research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of trans-di­aqua(1,4,8,11-tetra­aza­undeca­ne)copper(II) isophthalate monohydrate

crossmark logo

aL. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospekt Nauki 31, 03028 Kiev, Ukraine, and bInstitute of Inorganic Chemistry of the University of Vienna, Wahringer Str., 42, 1090 Vienna, Austria
*Correspondence e-mail: lampeka@adamant.net

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 20 July 2022; accepted 22 July 2022; online 29 July 2022)

In the title hydrated mol­ecular salt, [Cu(C7H20N4)(H2O)2](C8H4O4)·H2O, the metal ion is coordinated by the two primary and two secondary N atoms of the amine ligand and the mutually trans O atoms of the water mol­ecules in a tetra­gonally distorted octa­hedral geometry. The average equatorial Cu—N bond lengths (2.013 and 2.026 Å for Cu—Nprim and Cu—Nsec, respectively) are substanti­ally shorter than the average axial Cu—O bond length (2.518 Å). The tetra­amine ligand adopts its energetically favored conformation with its five- and six-membered chelate rings in gauche and chair conformations, respectively. In the crystal, the N—H donor groups of the tetra­amine, the acceptor carboxyl­ate groups of the isophthalate dianion and both the coordinated water mol­ecules and the water mol­ecule of crystallization are involved in numerous N—H⋯O and O—H⋯O hydrogen bonds, resulting in the formation of electroneutral layers oriented parallel to the ac plane.

1. Chemical context

The copper(II) and nickel(II) complexes of tetra­dentate aza­macrocyclic ligands, in particular, cyclam and its structural analogues (cyclam = 1,4,8,11-tetra­aza­cyclo­tetra­decane, C10H24N4), are widely used for the construction of metal–organic frameworks (MOFs) based on oligo­carboxyl­ate linkers, which possess many promising applications (Lampeka & Tsymbal, 2004[Lampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345-371.]; Suh & Moon, 2007[Suh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39-79. San Diego: Academic Press.]; Suh et al., 2012[Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782-835.]; Stackhouse & Ma, 2018[Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154-165.]; Lee & Moon, 2018[Lee, J. H. & Moon, H. R. (2018). J. Incl Phenom. Macrocycl Chem. 92, 237-249.]). At the same time, open-chain aliphatic tetra­amines like L (L = 1,4,8,11-tetra­aza­undecane, C7H20N4), which is the closest structural and electronic analogue of cyclam, are practically unexploited in this respect and only one work dealing with the crystal structures of MOFs formed by the [Ni(L)]2+ cation with tris­(4-carboxyl­atobenz­yl)amine has been reported to date (Jiang et al., 2012[Jiang, L., Ju, P., Meng, X.-R., Kuang, X.-J. & Lu, T.-B. (2012). Sci. Rep. 2, 668.]). Besides, the [M(L)] synthons (M = CuII, NiII) are convenient precursors for the one-pot template preparation of corresponding metal complexes of 14-membered aza­cyclam macrocycles (aza­cyclam = 1,4,8,11,13-penta­aza­cyclo­tetra­deca­ne) (Rosokha et al., 1993[Rosokha, S. V., Lampeka, Ya. D. & Maloshtan, I. M. (1993). J. Chem. Soc. Dalton Trans. pp. 631-636.]; Gerbeleu et al., 1999[Gerbeleu, N. V., Arion, V. B. & Burgess, J. (1999). Template synthesis of macrocyclic compounds. Weinheim: Wiley VCH.]) and some complexes of this type functionalized at the N13 position of the macrocyclic backbone have been structurally characterized by our group (Andriichuk et al., 2019[Andriichuk, I. L., Tsymbal, L. V., Arion, V. B. & Lampeka, Y. D. (2019). Acta Cryst. E75, 1015-1019.]; Tsymbal et al., 2010[Tsymbal, L. V., Andriichuk, I. L., Lampeka, Ya. D. & Pritzkow, H. (2010). Russ. Chem. Bull. 59, 1572-1581.], 2021[Tsymbal, L. V., Andriichuk, I. L., Shova, S., Trzybiński, D., Woźniak, K., Arion, V. B. & Lampeka, Ya. D. (2021). Cryst. Growth Des. 21, 2355-2370.]). Herein, we report the syntheses and crystal structure of the product of the reaction of CuCl2, L and the isophthalate anion (ip2−) as its sodium salt, namely, trans-di­aqua­(1,4,8,11-tetra­aza­undecane-κ4N1,N4,N8,N11)-copper(II) isophthalate monohydrate, [Cu(L)(H2O)2](ip)·H2O, I.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title hydrated mol­ecular salt I consists of a complex di-cation [Cu(L)(H2O)2]2+, a non-coord­inated isophthalate di-anion ip2– and one water mol­ecule of crystallization (Fig. 1[link]). The CuII ion is coordinated in the equatorial plane by the two primary and two secondary N atoms of the amine ligand in a nearly square-planar fashion (the deviations of the N atoms from the mean N4 plane are ±0.006 Å), and by the two O atoms from the water mol­ecules in the axial positions.

[Figure 1]
Figure 1
View of the asymmetric unit of I, showing the atom-labelling scheme, with displacement ellipsoids drawn at the 40% probability level. H atoms attached to carbon atoms have been omitted for clarity.

The average equatorial Cu—Nprim bond length for N1 and N4 (2.013 Å) is slightly shorter than Cu—Nsec one for N2 and N3 (2.025 Å), probably reflecting the stronger donating ability of the N atoms of primary versus secondary amine groups (Table 1[link]). The average axial Cu—O bond length (2.518 Å) is substanti­ally longer than the equatorial Cu—N bonds, which is likely due to a large Jahn–Teller distortion inherent in metal ions with a d9 electronic configuration. It is noteworthy that the Cu—O distances in I differ considerably (Table 1[link]) and the CuII ion is displaced from the mean N4 plane of the ligand by 0.082 Å towards the O1W water mol­ecule.

Table 1
Selected geometric parameters (Å, °)

Cu1—N1 2.0203 (18) Cu1—O2W 2.6562 (16)
Cu1—N2 2.0218 (18) C14—O1 1.256 (3)
Cu1—N3 2.0279 (18) C14—O2 1.261 (3)
Cu1—N4 2.0064 (19) C15—O3 1.258 (3)
Cu1—O1W 2.3800 (16) C15—O4 1.271 (3)
       
N1—Cu1—N2 85.64 (8) N4—Cu1—N1 95.19 (8)
N2—Cu1—N3 92.97 (7) N4—Cu1—N3 85.83 (8)

The ligand L in I adopts its energetically favored conformation with the five-membered chelate rings in gauche [average bite angle 85.74°] and six-membered chelate ring in chair conformations, which resemble the trans-III conformation usually observed in cyclam complexes (Barefield et al., 1986[Barefield, E. K., Bianchi, A., Billo, E. J., Connolly, P. J., Paoletti, P., Summers, J. S. & Van Derveer, D. G. (1986). Inorg. Chem. 25, 4197-4202.]; Bosnich et al., 1965[Bosnich, B., Poon, C. K. & Tobe, M. L. (1965). Inorg. Chem. 4, 1102-1108.]). The pseudo `bite' angle formed by the primary amine donors N1—Cu1—N4 is slightly larger than that for N2—Cu1—N3 (Table 1[link]).

The isophthalate di-anion in the title compound counterbalances the charge of the complex cation. The mean planes of the pendant carboxyl­ate groups are slightly tilted relative to the mean plane of the aromatic ring [average angle = 9.8°]. The C—O bond lengths in the carboxyl­ate groups are nearly equal (Table 1[link]), thus indicating essentially complete electron delocalization.

3. Supra­molecular features

In the crystal of I, the complex cation [Cu(L)(H2O)2]2+, isophthalate anion ip2– and both coordinated water mol­ecules and water mol­ecule of crystallization are linked by numerous hydrogen bonds (Table 2[link]), resulting in its distinct lamellar structure. In particular, hydrogen-bonding inter­actions between the N1, N2 and N3 amine groups and O1W and O2W water mol­ecules as the donors and carboxyl­ate atoms O1, O3 and O4 as the acceptors result in the formation of electroneutral sheets (Fig. 2[link]). Additionally, due to hydrogen bonds N4—H4B⋯O3 (−x + 1, −y + 1, −z + 1) and N1—H1A⋯O2W (−x, −y + 1, −z + 1) and four bonds formed by the water mol­ecule O3W these sheets double into bilayers oriented parallel to the ac plane (Fig. 3[link]). It is noteworthy that all the polar groups in I are saturated from the point of view of the number of possible hydrogen bonds, which equal to 2, 1, 2, 4 and 2 for the primary, secondary amine groups, coordinated water mol­ecule, water mol­ecule of crystallization and carboxyl­ate O atoms, respectively.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2Wi 0.97 2.30 3.143 (2) 145
N1—H1B⋯O3ii 0.97 2.07 3.007 (2) 161
N2—H2⋯O4iii 0.98 1.95 2.907 (2) 163
N3—H3⋯O1 0.98 2.19 3.063 (3) 148
N4—H4A⋯O3Wiv 0.97 2.10 3.042 (2) 163
N4—H4B⋯O3v 0.97 2.17 3.054 (2) 151
O1W—H1WA⋯O1iv 0.87 1.89 2.747 (2) 169
O1W—H1WB⋯O4ii 0.87 1.89 2.760 (2) 174
O2W—H2WA⋯O3iii 0.87 2.09 2.930 (2) 161
O2W—H2WB⋯O3W 0.87 2.00 2.872 (2) 175
O3W—H3WA⋯O2vi 0.87 2.00 2.823 (2) 157
O3W—H3WB⋯O2 0.87 1.85 2.712 (2) 174
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [x-1, y, z-1]; (iii) [x-1, y, z]; (iv) [x, y, z-1]; (v) [-x+1, -y+1, -z+1]; (vi) [-x+1, -y+1, -z+2].
[Figure 2]
Figure 2
The hydrogen-bonded (dashed lines) sheets in I. C-bound H atoms and water mol­ecule of crystallization have been omitted.
[Figure 3]
Figure 3
Side view of the bilayers in I along the c axis. C-bound H atoms and coordinated water mol­ecules have been omitted, hydrogen bonds are shown as dashed lines.

There are no hydrogen-bonding contacts between the layers in I (Fig. 3[link]). The three-dimensional coherence of the crystal is provided by van der Waals inter­actions between the methine and methyl­ene fragments of the constituents.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.43, last update March 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave nine hits related to the compounds formed by the [Cu(L)]2+ core. Among them, the trans-CuN4O2 chromophores are characteristic of three complexes [CSD refcodes DAFYOA (Heeg et al., 2010[Heeg, M. J., Udugala-ganehenege, M. Y. & Endicott, J. F. (2010). Private Communication (refcode DAFYOA). CCDC, Cambridge, England.]), FICDEA (Lawrance et al., 1987[Lawrance, G. A., Rossignoli, M., Skelton, B. W. & White, A. H. (1987). Aust. J. Chem. 40, 1441-1449.]) and TECCUA (Fawcett et al., 1980[Fawcett, T. G., Rudich, S. M., Toby, B. H., Lalancette, R. A., Potenza, J. A. & Schugar, H. J. (1980). Inorg. Chem. 19, 940-945.])] all of which contain coordinated perchlorate anions. Thus, the present work is the first structural characterization of a CuII di­aqua complex of this open-chain tetra­amine.

In general, conformations of the amine ligand and geometrical parameters of coordination polyhedra in both types of cations are similar, even though the axial Cu—O bond lengths in the perchlorate complexes are longer. This can be explained by poorer donating ability of this anion as compared to aqua ligand. As in I, the Cu—O distances in previously mentioned compounds are non-equivalent even though the differences between them are smaller than in I and do not exceed 0.14 Å.

5. Synthesis and crystallization

All chemicals and solvents used in this work were purchased from Sigma–Aldrich and used without further purification. The title compound I was prepared as follows. A solution of Na2ip (105 mg, 0.5 mmol) in water (5 ml) was added to a solution of CuCl2·2H2O (85 mg, 0.5 mmol) and L (80 mg (0.5 mmol) in water (5 ml). The blue precipitate, which formed in several days, was filtered off, washed with methanol (2 ml) and diethyl ether and dried in air. Yield: 106 mg (48%). Analysis calculated for C15H30CuN4O7: C 40.76, H 6.84, N 12.67%. Found: C 40.56, H 6.96, N 12.42%. Single crystals of I of X-ray diffraction quality were selected from the sample resulting from the synthesis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms in I were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (ring H atoms) or 0.99 Å (aliphatic H atoms), N—H distances of 0.97 (primary amine groups) or 0.98 Å (secondary amine groups) with Uiso(H) values of 1.2Ueq of the parent atoms. Water H atoms were positioned geometrically (O—H distances of 0.87 Å) and refined as riding with Uiso(H) = 1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula [Cu(C7H20N4)(H2O)2](C8H4O4)·H2O
Mr 441.97
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 11.4727 (8), 24.1694 (18), 7.1591 (5)
β (°) 96.679 (4)
V3) 1971.7 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.15
Crystal size (mm) 0.15 × 0.15 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.846, 0.934
No. of measured, independent and observed [I > 2σ(I)] reflections 53784, 3698, 3232
Rint 0.050
(sin θ/λ)max−1) 0.608
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.079, 1.11
No. of reflections 3698
No. of parameters 248
No. of restraints 11
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.50, −0.32
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

trans-Diaqua(1,4,8,11-tetraazaundecane-κ4N1,N4,N8,N11)copper(II) benzene-1,3-dicarboxylate monohydrate top
Crystal data top
[Cu(C7H20N4)(H2O)2](C8H4O4)·H2OF(000) = 932
Mr = 441.97Dx = 1.489 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.4727 (8) ÅCell parameters from 2350 reflections
b = 24.1694 (18) Åθ = 2.0–25.0°
c = 7.1591 (5) ŵ = 1.15 mm1
β = 96.679 (4)°T = 100 K
V = 1971.7 (2) Å3Prism, light blue
Z = 40.15 × 0.15 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
3232 reflections with I > 2σ(I)
φ and ω scansRint = 0.050
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 25.6°, θmin = 2.0°
Tmin = 0.846, Tmax = 0.934h = 1313
53784 measured reflectionsk = 2929
3698 independent reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0332P)2 + 1.9773P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
3698 reflectionsΔρmax = 0.50 e Å3
248 parametersΔρmin = 0.32 e Å3
11 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.16222 (2)0.41162 (2)0.30691 (4)0.01549 (9)
O1W0.19539 (13)0.37755 (7)0.0057 (2)0.0222 (4)
H1WB0.1400420.3644220.0756350.033*
H1WA0.2628020.3724820.0361040.033*
N10.00154 (16)0.44151 (8)0.2133 (3)0.0187 (4)
H1B0.0094060.4413870.0769130.022*
H1A0.0088060.4796370.2503430.022*
N20.07640 (16)0.34306 (8)0.3776 (3)0.0162 (4)
H20.0700580.3432340.5129400.019*
N30.31993 (16)0.38284 (8)0.4245 (3)0.0173 (4)
H30.3206190.3841990.5614340.021*
N40.24838 (16)0.48139 (8)0.2576 (3)0.0185 (4)
H4B0.2076290.5153580.2814060.022*
H4A0.2648790.4805080.1278360.022*
C10.0875 (2)0.40536 (10)0.2874 (3)0.0225 (5)
H1C0.1641570.4093520.2095630.027*
H1D0.0972460.4159290.4182700.027*
C20.04516 (19)0.34645 (10)0.2813 (3)0.0210 (5)
H2A0.0973610.3218660.3445340.025*
H2B0.0467430.3342300.1489970.025*
C30.1331 (2)0.28961 (10)0.3430 (3)0.0208 (5)
H3A0.1380140.2855530.2065360.025*
H3B0.0840200.2590270.3824260.025*
C40.2563 (2)0.28505 (10)0.4492 (3)0.0223 (5)
H4C0.2515280.2923660.5841280.027*
H4D0.2845040.2466130.4380100.027*
C50.3461 (2)0.32440 (10)0.3804 (3)0.0213 (5)
H5A0.4254810.3146560.4409940.026*
H5B0.3457450.3201830.2428080.026*
C60.4108 (2)0.42145 (10)0.3695 (3)0.0214 (5)
H6A0.4295310.4123840.2414850.026*
H6B0.4834870.4178830.4578190.026*
C70.3643 (2)0.48003 (10)0.3738 (3)0.0216 (5)
H7A0.3559090.4910740.5047590.026*
H7B0.4192040.5060140.3224690.026*
O10.39258 (13)0.35317 (7)0.8377 (2)0.0242 (4)
O20.50998 (14)0.42314 (7)0.9402 (2)0.0241 (4)
O30.92569 (13)0.42289 (7)0.8018 (2)0.0199 (4)
O41.00945 (13)0.34100 (7)0.7569 (2)0.0215 (4)
C80.59710 (19)0.34397 (9)0.8164 (3)0.0159 (5)
C90.5866 (2)0.28909 (10)0.7585 (3)0.0197 (5)
H90.5129810.2708760.7540700.024*
C100.6837 (2)0.26072 (10)0.7071 (3)0.0220 (5)
H100.6762590.2231800.6682280.026*
C110.7912 (2)0.28737 (10)0.7129 (3)0.0202 (5)
H110.8571450.2678740.6775790.024*
C120.80347 (19)0.34233 (9)0.7697 (3)0.0167 (5)
C130.70586 (19)0.37043 (9)0.8219 (3)0.0158 (4)
H130.7134430.4079070.8614560.019*
C140.49156 (19)0.37561 (9)0.8704 (3)0.0171 (5)
C150.92127 (19)0.37139 (10)0.7764 (3)0.0172 (5)
O2W0.13469 (14)0.45839 (7)0.6347 (2)0.0227 (4)
H2WA0.0837400.4425030.6980160.039 (9)*
H2WB0.1942300.4692030.7124860.040 (9)*
O3W0.33455 (14)0.49839 (7)0.8756 (2)0.0224 (4)
H3WA0.3692840.5289150.9150660.029 (7)*
H3WB0.3875140.4725650.8932260.044 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01437 (15)0.01537 (15)0.01669 (15)0.00035 (10)0.00163 (10)0.00072 (11)
O1W0.0143 (8)0.0350 (10)0.0176 (8)0.0001 (7)0.0028 (6)0.0051 (7)
N10.0202 (10)0.0174 (10)0.0180 (10)0.0036 (8)0.0001 (8)0.0015 (8)
N20.0166 (9)0.0184 (10)0.0138 (9)0.0012 (7)0.0025 (7)0.0009 (7)
N30.0173 (9)0.0188 (10)0.0158 (10)0.0003 (8)0.0025 (7)0.0005 (8)
N40.0231 (10)0.0155 (10)0.0173 (10)0.0019 (8)0.0039 (8)0.0003 (8)
C10.0154 (11)0.0325 (14)0.0197 (12)0.0018 (10)0.0024 (9)0.0009 (10)
C20.0166 (11)0.0283 (13)0.0177 (12)0.0059 (9)0.0005 (9)0.0007 (10)
C30.0266 (12)0.0168 (12)0.0188 (12)0.0022 (9)0.0024 (9)0.0011 (9)
C40.0277 (13)0.0170 (12)0.0217 (13)0.0032 (10)0.0010 (10)0.0013 (9)
C50.0200 (12)0.0231 (13)0.0204 (12)0.0055 (9)0.0002 (9)0.0006 (10)
C60.0160 (11)0.0284 (14)0.0196 (12)0.0039 (9)0.0012 (9)0.0019 (10)
C70.0220 (12)0.0247 (13)0.0180 (12)0.0079 (10)0.0019 (9)0.0005 (10)
O10.0139 (8)0.0326 (10)0.0264 (9)0.0032 (7)0.0042 (7)0.0062 (8)
O20.0180 (8)0.0205 (9)0.0344 (10)0.0007 (7)0.0064 (7)0.0047 (7)
O30.0163 (8)0.0221 (9)0.0213 (9)0.0015 (6)0.0027 (6)0.0006 (7)
O40.0141 (8)0.0318 (10)0.0189 (8)0.0030 (7)0.0029 (6)0.0025 (7)
C80.0160 (11)0.0201 (12)0.0115 (11)0.0006 (9)0.0004 (8)0.0027 (9)
C90.0196 (12)0.0212 (12)0.0177 (12)0.0045 (9)0.0005 (9)0.0014 (9)
C100.0253 (12)0.0192 (12)0.0210 (12)0.0013 (10)0.0002 (9)0.0023 (10)
C110.0202 (11)0.0234 (13)0.0170 (12)0.0062 (9)0.0021 (9)0.0006 (9)
C120.0153 (11)0.0240 (12)0.0103 (10)0.0017 (9)0.0000 (8)0.0026 (9)
C130.0189 (11)0.0151 (11)0.0132 (11)0.0006 (9)0.0013 (8)0.0009 (9)
C140.0180 (11)0.0201 (12)0.0134 (11)0.0002 (9)0.0031 (8)0.0024 (9)
C150.0162 (11)0.0267 (13)0.0085 (10)0.0019 (9)0.0010 (8)0.0007 (9)
O2W0.0220 (9)0.0260 (9)0.0201 (9)0.0036 (7)0.0021 (7)0.0005 (7)
O3W0.0202 (8)0.0216 (9)0.0249 (9)0.0006 (7)0.0005 (7)0.0031 (7)
Geometric parameters (Å, º) top
Cu1—N12.0203 (18)C4—H4D0.9900
Cu1—N22.0218 (18)C4—C51.526 (3)
Cu1—N32.0279 (18)C5—H5A0.9900
Cu1—N42.0064 (19)C5—H5B0.9900
Cu1—O1W2.3800 (16)C6—H6A0.9900
Cu1—O2W2.6562 (16)C6—H6B0.9900
O1W—H1WB0.8700C6—C71.514 (3)
O1W—H1WA0.8698C7—H7A0.9900
N1—H1B0.9699C7—H7B0.9900
N1—H1A0.9701C14—O11.256 (3)
N1—C11.488 (3)C14—O21.261 (3)
N2—H20.9798C15—O31.258 (3)
N2—C21.485 (3)C15—O41.271 (3)
N2—C31.480 (3)C8—C91.390 (3)
N3—H30.9799C8—C131.399 (3)
N3—C51.486 (3)C8—C141.520 (3)
N3—C61.486 (3)C9—H90.9500
N4—H4B0.9696C9—C101.393 (3)
N4—H4A0.9699C10—H100.9500
N4—C71.485 (3)C10—C111.388 (3)
C1—H1C0.9900C11—H110.9500
C1—H1D0.9900C11—C121.392 (3)
C1—C21.506 (3)C12—C131.397 (3)
C2—H2A0.9900C12—C151.519 (3)
C2—H2B0.9900C13—H130.9500
C3—H3A0.9900O2W—H2WA0.8698
C3—H3B0.9900O2W—H2WB0.8699
C3—C41.529 (3)O3W—H3WA0.8699
C4—H4C0.9900O3W—H3WB0.8699
O1W—Cu1—O2W174.64 (6)N2—C3—C4112.24 (19)
N1—Cu1—O1W93.38 (7)H3A—C3—H3B107.9
N1—Cu1—N285.64 (8)C4—C3—H3A109.2
N1—Cu1—N3174.88 (8)C4—C3—H3B109.2
N1—Cu1—O2W86.75 (6)C3—C4—H4C108.6
N2—Cu1—O1W94.42 (7)C3—C4—H4D108.6
N2—Cu1—N392.97 (7)H4C—C4—H4D107.6
N2—Cu1—O2W90.93 (6)C5—C4—C3114.52 (19)
N3—Cu1—O1W91.63 (7)C5—C4—H4C108.6
N3—Cu1—O2W88.35 (6)C5—C4—H4D108.6
N4—Cu1—O1W89.86 (7)N3—C5—C4111.29 (19)
N4—Cu1—N195.19 (8)N3—C5—H5A109.4
N4—Cu1—N2175.59 (7)N3—C5—H5B109.4
N4—Cu1—N385.83 (8)C4—C5—H5A109.4
N4—Cu1—O2W84.80 (6)C4—C5—H5B109.4
Cu1—O1W—H1WB123.5H5A—C5—H5B108.0
Cu1—O1W—H1WA127.1N3—C6—H6A109.9
H1WB—O1W—H1WA109.1N3—C6—H6B109.9
Cu1—N1—H1B109.8N3—C6—C7108.80 (18)
Cu1—N1—H1A112.6H6A—C6—H6B108.3
H1B—N1—H1A105.8C7—C6—H6A109.9
C1—N1—Cu1108.02 (14)C7—C6—H6B109.9
C1—N1—H1B110.1N4—C7—C6107.68 (18)
C1—N1—H1A110.5N4—C7—H7A110.2
Cu1—N2—H2109.8N4—C7—H7B110.2
C2—N2—Cu1107.27 (14)C6—C7—H7A110.2
C2—N2—H2106.6C6—C7—H7B110.2
C3—N2—Cu1115.92 (14)H7A—C7—H7B108.5
C3—N2—H2104.7C9—C8—C13119.4 (2)
C3—N2—C2112.19 (18)C9—C8—C14120.8 (2)
Cu1—N3—H3107.9C13—C8—C14119.8 (2)
C5—N3—Cu1115.52 (14)C8—C9—H9119.9
C5—N3—H3105.4C8—C9—C10120.3 (2)
C5—N3—C6112.04 (18)C10—C9—H9119.9
C6—N3—Cu1107.10 (14)C9—C10—H10120.0
C6—N3—H3108.6C11—C10—C9119.9 (2)
Cu1—N4—H4B115.0C11—C10—H10120.0
Cu1—N4—H4A107.8C10—C11—H11119.6
H4B—N4—H4A109.8C10—C11—C12120.7 (2)
C7—N4—Cu1108.08 (14)C12—C11—H11119.6
C7—N4—H4B109.8C11—C12—C13119.0 (2)
C7—N4—H4A105.9C11—C12—C15120.7 (2)
N1—C1—H1C110.1C13—C12—C15120.3 (2)
N1—C1—H1D110.1C8—C13—H13119.7
N1—C1—C2107.93 (18)C12—C13—C8120.7 (2)
H1C—C1—H1D108.4C12—C13—H13119.7
C2—C1—H1C110.1O1—C14—O2125.0 (2)
C2—C1—H1D110.1O1—C14—C8117.7 (2)
N2—C2—C1109.08 (18)O2—C14—C8117.24 (19)
N2—C2—H2A109.9O3—C15—O4124.6 (2)
N2—C2—H2B109.9O3—C15—C12118.88 (19)
C1—C2—H2A109.9O4—C15—C12116.5 (2)
C1—C2—H2B109.9Cu1—O2W—H2WA115.4
H2A—C2—H2B108.3Cu1—O2W—H2WB121.9
N2—C3—H3A109.2H2WA—O2W—H2WB108.9
N2—C3—H3B109.2H3WA—O3W—H3WB106.0
Cu1—N1—C1—C238.5 (2)C9—C8—C14—O19.2 (3)
Cu1—N2—C2—C139.5 (2)C9—C8—C14—O2172.7 (2)
Cu1—N2—C3—C458.8 (2)C9—C10—C11—C120.1 (3)
Cu1—N3—C5—C460.6 (2)C10—C11—C12—C130.2 (3)
Cu1—N3—C6—C738.7 (2)C10—C11—C12—C15179.8 (2)
Cu1—N4—C7—C639.9 (2)C11—C12—C13—C80.3 (3)
N1—C1—C2—N252.4 (2)C11—C12—C15—O3169.8 (2)
N2—C3—C4—C567.6 (3)C11—C12—C15—O410.7 (3)
N3—C6—C7—N452.8 (2)C13—C8—C9—C100.2 (3)
C2—N2—C3—C4177.47 (18)C13—C8—C14—O1169.8 (2)
C3—N2—C2—C1167.89 (18)C13—C8—C14—O28.3 (3)
C3—C4—C5—N368.4 (3)C13—C12—C15—O310.6 (3)
C5—N3—C6—C7166.35 (18)C13—C12—C15—O4168.89 (19)
C6—N3—C5—C4176.36 (18)C14—C8—C9—C10179.2 (2)
C8—C9—C10—C110.3 (3)C14—C8—C13—C12178.94 (19)
C9—C8—C13—C120.1 (3)C15—C12—C13—C8179.90 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2Wi0.972.303.143 (2)145
N1—H1B···O3ii0.972.073.007 (2)161
N2—H2···O4iii0.981.952.907 (2)163
N3—H3···O10.982.193.063 (3)148
N4—H4A···O3Wiv0.972.103.042 (2)163
N4—H4B···O3v0.972.173.054 (2)151
O1W—H1WA···O1iv0.871.892.747 (2)169
O1W—H1WB···O4ii0.871.892.760 (2)174
O2W—H2WA···O3iii0.872.092.930 (2)161
O2W—H2WB···O3W0.872.002.872 (2)175
O3W—H3WA···O2vi0.872.002.823 (2)157
O3W—H3WB···O20.871.852.712 (2)174
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z1; (iii) x1, y, z; (iv) x, y, z1; (v) x+1, y+1, z+1; (vi) x+1, y+1, z+2.
 

References

First citationAndriichuk, I. L., Tsymbal, L. V., Arion, V. B. & Lampeka, Y. D. (2019). Acta Cryst. E75, 1015–1019.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarefield, E. K., Bianchi, A., Billo, E. J., Connolly, P. J., Paoletti, P., Summers, J. S. & Van Derveer, D. G. (1986). Inorg. Chem. 25, 4197–4202.  CSD CrossRef CAS Web of Science Google Scholar
First citationBosnich, B., Poon, C. K. & Tobe, M. L. (1965). Inorg. Chem. 4, 1102–1108.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFawcett, T. G., Rudich, S. M., Toby, B. H., Lalancette, R. A., Potenza, J. A. & Schugar, H. J. (1980). Inorg. Chem. 19, 940–945.  CrossRef CAS Google Scholar
First citationGerbeleu, N. V., Arion, V. B. & Burgess, J. (1999). Template synthesis of macrocyclic compounds. Weinheim: Wiley VCH.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHeeg, M. J., Udugala-ganehenege, M. Y. & Endicott, J. F. (2010). Private Communication (refcode DAFYOA). CCDC, Cambridge, England.  Google Scholar
First citationJiang, L., Ju, P., Meng, X.-R., Kuang, X.-J. & Lu, T.-B. (2012). Sci. Rep. 2, 668.  CrossRef PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345–371.  CrossRef CAS Google Scholar
First citationLawrance, G. A., Rossignoli, M., Skelton, B. W. & White, A. H. (1987). Aust. J. Chem. 40, 1441–1449.  CrossRef CAS Google Scholar
First citationLee, J. H. & Moon, H. R. (2018). J. Incl Phenom. Macrocycl Chem. 92, 237–249.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRosokha, S. V., Lampeka, Ya. D. & Maloshtan, I. M. (1993). J. Chem. Soc. Dalton Trans. pp. 631–636.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154–165.  Web of Science CrossRef CAS Google Scholar
First citationSuh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39–79. San Diego: Academic Press.  Google Scholar
First citationSuh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTsymbal, L. V., Andriichuk, I. L., Lampeka, Ya. D. & Pritzkow, H. (2010). Russ. Chem. Bull. 59, 1572–1581.  Web of Science CrossRef CAS Google Scholar
First citationTsymbal, L. V., Andriichuk, I. L., Shova, S., Trzybiński, D., Woźniak, K., Arion, V. B. & Lampeka, Ya. D. (2021). Cryst. Growth Des. 21, 2355–2370.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds