal complexes bearing oxa­diazole ligands have been used as emitting particles in light-emitting diodes. The introduction of various functionalized oxa­diazole ligands makes it easy to control the emission color, thermal stability, and film-forming properties of such complexes (Salassa & Terenzi, 2019[Salassa, G. & Terenzi, A. (2019). Int. J. Mol. Sci. 20, 3483.]).

[Scheme 1]

Herein, we report on the synthesis and crystal structure of a new polymeric complex, [ZnL2]n, with L = 5-phenyl-1,3,4-oxa­diazole-2-thiol.

2. Structural commentary

The single crystal X-ray structure of 5-phenyl-1,3,4-oxa­diazole-2-thiol­ate ZnII shows a polymeric structure that crystallizes in the centrosymmetric monoclinic space group C2/c (Table 2[link]). As seen in Fig. 1[link], its asymmetric unit contains half a zinc atom and one ligand anion. The central ZnII atom has a distorted tetra­hedral environment comprising two sulfur and two nitro­gen atoms. It is coordinated by four crystallographically independent (L) ligands, forming zigzag chains along the [001] direction, which are linked by two sulfur atoms and two nitro­gen atoms of four ligands. The Zn1—S1 and Zn1—N1 bond lengths are 2.3370 (5) Å, 2.0184 (14) Å, respectively. In this case, the bond angles of the atom forming the tetra­hedral polyhedron are slightly different from the angles of the ideal tetra­hedron [N1—Zn1–N1 = 111.37 (9)°, S1—Zn1—S1 = 100.46 (3)° and N1—Zn1—S1 = 108.51 (4)°]. It is known from the literature (Razzoqova et al., 2019[Razzoqova, S. R., Kadirova, S., Ashurov, J. M., Rakhmonova, D. S., Ziyaev, A. & Parpiev, N. A. (2019). IUCrData, 4, x191532.]) that the sulfur atom in the 1,3,4-oxadiazole-2-thione mol­ecule is attached to the ring by a double bond. In this polymer complex synthesized based on ZnII ion, the oxa­diazole derivative transforms into the thiol tautomeric form and binds to the Zn ion. The N1 atom in the ligand mol­ecule, on the other hand, forms a bond with another ZnII ion due to its high electron-donating property, resulting in an eight-membered [Zn–S–C–N–Zn–S–C–N] chair-like ring with two ZnII atoms and two ligand mol­ecules (Fig. 2[link]). The dihedral angle between the mean planes of the phenyl (C3–C8) and oxa­diazole (C1/O1/C2/N2/N1) rings of the ligand mol­ecule is 13.42 (8)°. The conformation of the oxa­diazole-thiol fragment of the ligand is approximately planar (r.m.s. deviation 0.006 Å), with a maximum deviation from the least-squares plane of 0.009 (1) Å for atom O1. The dihedral angle between the planes of the two neighboring independent oxa­diazole-thiol (C1/O1/C2/N2/N1/S1) fragments is 64.10 (9)°.

Table 2
Experimental details

Crystal data
Chemical formula [Zn(C8H5N2OS)2]
Mr 419.79
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 20.4223 (3), 11.3260 (2), 7.4019 (1)
β (°) 98.310 (1)
V3) 1694.11 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.48
Crystal size (mm) 0.60 × 0.14 × 0.08
 
Data collection
Diffractometer XtaLAB Synergy, single source at home/near, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.099, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7033, 1634, 1536
Rint 0.028
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.073, 1.09
No. of reflections 1634
No. of parameters 134
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.26, −0.33
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).
[Figure 1]
Figure 1
The mol­ecular structure of [Zn0.5L] with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are displayed as small spheres of arbitrary radii.
[Figure 2]
Figure 2
The view of the mol­ecular packing showing the polymeric chain extended along the c-axis.

3. Supra­molecular features

The [(ZnL2)n] unit is given as a monomer of the polymeric chain that extends parallel to the c-axis. Along the polymeric chain, the hydro­philic groups are concentrated within the core of the chain while the phenyl rings project approximately normal to the chain. Neighboring chains across the ab plane are loosely connected via a rather weak C6—H6⋯S1 hydrogen bond (Table 1[link], Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯S1i 1.00 (3) 2.86 (3) 3.608 (2) 132 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Crystal packing of the polymeric chains in the [(ZnL2)n] structure. The projection is along the [001] direction. Hydrogen bonds are shown by cyan lines.

4. Hirshfeld surface analysis

To further investigate the inter­molecular inter­actions present in the title compound, a Hirshfeld surface analysis was performed, and the two-dimensional fingerprint plots were generated with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeld­surface.net]). The Hirshfeld surface mapped over dnorm and corresponding colors representing various inter­actions are shown in Fig. 4[link]. We chose the ZnL2 mol­ecular fragment as the monomer unit for calculating the Hirshfeld surface of this polymer complex.

[Figure 4]
Figure 4
Hirshfeld surfaces mapped over dnorm calculated for the monomer part of the polymer mol­ecule.

The large red areas on the Hirshfeld surface correspond to the Zn⋯N inter­actions. The two-dimensional (2D) fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are shown in Fig. 5[link]. On the Hirshfeld surface, the largest contributions (19.2%, 19.5% and 19%) come from short contacts such as van der Waals forces, H⋯H, C⋯H and S⋯H contacts. N⋯H (8.1%), O⋯H (8%) and C⋯C (4.7%) contacts are also observed. These inter­actions play a crucial role in the overall stabilization of the crystal packing.

[Figure 5]
Figure 5
Contributions of the various contacts to the fingerprint plot built using the Hirshfeld surface of the title compound.

5. Database survey

A survey of the Cambridge Structural Database (CSD, version 5.43, update of November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that crystal structures had been reported for complexes of 1,3,4-oxa­diazole derivatives and a number of metal ions, including zinc, copper, nickel, manganese, cadmium, cobalt and silver. No polymer complexes containing [M–S–C–N–M–S–C–N] eight-membered cyclization have been reported. The structures of complexes of Pt, Sn and Au based on 5-phenyl-1,3,4-oxa­diazole-2-thiole with additional ligands have been deposited in the CSD (FATNIZ, Al-Jibori et al., 2012[Al-Jibori, S. A., Khaleel, T. F., Ahmed, S. A. O., Al-Hayaly, L. J., Merzweiler, K., Wagner, C. & Hogarth, G. (2012). Polyhedron, 41, 20-24.]; HAXTAC, Ma et al., 2005[Ma, C.-L., Tian, G.-R. & Zhang, R.-F. (2005). Polyhedron, 24, 1773-1780.]; and YIVVEG, Chaves et al., 2014[Chaves, J. D. S., Neumann, F., Francisco, T. M., Corrêa, C. C., Lopes, M. T. P., Silva, H., Fontes, A. P. S. & de Almeida, M. V. (2014). Inorg. Chim. Acta, 414, 85-90.]). However, no complexes containing only the zinc ion and 5-phenyl-1,3,4-oxa­diazole-2-thiol­ate have been documented in the CSD.

6. Synthesis and crystallization

ZnCl2 (0.136 g, 0.001 mol) and 5-phenyl-1,3,4-oxa­diazole-2-thiol (ligand) (0.354 g, 0.002 mol) were dissolved separately in ethanol (10 mL). To a solution of the ligand, an aqueous solution of KOH (0.112 g, 0.002 mol) was added. The obtained solutions were mixed together and stirred at 323 K for 20 min. A white precipitate was obtained. The precipitate was filtered and allowed to dry. The solid residue was dissolved in DMF to crystallize for the single crystal X-ray diffraction studies. X-ray quality single crystals were produced after 10 days by slow evaporation of the solution.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All the hydrogen atoms were located in difference-Fourier maps and refined isotropically.

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2020); cell refinement: CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

catena-Poly[zinc(II)-bis(µ2-5-phenyl-1,3,4-oxadiazole-2-thiolato)-κ2N3:S;κ2S: N3] top
Crystal data top
[Zn(C8H5N2OS)2]F(000) = 848
Mr = 419.79Dx = 1.646 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 20.4223 (3) ÅCell parameters from 5128 reflections
b = 11.3260 (2) Åθ = 4.4–71.1°
c = 7.4019 (1) ŵ = 4.48 mm1
β = 98.310 (1)°T = 293 K
V = 1694.11 (5) Å3Block, colourless
Z = 40.60 × 0.14 × 0.08 mm
Data collection top
XtaLAB Synergy, single source at home/near, HyPix3000
diffractometer
1634 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1536 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 10.0000 pixels mm-1θmax = 71.5°, θmin = 4.4°
ω scansh = 2523
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
k = 1313
Tmin = 0.099, Tmax = 1.000l = 98
7033 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026All H-atom parameters refined
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0425P)2 + 0.6399P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
1634 reflectionsΔρmax = 0.26 e Å3
134 parametersΔρmin = 0.33 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.5000000.42861 (3)0.7500000.03700 (13)
S10.52858 (2)0.70338 (4)0.49120 (6)0.04489 (15)
O10.64980 (6)0.66497 (11)0.66937 (16)0.0378 (3)
N10.57974 (7)0.52907 (14)0.7241 (2)0.0381 (3)
N20.64167 (7)0.49941 (14)0.8226 (2)0.0402 (3)
C20.68103 (8)0.58151 (15)0.7854 (2)0.0360 (4)
C30.75171 (8)0.59280 (16)0.8505 (2)0.0370 (4)
C10.58617 (8)0.62555 (15)0.6334 (2)0.0362 (4)
C80.78515 (9)0.49670 (18)0.9351 (3)0.0442 (4)
C40.78562 (10)0.69688 (18)0.8287 (3)0.0472 (4)
C70.85194 (10)0.5044 (2)0.9992 (3)0.0572 (5)
C50.85239 (11)0.7043 (2)0.8940 (3)0.0578 (5)
C60.88524 (10)0.6091 (2)0.9798 (3)0.0613 (6)
H80.7634 (11)0.4299 (18)0.946 (3)0.042 (6)*
H50.8723 (13)0.772 (3)0.874 (3)0.068 (7)*
H40.7642 (12)0.761 (2)0.771 (3)0.059 (7)*
H70.8758 (14)0.443 (2)1.056 (4)0.074 (8)*
H60.9339 (15)0.614 (3)1.020 (4)0.088 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02217 (18)0.0460 (2)0.0416 (2)0.0000.00048 (13)0.000
S10.0363 (3)0.0440 (3)0.0508 (3)0.00848 (17)0.00577 (19)0.00479 (18)
O10.0309 (6)0.0384 (6)0.0423 (6)0.0034 (5)0.0009 (5)0.0004 (5)
N10.0228 (7)0.0461 (8)0.0440 (8)0.0019 (6)0.0001 (6)0.0003 (6)
N20.0243 (7)0.0483 (8)0.0462 (8)0.0030 (6)0.0012 (6)0.0056 (6)
C20.0291 (8)0.0410 (9)0.0368 (8)0.0004 (6)0.0010 (7)0.0010 (6)
C30.0276 (8)0.0468 (9)0.0359 (8)0.0050 (7)0.0019 (6)0.0033 (7)
C10.0273 (8)0.0418 (9)0.0386 (8)0.0008 (7)0.0013 (6)0.0070 (7)
C80.0357 (9)0.0498 (11)0.0459 (9)0.0059 (8)0.0012 (7)0.0053 (8)
C40.0380 (10)0.0446 (10)0.0578 (11)0.0048 (8)0.0027 (8)0.0008 (9)
C70.0363 (10)0.0697 (14)0.0620 (12)0.0004 (10)0.0044 (9)0.0124 (11)
C50.0393 (11)0.0591 (13)0.0741 (14)0.0179 (9)0.0052 (10)0.0027 (11)
C60.0288 (10)0.0797 (15)0.0722 (14)0.0108 (10)0.0035 (9)0.0046 (12)
Geometric parameters (Å, º) top
Zn1—S1i2.3370 (5)C3—C81.385 (3)
Zn1—S1ii2.3370 (5)C3—C41.388 (3)
Zn1—N12.0184 (14)C8—C71.381 (3)
Zn1—N1iii2.0184 (14)C8—H80.89 (2)
S1—C11.7059 (17)C4—C51.382 (3)
O1—C21.371 (2)C4—H40.92 (3)
O1—C11.3635 (19)C7—C61.384 (3)
N1—N21.4062 (18)C7—H70.92 (3)
N1—C11.299 (2)C5—C61.376 (4)
N2—C21.285 (2)C5—H50.89 (3)
C2—C31.460 (2)C6—H61.00 (3)
S1i—Zn1—S1ii100.46 (3)O1—C1—S1120.26 (13)
N1—Zn1—S1ii108.51 (4)N1—C1—S1129.90 (13)
N1—Zn1—S1i113.82 (4)N1—C1—O1109.83 (14)
N1iii—Zn1—S1i108.50 (4)C3—C8—H8119.3 (14)
N1iii—Zn1—S1ii113.82 (5)C7—C8—C3120.24 (19)
N1—Zn1—N1iii111.37 (9)C7—C8—H8120.5 (14)
C1—S1—Zn1i102.39 (6)C3—C4—H4120.8 (16)
C1—O1—C2103.92 (13)C5—C4—C3119.6 (2)
N2—N1—Zn1119.57 (11)C5—C4—H4119.6 (16)
C1—N1—Zn1131.80 (12)C8—C7—C6119.6 (2)
C1—N1—N2108.57 (13)C8—C7—H7122.8 (17)
C2—N2—N1105.05 (14)C6—C7—H7117.6 (17)
O1—C2—C3119.65 (15)C4—C5—H5116.4 (17)
N2—C2—O1112.61 (14)C6—C5—C4120.3 (2)
N2—C2—C3127.75 (16)C6—C5—H5123.3 (17)
C8—C3—C2118.67 (16)C7—C6—H6119.8 (18)
C8—C3—C4119.85 (17)C5—C6—C7120.33 (19)
C4—C3—C2121.48 (17)C5—C6—H6119.8 (18)
Zn1i—S1—C1—O1116.48 (12)C2—O1—C1—S1179.75 (12)
Zn1i—S1—C1—N165.24 (17)C2—O1—C1—N11.66 (18)
Zn1—N1—N2—C2176.89 (12)C2—C3—C8—C7179.66 (19)
Zn1—N1—C1—S12.7 (3)C2—C3—C4—C5179.34 (19)
Zn1—N1—C1—O1175.68 (11)C3—C8—C7—C60.5 (3)
O1—C2—C3—C8166.60 (16)C3—C4—C5—C60.2 (3)
O1—C2—C3—C413.2 (3)C1—O1—C2—N21.25 (19)
N1—N2—C2—O10.4 (2)C1—O1—C2—C3178.37 (15)
N1—N2—C2—C3179.19 (17)C1—N1—N2—C20.68 (19)
N2—N1—C1—S1179.91 (13)C8—C3—C4—C50.9 (3)
N2—N1—C1—O11.49 (19)C8—C7—C6—C51.2 (4)
N2—C2—C3—C813.0 (3)C4—C3—C8—C70.6 (3)
N2—C2—C3—C4167.27 (19)C4—C5—C6—C70.9 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1/2; (iii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···S1iv1.00 (3)2.86 (3)3.608 (2)132 (2)
Symmetry code: (iv) x+1/2, y+3/2, z+1/2.
 

Funding information

This work was supported by Uzbekistan Ministry of Innovation Development.

References

First citationAbd-Ellah, H. S., Abdel-Aziz, M., Shoman, M. E., Beshr, E. A. M., Kaoud, T. S. & Ahmed, A. F. F. (2017). Bioorg. Chem. 74, 15–29.  Web of Science CAS PubMed Google Scholar
First citationAhmed, M. N., Yasin, K. A., Hameed, S., Ayub, K., Haq, I., Tahir, M. N. & Mahmood, T. (2017). J. Mol. Struct. 1129, 50–59.  Web of Science CrossRef CAS Google Scholar
First citationAlam, M. M. (2022). Biointerface Res. Appl. Chem. 12, 5727–5744.  CAS Google Scholar
First citationAl-Jibori, S. A., Khaleel, T. F., Ahmed, S. A. O., Al-Hayaly, L. J., Merzweiler, K., Wagner, C. & Hogarth, G. (2012). Polyhedron, 41, 20–24.  CAS Google Scholar
First citationBala, S., Kamboj, S., Kajal, A., Saini, V. & Prasad, D. N. (2014). BioMed Res. Int. 172791.  Google Scholar
First citationBeghidja, C., Rogez, G. & Welter, R. (2007). New J. Chem. 31, 1403–1406.  Web of Science CSD CrossRef CAS Google Scholar
First citationCapoci, I. R. G., Sakita, K. M., Faria, D. R., Rodrigues-Vendramini, F. A. V., Arita, G. S., de Oliveira, A. G. & Svidzinski, T. I. E. (2019). Front. Microbiol. 10, 1–11.  Web of Science CrossRef PubMed Google Scholar
First citationChaves, J. D. S., Neumann, F., Francisco, T. M., Corrêa, C. C., Lopes, M. T. P., Silva, H., Fontes, A. P. S. & de Almeida, M. V. (2014). Inorg. Chim. Acta, 414, 85–90.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuan, W.-G., Li, X.-R., Mo, Q.-J., Huang, J.-X., Cen, B., Xu, X.-T. & Lei, F.-H. (2011). Holzforschung, 65, 191–197.  Web of Science CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHusain, A. & Ajmal, M. (2009). Acta Pharm. 59, 223–233.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMa, C.-L., Tian, G.-R. & Zhang, R.-F. (2005). Polyhedron, 24, 1773–1780.  Web of Science CrossRef CAS Google Scholar
First citationMakane, V. B., Krishna, V. S., Krishna, E. V., Shukla, M., Mahizhaveni, B., Misra, S., Chopra, S., Sriram, D., Azger Dusthackeer, V. N. & Rode, H. B. (2019). Future Med. Chem. 11, 499–510.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationOliveira, C. S. de, Lira, B. F., Barbosa-Filho, J. M., Lorenzo, J. G. F. & de Athayde-Filho, P. F. (2012). Molecules, 17, 10192–10231.  Web of Science PubMed Google Scholar
First citationOuilia, S., Beghidja, C., Beghidja, A. & Michaud, F. (2012). Acta Cryst. E68, m943.  CrossRef IUCr Journals Google Scholar
First citationRazzoqova, S. R., Kadirova, S., Ashurov, J. M., Rakhmonova, D. S., Ziyaev, A. & Parpiev, N. A. (2019). IUCrData, 4, x191532.  Google Scholar
First citationReddy, M. A., Mallesham, G., Thomas, A., Srinivas, K., Rao, V. J., Bhanuprakash, K., Giribabu, L., Grover, R., Kumar, A., Kamalasanan, M. N. & Srivastava, R. (2011). Synth. Met. 161, 869–880.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSalassa, G. & Terenzi, A. (2019). Int. J. Mol. Sci. 20, 3483.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, M., Butcher, R. J. & Singh, N. K. (2008). Polyhedron, 27, 3151–3159.  Web of Science CrossRef CAS Google Scholar
First citationSun, G.-X., Yang, M.-Y., Sun, Z.-H., Wu, H.-K., Liu, X.-H. & Wei, Y.-Y. (2014). Phosphorus Sulfur Silicon, 189, 1895–1900.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeld­surface.net  Google Scholar
First citationVaidya, A., Pathak, D. & Shah, K. (2020). Chem. Biol. Drug Des. 97, 572–591.  Web of Science CrossRef PubMed Google Scholar
First citationWang, A., Xu, S., Chai, Y., Xia, G., Wang, B., Lv, K., Wang, D., Qin, X., Jiang, B., Wu, W., Liu, M. & Lu, Y. (2022). Bioorg. Med. Chem. 53, 116529.  Web of Science CrossRef PubMed Google Scholar
First citationWang, Y.-T., Tang, G.-M. & Qiang, Z.-W. (2007). Polyhedron, 26, 4542–4550.  Web of Science CrossRef CAS Google Scholar
First citationWang, Y. T., Wan, W. Z., Tang, G. M., Qiang, Z. W. & Li, T. D. J. (2010). J. Coord. Chem. 63, 206–213.  Web of Science CrossRef CAS Google Scholar
First citationXiao, J., Ma, J.-P., Huang, R.-Q. & Dong, Y.-B. (2011). Acta Cryst. C67, m90–m92.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZachariah, S. M., Ramkumar, M., George, N. & Ashif, M. S. (2015). Res. J. Pharm. Biol. Chem. Sci, 6, 205–219.  CAS Google Scholar
First citationZhang, H.-Z., Kasibhatla, S., Kuemmerle, J., Kemnitzer, W., Ollis-Mason, K., Qiu, L., Crogan-Grundy, C., Tseng, B., Drewe, J. & Cai, S. X. (2005). J. Med. Chem. 48, 5215–5223.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, M.-Z., Mulholland, N., Beattie, D., Irwin, D., Gu, Y.-C., Chen, Q., Yang, G. F. & Clough, J. (2013). Eur. J. Med. Chem. 63, 22–32.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds