research communications
Synthesis and structure of hexaaquacobalt bis(2-methyl-1H-imidazol-3-ium) tetraaquabis(benzene-1,3,5-tricarboxylato-κO)cobalt
aDeutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany, and bInstitut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, Göttingen, 37077, Germany
*Correspondence e-mail: jose.velazquez@desy.de
The title compound, (C4H7N2)2[Co(H2O)6][Co(C9H3O6)2(H2O)4] (1), was synthesized from cobalt(II) chloride, 1,3,5-benzene tricarboxylic acid (Hbtc) and 2-methyl-imidazole (H-2mIm) under ambient conditions. The structure of 1 is here reported and compared with the parent complex hexaaquacobalt bis(1H-imidazol-3-ium) tetraaquabis(benzene-1,3,5-tricarboxylato)cobalt (2).
Keywords: crystal structure; hexaaqua-cobalt; 2-methylimidazole; 1,3,5-benzene tricarboxylic acid.
CCDC reference: 2129637
1. Chemical context
Effective bifunctional electrocatalysts for oxygen reduction/evolution reactions (ORR/OER) are indispensable for the development of energy storage and conversion systems, such as fuel cells and rechargeable metal–air batteries (Cai et al., 2017; Wang et al., 2014). Currently, platinum-based materials are considered the most effective due to their superior and stability. However, their high cost, caused by the scarcity of the metal, rules them out for scale-up development. Therefore, a great deal of effort has been devoted to the development of cost-effective and earth-abundant replacements for platinum-based catalysts. Among the different substitute materials, a hexaaquacobalt bis(1H-imidazol-3-ium) tetraaquabis(benzene-1,3,5-tricarboxylato)cobalt complex, 2, has shown excellent bifunctional and durability for both the oxygen-reduction reaction and oxygen-evolution reaction in alkaline media (Wang et al., 2020). Unfortunately, the solvothermal synthesis required to produce the material hinders its implementation on a large scale.
Herein, we present the synthesis and structure of a hexaaquacobalt bis(1H-2-methyl-imidazol-3-ium) tetraaquabis(benzene-1,3,5-tricarboxylato)cobalt complex, a related material with the imidazolium cations replaced by 2-methylimidazolium, which can be obtained under ambient conditions. The introduction of the methyl substituent to the C2 position of the imidazolium ring induces only small structural changes, when compared to 2, and therefore, the title compound could be a promising material for ORR and OER.
2. Structural commentary
The complete molecule of 1 (Fig. 1) is generated by a crystallographic centre of symmetry. Both Co-containing ions lie about an inversion centre, and therefore only half of the coordinating ions and molecules are crystallographically independent. One of the two metal centres (Co1) is coordinated by six water molecules to constitute a hexaaquacobalt cation, while the second (Co2) binds with four water molecules and two carboxylate oxygen atoms from two btc3− ligands to form a [Co(H2O)4(btc)2]4− anion. Charge neutrality of the molecule is provided by the presence of two 1-H-2-methyl-imidazol-3-ium cations. The observed Co—Ocarboxylate bond length is 2.0835 (9) Å and the C—Owater bond lengths are in the range 2.0576 (9)–2.1196 (9) Å. To estimate the distortion from the ideal octahedral geometry, the parameters Σ (Halcrow, 2011) and Θ (Marchivie et al., 2005) were calculated using the OctaDist program (Ketkaew et al., 2021). While Σ summarizes the deviation of the cis O—Cu—O angles from 90°, Θ indicates the degree of twist from a perfect octahedron towards a trigonal prism. Both parameters are equal to zero for an ideal octahedron. The calculated values of the distortion parameters Σ/Θ for Co1 and Co2 are equal to 19°/62° and 11°/31°, respectively. Both parameters indicate a slight distortion of the coordination environment of both metal centres.
3. Supramolecular features
A packing diagram of the compound as viewed down [01] is shown in Fig. 2. The figure shows layers parallel to the (111) plane formed by all ions. Each ion interacts with others via hydrogen bonds of the O—H⋯O or N—H⋯O type. A summary of the hydrogen-bonding interactions is given in Table 1. The table demonstrates that all possible donor and acceptor groups are involved in moderate hydrogen bonds. The presence of various hydrogen bonds in 1 results in characteristic arrays that may be described by graph-set analysis (Etter et al., 1990; Bernstein et al., 1995). In the structure of 1, there are 27 possible motifs involved in discrete D (types a–f and k–l) and intermolecular S (type h) motifs, as well as rings R (types g, i and j) and chains C (types a–f). It is worth noting that while hydrogen bonds b, c and i hold the aforementioned layers together through C22(20) and D arrays, other hydrogen bonds, such as type a and e, form C22(20) arrays, which generates a three-dimensional network with channels along the a and c axes in which the imidazolium ions are located (Fig. 3).
4. Database survey
A search of the Cambridge Structural Database (CSD version 5.41, update of August 2020; Groom et al., 2016) for hexaaquacobalt and the ditrimesate tetraaquacobalt moiety revealed only one hit, namely refcode: VUHQIA (imidazolium)2[Co(H2O)6][Co(H2O)4(btc)2], 2, (Wang et al., 2020). Compounds 1 and 2 crystallize in the triclinic system, P. The Co—Ocarboxylate and C—Owater bond lengths are similar in both complexes. The coordination polyhedra of compound 2 are slightly more distorted. The calculated values of Σ/Θ for compound 2 are equal to 21°/63° for Co1 and 10°/39° for Co2 – that is, the trigonal distortion (Θ) in 2 is higher by 1 and 8° for Co1 and Co2, respectively. The slightly different distortion of the metal centres in 2 and the introduction of the imidazolium allow for shorter hydrogen bonds with distances between 1.73 and 2.00 Å. Other complexes with a low degree of similarity to the title compound were also found, for example refcodes DOWFUS (Clegg & Holcroft, 2014), IQOZUK (Li et al., 2011) and SETQOX (Wolodkiewicz et al., 1996). However, these compounds are polymeric and/or incorporate a different organic ligand than btc. Additionally, none of them contain the imidazolium anion. These changes in chemical composition may provide them with totally different properties than those desired for ORR and OER, and therefore, they will not be discussed further.
5. Synthesis and crystallization
In a typical synthesis, H-2mIm (160 mg, 1.96 mmol), Hbtc (412, 1.96 mmol) and cobalt chloride (127 mg, 0.95mmol) were dissolved in 160 ml of a 1:1:1 mixture of deionized water, ethanol and dimethylformamide by stirring for 10 min at room temperature. After 5 minutes, light-pink crystals of 1 were obtained. The product was collected by filtration and washed three times with ethanol.
6. Refinement
Crystal data, data collection and structure . Positions of remaining non-H atoms were found from the electron density difference maps. The positions of hydrogen atoms were refined with Uiso(H) = 1.5Ueq(C or N) for CH and NH groups and Uiso(H) = 1.5Ueq(C or O) for others. The O—H and H⋯H distances in the water molecules as well as the N—H distances were restrained to be approximately equal within each type (SHELXL instruction SADI). The protons of the methyl group were refined as disordered over two geometrically idealized positions.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2129637
https://doi.org/10.1107/S2056989022007046/jq2016sup1.cif
contains datablock I. DOI:checkcif file. DOI: https://doi.org/10.1107/S2056989022007046/jq2016sup4.pdf
Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022007046/jq2016Isup6.hkl
Data collection: APEX2 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2018); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).(C4H7N2)2[Co(H2O)6][Co(C9H3O6)2(H2O)4] | Z = 1 |
Mr = 878.48 | F(000) = 454 |
Triclinic, P1 | Dx = 1.707 Mg m−3 |
a = 9.2008 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.3137 (4) Å | Cell parameters from 9913 reflections |
c = 10.6470 (4) Å | θ = 2.3–30.6° |
α = 86.551 (2)° | µ = 1.07 mm−1 |
β = 79.378 (2)° | T = 296 K |
γ = 72.369 (2)° | Prism, clear light pink |
V = 854.61 (6) Å3 | 0.20 × 0.10 × 0.10 mm |
Bruker CCD area detector diffractometer | 4605 reflections with I > 2σ(I) |
phi and ω scans | Rint = 0.026 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 30.7°, θmin = 2.0° |
Tmin = 0.699, Tmax = 0.746 | h = −13→13 |
26203 measured reflections | k = −13→12 |
5250 independent reflections | l = −15→14 |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Secondary atom site location: dual |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: mixed |
wR(F2) = 0.069 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0331P)2 + 0.4935P] where P = (Fo2 + 2Fc2)/3 |
5250 reflections | (Δ/σ)max < 0.001 |
285 parameters | Δρmax = 0.60 e Å−3 |
47 restraints | Δρmin = −0.42 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Co1 | 1.000000 | 0.500000 | 0.500000 | 0.00661 (6) | |
Co2 | 1.000000 | 0.000000 | 1.000000 | 0.00734 (6) | |
O1 | 1.09226 (11) | −0.04186 (11) | 0.80639 (9) | 0.01446 (19) | |
H1A | 1.128 (2) | −0.1158 (16) | 0.7654 (16) | 0.022* | |
H1B | 1.0319 (19) | 0.0150 (17) | 0.7699 (17) | 0.022* | |
O2 | 1.06874 (11) | 0.19677 (11) | 0.98183 (10) | 0.01395 (18) | |
H2A | 1.107 (2) | 0.215 (2) | 1.0361 (15) | 0.021* | |
H2B | 1.0153 (19) | 0.2726 (17) | 0.9590 (17) | 0.021* | |
O3 | 0.78549 (10) | 0.12296 (10) | 0.95554 (8) | 0.01077 (17) | |
O4 | 0.85774 (10) | 0.18407 (10) | 0.75266 (8) | 0.01246 (18) | |
O5 | 0.23219 (10) | 0.29950 (10) | 1.15378 (8) | 0.01007 (16) | |
O6 | 0.10354 (10) | 0.53500 (10) | 1.10793 (8) | 0.01151 (17) | |
O7 | 0.24698 (10) | 0.69230 (10) | 0.65394 (8) | 0.00982 (16) | |
O8 | 0.49974 (10) | 0.65513 (10) | 0.58167 (8) | 0.01243 (18) | |
O9 | 0.91967 (10) | 0.31282 (10) | 0.53041 (9) | 0.01031 (17) | |
H9A | 0.898 (2) | 0.278 (2) | 0.5975 (12) | 0.015* | |
H9B | 0.8655 (19) | 0.302 (2) | 0.4862 (14) | 0.015* | |
O10 | 1.09204 (10) | 0.46619 (10) | 0.67157 (8) | 0.00996 (16) | |
H10A | 1.1344 (18) | 0.5265 (17) | 0.6797 (16) | 0.015* | |
H10B | 1.0313 (17) | 0.4689 (19) | 0.7355 (13) | 0.015* | |
O11 | 1.20606 (10) | 0.36656 (11) | 0.40161 (9) | 0.01061 (17) | |
H11A | 1.2898 (16) | 0.368 (2) | 0.4028 (16) | 0.016* | |
H11B | 1.2048 (19) | 0.350 (2) | 0.3281 (17) | 0.016* | |
N1 | 0.50458 (13) | 0.14060 (12) | 0.61249 (10) | 0.0119 (2) | |
H1 | 0.510 (2) | 0.2077 (18) | 0.5469 (15) | 0.014* | |
N2 | 0.57535 (12) | −0.03974 (12) | 0.74458 (10) | 0.0119 (2) | |
H2 | 0.6351 (19) | −0.1208 (18) | 0.7785 (16) | 0.014* | |
C1 | 0.76058 (13) | 0.19797 (13) | 0.85484 (11) | 0.0081 (2) | |
C2 | 0.60272 (13) | 0.31087 (13) | 0.85916 (11) | 0.0074 (2) | |
C3 | 0.57120 (13) | 0.41453 (13) | 0.76032 (11) | 0.0082 (2) | |
H3 | 0.647875 | 0.413232 | 0.689599 | 0.010* | |
C4 | 0.42546 (13) | 0.52015 (13) | 0.76680 (11) | 0.0079 (2) | |
C5 | 0.31078 (13) | 0.52211 (13) | 0.87313 (11) | 0.0082 (2) | |
H5 | 0.213899 | 0.593210 | 0.878284 | 0.010* | |
C6 | 0.34094 (13) | 0.41785 (13) | 0.97165 (11) | 0.0076 (2) | |
C7 | 0.48664 (13) | 0.31248 (13) | 0.96411 (11) | 0.0081 (2) | |
H7 | 0.506641 | 0.242605 | 1.029673 | 0.010* | |
C8 | 0.21698 (13) | 0.41903 (13) | 1.08554 (11) | 0.0078 (2) | |
C9 | 0.38899 (13) | 0.63054 (13) | 0.65934 (11) | 0.0081 (2) | |
C10 | 0.37595 (15) | 0.14698 (15) | 0.70562 (13) | 0.0143 (2) | |
H10 | 0.277987 | 0.216042 | 0.710213 | 0.017* | |
C11 | 0.42065 (15) | 0.03308 (15) | 0.78863 (12) | 0.0137 (2) | |
H11 | 0.359239 | 0.008535 | 0.861228 | 0.016* | |
C12 | 0.62411 (14) | 0.02705 (14) | 0.63723 (12) | 0.0110 (2) | |
C13 | 0.78039 (15) | −0.01811 (15) | 0.55720 (13) | 0.0156 (2) | |
H13A | 0.806962 | −0.121788 | 0.533113 | 0.023* | 0.58 (5) |
H13B | 0.854729 | −0.005633 | 0.604826 | 0.023* | 0.58 (5) |
H13C | 0.780728 | 0.043824 | 0.481802 | 0.023* | 0.58 (5) |
H13D | 0.804580 | 0.069870 | 0.519273 | 0.023* | 0.42 (5) |
H13E | 0.782325 | −0.084695 | 0.491083 | 0.023* | 0.42 (5) |
H13F | 0.855513 | −0.068771 | 0.609385 | 0.023* | 0.42 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.00602 (10) | 0.00746 (11) | 0.00589 (10) | −0.00185 (8) | −0.00054 (7) | 0.00102 (7) |
Co2 | 0.00718 (10) | 0.00685 (11) | 0.00737 (10) | −0.00111 (8) | −0.00184 (7) | 0.00140 (8) |
O1 | 0.0144 (4) | 0.0133 (5) | 0.0109 (4) | 0.0036 (4) | −0.0031 (3) | −0.0002 (3) |
O2 | 0.0155 (4) | 0.0092 (4) | 0.0193 (5) | −0.0037 (3) | −0.0097 (4) | 0.0036 (3) |
O3 | 0.0100 (4) | 0.0115 (4) | 0.0088 (4) | −0.0005 (3) | −0.0021 (3) | 0.0035 (3) |
O4 | 0.0111 (4) | 0.0131 (4) | 0.0089 (4) | 0.0006 (3) | 0.0006 (3) | 0.0034 (3) |
O5 | 0.0123 (4) | 0.0081 (4) | 0.0085 (4) | −0.0021 (3) | −0.0008 (3) | 0.0027 (3) |
O6 | 0.0101 (4) | 0.0103 (4) | 0.0105 (4) | 0.0001 (3) | 0.0013 (3) | 0.0021 (3) |
O7 | 0.0078 (4) | 0.0110 (4) | 0.0099 (4) | −0.0013 (3) | −0.0029 (3) | 0.0019 (3) |
O8 | 0.0091 (4) | 0.0151 (4) | 0.0116 (4) | −0.0030 (3) | −0.0012 (3) | 0.0066 (3) |
O9 | 0.0123 (4) | 0.0129 (4) | 0.0077 (4) | −0.0067 (3) | −0.0029 (3) | 0.0038 (3) |
O10 | 0.0089 (4) | 0.0138 (4) | 0.0077 (4) | −0.0047 (3) | −0.0011 (3) | 0.0016 (3) |
O11 | 0.0077 (4) | 0.0144 (4) | 0.0092 (4) | −0.0028 (3) | −0.0006 (3) | −0.0009 (3) |
N1 | 0.0147 (5) | 0.0096 (5) | 0.0111 (5) | −0.0029 (4) | −0.0036 (4) | 0.0030 (4) |
N2 | 0.0116 (5) | 0.0096 (5) | 0.0127 (5) | −0.0012 (4) | −0.0017 (4) | 0.0031 (4) |
C1 | 0.0081 (5) | 0.0075 (5) | 0.0086 (5) | −0.0020 (4) | −0.0021 (4) | 0.0009 (4) |
C2 | 0.0073 (5) | 0.0067 (5) | 0.0080 (5) | −0.0016 (4) | −0.0021 (4) | 0.0004 (4) |
C3 | 0.0082 (5) | 0.0083 (5) | 0.0079 (5) | −0.0026 (4) | −0.0014 (4) | 0.0011 (4) |
C4 | 0.0089 (5) | 0.0084 (5) | 0.0068 (5) | −0.0033 (4) | −0.0020 (4) | 0.0018 (4) |
C5 | 0.0081 (5) | 0.0082 (5) | 0.0082 (5) | −0.0022 (4) | −0.0018 (4) | 0.0005 (4) |
C6 | 0.0084 (5) | 0.0079 (5) | 0.0066 (5) | −0.0028 (4) | −0.0010 (4) | 0.0007 (4) |
C7 | 0.0095 (5) | 0.0073 (5) | 0.0074 (5) | −0.0022 (4) | −0.0024 (4) | 0.0014 (4) |
C8 | 0.0086 (5) | 0.0094 (5) | 0.0067 (5) | −0.0039 (4) | −0.0027 (4) | 0.0005 (4) |
C9 | 0.0099 (5) | 0.0072 (5) | 0.0077 (5) | −0.0025 (4) | −0.0026 (4) | 0.0003 (4) |
C10 | 0.0121 (5) | 0.0126 (6) | 0.0171 (6) | −0.0020 (4) | −0.0028 (4) | 0.0015 (5) |
C11 | 0.0123 (5) | 0.0136 (6) | 0.0134 (6) | −0.0030 (5) | 0.0000 (4) | 0.0017 (4) |
C12 | 0.0140 (5) | 0.0082 (5) | 0.0113 (5) | −0.0042 (4) | −0.0022 (4) | 0.0005 (4) |
C13 | 0.0148 (6) | 0.0137 (6) | 0.0168 (6) | −0.0046 (5) | 0.0023 (5) | −0.0015 (5) |
Co1—O11 | 2.0576 (9) | N1—C12 | 1.3289 (16) |
Co1—O11i | 2.0576 (9) | N1—C10 | 1.3854 (16) |
Co1—O9i | 2.0772 (9) | N1—H1 | 0.913 (15) |
Co1—O9 | 2.0772 (9) | N2—C12 | 1.3375 (15) |
Co1—O10 | 2.1196 (9) | N2—C11 | 1.3832 (16) |
Co1—O10i | 2.1196 (9) | N2—H2 | 0.890 (15) |
Co2—O3ii | 2.0835 (9) | C1—C2 | 1.5078 (16) |
Co2—O3 | 2.0835 (9) | C2—C7 | 1.3934 (15) |
Co2—O1ii | 2.0912 (9) | C2—C3 | 1.3944 (16) |
Co2—O1 | 2.0912 (9) | C3—C4 | 1.3948 (16) |
Co2—O2ii | 2.1000 (9) | C3—H3 | 0.9300 |
Co2—O2 | 2.1000 (9) | C4—C5 | 1.3949 (15) |
O1—H1A | 0.787 (12) | C4—C9 | 1.5066 (16) |
O1—H1B | 0.785 (12) | C5—C6 | 1.3934 (15) |
O2—H2A | 0.778 (12) | C5—H5 | 0.9300 |
O2—H2B | 0.783 (12) | C6—C7 | 1.3926 (16) |
O3—C1 | 1.2624 (14) | C6—C8 | 1.5019 (15) |
O4—C1 | 1.2601 (14) | C7—H7 | 0.9300 |
O5—C8 | 1.2777 (14) | C10—C11 | 1.3537 (17) |
O6—C8 | 1.2526 (15) | C10—H10 | 0.9300 |
O7—C9 | 1.2687 (14) | C11—H11 | 0.9300 |
O8—C9 | 1.2580 (14) | C12—C13 | 1.4818 (17) |
O9—H9A | 0.785 (12) | C13—H13A | 0.9600 |
O9—H9B | 0.775 (12) | C13—H13B | 0.9600 |
O10—H10A | 0.791 (12) | C13—H13C | 0.9600 |
O10—H10B | 0.793 (12) | C13—H13D | 0.9600 |
O11—H11A | 0.778 (12) | C13—H13E | 0.9600 |
O11—H11B | 0.809 (17) | C13—H13F | 0.9600 |
O11—Co1—O11i | 180.0 | C7—C2—C3 | 119.40 (10) |
O11—Co1—O9i | 90.60 (4) | C7—C2—C1 | 119.49 (10) |
O11i—Co1—O9i | 89.40 (4) | C3—C2—C1 | 121.11 (10) |
O11—Co1—O9 | 89.40 (4) | C2—C3—C4 | 120.45 (10) |
O11i—Co1—O9 | 90.60 (4) | C2—C3—H3 | 119.8 |
O9i—Co1—O9 | 180.0 | C4—C3—H3 | 119.8 |
O11—Co1—O10 | 90.76 (4) | C3—C4—C5 | 119.66 (10) |
O11i—Co1—O10 | 89.24 (4) | C3—C4—C9 | 120.93 (10) |
O9i—Co1—O10 | 86.64 (3) | C5—C4—C9 | 119.40 (10) |
O9—Co1—O10 | 93.36 (4) | C6—C5—C4 | 120.20 (11) |
O11—Co1—O10i | 89.24 (4) | C6—C5—H5 | 119.9 |
O11i—Co1—O10i | 90.76 (4) | C4—C5—H5 | 119.9 |
O9i—Co1—O10i | 93.36 (3) | C7—C6—C5 | 119.71 (10) |
O9—Co1—O10i | 86.64 (4) | C7—C6—C8 | 120.09 (10) |
O10—Co1—O10i | 180.0 | C5—C6—C8 | 120.19 (10) |
O3ii—Co2—O3 | 180.00 (5) | C6—C7—C2 | 120.56 (10) |
O3ii—Co2—O1ii | 90.97 (4) | C6—C7—H7 | 119.7 |
O3—Co2—O1ii | 89.03 (4) | C2—C7—H7 | 119.7 |
O3ii—Co2—O1 | 89.03 (4) | O6—C8—O5 | 123.36 (11) |
O3—Co2—O1 | 90.97 (4) | O6—C8—C6 | 118.94 (10) |
O1ii—Co2—O1 | 180.0 | O5—C8—C6 | 117.70 (10) |
O3ii—Co2—O2ii | 89.79 (4) | O8—C9—O7 | 124.60 (11) |
O3—Co2—O2ii | 90.21 (4) | O8—C9—C4 | 118.45 (10) |
O1ii—Co2—O2ii | 88.38 (4) | O7—C9—C4 | 116.95 (10) |
O1—Co2—O2ii | 91.62 (4) | C11—C10—N1 | 106.62 (11) |
O3ii—Co2—O2 | 90.21 (4) | C11—C10—H10 | 126.7 |
O3—Co2—O2 | 89.79 (4) | N1—C10—H10 | 126.7 |
O1ii—Co2—O2 | 91.62 (4) | C10—C11—N2 | 106.72 (11) |
O1—Co2—O2 | 88.38 (4) | C10—C11—H11 | 126.6 |
O2ii—Co2—O2 | 180.0 | N2—C11—H11 | 126.6 |
Co2—O1—H1A | 133.6 (14) | N1—C12—N2 | 107.33 (11) |
Co2—O1—H1B | 104.8 (13) | N1—C12—C13 | 125.58 (11) |
H1A—O1—H1B | 107.5 (16) | N2—C12—C13 | 127.07 (11) |
Co2—O2—H2A | 117.6 (14) | C12—C13—H13A | 109.5 |
Co2—O2—H2B | 121.0 (13) | C12—C13—H13B | 109.5 |
H2A—O2—H2B | 108.3 (16) | H13A—C13—H13B | 109.5 |
C1—O3—Co2 | 126.90 (8) | C12—C13—H13C | 109.5 |
Co1—O9—H9A | 125.1 (13) | H13A—C13—H13C | 109.5 |
Co1—O9—H9B | 117.8 (13) | H13B—C13—H13C | 109.5 |
H9A—O9—H9B | 108.5 (16) | C12—C13—H13D | 109.5 |
Co1—O10—H10A | 111.8 (12) | H13A—C13—H13D | 135.3 |
Co1—O10—H10B | 115.7 (13) | H13B—C13—H13D | 76.7 |
H10A—O10—H10B | 106.0 (15) | H13C—C13—H13D | 35.5 |
Co1—O11—H11A | 128.6 (13) | C12—C13—H13E | 109.5 |
Co1—O11—H11B | 114.9 (12) | H13A—C13—H13E | 35.5 |
H11A—O11—H11B | 105.6 (16) | H13B—C13—H13E | 135.3 |
C12—N1—C10 | 109.77 (10) | H13C—C13—H13E | 76.7 |
C12—N1—H1 | 124.4 (11) | H13D—C13—H13E | 109.5 |
C10—N1—H1 | 125.7 (11) | C12—C13—H13F | 109.5 |
C12—N2—C11 | 109.55 (11) | H13A—C13—H13F | 76.7 |
C12—N2—H2 | 123.4 (11) | H13B—C13—H13F | 35.5 |
C11—N2—H2 | 127.0 (11) | H13C—C13—H13F | 135.3 |
O4—C1—O3 | 124.51 (11) | H13D—C13—H13F | 109.5 |
O4—C1—C2 | 118.73 (10) | H13E—C13—H13F | 109.5 |
O3—C1—C2 | 116.76 (10) | ||
Co2—O3—C1—O4 | 16.76 (18) | C1—C2—C7—C6 | 178.56 (11) |
Co2—O3—C1—C2 | −163.49 (8) | C7—C6—C8—O6 | 161.30 (11) |
O4—C1—C2—C7 | 170.61 (11) | C5—C6—C8—O6 | −18.68 (17) |
O3—C1—C2—C7 | −9.15 (17) | C7—C6—C8—O5 | −19.76 (17) |
O4—C1—C2—C3 | −9.89 (17) | C5—C6—C8—O5 | 160.27 (11) |
O3—C1—C2—C3 | 170.35 (11) | C3—C4—C9—O8 | −19.45 (17) |
C7—C2—C3—C4 | 0.72 (18) | C5—C4—C9—O8 | 161.70 (11) |
C1—C2—C3—C4 | −178.78 (11) | C3—C4—C9—O7 | 160.47 (11) |
C2—C3—C4—C5 | 0.16 (18) | C5—C4—C9—O7 | −18.38 (17) |
C2—C3—C4—C9 | −178.68 (11) | C12—N1—C10—C11 | −0.03 (15) |
C3—C4—C5—C6 | −0.83 (18) | N1—C10—C11—N2 | 0.19 (15) |
C9—C4—C5—C6 | 178.03 (11) | C12—N2—C11—C10 | −0.29 (15) |
C4—C5—C6—C7 | 0.61 (18) | C10—N1—C12—N2 | −0.15 (15) |
C4—C5—C6—C8 | −179.42 (11) | C10—N1—C12—C13 | 178.19 (12) |
C5—C6—C7—C2 | 0.29 (18) | C11—N2—C12—N1 | 0.27 (15) |
C8—C6—C7—C2 | −179.69 (11) | C11—N2—C12—C13 | −178.04 (13) |
C3—C2—C7—C6 | −0.95 (18) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+2, −y, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O7iii | 0.79 (1) | 2.10 (1) | 2.8789 (13) | 174 (2) |
O1—H1B···O4 | 0.79 (1) | 1.90 (1) | 2.6401 (13) | 156 (2) |
O2—H2A···O5iv | 0.78 (1) | 2.17 (1) | 2.9371 (13) | 167 (2) |
O2—H2B···O6v | 0.78 (1) | 1.97 (1) | 2.7458 (13) | 175 (2) |
O9—H9A···O4 | 0.79 (1) | 1.85 (1) | 2.6339 (12) | 176 (2) |
O9—H9B···O7vi | 0.78 (1) | 1.96 (1) | 2.7150 (13) | 166 (2) |
O10—H10A···O7iv | 0.79 (1) | 2.09 (1) | 2.8592 (13) | 166 (2) |
O10—H10B···O6v | 0.79 (1) | 1.89 (1) | 2.6835 (12) | 176 (2) |
O11—H11A···O8i | 0.78 (1) | 1.92 (1) | 2.6911 (13) | 172 (2) |
O11—H11B···O5vii | 0.81 (2) | 1.90 (2) | 2.6989 (13) | 172 (2) |
N1—H1···O8vi | 0.91 (2) | 1.81 (2) | 2.7214 (13) | 175 (2) |
N2—H2···O5viii | 0.89 (2) | 1.93 (2) | 2.8206 (14) | 178 (2) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (iii) x+1, y−1, z; (iv) x+1, y, z; (v) −x+1, −y+1, −z+2; (vi) −x+1, −y+1, −z+1; (vii) x+1, y, z−1; (viii) −x+1, −y, −z+2. |
D—H···A | Type | Graph-set | D—H | H···A | D···A | D—H···A |
O9—H9A···O4 | a | DC22(20) | 0.785 (12) | 1.850 (12) | 2.6339 (12) | 176.4 (19) |
O9—H9B···O7iv | b | DC22(20) | 0.775 (12) | 1.957 (12) | 2.7150 (13) | 165.9 (18) |
O10—H10A···O7ii | c | DC22(20) | 0.791 (12) | 2.085 (12) | 2.8592 (13) | 166.1 (17) |
O10—H10B···O6iii | d | DC22(20) | 0.793 (12) | 1.891 (12) | 2.6835 (12) | 176.3 (18) |
O11—H11A···O8v | e | DC22(20) | 0.778 (12) | 1.919 (13) | 2.6911 (13) | 171.6 (18) |
O11—H11B···O5vi | f | DC22(20) | 0.809 (17) | 1.896 (18) | 2.6989 (13) | 172.0 (17) |
O1—H1A···O7i | g | C(10)C22(20)R22(20) | 0.787 (12) | 2.096 (12) | 2.8789 (13) | 173.5 (19) |
O1—H1B···O4 | h | S(6) | 0.785 (12) | 1.904 (13) | 2.6401 (13) | 155.8 (18) |
O2—H2A···O5ii | i | C(10)C22(20)R22(20) | 0.778 (12) | 2.175 (13) | 2.9371 (13) | 166.5 (19) |
O2—H2B···O6iii | j | C(10)C22(20)R22(20) | 0.783 (12) | 1.965 (12) | 2.7458 (13) | 175 (2) |
N1—H1···O8iv | k | DD22(17) | 0.913 (15) | 1.811 (15) | 2.7214 (13) | 174.6 (16) |
N2—H2···O5vii | l | DD22(17) | 0.890 (15) | 1.931 (15) | 2.8206 (14) | 178.0 (17) |
Symmetry codes: (i) x + 1, y - 1, z; (ii) x + 1, y, z; (iii) -x + 1, -y + 1, -z + 2; (iv) -x + 1, -y + 1, -z + 1; (v) -x + 2, -y + 1, -z + 1; (vi) x + 1, y, z - 1; (vii) -x + 1, -y, -z + 2. |
Funding information
Funding for this research was provided by: HG-recruitment, HG-Innovation "ECRAPS", HG-Innovation DSF, DASHH, DGP and CMWS (grant to Simone Techert).
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cai, X., Lai, L., Lin, J. & Shen, Z. (2017). Mater. Horiz. 4, 945–976. CrossRef CAS Google Scholar
Clegg, W. & Holcroft, J. M. (2014). Cryst. Growth Des. 14, 6282–6293. Web of Science CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Halcrow, M. A. (2011). Chem. Soc. Rev. 40, 4119–4142. Web of Science CrossRef CAS PubMed Google Scholar
Ketkaew, R., Tantirungrotechai, Y., Harding, P., Chastanet, G., Guionneau, P., Marchivie, M. & Harding, D. J. (2021). Dalton Trans. 50, 1086–1096. CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Li, Y., Zou, W.-Q., Wu, M.-F., Lin, J.-D., Zheng, F.-K., Liu, Z.-F., Wang, S.-H., Guo, G.-C. & Huang, J.-S. (2011). CrystEngComm, 13, 3868–3877. CSD CrossRef CAS Google Scholar
Marchivie, M., Guionneau, P., Létard, J.-F. & Chasseau, D. (2005). Acta Cryst. B61, 25–28. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. (2018). Acta Cryst. A74, a353. CrossRef IUCr Journals Google Scholar
Wang, H., Zhang, X., Yin, F., Chu, W. & Chen, B. (2020). J. Mater. Chem. A, 8, 22111–22123. CSD CrossRef CAS Google Scholar
Wang, Z.-L., Xu, D., Xu, J.-J. & Zhang, X.-B. (2014). Chem. Soc. Rev. 43, 7746–7786. CrossRef CAS PubMed Google Scholar
Wolodkiewicz, W., Brzyska, W. & Glowiak, T. (1996). Pol. J. Chem. 70, 409–416. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.