research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-(2-meth­­oxy­phen­yl)piper­azin-1-ium 3,5-dintrosalicylate

crossmark logo

aPG and Research Department of Physics, Government Arts College (Autonomous and Affiliated to Bharathidasan University, Tiruchirappalli), Thanthonimalai, Karur-639 005, Tamil Nadu, India, bCrystal Growth Laboratory, PG and Research Department of Physics, Periyar EVR Government College (Autonomous and Affiliated to Bharathidasan University, Tiruchirappalli), Tiruchirappalli-620 023, Tamil Nadu, India, cUnidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa, 72960, Puebla, Mexico, and dDepartment of Chemistry, Srimad Andavan Arts and Science College (Autonomous), Tiruchirappalli-620 005, Tamil Nadu, India
*Correspondence e-mail: seethabala@gmail.com, venkat@andavancollege.ac.in

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 17 May 2022; accepted 5 July 2022; online 12 July 2022)

The title salt [systematic name: 4-(2-methoxyphenyl)piperazin-1-ium 2-carboxy-4,6-dinitrophenolate], C11H17N2O+·C7H3N2O7, exhibits secondary nitro­gen atoms (N—H) in the 2-meth­oxy­phenyl­piperazine (2MeOPP) cation, which is protonated with a phenolic hydrogen atom of 3,5-di­nitro­salicylic acid (DNSA). One of the oxygen atoms of the nitro group in the 3,5-di­nitro­salicylate anion is disordered over two orientations with occupancy factors of 0.65 (7) and 0.35 (7) . The 2-meth­­oxy­phenyl­piperazinium cation and 3,5-di­nitro­salicylate anion are linked in the asymmetric unit by a bifurcated N—H⋯O hydrogen bond, which formed is between the H atom in the protonated piperazinium unit of the cation and the carb­oxy­lic acid group in the anion. The piperazine ring adopts a chair conformation. The crystal structure features N—H⋯O and C—H⋯O hydrogen bonds inter­actions, which lead to the formation of a sandwich-like arrangement. Hirshfeld surface analysis was used to determine the relative contributions of various inter­molecular inter­actions, indicating that that H⋯O/O⋯H (38. 3%) and H⋯H (31. 8%) contacts are the major contributors.

1. Chemical context

1-(2-Meth­oxy­phen­yl)piperazine is a substituted cyclo aliphatic amine with two nitro­gen atoms at opposite positions of the six-membered ring. A substituent 2-meth­oxy­phenyl group is attached to one of the nitro­gen atoms while the other has one attached hydrogen atom (i.e. the secondary nitro­gen atom, N—H). Piperazine and substituted piperazine derivatives are often used as inter­mediates for a wide range of pharmaceuticals, polymers, dyes, corrosion inhibitors and surfactants. In particular, (2-meth­oxy­phen­yl)piperazine derivatives are used as 5-HT1A receptor ligands with reduced α1-adrenergic activity (Raghupathi et al., 1991[Raghupathi, R. K., Rydelek-Fitzgerald, L., Teitler, M. & Glennon, R. A. (1991). J. Med. Chem. 34, 2633-2638.]; Orjales et al., 1995[Orjales, A., Alonso-Cires, L., Labeaga, L. & Corcóstegui, R. (1995). J. Med. Chem. 38, 1273-1277.]; Zhuang et al., 1998[Zhuang, Z. P., Kung, M. P., Mu, M. & Kung, H. F. (1998). J. Med. Chem. 41, 157-166.]). 1-(2-Meth­oxy­phen­yl)piperazine-impregnated filters have been used for the detection of iso­cyanates in air (Sennbro et al., 2004[Sennbro, C. J., Ekman, J., Lindh, C. H., Welinder, H., Jönsson, B. A. G. & Tinnerberg, H. (2004). Ann. Occup. Hyg. 48, 415-424.]). 1-Cinnamyl-4-(2-meth­oxy­phen­yl)piperazine derivatives are used as ligands for D2 and D3 dopamine and serotonin 5-HT1α receptors (Penjišević et al., 2007[Penjišević, J., Šukalović, V., Andrić, D., Kostić-Rajačić, S., Šoškić, V. & Roglić, G. (2007). Arch. Pharm. Chem. Life Sci. 340, 456-465.]). The crystal structure of eleven protonated 4-(2-meth­oxy­phen­yl)piperazin-1-ium salts with eleven different substituted benzoic acids (namely, 4/2-chloro­benzoic acid, 4/2-bromo­benzoic acid, 4/2-iodo­benzoic acid, 2-fluoro­benzoic acid, 2-methyl­benzoic acid, 4-amino/4-nitro-benzoic acid, 3,5-di­nitro­benzoic acid and picric acid) and three aliphatic di­carb­oxy­lic acid [maleic acid, fumaric acid and (2R,3R)-tartaric acid] salts and their supra­molecular features have been reported (Harish Chinthal et al., 2020[Harish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 1779-1793.]).

[Scheme 1]

As a continuation of our earlier study on the crystal structure and supra­molecular analysis of a monohydrated 1:1 adduct of bis­(piperazine-1,4-diium), 3,5-di­nitro-2-oxidobenzoate and piperazine, we have now investigated the crystal structure of 1-(2-meth­oxy­phen­yl) piperazinium 3,5-dinitro­salicylate (I)[link]. In this study, the crystal structure, Hirshfeld surface (HS) analysis, structural features and various inter­molecular inter­actions that exist in the title protonated salt are reported.

2. Structural commentary

The title salt crystallizes in the triclinic space group Pī with the asymmetric unit comprising one 2-meth­oxy­phenyl­piperazinium (2MeOPP)1+ cation and one 3,5-di­nitro­salicylate (DNSA)1− anion (Fig. 1[link]). The piperazine ring in the cation adopts a chair conformation with puckering parameters Q = 0.582 (3) Å, θ = 176.3 (3)°, φ = 338 (4)°. One of the oxygen atoms of the nitro group (atom O4) in the 3,5-di­nitro­salicylate anion is disordered over two orientations with occupancy factors of 0.65 (7) and 0.35 (7). Both nitro groups, the phen­oxy­late oxygen atom and a carb­oxy­lic acid group in the anion are coplanar with an r.m.s. deviation of 0.0074 Å. A bifurcated inter­molecular N—H⋯O hydrogen bond [N3—H3A⋯O5 = 2.936 (3) Å and N3—H3A⋯O6 = 3.153 (3) Å] links the cation and anion in the asymmetric unit.

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecular salt, (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

In the DNSA mol­ecule, deprotonation of the –COOH group (pKα COOH = 2.2) is easier than that of the phenolic –OH group (pKα OH = 6.8). 62 carboxyl­ate moiety structures (COO) and 70 phenolate anion structures (O) were found in a search of the Cambridge Structural Database (CSD, Version 5.43, update of March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), which is perhaps unexpected because the number of crystal structures containing phenolate anions is larger than those containing carboxyl­ate anions. These conflicting results may suggest that the formation of protonated salts of the DNSA mol­ecule with phenolate ions is favoured by the thermodynamic stability and the inter­molecular inter­actions between the phenolate anion and counter-ions in the respective crystal structures. The crystal structure of (I)[link] suggests that the title salt was formed by deprotonation of the phenolic group in the DNSA mol­ecule. In order to better understand the deprotonation of the phenolic group in DNSA mol­ecule, the H-atom electron density in the difference-Fourier electron-density maps was calculated as they can yield additional insight into the proton-transfer behaviour. From Fig. 2[link], the electron density associated with atom H6 is shown to be smeared out between the O6 and O7 atoms, with the maximum lying closer to O6 atom than O7. It suggests that the H6A atom is attached to the carb­oxy­lic acid group and that deprotonation occurs through the phenolic group. As a result, the strong intra­molecular O6—H6A⋯O7 hydrogen bond formed. The inter­atomic distance between the phenolate oxygen atom, O7, and the O6 atom in the carb­oxy­lic acid group is 2.448 (2) Å, which also indicates that the strong intra­molecular hydrogen bond between the O6 and O7 atoms. Similar types of intra­molecular hydrogen bonds were observed in salicylic acid with a distance of 2.62 Å (Woińska et al., 2016[Woińska, M., Grabowsky, S., Dominiak, P. M., Woźniak, K. & Jayatilaka, D. (2016). Sci. Adv. 2, e1600192.]; Montis & Hursthouse et al., 2012[Montis, R. & Hursthouse, M. B. (2012). CrystEngComm, 14, 5242-5254.]) and in other proton-transfer salts of DNSA in the range 2.409–2.540 Å (Smith et al., 1995[Smith, G., Lynch, D. E., Byriel, K. A. & Kennard, C. H. L. (1995). Aust. J. Chem. 48, 1133-1149.], 1996[Smith, G., Lynch, D. E., Byriel, K. A. & Kennard, C. H. L. (1996). Acta Cryst. C52, 231-235.], 1997[Smith, G., Baldry, K. E., Byriel, K. A. & Kennard, C. H. L. (1997). Aust. J. Chem. 50, 727-736.], 2000[Smith, G., Coyne, M. G. & White, J. M. (2000). Aust. J. Chem. 53, 203-208.], 2001a[Smith, G., Bott, R. C. & Wermuth, U. D. (2001a). Acta Cryst. E57, 640-642.],b[Smith, G., Wermuth, U. D., Bott, R. C., White, J. M. & Willis, A. C. (2001c). Aust. J. Chem. 54, 165-170.],c[Smith, G., Wermuth, U. D. & White, J. M. (2001d). Aust. J. Chem. 54, 171-175.],d[Smith, G., Bott, R. C. & Wermuth, U. D. (2001b). Acta Cryst. E57, o895-o897.],e[Smith, G., Wermuth, U. D. & White, J. M. (2001e). Acta Cryst. E57, o1036-o1038.], 2002[Smith, G., Wermuth, U. D., Healy, P. C., Bott, R. C. & White, J. M. (2002). Aust. J. Chem. 55, 349-356.], 2006[Smith, G., Wermuth, U. D. & Healy, P. C. (2006). Acta Cryst. E62, o610-o613.]). The proton in the carboxylc acid group is located between the carboxyl-O atom [O6 at 1.14 (3) Å] and the phenolate oxygen atom, [O7 at 1.37 (3) Å]. A similar trend was found in the various proton-transfer salts of DNSA (Smith et al., 2002[Smith, G., Wermuth, U. D., Healy, P. C., Bott, R. C. & White, J. M. (2002). Aust. J. Chem. 55, 349-356.]).

[Figure 2]
Figure 2
Difference-Fourier electron-density map showing the electron density associated with the H atom involved in the O6—H6⋯O7 hydrogen bond.

3. Supra­molecular features

The oxygen atoms in both nitro groups (O1–O4), the carb­oxy­lic acid group (O5 and O6) and a phenolate moiety (O7) in the DNSA anion all act as acceptors for various inter­molecular N—H⋯O and C—H⋯O inter­actions, except for atom O4 (Table 1[link]). In the cation, the O8 atom of the meth­oxy group is not involved in inter­molecular inter­actions. The oxygen atoms of the carb­oxy­lic acid group (O5 and O6) act as acceptors for a bifurcated N3—H3A⋯(O5,O6) inter­action, which links two neighbouring cations and anions into a centrosymmetric tetra­meric architecture, which is further stabilized by the C14—H14⋯O5v inter­action [3.481 (3) Å] and yields a macrocyclic ring structure with an R22 (20) motif (Fig. 3[link]). Atom O1 of the nitro group is involved in the centrosymmetric C2—H2⋯O1ii inter­action [3.581 (3) Å], which links two neighbouring (DNSA)1− units with an R22 (10) motif (Fig. 4[link]). Neighbouring dimeric DNSA1− units are further linked through the previously mentioned bifurcated N3—H3A⋯(O5,O6) inter­action and the N3—H3B⋯O7i [2.787 (3) Å], C10—H10A⋯O4A [3.118 (10) Å] inter­actions into a layered structure propagating parallel to the b axis (Fig. 5[link]). Of the above three N—H⋯O inter­actions [N3—H3A⋯(O5,O6), and N3—H3B⋯O7], the N3—H3B⋯O7 inter­action is stronger [DA = 2.787 (3) Å] than the other two, which is due to the fact that two charged components are involved in this inter­action, i.e. the phenolate O7 atom in DNSA−1 and the protonated N3—H3B unit in 2MeOPP+1. All of the above inter­actions facilitate the arrangement of the DNSA1− ions in a layered mol­ecular structure. The top and bottom sides of the DNSA1− layers are stabilized by the two adjacent cationic layers. As a result, a sandwich-like arrangement is observed. Briefly, the layered DNSA1− units form the core with the top and bottom sides of the cation layers arranged facing. An overall packing diagram is shown Fig. 6[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯O7 1.14 (3) 1.37 (3) 2.448 (2) 154 (3)
N3—H3A⋯O5 0.94 (4) 2.02 (4) 2.936 (3) 165 (3)
N3—H3A⋯O6 0.94 (4) 2.44 (3) 3.153 (3) 133 (2)
N3—H3B⋯O7i 0.97 (3) 1.83 (3) 2.787 (3) 166 (3)
C2—H2⋯O1ii 0.93 2.66 3.581 (3) 174
C9—H9A⋯O3iii 0.97 2.44 3.254 (4) 141
C10—H10B⋯O2iv 0.97 2.43 3.319 (3) 152
C10—H10A⋯O4Ai 0.97 2.50 3.118 (10) 122
C14—H14⋯O5v 0.93 2.74 3.481 (3) 137
C18—H18C⋯N4vi 0.96 2.74 3.552 (4) 143
Symmetry codes: (i) [-x+2, -y+1, -z]; (ii) [-x, -y, -z]; (iii) [-x+1, -y+1, -z]; (iv) x+1, y, z; (v) [-x+1, -y+1, -z+1]; (vi) [-x+2, -y+2, -z+1].
[Figure 3]
Figure 3
The bifurcated inter­molecular N3—H3A⋯(O5,O6) hydrogen bond and the C14—H14⋯O5 inter­action linking the 2MeOPP+1 cation and (DNSA)−1 anion into a centrosymmetric tetra­mer architecture with an R22(20) motif.
[Figure 4]
Figure 4
Part of the crystal structure of (I)[link] showing the centrosymmetric dimer motif with the R22(10) motif formed by the C2—H2⋯O1 inter­action.
[Figure 5]
Figure 5
Part of the crystal structure of (I)[link] showing the layered mol­ecular architecture formed by the N3—H3A⋯(O5,O6), N3—H3B⋯O7 and C10—H10⋯O4A inter­actions, which propagates parallel to the b axis.
[Figure 6]
Figure 6
Overall packing diagram for the title salt (I)

4. Hirshfeld surface analysis

Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.]) was used to calculate the Hirshfeld surfaces (HS; McKinnon et al., 1998[McKinnon, J. J., Mitchell, A. S. & Spackman, M. A. (1998). Chem. Eur. J. 4, 2136-2141.], 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) of the title protonated salt and generate two-dimensional fingerprint plots (full and decomposed, 2D-FP; Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]) in order to investigate and qu­antify the different inter­molecular inter­actions. Distinct colours and intensities indicate short and long contacts, as well as the relative contribution of the different inter­actions in the solid state (Venkatesan et al., 2015[Venkatesan, P., Thamotharan, S., Kumar, R. G. & Ilangovan, A. (2015). CrystEngComm, 17, 904-915.], 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625-636.]). Two views of the HS mapped with dnorm in the range −0.6295 to 1.3240 a.u. (front and back) are shown in Fig. 7[link]. Bright red spots on the surface near O2, O3, O4A, O7, O6, H10B and H3B suggest that these atoms participate in hydrogen-bonding inter­actions (see Table 1[link]). No significant pattern of convex blue and concave red triangles are observed in the shape-index (SI) diagram, indicating the absence of π-stacking inter­actions in the title salt. The 2D-FP plots show the relative contributions of the various non-covalent contacts (Fig. 8[link]), indicating that inter­molecular O⋯H contacts [sharp symmetrical spikes are observed in the FP plot at de + di = 1.8 Å] make the most significant contribution (38.3%), followed by H⋯H contacts [symmetrical blunt spikes at de + di = 2.4 Å], which contribute 31.8%, while C⋯H, N⋯H, C⋯O, O⋯N, C⋯N and C⋯C contacts contribute 11.6%, 1.7%, 6.7%, 2.7%, 1.9%, 0.5% and 2.8%, respectively. Other significant peaks for various non-covalent contacts are indicated in the FP plot (Fig. 8[link]).

[Figure 7]
Figure 7
Two different orientations of the Hirshfeld surface of the title salt mapped with (a) dnorm and (b) shape index.
[Figure 8]
Figure 8
Two-dimensional fingerprint plots for the complete unit of the title salt indicating the various types of contacts.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, update of March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using Conquest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) for 1-(2-meth­oxy­phen­yl)piperazine gave 111 hits, of which seven hits were for the protonated piperazinium unit. In particular, the crystal structure of 1-(2-meth­oxy­phen­yl) piperazin-4-ium picrate, which like the title compound has a phenolate anion, has been reported (CSD refcode NEBGIK; Verdonk et al., 1997[Verdonk, M. L., Voogd, J. W., Kanters, J. A., Kroon, J., den Besten, R., Brandsma, L., Leysen, D. & Kelder, J. (1997). Acta Cryst. B53, 976-983.]). In the case of the DNSA mol­ecule, 21 hits were observed for neutral DNSA mol­ecules and 65 and 71 hits for DNSA carboxyl­ate and DNSA phenolate, respectively.

6. Synthesis and crystallization

The title protonated salt was synthesized using 1-(2-meth­oxy­phen­yl)piperazine (Sigma Aldrich, 99%) and 3,5-di­nitro­salicylic acid (Merck India, 99.5%) in an equimolar ratio. The stoichiometrically (1 mmol) weighed starting materials were completely dissolved in 50 mL of methanol at room temperature and stirred continuously for 3 h. The homogeneous solution was filtered using Whatmann filter paper and placed in a dust-free atmosphere, and allowed to evaporate slowly at room temperature. A suitable single crystal was harvested after a growth period of 25 days.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The amine H atoms and O-bound H atoms were located in a difference-Fourier map and refined freely along with their isotropic displacement parameters. C-bound H atoms were included in calculated positions and treated as riding atoms [C—H = 0.93–0.98 Å, with Uiso(H) = 1.2Ueq(C)].

Table 2
Experimental details

Crystal data
Chemical formula C11H17N2O+·C7H3N2O7−
Mr 420.38
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 7.3729 (6), 8.4842 (7), 15.5411 (13)
α, β, γ (°) 88.954 (4), 81.333 (4), 89.352 (3)
V3) 960.85 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.18 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker Kappa APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.608, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 24028, 3513, 2035
Rint 0.084
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.140, 1.02
No. of reflections 3513
No. of parameters 294
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.21
Computer programs: APEX2, SAINT and XPREP (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: APEX2 and SAINT (Bruker, 2012); data reduction: SAINT and XPREP (Bruker, 2012); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: PLATON (Spek, 2020).

4-(2-Methoxyphenyl)piperazin-1-ium 2-carboxy-4,6-dinitrophenolate top
Crystal data top
C11H17N2O+·C7H3N2O7Z = 2
Mr = 420.38F(000) = 440
Triclinic, P1Dx = 1.453 Mg m3
a = 7.3729 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.4842 (7) ÅCell parameters from 3479 reflections
c = 15.5411 (13) Åθ = 2.7–21.4°
α = 88.954 (4)°µ = 0.12 mm1
β = 81.333 (4)°T = 296 K
γ = 89.352 (3)°BLOCK, yellow
V = 960.85 (14) Å30.18 × 0.15 × 0.10 mm
Data collection top
Bruker Kappa APEXII
diffractometer
3513 independent reflections
Radiation source: fine-focus sealed tube2035 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
ω and φ scanθmax = 25.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 88
Tmin = 0.608, Tmax = 0.745k = 1010
24028 measured reflectionsl = 1818
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0588P)2 + 0.1844P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.140(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.23 e Å3
3513 reflectionsΔρmin = 0.21 e Å3
294 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.050 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2780 (3)0.2159 (3)0.07284 (15)0.0394 (6)
C20.3262 (3)0.1599 (3)0.00995 (15)0.0403 (6)
H20.2459070.0968120.0344910.048*
C30.4942 (3)0.1982 (3)0.05608 (14)0.0381 (6)
C40.6246 (3)0.2917 (3)0.02095 (15)0.0386 (6)
C50.5670 (3)0.3451 (3)0.06598 (14)0.0357 (6)
C60.3973 (3)0.3079 (3)0.11071 (15)0.0402 (6)
H60.3623070.3446930.1668210.048*
C70.6924 (4)0.4410 (3)0.10897 (16)0.0437 (6)
C80.7613 (3)0.7961 (3)0.32628 (14)0.0453 (7)
H8A0.7145290.8994640.3445770.054*
H8B0.6597910.7342550.3126520.054*
C90.9053 (4)0.8122 (3)0.24697 (16)0.0547 (8)
H9A0.8519850.8620880.1998820.066*
H9B1.0037530.8784250.2600130.066*
C101.0516 (4)0.5698 (3)0.29246 (16)0.0528 (7)
H10A1.1576470.6247080.3065800.063*
H10B1.0900790.4640330.2747580.063*
C110.9068 (4)0.5609 (3)0.37158 (15)0.0449 (7)
H11A0.8046930.4985910.3590760.054*
H11B0.9570810.5100020.4192580.054*
C120.7467 (3)0.7377 (3)0.48169 (14)0.0349 (6)
C130.6760 (3)0.6130 (3)0.53447 (15)0.0438 (6)
H130.6861220.5111510.5130720.053*
C140.5896 (4)0.6383 (4)0.61938 (17)0.0586 (8)
H140.5427660.5535030.6541720.070*
C150.5738 (4)0.7860 (4)0.65120 (17)0.0644 (9)
H150.5146400.8024360.7075610.077*
C160.6448 (4)0.9121 (4)0.60065 (18)0.0572 (8)
H160.6342571.0131380.6232080.069*
C170.7317 (3)0.8895 (3)0.51661 (15)0.0418 (6)
C180.7951 (4)1.1646 (3)0.4922 (2)0.0782 (10)
H18A0.6679231.1938630.5050740.117*
H18B0.8559211.2338840.4477520.117*
H18C0.8512311.1725100.5438150.117*
N10.0996 (3)0.1758 (3)0.12107 (14)0.0552 (6)
O4A0.6481 (12)0.2063 (16)0.1968 (8)0.079 (3)0.65
N30.9804 (4)0.6538 (3)0.21950 (15)0.0557 (7)
N40.8428 (3)0.7185 (2)0.39644 (11)0.0368 (5)
O10.0033 (3)0.0951 (3)0.08644 (13)0.0810 (7)
O20.0596 (3)0.2239 (3)0.19541 (13)0.0777 (7)
O30.4386 (3)0.0337 (3)0.16524 (12)0.0699 (6)
O50.6514 (3)0.4920 (2)0.18265 (11)0.0597 (6)
O60.8538 (2)0.4713 (2)0.06426 (11)0.0584 (6)
O70.7832 (2)0.3284 (2)0.06190 (10)0.0530 (5)
O80.8105 (2)1.0068 (2)0.46251 (12)0.0556 (5)
N20.5361 (3)0.1362 (3)0.14395 (14)0.0514 (6)
O4B0.690 (2)0.153 (3)0.1854 (16)0.090 (7)0.35
H3A0.891 (5)0.589 (4)0.202 (2)0.087 (11)*
H3B1.070 (4)0.674 (3)0.168 (2)0.085 (10)*
H6A0.857 (5)0.415 (4)0.002 (2)0.125 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0373 (14)0.0422 (15)0.0384 (14)0.0082 (11)0.0043 (11)0.0015 (11)
C20.0411 (15)0.0404 (15)0.0405 (14)0.0013 (12)0.0097 (12)0.0042 (11)
C30.0407 (15)0.0418 (15)0.0325 (13)0.0016 (11)0.0071 (11)0.0069 (11)
C40.0351 (14)0.0442 (15)0.0359 (14)0.0003 (12)0.0030 (11)0.0010 (11)
C50.0371 (15)0.0383 (14)0.0317 (13)0.0034 (11)0.0044 (11)0.0012 (10)
C60.0443 (16)0.0433 (15)0.0323 (13)0.0018 (12)0.0035 (11)0.0019 (11)
C70.0445 (16)0.0525 (17)0.0342 (14)0.0060 (13)0.0057 (12)0.0039 (12)
C80.0415 (15)0.0600 (17)0.0341 (14)0.0018 (13)0.0045 (12)0.0008 (12)
C90.0509 (18)0.075 (2)0.0384 (15)0.0005 (15)0.0074 (13)0.0067 (13)
C100.0530 (18)0.0567 (18)0.0472 (16)0.0080 (14)0.0015 (13)0.0198 (13)
C110.0485 (16)0.0438 (16)0.0425 (14)0.0002 (12)0.0063 (12)0.0082 (12)
C120.0317 (13)0.0407 (14)0.0329 (13)0.0011 (11)0.0064 (10)0.0044 (11)
C130.0420 (15)0.0453 (16)0.0435 (15)0.0025 (12)0.0048 (12)0.0021 (12)
C140.0474 (17)0.082 (2)0.0441 (17)0.0007 (15)0.0009 (13)0.0173 (16)
C150.059 (2)0.097 (3)0.0361 (16)0.0148 (18)0.0058 (14)0.0090 (17)
C160.0563 (19)0.063 (2)0.0547 (18)0.0131 (15)0.0133 (15)0.0260 (15)
C170.0377 (15)0.0451 (16)0.0441 (15)0.0018 (12)0.0097 (12)0.0086 (12)
C180.069 (2)0.0371 (18)0.135 (3)0.0035 (15)0.034 (2)0.0234 (18)
N10.0508 (15)0.0625 (16)0.0497 (14)0.0172 (12)0.0025 (12)0.0061 (12)
O4A0.062 (5)0.135 (8)0.039 (2)0.029 (4)0.005 (3)0.027 (4)
N30.0492 (15)0.0839 (19)0.0336 (13)0.0120 (14)0.0018 (12)0.0168 (12)
N40.0427 (12)0.0379 (12)0.0291 (10)0.0057 (9)0.0038 (9)0.0034 (8)
O10.0652 (14)0.1054 (18)0.0711 (14)0.0428 (13)0.0005 (11)0.0193 (12)
O20.0637 (14)0.1058 (18)0.0572 (13)0.0293 (12)0.0162 (11)0.0244 (12)
O30.0679 (14)0.0792 (15)0.0646 (13)0.0108 (12)0.0125 (11)0.0313 (11)
O50.0585 (12)0.0813 (14)0.0388 (10)0.0220 (10)0.0024 (9)0.0154 (9)
O60.0467 (12)0.0858 (15)0.0409 (11)0.0250 (10)0.0027 (9)0.0117 (10)
O70.0413 (11)0.0782 (14)0.0374 (10)0.0139 (9)0.0025 (8)0.0111 (9)
O80.0570 (12)0.0373 (11)0.0730 (13)0.0040 (9)0.0105 (10)0.0069 (9)
N20.0423 (14)0.0683 (17)0.0439 (14)0.0018 (12)0.0067 (12)0.0136 (12)
O4B0.048 (7)0.138 (16)0.078 (12)0.028 (8)0.023 (7)0.052 (9)
Geometric parameters (Å, º) top
C1—C21.374 (3)C11—H11B0.9700
C1—C61.385 (3)C12—C131.384 (3)
C1—N11.453 (3)C12—C171.403 (3)
C2—C31.374 (3)C12—N41.416 (3)
C2—H20.9300C13—C141.395 (3)
C3—C41.429 (3)C13—H130.9300
C3—N21.460 (3)C14—C151.353 (4)
C4—O71.283 (3)C14—H140.9300
C4—C51.434 (3)C15—C161.376 (4)
C5—C61.373 (3)C15—H150.9300
C5—C71.479 (3)C16—C171.381 (3)
C6—H60.9300C16—H160.9300
C7—O51.225 (3)C17—O81.367 (3)
C7—O61.309 (3)C18—O81.422 (3)
C8—N41.465 (3)C18—H18A0.9600
C8—C91.506 (3)C18—H18B0.9600
C8—H8A0.9700C18—H18C0.9600
C8—H8B0.9700N1—O11.217 (3)
C9—N31.492 (4)N1—O21.225 (3)
C9—H9A0.9700O4A—N21.225 (8)
C9—H9B0.9700N3—H3A0.94 (4)
C10—N31.487 (3)N3—H3B0.97 (3)
C10—C111.503 (3)O3—N21.215 (3)
C10—H10A0.9700O6—H6A1.13 (4)
C10—H10B0.9700O7—H6A1.38 (4)
C11—N41.452 (3)N2—O4B1.228 (13)
C11—H11A0.9700
C2—C1—C6121.0 (2)C13—C12—C17118.0 (2)
C2—C1—N1119.0 (2)C13—C12—N4123.3 (2)
C6—C1—N1120.0 (2)C17—C12—N4118.6 (2)
C3—C2—C1119.3 (2)C12—C13—C14120.8 (2)
C3—C2—H2120.4C12—C13—H13119.6
C1—C2—H2120.4C14—C13—H13119.6
C2—C3—C4122.8 (2)C15—C14—C13120.1 (3)
C2—C3—N2116.5 (2)C15—C14—H14119.9
C4—C3—N2120.7 (2)C13—C14—H14119.9
O7—C4—C3124.4 (2)C14—C15—C16120.4 (3)
O7—C4—C5120.4 (2)C14—C15—H15119.8
C3—C4—C5115.3 (2)C16—C15—H15119.8
C6—C5—C4121.2 (2)C15—C16—C17120.4 (3)
C6—C5—C7119.1 (2)C15—C16—H16119.8
C4—C5—C7119.7 (2)C17—C16—H16119.8
C5—C6—C1120.5 (2)O8—C17—C16124.5 (2)
C5—C6—H6119.8O8—C17—C12115.3 (2)
C1—C6—H6119.8C16—C17—C12120.2 (2)
O5—C7—O6120.0 (2)O8—C18—H18A109.5
O5—C7—C5123.1 (2)O8—C18—H18B109.5
O6—C7—C5116.8 (2)H18A—C18—H18B109.5
N4—C8—C9109.1 (2)O8—C18—H18C109.5
N4—C8—H8A109.9H18A—C18—H18C109.5
C9—C8—H8A109.9H18B—C18—H18C109.5
N4—C8—H8B109.9O1—N1—O2122.7 (2)
C9—C8—H8B109.9O1—N1—C1118.9 (2)
H8A—C8—H8B108.3O2—N1—C1118.4 (2)
N3—C9—C8110.1 (2)C10—N3—C9110.9 (2)
N3—C9—H9A109.6C10—N3—H3A107 (2)
C8—C9—H9A109.6C9—N3—H3A112 (2)
N3—C9—H9B109.6C10—N3—H3B115.4 (18)
C8—C9—H9B109.6C9—N3—H3B104.9 (17)
H9A—C9—H9B108.1H3A—N3—H3B107 (3)
N3—C10—C11110.8 (2)C12—N4—C11117.54 (18)
N3—C10—H10A109.5C12—N4—C8115.96 (18)
C11—C10—H10A109.5C11—N4—C8110.66 (19)
N3—C10—H10B109.5C7—O6—H6A106.5 (19)
C11—C10—H10B109.5C4—O7—H6A102.6 (15)
H10A—C10—H10B108.1C17—O8—C18118.5 (2)
N4—C11—C10109.9 (2)O3—N2—O4A122.2 (7)
N4—C11—H11A109.7O3—N2—O4B118.7 (15)
C10—C11—H11A109.7O3—N2—C3118.5 (2)
N4—C11—H11B109.7O4A—N2—C3118.2 (8)
C10—C11—H11B109.7O4B—N2—C3119.7 (14)
H11A—C11—H11B108.2
C6—C1—C2—C31.0 (4)C15—C16—C17—C120.6 (4)
N1—C1—C2—C3179.6 (2)C13—C12—C17—O8177.5 (2)
C1—C2—C3—C41.4 (4)N4—C12—C17—O81.3 (3)
C1—C2—C3—N2179.4 (2)C13—C12—C17—C161.4 (4)
C2—C3—C4—O7179.3 (2)N4—C12—C17—C16177.7 (2)
N2—C3—C4—O70.2 (4)C2—C1—N1—O10.8 (4)
C2—C3—C4—C50.8 (4)C6—C1—N1—O1179.8 (3)
N2—C3—C4—C5179.9 (2)C2—C1—N1—O2178.7 (2)
O7—C4—C5—C6179.6 (2)C6—C1—N1—O20.7 (4)
C3—C4—C5—C60.3 (3)C11—C10—N3—C954.4 (3)
O7—C4—C5—C70.9 (4)C8—C9—N3—C1055.3 (3)
C3—C4—C5—C7179.2 (2)C13—C12—N4—C1114.9 (3)
C4—C5—C6—C10.7 (4)C17—C12—N4—C11161.1 (2)
C7—C5—C6—C1178.8 (2)C13—C12—N4—C8119.2 (3)
C2—C1—C6—C50.0 (4)C17—C12—N4—C864.7 (3)
N1—C1—C6—C5179.3 (2)C10—C11—N4—C12162.6 (2)
C6—C5—C7—O51.3 (4)C10—C11—N4—C861.0 (3)
C4—C5—C7—O5179.1 (2)C9—C8—N4—C12161.0 (2)
C6—C5—C7—O6178.9 (2)C9—C8—N4—C1161.9 (3)
C4—C5—C7—O60.6 (4)C16—C17—O8—C183.3 (4)
N4—C8—C9—N358.4 (3)C12—C17—O8—C18177.8 (2)
N3—C10—C11—N456.8 (3)C2—C3—N2—O313.1 (3)
C17—C12—C13—C141.1 (4)C4—C3—N2—O3166.1 (2)
N4—C12—C13—C14177.1 (2)C2—C3—N2—O4A155.4 (6)
C12—C13—C14—C150.1 (4)C4—C3—N2—O4A25.4 (7)
C13—C14—C15—C160.9 (4)C2—C3—N2—O4B172.7 (12)
C14—C15—C16—C170.5 (4)C4—C3—N2—O4B6.4 (13)
C15—C16—C17—O8178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O71.14 (3)1.37 (3)2.448 (2)154 (3)
N3—H3A···O50.94 (4)2.02 (4)2.936 (3)165 (3)
N3—H3A···O60.94 (4)2.44 (3)3.153 (3)133 (2)
N3—H3B···O7i0.97 (3)1.83 (3)2.787 (3)166 (3)
C2—H2···O1ii0.932.663.581 (3)174
C9—H9A···O3iii0.972.443.254 (4)141
C10—H10B···O2iv0.972.433.319 (3)152
C10—H10A···O4Ai0.972.503.118 (10)122
C14—H14···O5v0.932.743.481 (3)137
C18—H18C···N4vi0.962.743.552 (4)143
Symmetry codes: (i) x+2, y+1, z; (ii) x, y, z; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x+1, y+1, z+1; (vi) x+2, y+2, z+1.
 

Funding information

PV and MJP would also like to thank VIEP–BUAP for support of project 100184100-VIEP.

References

First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 1779–1793.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Mitchell, A. S. & Spackman, M. A. (1998). Chem. Eur. J. 4, 2136–2141.  CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMontis, R. & Hursthouse, M. B. (2012). CrystEngComm, 14, 5242–5254.  Web of Science CSD CrossRef CAS Google Scholar
First citationOrjales, A., Alonso-Cires, L., Labeaga, L. & Corcóstegui, R. (1995). J. Med. Chem. 38, 1273–1277.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPenjišević, J., Šukalović, V., Andrić, D., Kostić-Rajačić, S., Šoškić, V. & Roglić, G. (2007). Arch. Pharm. Chem. Life Sci. 340, 456–465.  Google Scholar
First citationRaghupathi, R. K., Rydelek-Fitzgerald, L., Teitler, M. & Glennon, R. A. (1991). J. Med. Chem. 34, 2633–2638.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSennbro, C. J., Ekman, J., Lindh, C. H., Welinder, H., Jönsson, B. A. G. & Tinnerberg, H. (2004). Ann. Occup. Hyg. 48, 415–424.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, G., Baldry, K. E., Byriel, K. A. & Kennard, C. H. L. (1997). Aust. J. Chem. 50, 727–736.  CSD CrossRef CAS Web of Science Google Scholar
First citationSmith, G., Bott, R. C. & Wermuth, U. D. (2001a). Acta Cryst. E57, 640–642.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Bott, R. C. & Wermuth, U. D. (2001b). Acta Cryst. E57, o895–o897.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Coyne, M. G. & White, J. M. (2000). Aust. J. Chem. 53, 203–208.  Web of Science CSD CrossRef CAS Google Scholar
First citationSmith, G., Lynch, D. E., Byriel, K. A. & Kennard, C. H. L. (1996). Acta Cryst. C52, 231–235.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSmith, G., Lynch, D. E., Byriel, K. A. & Kennard, C. H. L. (1995). Aust. J. Chem. 48, 1133–1149.  CSD CrossRef CAS Web of Science Google Scholar
First citationSmith, G., Wermuth, U. D., Bott, R. C., White, J. M. & Willis, A. C. (2001c). Aust. J. Chem. 54, 165–170.  Web of Science CSD CrossRef CAS Google Scholar
First citationSmith, G., Wermuth, U. D. & Healy, P. C. (2006). Acta Cryst. E62, o610–o613.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D., Healy, P. C., Bott, R. C. & White, J. M. (2002). Aust. J. Chem. 55, 349–356.  Web of Science CSD CrossRef CAS Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2001d). Aust. J. Chem. 54, 171–175.  Web of Science CSD CrossRef CAS Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2001e). Acta Cryst. E57, o1036–o1038.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationVenkatesan, P., Thamotharan, S., Kumar, R. G. & Ilangovan, A. (2015). CrystEngComm, 17, 904–915.  Web of Science CSD CrossRef CAS Google Scholar
First citationVerdonk, M. L., Voogd, J. W., Kanters, J. A., Kroon, J., den Besten, R., Brandsma, L., Leysen, D. & Kelder, J. (1997). Acta Cryst. B53, 976–983.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWoińska, M., Grabowsky, S., Dominiak, P. M., Woźniak, K. & Jayatilaka, D. (2016). Sci. Adv. 2, e1600192.  Web of Science PubMed Google Scholar
First citationZhuang, Z. P., Kung, M. P., Mu, M. & Kung, H. F. (1998). J. Med. Chem. 41, 157–166.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds