research communications
Synthesis and trans-diaqua(1,4,8,11-tetraazaundecane)copper(II) isophthalate monohydrate
ofaL. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospekt Nauki 31, 03028 Kiev, Ukraine, and bInstitute of Inorganic Chemistry of the University of Vienna, Wahringer Str., 42, 1090 Vienna, Austria
*Correspondence e-mail: lampeka@adamant.net
In the title hydrated molecular salt, [Cu(C7H20N4)(H2O)2](C8H4O4)·H2O, the metal ion is coordinated by the two primary and two secondary N atoms of the amine ligand and the mutually trans O atoms of the water molecules in a tetragonally distorted octahedral geometry. The average equatorial Cu—N bond lengths (2.013 and 2.026 Å for Cu—Nprim and Cu—Nsec, respectively) are substantially shorter than the average axial Cu—O bond length (2.518 Å). The tetraamine ligand adopts its energetically favored conformation with its five- and six-membered chelate rings in gauche and chair conformations, respectively. In the crystal, the N—H donor groups of the tetraamine, the acceptor carboxylate groups of the isophthalate dianion and both the coordinated water molecules and the water molecule of crystallization are involved in numerous N—H⋯O and O—H⋯O hydrogen bonds, resulting in the formation of electroneutral layers oriented parallel to the ac plane.
Keywords: crystal structure; tetraamine ligand; copper; isophthalic acid; hydrogen bonds.
CCDC reference: 2190232
1. Chemical context
The copper(II) and nickel(II) complexes of tetradentate azamacrocyclic ligands, in particular, cyclam and its structural analogues (cyclam = 1,4,8,11-tetraazacyclotetradecane, C10H24N4), are widely used for the construction of metal–organic frameworks (MOFs) based on oligocarboxylate linkers, which possess many promising applications (Lampeka & Tsymbal, 2004; Suh & Moon, 2007; Suh et al., 2012; Stackhouse & Ma, 2018; Lee & Moon, 2018). At the same time, open-chain aliphatic tetraamines like L (L = 1,4,8,11-tetraazaundecane, C7H20N4), which is the closest structural and electronic analogue of cyclam, are practically unexploited in this respect and only one work dealing with the crystal structures of MOFs formed by the [Ni(L)]2+ cation with tris(4-carboxylatobenzyl)amine has been reported to date (Jiang et al., 2012). Besides, the [M(L)] synthons (M = CuII, NiII) are convenient precursors for the one-pot template preparation of corresponding metal complexes of 14-membered azacyclam macrocycles (azacyclam = 1,4,8,11,13-pentaazacyclotetradecane) (Rosokha et al., 1993; Gerbeleu et al., 1999) and some complexes of this type functionalized at the N13 position of the macrocyclic backbone have been structurally characterized by our group (Andriichuk et al., 2019; Tsymbal et al., 2010, 2021). Herein, we report the syntheses and of the product of the reaction of CuCl2, L and the isophthalate anion (ip2−) as its sodium salt, namely, trans-diaqua(1,4,8,11-tetraazaundecane-κ4N1,N4,N8,N11)-copper(II) isophthalate monohydrate, [Cu(L)(H2O)2](ip)·H2O, I.
2. Structural commentary
The I consists of a complex di-cation [Cu(L)(H2O)2]2+, a non-coordinated isophthalate di-anion ip2– and one water molecule of crystallization (Fig. 1). The CuII ion is coordinated in the equatorial plane by the two primary and two secondary N atoms of the amine ligand in a nearly square-planar fashion (the deviations of the N atoms from the mean N4 plane are ±0.006 Å), and by the two O atoms from the water molecules in the axial positions.
of the title hydrated molecular saltThe average equatorial Cu—Nprim bond length for N1 and N4 (2.013 Å) is slightly shorter than Cu—Nsec one for N2 and N3 (2.025 Å), probably reflecting the stronger donating ability of the N atoms of primary versus secondary amine groups (Table 1). The average axial Cu—O bond length (2.518 Å) is substantially longer than the equatorial Cu—N bonds, which is likely due to a large Jahn–Teller distortion inherent in metal ions with a d9 It is noteworthy that the Cu—O distances in I differ considerably (Table 1) and the CuII ion is displaced from the mean N4 plane of the ligand by 0.082 Å towards the O1W water molecule.
|
The ligand L in I adopts its energetically favored conformation with the five-membered chelate rings in gauche [average bite angle 85.74°] and six-membered chelate ring in chair conformations, which resemble the trans-III conformation usually observed in cyclam complexes (Barefield et al., 1986; Bosnich et al., 1965). The pseudo `bite' angle formed by the primary amine donors N1—Cu1—N4 is slightly larger than that for N2—Cu1—N3 (Table 1).
The isophthalate di-anion in the title compound counterbalances the charge of the complex cation. The mean planes of the pendant carboxylate groups are slightly tilted relative to the mean plane of the aromatic ring [average angle = 9.8°]. The C—O bond lengths in the carboxylate groups are nearly equal (Table 1), thus indicating essentially complete electron delocalization.
3. Supramolecular features
In the crystal of I, the complex cation [Cu(L)(H2O)2]2+, isophthalate anion ip2– and both coordinated water molecules and water molecule of crystallization are linked by numerous hydrogen bonds (Table 2), resulting in its distinct lamellar structure. In particular, hydrogen-bonding interactions between the N1, N2 and N3 amine groups and O1W and O2W water molecules as the donors and carboxylate atoms O1, O3 and O4 as the acceptors result in the formation of electroneutral sheets (Fig. 2). Additionally, due to hydrogen bonds N4—H4B⋯O3 (−x + 1, −y + 1, −z + 1) and N1—H1A⋯O2W (−x, −y + 1, −z + 1) and four bonds formed by the water molecule O3W these sheets double into bilayers oriented parallel to the ac plane (Fig. 3). It is noteworthy that all the polar groups in I are saturated from the point of view of the number of possible hydrogen bonds, which equal to 2, 1, 2, 4 and 2 for the primary, secondary amine groups, coordinated water molecule, water molecule of crystallization and carboxylate O atoms, respectively.
There are no hydrogen-bonding contacts between the layers in I (Fig. 3). The three-dimensional coherence of the crystal is provided by van der Waals interactions between the methine and methylene fragments of the constituents.
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.43, last update March 2022; Groom et al., 2016) gave nine hits related to the compounds formed by the [Cu(L)]2+ core. Among them, the trans-CuN4O2 chromophores are characteristic of three complexes [CSD refcodes DAFYOA (Heeg et al., 2010), FICDEA (Lawrance et al., 1987) and TECCUA (Fawcett et al., 1980)] all of which contain coordinated perchlorate anions. Thus, the present work is the first structural characterization of a CuII diaqua complex of this open-chain tetraamine.
In general, conformations of the amine ligand and geometrical parameters of coordination polyhedra in both types of cations are similar, even though the axial Cu—O bond lengths in the perchlorate complexes are longer. This can be explained by poorer donating ability of this anion as compared to aqua ligand. As in I, the Cu—O distances in previously mentioned compounds are non-equivalent even though the differences between them are smaller than in I and do not exceed 0.14 Å.
5. Synthesis and crystallization
All chemicals and solvents used in this work were purchased from Sigma–Aldrich and used without further purification. The title compound I was prepared as follows. A solution of Na2ip (105 mg, 0.5 mmol) in water (5 ml) was added to a solution of CuCl2·2H2O (85 mg, 0.5 mmol) and L (80 mg (0.5 mmol) in water (5 ml). The blue precipitate, which formed in several days, was filtered off, washed with methanol (2 ml) and diethyl ether and dried in air. Yield: 106 mg (48%). Analysis calculated for C15H30CuN4O7: C 40.76, H 6.84, N 12.67%. Found: C 40.56, H 6.96, N 12.42%. Single crystals of I of X-ray diffraction quality were selected from the sample resulting from the synthesis.
6. Refinement
Crystal data, data collection and structure . H atoms in I were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (ring H atoms) or 0.99 Å (aliphatic H atoms), N—H distances of 0.97 (primary amine groups) or 0.98 Å (secondary amine groups) with Uiso(H) values of 1.2Ueq of the parent atoms. Water H atoms were positioned geometrically (O—H distances of 0.87 Å) and refined as riding with Uiso(H) = 1.5Ueq(O).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2190232
https://doi.org/10.1107/S2056989022007538/hb8031sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022007538/hb8031Isup2.hkl
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).[Cu(C7H20N4)(H2O)2](C8H4O4)·H2O | F(000) = 932 |
Mr = 441.97 | Dx = 1.489 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.4727 (8) Å | Cell parameters from 2350 reflections |
b = 24.1694 (18) Å | θ = 2.0–25.0° |
c = 7.1591 (5) Å | µ = 1.15 mm−1 |
β = 96.679 (4)° | T = 100 K |
V = 1971.7 (2) Å3 | Prism, light blue |
Z = 4 | 0.15 × 0.15 × 0.06 mm |
Bruker APEXII CCD diffractometer | 3232 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.050 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 25.6°, θmin = 2.0° |
Tmin = 0.846, Tmax = 0.934 | h = −13→13 |
53784 measured reflections | k = −29→29 |
3698 independent reflections | l = −8→8 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.032 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.079 | w = 1/[σ2(Fo2) + (0.0332P)2 + 1.9773P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max = 0.001 |
3698 reflections | Δρmax = 0.50 e Å−3 |
248 parameters | Δρmin = −0.32 e Å−3 |
11 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.16222 (2) | 0.41162 (2) | 0.30691 (4) | 0.01549 (9) | |
O1W | 0.19539 (13) | 0.37755 (7) | 0.0057 (2) | 0.0222 (4) | |
H1WB | 0.140042 | 0.364422 | −0.075635 | 0.033* | |
H1WA | 0.262802 | 0.372482 | −0.036104 | 0.033* | |
N1 | 0.00154 (16) | 0.44151 (8) | 0.2133 (3) | 0.0187 (4) | |
H1B | −0.009406 | 0.441387 | 0.076913 | 0.022* | |
H1A | −0.008806 | 0.479637 | 0.250343 | 0.022* | |
N2 | 0.07640 (16) | 0.34306 (8) | 0.3776 (3) | 0.0162 (4) | |
H2 | 0.070058 | 0.343234 | 0.512940 | 0.019* | |
N3 | 0.31993 (16) | 0.38284 (8) | 0.4245 (3) | 0.0173 (4) | |
H3 | 0.320619 | 0.384199 | 0.561434 | 0.021* | |
N4 | 0.24838 (16) | 0.48139 (8) | 0.2576 (3) | 0.0185 (4) | |
H4B | 0.207629 | 0.515358 | 0.281406 | 0.022* | |
H4A | 0.264879 | 0.480508 | 0.127836 | 0.022* | |
C1 | −0.0875 (2) | 0.40536 (10) | 0.2874 (3) | 0.0225 (5) | |
H1C | −0.164157 | 0.409352 | 0.209563 | 0.027* | |
H1D | −0.097246 | 0.415929 | 0.418270 | 0.027* | |
C2 | −0.04516 (19) | 0.34645 (10) | 0.2813 (3) | 0.0210 (5) | |
H2A | −0.097361 | 0.321866 | 0.344534 | 0.025* | |
H2B | −0.046743 | 0.334230 | 0.148997 | 0.025* | |
C3 | 0.1331 (2) | 0.28961 (10) | 0.3430 (3) | 0.0208 (5) | |
H3A | 0.138014 | 0.285553 | 0.206536 | 0.025* | |
H3B | 0.084020 | 0.259027 | 0.382426 | 0.025* | |
C4 | 0.2563 (2) | 0.28505 (10) | 0.4492 (3) | 0.0223 (5) | |
H4C | 0.251528 | 0.292366 | 0.584128 | 0.027* | |
H4D | 0.284504 | 0.246613 | 0.438010 | 0.027* | |
C5 | 0.3461 (2) | 0.32440 (10) | 0.3804 (3) | 0.0213 (5) | |
H5A | 0.425481 | 0.314656 | 0.440994 | 0.026* | |
H5B | 0.345745 | 0.320183 | 0.242808 | 0.026* | |
C6 | 0.4108 (2) | 0.42145 (10) | 0.3695 (3) | 0.0214 (5) | |
H6A | 0.429531 | 0.412384 | 0.241485 | 0.026* | |
H6B | 0.483487 | 0.417883 | 0.457819 | 0.026* | |
C7 | 0.3643 (2) | 0.48003 (10) | 0.3738 (3) | 0.0216 (5) | |
H7A | 0.355909 | 0.491074 | 0.504759 | 0.026* | |
H7B | 0.419204 | 0.506014 | 0.322469 | 0.026* | |
O1 | 0.39258 (13) | 0.35317 (7) | 0.8377 (2) | 0.0242 (4) | |
O2 | 0.50998 (14) | 0.42314 (7) | 0.9402 (2) | 0.0241 (4) | |
O3 | 0.92569 (13) | 0.42289 (7) | 0.8018 (2) | 0.0199 (4) | |
O4 | 1.00945 (13) | 0.34100 (7) | 0.7569 (2) | 0.0215 (4) | |
C8 | 0.59710 (19) | 0.34397 (9) | 0.8164 (3) | 0.0159 (5) | |
C9 | 0.5866 (2) | 0.28909 (10) | 0.7585 (3) | 0.0197 (5) | |
H9 | 0.512981 | 0.270876 | 0.754070 | 0.024* | |
C10 | 0.6837 (2) | 0.26072 (10) | 0.7071 (3) | 0.0220 (5) | |
H10 | 0.676259 | 0.223180 | 0.668228 | 0.026* | |
C11 | 0.7912 (2) | 0.28737 (10) | 0.7129 (3) | 0.0202 (5) | |
H11 | 0.857145 | 0.267874 | 0.677579 | 0.024* | |
C12 | 0.80347 (19) | 0.34233 (9) | 0.7697 (3) | 0.0167 (5) | |
C13 | 0.70586 (19) | 0.37043 (9) | 0.8219 (3) | 0.0158 (4) | |
H13 | 0.713443 | 0.407907 | 0.861456 | 0.019* | |
C14 | 0.49156 (19) | 0.37561 (9) | 0.8704 (3) | 0.0171 (5) | |
C15 | 0.92127 (19) | 0.37139 (10) | 0.7764 (3) | 0.0172 (5) | |
O2W | 0.13469 (14) | 0.45839 (7) | 0.6347 (2) | 0.0227 (4) | |
H2WA | 0.083740 | 0.442503 | 0.698016 | 0.039 (9)* | |
H2WB | 0.194230 | 0.469203 | 0.712486 | 0.040 (9)* | |
O3W | 0.33455 (14) | 0.49839 (7) | 0.8756 (2) | 0.0224 (4) | |
H3WA | 0.369284 | 0.528915 | 0.915066 | 0.029 (7)* | |
H3WB | 0.387514 | 0.472565 | 0.893226 | 0.044 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01437 (15) | 0.01537 (15) | 0.01669 (15) | −0.00035 (10) | 0.00163 (10) | 0.00072 (11) |
O1W | 0.0143 (8) | 0.0350 (10) | 0.0176 (8) | −0.0001 (7) | 0.0028 (6) | −0.0051 (7) |
N1 | 0.0202 (10) | 0.0174 (10) | 0.0180 (10) | 0.0036 (8) | −0.0001 (8) | −0.0015 (8) |
N2 | 0.0166 (9) | 0.0184 (10) | 0.0138 (9) | −0.0012 (7) | 0.0025 (7) | −0.0009 (7) |
N3 | 0.0173 (9) | 0.0188 (10) | 0.0158 (10) | 0.0003 (8) | 0.0025 (7) | 0.0005 (8) |
N4 | 0.0231 (10) | 0.0155 (10) | 0.0173 (10) | −0.0019 (8) | 0.0039 (8) | −0.0003 (8) |
C1 | 0.0154 (11) | 0.0325 (14) | 0.0197 (12) | 0.0018 (10) | 0.0024 (9) | 0.0009 (10) |
C2 | 0.0166 (11) | 0.0283 (13) | 0.0177 (12) | −0.0059 (9) | 0.0005 (9) | 0.0007 (10) |
C3 | 0.0266 (12) | 0.0168 (12) | 0.0188 (12) | −0.0022 (9) | 0.0024 (9) | −0.0011 (9) |
C4 | 0.0277 (13) | 0.0170 (12) | 0.0217 (13) | 0.0032 (10) | 0.0010 (10) | 0.0013 (9) |
C5 | 0.0200 (12) | 0.0231 (13) | 0.0204 (12) | 0.0055 (9) | 0.0002 (9) | 0.0006 (10) |
C6 | 0.0160 (11) | 0.0284 (14) | 0.0196 (12) | −0.0039 (9) | 0.0012 (9) | 0.0019 (10) |
C7 | 0.0220 (12) | 0.0247 (13) | 0.0180 (12) | −0.0079 (10) | 0.0019 (9) | 0.0005 (10) |
O1 | 0.0139 (8) | 0.0326 (10) | 0.0264 (9) | −0.0032 (7) | 0.0042 (7) | −0.0062 (8) |
O2 | 0.0180 (8) | 0.0205 (9) | 0.0344 (10) | 0.0007 (7) | 0.0064 (7) | −0.0047 (7) |
O3 | 0.0163 (8) | 0.0221 (9) | 0.0213 (9) | −0.0015 (6) | 0.0027 (6) | 0.0006 (7) |
O4 | 0.0141 (8) | 0.0318 (10) | 0.0189 (8) | 0.0030 (7) | 0.0029 (6) | −0.0025 (7) |
C8 | 0.0160 (11) | 0.0201 (12) | 0.0115 (11) | −0.0006 (9) | 0.0004 (8) | 0.0027 (9) |
C9 | 0.0196 (12) | 0.0212 (12) | 0.0177 (12) | −0.0045 (9) | −0.0005 (9) | 0.0014 (9) |
C10 | 0.0253 (12) | 0.0192 (12) | 0.0210 (12) | 0.0013 (10) | −0.0002 (9) | −0.0023 (10) |
C11 | 0.0202 (11) | 0.0234 (13) | 0.0170 (12) | 0.0062 (9) | 0.0021 (9) | −0.0006 (9) |
C12 | 0.0153 (11) | 0.0240 (12) | 0.0103 (10) | 0.0017 (9) | 0.0000 (8) | 0.0026 (9) |
C13 | 0.0189 (11) | 0.0151 (11) | 0.0132 (11) | 0.0006 (9) | 0.0013 (8) | 0.0009 (9) |
C14 | 0.0180 (11) | 0.0201 (12) | 0.0134 (11) | 0.0002 (9) | 0.0031 (8) | 0.0024 (9) |
C15 | 0.0162 (11) | 0.0267 (13) | 0.0085 (10) | 0.0019 (9) | 0.0010 (8) | 0.0007 (9) |
O2W | 0.0220 (9) | 0.0260 (9) | 0.0201 (9) | −0.0036 (7) | 0.0021 (7) | 0.0005 (7) |
O3W | 0.0202 (8) | 0.0216 (9) | 0.0249 (9) | 0.0006 (7) | 0.0005 (7) | −0.0031 (7) |
Cu1—N1 | 2.0203 (18) | C4—H4D | 0.9900 |
Cu1—N2 | 2.0218 (18) | C4—C5 | 1.526 (3) |
Cu1—N3 | 2.0279 (18) | C5—H5A | 0.9900 |
Cu1—N4 | 2.0064 (19) | C5—H5B | 0.9900 |
Cu1—O1W | 2.3800 (16) | C6—H6A | 0.9900 |
Cu1—O2W | 2.6562 (16) | C6—H6B | 0.9900 |
O1W—H1WB | 0.8700 | C6—C7 | 1.514 (3) |
O1W—H1WA | 0.8698 | C7—H7A | 0.9900 |
N1—H1B | 0.9699 | C7—H7B | 0.9900 |
N1—H1A | 0.9701 | C14—O1 | 1.256 (3) |
N1—C1 | 1.488 (3) | C14—O2 | 1.261 (3) |
N2—H2 | 0.9798 | C15—O3 | 1.258 (3) |
N2—C2 | 1.485 (3) | C15—O4 | 1.271 (3) |
N2—C3 | 1.480 (3) | C8—C9 | 1.390 (3) |
N3—H3 | 0.9799 | C8—C13 | 1.399 (3) |
N3—C5 | 1.486 (3) | C8—C14 | 1.520 (3) |
N3—C6 | 1.486 (3) | C9—H9 | 0.9500 |
N4—H4B | 0.9696 | C9—C10 | 1.393 (3) |
N4—H4A | 0.9699 | C10—H10 | 0.9500 |
N4—C7 | 1.485 (3) | C10—C11 | 1.388 (3) |
C1—H1C | 0.9900 | C11—H11 | 0.9500 |
C1—H1D | 0.9900 | C11—C12 | 1.392 (3) |
C1—C2 | 1.506 (3) | C12—C13 | 1.397 (3) |
C2—H2A | 0.9900 | C12—C15 | 1.519 (3) |
C2—H2B | 0.9900 | C13—H13 | 0.9500 |
C3—H3A | 0.9900 | O2W—H2WA | 0.8698 |
C3—H3B | 0.9900 | O2W—H2WB | 0.8699 |
C3—C4 | 1.529 (3) | O3W—H3WA | 0.8699 |
C4—H4C | 0.9900 | O3W—H3WB | 0.8699 |
O1W—Cu1—O2W | 174.64 (6) | N2—C3—C4 | 112.24 (19) |
N1—Cu1—O1W | 93.38 (7) | H3A—C3—H3B | 107.9 |
N1—Cu1—N2 | 85.64 (8) | C4—C3—H3A | 109.2 |
N1—Cu1—N3 | 174.88 (8) | C4—C3—H3B | 109.2 |
N1—Cu1—O2W | 86.75 (6) | C3—C4—H4C | 108.6 |
N2—Cu1—O1W | 94.42 (7) | C3—C4—H4D | 108.6 |
N2—Cu1—N3 | 92.97 (7) | H4C—C4—H4D | 107.6 |
N2—Cu1—O2W | 90.93 (6) | C5—C4—C3 | 114.52 (19) |
N3—Cu1—O1W | 91.63 (7) | C5—C4—H4C | 108.6 |
N3—Cu1—O2W | 88.35 (6) | C5—C4—H4D | 108.6 |
N4—Cu1—O1W | 89.86 (7) | N3—C5—C4 | 111.29 (19) |
N4—Cu1—N1 | 95.19 (8) | N3—C5—H5A | 109.4 |
N4—Cu1—N2 | 175.59 (7) | N3—C5—H5B | 109.4 |
N4—Cu1—N3 | 85.83 (8) | C4—C5—H5A | 109.4 |
N4—Cu1—O2W | 84.80 (6) | C4—C5—H5B | 109.4 |
Cu1—O1W—H1WB | 123.5 | H5A—C5—H5B | 108.0 |
Cu1—O1W—H1WA | 127.1 | N3—C6—H6A | 109.9 |
H1WB—O1W—H1WA | 109.1 | N3—C6—H6B | 109.9 |
Cu1—N1—H1B | 109.8 | N3—C6—C7 | 108.80 (18) |
Cu1—N1—H1A | 112.6 | H6A—C6—H6B | 108.3 |
H1B—N1—H1A | 105.8 | C7—C6—H6A | 109.9 |
C1—N1—Cu1 | 108.02 (14) | C7—C6—H6B | 109.9 |
C1—N1—H1B | 110.1 | N4—C7—C6 | 107.68 (18) |
C1—N1—H1A | 110.5 | N4—C7—H7A | 110.2 |
Cu1—N2—H2 | 109.8 | N4—C7—H7B | 110.2 |
C2—N2—Cu1 | 107.27 (14) | C6—C7—H7A | 110.2 |
C2—N2—H2 | 106.6 | C6—C7—H7B | 110.2 |
C3—N2—Cu1 | 115.92 (14) | H7A—C7—H7B | 108.5 |
C3—N2—H2 | 104.7 | C9—C8—C13 | 119.4 (2) |
C3—N2—C2 | 112.19 (18) | C9—C8—C14 | 120.8 (2) |
Cu1—N3—H3 | 107.9 | C13—C8—C14 | 119.8 (2) |
C5—N3—Cu1 | 115.52 (14) | C8—C9—H9 | 119.9 |
C5—N3—H3 | 105.4 | C8—C9—C10 | 120.3 (2) |
C5—N3—C6 | 112.04 (18) | C10—C9—H9 | 119.9 |
C6—N3—Cu1 | 107.10 (14) | C9—C10—H10 | 120.0 |
C6—N3—H3 | 108.6 | C11—C10—C9 | 119.9 (2) |
Cu1—N4—H4B | 115.0 | C11—C10—H10 | 120.0 |
Cu1—N4—H4A | 107.8 | C10—C11—H11 | 119.6 |
H4B—N4—H4A | 109.8 | C10—C11—C12 | 120.7 (2) |
C7—N4—Cu1 | 108.08 (14) | C12—C11—H11 | 119.6 |
C7—N4—H4B | 109.8 | C11—C12—C13 | 119.0 (2) |
C7—N4—H4A | 105.9 | C11—C12—C15 | 120.7 (2) |
N1—C1—H1C | 110.1 | C13—C12—C15 | 120.3 (2) |
N1—C1—H1D | 110.1 | C8—C13—H13 | 119.7 |
N1—C1—C2 | 107.93 (18) | C12—C13—C8 | 120.7 (2) |
H1C—C1—H1D | 108.4 | C12—C13—H13 | 119.7 |
C2—C1—H1C | 110.1 | O1—C14—O2 | 125.0 (2) |
C2—C1—H1D | 110.1 | O1—C14—C8 | 117.7 (2) |
N2—C2—C1 | 109.08 (18) | O2—C14—C8 | 117.24 (19) |
N2—C2—H2A | 109.9 | O3—C15—O4 | 124.6 (2) |
N2—C2—H2B | 109.9 | O3—C15—C12 | 118.88 (19) |
C1—C2—H2A | 109.9 | O4—C15—C12 | 116.5 (2) |
C1—C2—H2B | 109.9 | Cu1—O2W—H2WA | 115.4 |
H2A—C2—H2B | 108.3 | Cu1—O2W—H2WB | 121.9 |
N2—C3—H3A | 109.2 | H2WA—O2W—H2WB | 108.9 |
N2—C3—H3B | 109.2 | H3WA—O3W—H3WB | 106.0 |
Cu1—N1—C1—C2 | −38.5 (2) | C9—C8—C14—O1 | −9.2 (3) |
Cu1—N2—C2—C1 | −39.5 (2) | C9—C8—C14—O2 | 172.7 (2) |
Cu1—N2—C3—C4 | 58.8 (2) | C9—C10—C11—C12 | 0.1 (3) |
Cu1—N3—C5—C4 | −60.6 (2) | C10—C11—C12—C13 | 0.2 (3) |
Cu1—N3—C6—C7 | 38.7 (2) | C10—C11—C12—C15 | 179.8 (2) |
Cu1—N4—C7—C6 | 39.9 (2) | C11—C12—C13—C8 | −0.3 (3) |
N1—C1—C2—N2 | 52.4 (2) | C11—C12—C15—O3 | 169.8 (2) |
N2—C3—C4—C5 | −67.6 (3) | C11—C12—C15—O4 | −10.7 (3) |
N3—C6—C7—N4 | −52.8 (2) | C13—C8—C9—C10 | 0.2 (3) |
C2—N2—C3—C4 | −177.47 (18) | C13—C8—C14—O1 | 169.8 (2) |
C3—N2—C2—C1 | −167.89 (18) | C13—C8—C14—O2 | −8.3 (3) |
C3—C4—C5—N3 | 68.4 (3) | C13—C12—C15—O3 | −10.6 (3) |
C5—N3—C6—C7 | 166.35 (18) | C13—C12—C15—O4 | 168.89 (19) |
C6—N3—C5—C4 | 176.36 (18) | C14—C8—C9—C10 | 179.2 (2) |
C8—C9—C10—C11 | −0.3 (3) | C14—C8—C13—C12 | −178.94 (19) |
C9—C8—C13—C12 | 0.1 (3) | C15—C12—C13—C8 | −179.90 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2Wi | 0.97 | 2.30 | 3.143 (2) | 145 |
N1—H1B···O3ii | 0.97 | 2.07 | 3.007 (2) | 161 |
N2—H2···O4iii | 0.98 | 1.95 | 2.907 (2) | 163 |
N3—H3···O1 | 0.98 | 2.19 | 3.063 (3) | 148 |
N4—H4A···O3Wiv | 0.97 | 2.10 | 3.042 (2) | 163 |
N4—H4B···O3v | 0.97 | 2.17 | 3.054 (2) | 151 |
O1W—H1WA···O1iv | 0.87 | 1.89 | 2.747 (2) | 169 |
O1W—H1WB···O4ii | 0.87 | 1.89 | 2.760 (2) | 174 |
O2W—H2WA···O3iii | 0.87 | 2.09 | 2.930 (2) | 161 |
O2W—H2WB···O3W | 0.87 | 2.00 | 2.872 (2) | 175 |
O3W—H3WA···O2vi | 0.87 | 2.00 | 2.823 (2) | 157 |
O3W—H3WB···O2 | 0.87 | 1.85 | 2.712 (2) | 174 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1, y, z−1; (iii) x−1, y, z; (iv) x, y, z−1; (v) −x+1, −y+1, −z+1; (vi) −x+1, −y+1, −z+2. |
References
Andriichuk, I. L., Tsymbal, L. V., Arion, V. B. & Lampeka, Y. D. (2019). Acta Cryst. E75, 1015–1019. Web of Science CSD CrossRef IUCr Journals Google Scholar
Barefield, E. K., Bianchi, A., Billo, E. J., Connolly, P. J., Paoletti, P., Summers, J. S. & Van Derveer, D. G. (1986). Inorg. Chem. 25, 4197–4202. CSD CrossRef CAS Web of Science Google Scholar
Bosnich, B., Poon, C. K. & Tobe, M. L. (1965). Inorg. Chem. 4, 1102–1108. CrossRef CAS Web of Science Google Scholar
Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Fawcett, T. G., Rudich, S. M., Toby, B. H., Lalancette, R. A., Potenza, J. A. & Schugar, H. J. (1980). Inorg. Chem. 19, 940–945. CrossRef CAS Google Scholar
Gerbeleu, N. V., Arion, V. B. & Burgess, J. (1999). Template synthesis of macrocyclic compounds. Weinheim: Wiley VCH. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Heeg, M. J., Udugala-ganehenege, M. Y. & Endicott, J. F. (2010). Private Communication (refcode DAFYOA). CCDC, Cambridge, England. Google Scholar
Jiang, L., Ju, P., Meng, X.-R., Kuang, X.-J. & Lu, T.-B. (2012). Sci. Rep. 2, 668. CrossRef PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345–371. CrossRef CAS Google Scholar
Lawrance, G. A., Rossignoli, M., Skelton, B. W. & White, A. H. (1987). Aust. J. Chem. 40, 1441–1449. CrossRef CAS Google Scholar
Lee, J. H. & Moon, H. R. (2018). J. Incl Phenom. Macrocycl Chem. 92, 237–249. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rosokha, S. V., Lampeka, Ya. D. & Maloshtan, I. M. (1993). J. Chem. Soc. Dalton Trans. pp. 631–636. CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154–165. Web of Science CrossRef CAS Google Scholar
Suh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39–79. San Diego: Academic Press. Google Scholar
Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835. Web of Science CrossRef CAS PubMed Google Scholar
Tsymbal, L. V., Andriichuk, I. L., Lampeka, Ya. D. & Pritzkow, H. (2010). Russ. Chem. Bull. 59, 1572–1581. Web of Science CrossRef CAS Google Scholar
Tsymbal, L. V., Andriichuk, I. L., Shova, S., Trzybiński, D., Woźniak, K., Arion, V. B. & Lampeka, Ya. D. (2021). Cryst. Growth Des. 21, 2355–2370. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.