research communications
of 4-(2-methoxyphenyl)piperazin-1-ium 3,5-dintrosalicylate
aPG and Research Department of Physics, Government Arts College (Autonomous and Affiliated to Bharathidasan University, Tiruchirappalli), Thanthonimalai, Karur-639 005, Tamil Nadu, India, bCrystal Growth Laboratory, PG and Research Department of Physics, Periyar EVR Government College (Autonomous and Affiliated to Bharathidasan University, Tiruchirappalli), Tiruchirappalli-620 023, Tamil Nadu, India, cUnidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa, 72960, Puebla, Mexico, and dDepartment of Chemistry, Srimad Andavan Arts and Science College (Autonomous), Tiruchirappalli-620 005, Tamil Nadu, India
*Correspondence e-mail: seethabala@gmail.com, venkat@andavancollege.ac.in
The title salt [systematic name: 4-(2-methoxyphenyl)piperazin-1-ium 2-carboxy-4,6-dinitrophenolate], C11H17N2O+·C7H3N2O7−, exhibits secondary nitrogen atoms (N—H) in the 2-methoxyphenylpiperazine (2MeOPP) cation, which is protonated with a phenolic hydrogen atom of 3,5-dinitrosalicylic acid (DNSA). One of the oxygen atoms of the nitro group in the 3,5-dinitrosalicylate anion is disordered over two orientations with occupancy factors of 0.65 (7) and 0.35 (7) . The 2-methoxyphenylpiperazinium cation and 3,5-dinitrosalicylate anion are linked in the by a bifurcated N—H⋯O hydrogen bond, which formed is between the H atom in the protonated piperazinium unit of the cation and the carboxylic acid group in the anion. The piperazine ring adopts a chair conformation. The features N—H⋯O and C—H⋯O hydrogen bonds interactions, which lead to the formation of a sandwich-like arrangement. Hirshfeld surface analysis was used to determine the relative contributions of various intermolecular interactions, indicating that that H⋯O/O⋯H (38. 3%) and H⋯H (31. 8%) contacts are the major contributors.
Keywords: crystal structure; proton transfer salts; 1-(2-methoxyphenyl)piperazinium cation; 3,5-dinitrosalicylic acid.
CCDC reference: 2183987
1. Chemical context
1-(2-Methoxyphenyl)piperazine is a substituted cyclo aliphatic amine with two nitrogen atoms at opposite positions of the six-membered ring. A substituent 2-methoxyphenyl group is attached to one of the nitrogen atoms while the other has one attached hydrogen atom (i.e. the secondary nitrogen atom, N—H). Piperazine and substituted piperazine derivatives are often used as intermediates for a wide range of pharmaceuticals, polymers, dyes, corrosion inhibitors and surfactants. In particular, (2-methoxyphenyl)piperazine derivatives are used as 5-HT1A receptor ligands with reduced α1-adrenergic activity (Raghupathi et al., 1991; Orjales et al., 1995; Zhuang et al., 1998). 1-(2-Methoxyphenyl)piperazine-impregnated filters have been used for the detection of isocyanates in air (Sennbro et al., 2004). 1-Cinnamyl-4-(2-methoxyphenyl)piperazine derivatives are used as ligands for D2 and D3 dopamine and serotonin 5-HT1α receptors (Penjišević et al., 2007). The of eleven protonated 4-(2-methoxyphenyl)piperazin-1-ium salts with eleven different substituted benzoic acids (namely, 4/2-chlorobenzoic acid, 4/2-bromobenzoic acid, 4/2-iodobenzoic acid, 2-fluorobenzoic acid, 2-methylbenzoic acid, 4-amino/4-nitro-benzoic acid, 3,5-dinitrobenzoic acid and picric acid) and three aliphatic dicarboxylic acid [maleic acid, fumaric acid and (2R,3R)-tartaric acid] salts and their supramolecular features have been reported (Harish Chinthal et al., 2020).
As a continuation of our earlier study on the . In this study, the Hirshfeld surface (HS) analysis, structural features and various intermolecular interactions that exist in the title protonated salt are reported.
and supramolecular analysis of a monohydrated 1:1 adduct of bis(piperazine-1,4-diium), 3,5-dinitro-2-oxidobenzoate and piperazine, we have now investigated the of 1-(2-methoxyphenyl) piperazinium 3,5-dinitrosalicylate (I)2. Structural commentary
The title salt crystallizes in the triclinic Pī with the comprising one 2-methoxyphenylpiperazinium (2MeOPP)1+ cation and one 3,5-dinitrosalicylate (DNSA)1− anion (Fig. 1). The piperazine ring in the cation adopts a chair conformation with puckering parameters Q = 0.582 (3) Å, θ = 176.3 (3)°, φ = 338 (4)°. One of the oxygen atoms of the nitro group (atom O4) in the 3,5-dinitrosalicylate anion is disordered over two orientations with occupancy factors of 0.65 (7) and 0.35 (7). Both nitro groups, the phenoxylate oxygen atom and a carboxylic acid group in the anion are coplanar with an r.m.s. deviation of 0.0074 Å. A bifurcated intermolecular N—H⋯O hydrogen bond [N3—H3A⋯O5 = 2.936 (3) Å and N3—H3A⋯O6 = 3.153 (3) Å] links the cation and anion in the asymmetric unit.
In the DNSA molecule, deprotonation of the –COOH group (pKα COOH = 2.2) is easier than that of the phenolic –OH group (pKα OH = 6.8). 62 carboxylate moiety structures (COO−) and 70 phenolate anion structures (O−) were found in a search of the Cambridge Structural Database (CSD, Version 5.43, update of March 2020; Groom et al., 2016), which is perhaps unexpected because the number of crystal structures containing phenolate anions is larger than those containing carboxylate anions. These conflicting results may suggest that the formation of protonated salts of the DNSA molecule with phenolate ions is favoured by the thermodynamic stability and the intermolecular interactions between the phenolate anion and counter-ions in the respective crystal structures. The of (I) suggests that the title salt was formed by deprotonation of the phenolic group in the DNSA molecule. In order to better understand the deprotonation of the phenolic group in DNSA molecule, the H-atom electron density in the difference-Fourier electron-density maps was calculated as they can yield additional insight into the proton-transfer behaviour. From Fig. 2, the electron density associated with atom H6 is shown to be smeared out between the O6 and O7 atoms, with the maximum lying closer to O6 atom than O7. It suggests that the H6A atom is attached to the carboxylic acid group and that deprotonation occurs through the phenolic group. As a result, the strong intramolecular O6—H6A⋯O7 hydrogen bond formed. The interatomic distance between the phenolate oxygen atom, O7, and the O6 atom in the carboxylic acid group is 2.448 (2) Å, which also indicates that the strong intramolecular hydrogen bond between the O6 and O7 atoms. Similar types of intramolecular hydrogen bonds were observed in salicylic acid with a distance of 2.62 Å (Woińska et al., 2016; Montis & Hursthouse et al., 2012) and in other proton-transfer salts of DNSA in the range 2.409–2.540 Å (Smith et al., 1995, 1996, 1997, 2000, 2001a,b,c,d,e, 2002, 2006). The proton in the carboxylc acid group is located between the carboxyl-O atom [O6 at 1.14 (3) Å] and the phenolate oxygen atom, [O7 at 1.37 (3) Å]. A similar trend was found in the various proton-transfer salts of DNSA (Smith et al., 2002).
3. Supramolecular features
The oxygen atoms in both nitro groups (O1–O4), the carboxylic acid group (O5 and O6) and a phenolate moiety (O7) in the DNSA anion all act as acceptors for various intermolecular N—H⋯O and C—H⋯O interactions, except for atom O4 (Table 1). In the cation, the O8 atom of the methoxy group is not involved in intermolecular interactions. The oxygen atoms of the carboxylic acid group (O5 and O6) act as acceptors for a bifurcated N3—H3A⋯(O5,O6) interaction, which links two neighbouring cations and anions into a centrosymmetric tetrameric architecture, which is further stabilized by the C14—H14⋯O5v interaction [3.481 (3) Å] and yields a macrocyclic ring structure with an R22 (20) motif (Fig. 3). Atom O1 of the nitro group is involved in the centrosymmetric C2—H2⋯O1ii interaction [3.581 (3) Å], which links two neighbouring (DNSA)1− units with an R22 (10) motif (Fig. 4). Neighbouring dimeric DNSA1− units are further linked through the previously mentioned bifurcated N3—H3A⋯(O5,O6) interaction and the N3—H3B⋯O7i [2.787 (3) Å], C10—H10A⋯O4A [3.118 (10) Å] interactions into a layered structure propagating parallel to the b axis (Fig. 5). Of the above three N—H⋯O interactions [N3—H3A⋯(O5,O6), and N3—H3B⋯O7], the N3—H3B⋯O7 interaction is stronger [D⋯A = 2.787 (3) Å] than the other two, which is due to the fact that two charged components are involved in this interaction, i.e. the phenolate O7 atom in DNSA−1 and the protonated N3—H3B unit in 2MeOPP+1. All of the above interactions facilitate the arrangement of the DNSA1− ions in a layered molecular structure. The top and bottom sides of the DNSA1− layers are stabilized by the two adjacent cationic layers. As a result, a sandwich-like arrangement is observed. Briefly, the layered DNSA1− units form the core with the top and bottom sides of the cation layers arranged facing. An overall packing diagram is shown Fig. 6.
4. Hirshfeld surface analysis
Crystal Explorer 17.5 (Turner et al., 2017) was used to calculate the Hirshfeld surfaces (HS; McKinnon et al., 1998, 2004; Spackman & Jayatilaka, 2009) of the title protonated salt and generate two-dimensional fingerprint plots (full and decomposed, 2D-FP; Spackman & McKinnon, 2002) in order to investigate and quantify the different intermolecular interactions. Distinct colours and intensities indicate short and long contacts, as well as the relative contribution of the different interactions in the solid state (Venkatesan et al., 2015, 2016). Two views of the HS mapped with dnorm in the range −0.6295 to 1.3240 a.u. (front and back) are shown in Fig. 7. Bright red spots on the surface near O2, O3, O4A, O7, O6, H10B and H3B suggest that these atoms participate in hydrogen-bonding interactions (see Table 1). No significant pattern of convex blue and concave red triangles are observed in the shape-index (SI) diagram, indicating the absence of π-stacking interactions in the title salt. The 2D-FP plots show the relative contributions of the various non-covalent contacts (Fig. 8), indicating that intermolecular O⋯H contacts [sharp symmetrical spikes are observed in the FP plot at de + di = 1.8 Å] make the most significant contribution (38.3%), followed by H⋯H contacts [symmetrical blunt spikes at de + di = 2.4 Å], which contribute 31.8%, while C⋯H, N⋯H, C⋯O, O⋯N, C⋯N and C⋯C contacts contribute 11.6%, 1.7%, 6.7%, 2.7%, 1.9%, 0.5% and 2.8%, respectively. Other significant peaks for various non-covalent contacts are indicated in the FP plot (Fig. 8).
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.43, update of March 2020; Groom et al., 2016) using Conquest (Bruno et al., 2002) for 1-(2-methoxyphenyl)piperazine gave 111 hits, of which seven hits were for the protonated piperazinium unit. In particular, the of 1-(2-methoxyphenyl) piperazin-4-ium picrate, which like the title compound has a phenolate anion, has been reported (CSD refcode NEBGIK; Verdonk et al., 1997). In the case of the DNSA molecule, 21 hits were observed for neutral DNSA molecules and 65 and 71 hits for DNSA carboxylate and DNSA phenolate, respectively.
6. Synthesis and crystallization
The title protonated salt was synthesized using 1-(2-methoxyphenyl)piperazine (Sigma Aldrich, 99%) and 3,5-dinitrosalicylic acid (Merck India, 99.5%) in an equimolar ratio. The stoichiometrically (1 mmol) weighed starting materials were completely dissolved in 50 mL of methanol at room temperature and stirred continuously for 3 h. The homogeneous solution was filtered using Whatmann filter paper and placed in a dust-free atmosphere, and allowed to evaporate slowly at room temperature. A suitable single crystal was harvested after a growth period of 25 days.
7. Refinement
Crystal data, data collection and structure . The amine H atoms and O-bound H atoms were located in a difference-Fourier map and refined freely along with their isotropic displacement parameters. C-bound H atoms were included in calculated positions and treated as riding atoms [C—H = 0.93–0.98 Å, with Uiso(H) = 1.2Ueq(C)].
details are summarized in Table 2
|
Supporting information
CCDC reference: 2183987
Data collection: APEX2 (Bruker, 2012); cell
APEX2 and SAINT (Bruker, 2012); data reduction: SAINT and XPREP (Bruker, 2012); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: PLATON (Spek, 2020).C11H17N2O+·C7H3N2O7− | Z = 2 |
Mr = 420.38 | F(000) = 440 |
Triclinic, P1 | Dx = 1.453 Mg m−3 |
a = 7.3729 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.4842 (7) Å | Cell parameters from 3479 reflections |
c = 15.5411 (13) Å | θ = 2.7–21.4° |
α = 88.954 (4)° | µ = 0.12 mm−1 |
β = 81.333 (4)° | T = 296 K |
γ = 89.352 (3)° | BLOCK, yellow |
V = 960.85 (14) Å3 | 0.18 × 0.15 × 0.10 mm |
Bruker Kappa APEXII diffractometer | 3513 independent reflections |
Radiation source: fine-focus sealed tube | 2035 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.084 |
ω and φ scan | θmax = 25.4°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −8→8 |
Tmin = 0.608, Tmax = 0.745 | k = −10→10 |
24028 measured reflections | l = −18→18 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.048 | w = 1/[σ2(Fo2) + (0.0588P)2 + 0.1844P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.140 | (Δ/σ)max < 0.001 |
S = 1.02 | Δρmax = 0.23 e Å−3 |
3513 reflections | Δρmin = −0.21 e Å−3 |
294 parameters | Extinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.050 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.2780 (3) | 0.2159 (3) | 0.07284 (15) | 0.0394 (6) | |
C2 | 0.3262 (3) | 0.1599 (3) | −0.00995 (15) | 0.0403 (6) | |
H2 | 0.245907 | 0.096812 | −0.034491 | 0.048* | |
C3 | 0.4942 (3) | 0.1982 (3) | −0.05608 (14) | 0.0381 (6) | |
C4 | 0.6246 (3) | 0.2917 (3) | −0.02095 (15) | 0.0386 (6) | |
C5 | 0.5670 (3) | 0.3451 (3) | 0.06598 (14) | 0.0357 (6) | |
C6 | 0.3973 (3) | 0.3079 (3) | 0.11071 (15) | 0.0402 (6) | |
H6 | 0.362307 | 0.344693 | 0.166821 | 0.048* | |
C7 | 0.6924 (4) | 0.4410 (3) | 0.10897 (16) | 0.0437 (6) | |
C8 | 0.7613 (3) | 0.7961 (3) | 0.32628 (14) | 0.0453 (7) | |
H8A | 0.714529 | 0.899464 | 0.344577 | 0.054* | |
H8B | 0.659791 | 0.734255 | 0.312652 | 0.054* | |
C9 | 0.9053 (4) | 0.8122 (3) | 0.24697 (16) | 0.0547 (8) | |
H9A | 0.851985 | 0.862088 | 0.199882 | 0.066* | |
H9B | 1.003753 | 0.878425 | 0.260013 | 0.066* | |
C10 | 1.0516 (4) | 0.5698 (3) | 0.29246 (16) | 0.0528 (7) | |
H10A | 1.157647 | 0.624708 | 0.306580 | 0.063* | |
H10B | 1.090079 | 0.464033 | 0.274758 | 0.063* | |
C11 | 0.9068 (4) | 0.5609 (3) | 0.37158 (15) | 0.0449 (7) | |
H11A | 0.804693 | 0.498591 | 0.359076 | 0.054* | |
H11B | 0.957081 | 0.510002 | 0.419258 | 0.054* | |
C12 | 0.7467 (3) | 0.7377 (3) | 0.48169 (14) | 0.0349 (6) | |
C13 | 0.6760 (3) | 0.6130 (3) | 0.53447 (15) | 0.0438 (6) | |
H13 | 0.686122 | 0.511151 | 0.513072 | 0.053* | |
C14 | 0.5896 (4) | 0.6383 (4) | 0.61938 (17) | 0.0586 (8) | |
H14 | 0.542766 | 0.553503 | 0.654172 | 0.070* | |
C15 | 0.5738 (4) | 0.7860 (4) | 0.65120 (17) | 0.0644 (9) | |
H15 | 0.514640 | 0.802436 | 0.707561 | 0.077* | |
C16 | 0.6448 (4) | 0.9121 (4) | 0.60065 (18) | 0.0572 (8) | |
H16 | 0.634257 | 1.013138 | 0.623208 | 0.069* | |
C17 | 0.7317 (3) | 0.8895 (3) | 0.51661 (15) | 0.0418 (6) | |
C18 | 0.7951 (4) | 1.1646 (3) | 0.4922 (2) | 0.0782 (10) | |
H18A | 0.667923 | 1.193863 | 0.505074 | 0.117* | |
H18B | 0.855921 | 1.233884 | 0.447752 | 0.117* | |
H18C | 0.851231 | 1.172510 | 0.543815 | 0.117* | |
N1 | 0.0996 (3) | 0.1758 (3) | 0.12107 (14) | 0.0552 (6) | |
O4A | 0.6481 (12) | 0.2063 (16) | −0.1968 (8) | 0.079 (3) | 0.65 |
N3 | 0.9804 (4) | 0.6538 (3) | 0.21950 (15) | 0.0557 (7) | |
N4 | 0.8428 (3) | 0.7185 (2) | 0.39644 (11) | 0.0368 (5) | |
O1 | −0.0033 (3) | 0.0951 (3) | 0.08644 (13) | 0.0810 (7) | |
O2 | 0.0596 (3) | 0.2239 (3) | 0.19541 (13) | 0.0777 (7) | |
O3 | 0.4386 (3) | 0.0337 (3) | −0.16524 (12) | 0.0699 (6) | |
O5 | 0.6514 (3) | 0.4920 (2) | 0.18265 (11) | 0.0597 (6) | |
O6 | 0.8538 (2) | 0.4713 (2) | 0.06426 (11) | 0.0584 (6) | |
O7 | 0.7832 (2) | 0.3284 (2) | −0.06190 (10) | 0.0530 (5) | |
O8 | 0.8105 (2) | 1.0068 (2) | 0.46251 (12) | 0.0556 (5) | |
N2 | 0.5361 (3) | 0.1362 (3) | −0.14395 (14) | 0.0514 (6) | |
O4B | 0.690 (2) | 0.153 (3) | −0.1854 (16) | 0.090 (7) | 0.35 |
H3A | 0.891 (5) | 0.589 (4) | 0.202 (2) | 0.087 (11)* | |
H3B | 1.070 (4) | 0.674 (3) | 0.168 (2) | 0.085 (10)* | |
H6A | 0.857 (5) | 0.415 (4) | −0.002 (2) | 0.125 (13)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0373 (14) | 0.0422 (15) | 0.0384 (14) | −0.0082 (11) | −0.0043 (11) | 0.0015 (11) |
C2 | 0.0411 (15) | 0.0404 (15) | 0.0405 (14) | −0.0013 (12) | −0.0097 (12) | −0.0042 (11) |
C3 | 0.0407 (15) | 0.0418 (15) | 0.0325 (13) | 0.0016 (11) | −0.0071 (11) | −0.0069 (11) |
C4 | 0.0351 (14) | 0.0442 (15) | 0.0359 (14) | −0.0003 (12) | −0.0030 (11) | −0.0010 (11) |
C5 | 0.0371 (15) | 0.0383 (14) | 0.0317 (13) | −0.0034 (11) | −0.0044 (11) | −0.0012 (10) |
C6 | 0.0443 (16) | 0.0433 (15) | 0.0323 (13) | −0.0018 (12) | −0.0035 (11) | −0.0019 (11) |
C7 | 0.0445 (16) | 0.0525 (17) | 0.0342 (14) | −0.0060 (13) | −0.0057 (12) | −0.0039 (12) |
C8 | 0.0415 (15) | 0.0600 (17) | 0.0341 (14) | 0.0018 (13) | −0.0045 (12) | 0.0008 (12) |
C9 | 0.0509 (18) | 0.075 (2) | 0.0384 (15) | −0.0005 (15) | −0.0074 (13) | 0.0067 (13) |
C10 | 0.0530 (18) | 0.0567 (18) | 0.0472 (16) | 0.0080 (14) | −0.0015 (13) | −0.0198 (13) |
C11 | 0.0485 (16) | 0.0438 (16) | 0.0425 (14) | −0.0002 (12) | −0.0063 (12) | −0.0082 (12) |
C12 | 0.0317 (13) | 0.0407 (14) | 0.0329 (13) | 0.0011 (11) | −0.0064 (10) | −0.0044 (11) |
C13 | 0.0420 (15) | 0.0453 (16) | 0.0435 (15) | −0.0025 (12) | −0.0048 (12) | 0.0021 (12) |
C14 | 0.0474 (17) | 0.082 (2) | 0.0441 (17) | −0.0007 (15) | −0.0009 (13) | 0.0173 (16) |
C15 | 0.059 (2) | 0.097 (3) | 0.0361 (16) | 0.0148 (18) | −0.0058 (14) | −0.0090 (17) |
C16 | 0.0563 (19) | 0.063 (2) | 0.0547 (18) | 0.0131 (15) | −0.0133 (15) | −0.0260 (15) |
C17 | 0.0377 (15) | 0.0451 (16) | 0.0441 (15) | 0.0018 (12) | −0.0097 (12) | −0.0086 (12) |
C18 | 0.069 (2) | 0.0371 (18) | 0.135 (3) | 0.0035 (15) | −0.034 (2) | −0.0234 (18) |
N1 | 0.0508 (15) | 0.0625 (16) | 0.0497 (14) | −0.0172 (12) | 0.0025 (12) | −0.0061 (12) |
O4A | 0.062 (5) | 0.135 (8) | 0.039 (2) | −0.029 (4) | 0.005 (3) | −0.027 (4) |
N3 | 0.0492 (15) | 0.0839 (19) | 0.0336 (13) | −0.0120 (14) | −0.0018 (12) | −0.0168 (12) |
N4 | 0.0427 (12) | 0.0379 (12) | 0.0291 (10) | 0.0057 (9) | −0.0038 (9) | −0.0034 (8) |
O1 | 0.0652 (14) | 0.1054 (18) | 0.0711 (14) | −0.0428 (13) | −0.0005 (11) | −0.0193 (12) |
O2 | 0.0637 (14) | 0.1058 (18) | 0.0572 (13) | −0.0293 (12) | 0.0162 (11) | −0.0244 (12) |
O3 | 0.0679 (14) | 0.0792 (15) | 0.0646 (13) | −0.0108 (12) | −0.0125 (11) | −0.0313 (11) |
O5 | 0.0585 (12) | 0.0813 (14) | 0.0388 (10) | −0.0220 (10) | −0.0024 (9) | −0.0154 (9) |
O6 | 0.0467 (12) | 0.0858 (15) | 0.0409 (11) | −0.0250 (10) | 0.0027 (9) | −0.0117 (10) |
O7 | 0.0413 (11) | 0.0782 (14) | 0.0374 (10) | −0.0139 (9) | 0.0025 (8) | −0.0111 (9) |
O8 | 0.0570 (12) | 0.0373 (11) | 0.0730 (13) | −0.0040 (9) | −0.0105 (10) | −0.0069 (9) |
N2 | 0.0423 (14) | 0.0683 (17) | 0.0439 (14) | 0.0018 (12) | −0.0067 (12) | −0.0136 (12) |
O4B | 0.048 (7) | 0.138 (16) | 0.078 (12) | −0.028 (8) | 0.023 (7) | −0.052 (9) |
C1—C2 | 1.374 (3) | C11—H11B | 0.9700 |
C1—C6 | 1.385 (3) | C12—C13 | 1.384 (3) |
C1—N1 | 1.453 (3) | C12—C17 | 1.403 (3) |
C2—C3 | 1.374 (3) | C12—N4 | 1.416 (3) |
C2—H2 | 0.9300 | C13—C14 | 1.395 (3) |
C3—C4 | 1.429 (3) | C13—H13 | 0.9300 |
C3—N2 | 1.460 (3) | C14—C15 | 1.353 (4) |
C4—O7 | 1.283 (3) | C14—H14 | 0.9300 |
C4—C5 | 1.434 (3) | C15—C16 | 1.376 (4) |
C5—C6 | 1.373 (3) | C15—H15 | 0.9300 |
C5—C7 | 1.479 (3) | C16—C17 | 1.381 (3) |
C6—H6 | 0.9300 | C16—H16 | 0.9300 |
C7—O5 | 1.225 (3) | C17—O8 | 1.367 (3) |
C7—O6 | 1.309 (3) | C18—O8 | 1.422 (3) |
C8—N4 | 1.465 (3) | C18—H18A | 0.9600 |
C8—C9 | 1.506 (3) | C18—H18B | 0.9600 |
C8—H8A | 0.9700 | C18—H18C | 0.9600 |
C8—H8B | 0.9700 | N1—O1 | 1.217 (3) |
C9—N3 | 1.492 (4) | N1—O2 | 1.225 (3) |
C9—H9A | 0.9700 | O4A—N2 | 1.225 (8) |
C9—H9B | 0.9700 | N3—H3A | 0.94 (4) |
C10—N3 | 1.487 (3) | N3—H3B | 0.97 (3) |
C10—C11 | 1.503 (3) | O3—N2 | 1.215 (3) |
C10—H10A | 0.9700 | O6—H6A | 1.13 (4) |
C10—H10B | 0.9700 | O7—H6A | 1.38 (4) |
C11—N4 | 1.452 (3) | N2—O4B | 1.228 (13) |
C11—H11A | 0.9700 | ||
C2—C1—C6 | 121.0 (2) | C13—C12—C17 | 118.0 (2) |
C2—C1—N1 | 119.0 (2) | C13—C12—N4 | 123.3 (2) |
C6—C1—N1 | 120.0 (2) | C17—C12—N4 | 118.6 (2) |
C3—C2—C1 | 119.3 (2) | C12—C13—C14 | 120.8 (2) |
C3—C2—H2 | 120.4 | C12—C13—H13 | 119.6 |
C1—C2—H2 | 120.4 | C14—C13—H13 | 119.6 |
C2—C3—C4 | 122.8 (2) | C15—C14—C13 | 120.1 (3) |
C2—C3—N2 | 116.5 (2) | C15—C14—H14 | 119.9 |
C4—C3—N2 | 120.7 (2) | C13—C14—H14 | 119.9 |
O7—C4—C3 | 124.4 (2) | C14—C15—C16 | 120.4 (3) |
O7—C4—C5 | 120.4 (2) | C14—C15—H15 | 119.8 |
C3—C4—C5 | 115.3 (2) | C16—C15—H15 | 119.8 |
C6—C5—C4 | 121.2 (2) | C15—C16—C17 | 120.4 (3) |
C6—C5—C7 | 119.1 (2) | C15—C16—H16 | 119.8 |
C4—C5—C7 | 119.7 (2) | C17—C16—H16 | 119.8 |
C5—C6—C1 | 120.5 (2) | O8—C17—C16 | 124.5 (2) |
C5—C6—H6 | 119.8 | O8—C17—C12 | 115.3 (2) |
C1—C6—H6 | 119.8 | C16—C17—C12 | 120.2 (2) |
O5—C7—O6 | 120.0 (2) | O8—C18—H18A | 109.5 |
O5—C7—C5 | 123.1 (2) | O8—C18—H18B | 109.5 |
O6—C7—C5 | 116.8 (2) | H18A—C18—H18B | 109.5 |
N4—C8—C9 | 109.1 (2) | O8—C18—H18C | 109.5 |
N4—C8—H8A | 109.9 | H18A—C18—H18C | 109.5 |
C9—C8—H8A | 109.9 | H18B—C18—H18C | 109.5 |
N4—C8—H8B | 109.9 | O1—N1—O2 | 122.7 (2) |
C9—C8—H8B | 109.9 | O1—N1—C1 | 118.9 (2) |
H8A—C8—H8B | 108.3 | O2—N1—C1 | 118.4 (2) |
N3—C9—C8 | 110.1 (2) | C10—N3—C9 | 110.9 (2) |
N3—C9—H9A | 109.6 | C10—N3—H3A | 107 (2) |
C8—C9—H9A | 109.6 | C9—N3—H3A | 112 (2) |
N3—C9—H9B | 109.6 | C10—N3—H3B | 115.4 (18) |
C8—C9—H9B | 109.6 | C9—N3—H3B | 104.9 (17) |
H9A—C9—H9B | 108.1 | H3A—N3—H3B | 107 (3) |
N3—C10—C11 | 110.8 (2) | C12—N4—C11 | 117.54 (18) |
N3—C10—H10A | 109.5 | C12—N4—C8 | 115.96 (18) |
C11—C10—H10A | 109.5 | C11—N4—C8 | 110.66 (19) |
N3—C10—H10B | 109.5 | C7—O6—H6A | 106.5 (19) |
C11—C10—H10B | 109.5 | C4—O7—H6A | 102.6 (15) |
H10A—C10—H10B | 108.1 | C17—O8—C18 | 118.5 (2) |
N4—C11—C10 | 109.9 (2) | O3—N2—O4A | 122.2 (7) |
N4—C11—H11A | 109.7 | O3—N2—O4B | 118.7 (15) |
C10—C11—H11A | 109.7 | O3—N2—C3 | 118.5 (2) |
N4—C11—H11B | 109.7 | O4A—N2—C3 | 118.2 (8) |
C10—C11—H11B | 109.7 | O4B—N2—C3 | 119.7 (14) |
H11A—C11—H11B | 108.2 | ||
C6—C1—C2—C3 | −1.0 (4) | C15—C16—C17—C12 | 0.6 (4) |
N1—C1—C2—C3 | 179.6 (2) | C13—C12—C17—O8 | 177.5 (2) |
C1—C2—C3—C4 | 1.4 (4) | N4—C12—C17—O8 | 1.3 (3) |
C1—C2—C3—N2 | −179.4 (2) | C13—C12—C17—C16 | −1.4 (4) |
C2—C3—C4—O7 | 179.3 (2) | N4—C12—C17—C16 | −177.7 (2) |
N2—C3—C4—O7 | 0.2 (4) | C2—C1—N1—O1 | −0.8 (4) |
C2—C3—C4—C5 | −0.8 (4) | C6—C1—N1—O1 | 179.8 (3) |
N2—C3—C4—C5 | −179.9 (2) | C2—C1—N1—O2 | 178.7 (2) |
O7—C4—C5—C6 | 179.6 (2) | C6—C1—N1—O2 | −0.7 (4) |
C3—C4—C5—C6 | −0.3 (3) | C11—C10—N3—C9 | 54.4 (3) |
O7—C4—C5—C7 | −0.9 (4) | C8—C9—N3—C10 | −55.3 (3) |
C3—C4—C5—C7 | 179.2 (2) | C13—C12—N4—C11 | −14.9 (3) |
C4—C5—C6—C1 | 0.7 (4) | C17—C12—N4—C11 | 161.1 (2) |
C7—C5—C6—C1 | −178.8 (2) | C13—C12—N4—C8 | 119.2 (3) |
C2—C1—C6—C5 | 0.0 (4) | C17—C12—N4—C8 | −64.7 (3) |
N1—C1—C6—C5 | 179.3 (2) | C10—C11—N4—C12 | −162.6 (2) |
C6—C5—C7—O5 | −1.3 (4) | C10—C11—N4—C8 | 61.0 (3) |
C4—C5—C7—O5 | 179.1 (2) | C9—C8—N4—C12 | 161.0 (2) |
C6—C5—C7—O6 | 178.9 (2) | C9—C8—N4—C11 | −61.9 (3) |
C4—C5—C7—O6 | −0.6 (4) | C16—C17—O8—C18 | −3.3 (4) |
N4—C8—C9—N3 | 58.4 (3) | C12—C17—O8—C18 | 177.8 (2) |
N3—C10—C11—N4 | −56.8 (3) | C2—C3—N2—O3 | −13.1 (3) |
C17—C12—C13—C14 | 1.1 (4) | C4—C3—N2—O3 | 166.1 (2) |
N4—C12—C13—C14 | 177.1 (2) | C2—C3—N2—O4A | 155.4 (6) |
C12—C13—C14—C15 | 0.1 (4) | C4—C3—N2—O4A | −25.4 (7) |
C13—C14—C15—C16 | −0.9 (4) | C2—C3—N2—O4B | −172.7 (12) |
C14—C15—C16—C17 | 0.5 (4) | C4—C3—N2—O4B | 6.4 (13) |
C15—C16—C17—O8 | −178.2 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6A···O7 | 1.14 (3) | 1.37 (3) | 2.448 (2) | 154 (3) |
N3—H3A···O5 | 0.94 (4) | 2.02 (4) | 2.936 (3) | 165 (3) |
N3—H3A···O6 | 0.94 (4) | 2.44 (3) | 3.153 (3) | 133 (2) |
N3—H3B···O7i | 0.97 (3) | 1.83 (3) | 2.787 (3) | 166 (3) |
C2—H2···O1ii | 0.93 | 2.66 | 3.581 (3) | 174 |
C9—H9A···O3iii | 0.97 | 2.44 | 3.254 (4) | 141 |
C10—H10B···O2iv | 0.97 | 2.43 | 3.319 (3) | 152 |
C10—H10A···O4Ai | 0.97 | 2.50 | 3.118 (10) | 122 |
C14—H14···O5v | 0.93 | 2.74 | 3.481 (3) | 137 |
C18—H18C···N4vi | 0.96 | 2.74 | 3.552 (4) | 143 |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x, −y, −z; (iii) −x+1, −y+1, −z; (iv) x+1, y, z; (v) −x+1, −y+1, −z+1; (vi) −x+2, −y+2, −z+1. |
Funding information
PV and MJP would also like to thank VIEP–BUAP for support of project 100184100-VIEP.
References
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Harish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 1779–1793. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Mitchell, A. S. & Spackman, M. A. (1998). Chem. Eur. J. 4, 2136–2141. CrossRef CAS Google Scholar
McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. Web of Science CrossRef CAS IUCr Journals Google Scholar
Montis, R. & Hursthouse, M. B. (2012). CrystEngComm, 14, 5242–5254. Web of Science CSD CrossRef CAS Google Scholar
Orjales, A., Alonso-Cires, L., Labeaga, L. & Corcóstegui, R. (1995). J. Med. Chem. 38, 1273–1277. CrossRef CAS PubMed Web of Science Google Scholar
Penjišević, J., Šukalović, V., Andrić, D., Kostić-Rajačić, S., Šoškić, V. & Roglić, G. (2007). Arch. Pharm. Chem. Life Sci. 340, 456–465. Google Scholar
Raghupathi, R. K., Rydelek-Fitzgerald, L., Teitler, M. & Glennon, R. A. (1991). J. Med. Chem. 34, 2633–2638. CrossRef PubMed CAS Web of Science Google Scholar
Sennbro, C. J., Ekman, J., Lindh, C. H., Welinder, H., Jönsson, B. A. G. & Tinnerberg, H. (2004). Ann. Occup. Hyg. 48, 415–424. Web of Science PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smith, G., Baldry, K. E., Byriel, K. A. & Kennard, C. H. L. (1997). Aust. J. Chem. 50, 727–736. CSD CrossRef CAS Web of Science Google Scholar
Smith, G., Bott, R. C. & Wermuth, U. D. (2001a). Acta Cryst. E57, 640–642. Web of Science CSD CrossRef IUCr Journals Google Scholar
Smith, G., Bott, R. C. & Wermuth, U. D. (2001b). Acta Cryst. E57, o895–o897. Web of Science CSD CrossRef IUCr Journals Google Scholar
Smith, G., Coyne, M. G. & White, J. M. (2000). Aust. J. Chem. 53, 203–208. Web of Science CSD CrossRef CAS Google Scholar
Smith, G., Lynch, D. E., Byriel, K. A. & Kennard, C. H. L. (1996). Acta Cryst. C52, 231–235. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Smith, G., Lynch, D. E., Byriel, K. A. & Kennard, C. H. L. (1995). Aust. J. Chem. 48, 1133–1149. CSD CrossRef CAS Web of Science Google Scholar
Smith, G., Wermuth, U. D., Bott, R. C., White, J. M. & Willis, A. C. (2001c). Aust. J. Chem. 54, 165–170. Web of Science CSD CrossRef CAS Google Scholar
Smith, G., Wermuth, U. D. & Healy, P. C. (2006). Acta Cryst. E62, o610–o613. Web of Science CSD CrossRef IUCr Journals Google Scholar
Smith, G., Wermuth, U. D., Healy, P. C., Bott, R. C. & White, J. M. (2002). Aust. J. Chem. 55, 349–356. Web of Science CSD CrossRef CAS Google Scholar
Smith, G., Wermuth, U. D. & White, J. M. (2001d). Aust. J. Chem. 54, 171–175. Web of Science CSD CrossRef CAS Google Scholar
Smith, G., Wermuth, U. D. & White, J. M. (2001e). Acta Cryst. E57, o1036–o1038. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net. Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. Web of Science CSD CrossRef CAS PubMed Google Scholar
Venkatesan, P., Thamotharan, S., Kumar, R. G. & Ilangovan, A. (2015). CrystEngComm, 17, 904–915. Web of Science CSD CrossRef CAS Google Scholar
Verdonk, M. L., Voogd, J. W., Kanters, J. A., Kroon, J., den Besten, R., Brandsma, L., Leysen, D. & Kelder, J. (1997). Acta Cryst. B53, 976–983. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Woińska, M., Grabowsky, S., Dominiak, P. M., Woźniak, K. & Jayatilaka, D. (2016). Sci. Adv. 2, e1600192. Web of Science PubMed Google Scholar
Zhuang, Z. P., Kung, M. P., Mu, M. & Kung, H. F. (1998). J. Med. Chem. 41, 157–166. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.