research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and structure of hexa­aqua­cobalt bis­­(2-methyl-1H-imidazol-3-ium) tetra­aqua­bis­­(benzene-1,3,5-tri­carboxyl­ato-κO)cobalt

crossmark logo

aDeutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany, and bInstitut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, Göttingen, 37077, Germany
*Correspondence e-mail: jose.velazquez@desy.de

Edited by V. Jancik, Universidad Nacional Autónoma de México, México (Received 24 February 2022; accepted 9 July 2022; online 19 July 2022)

The title compound, (C4H7N2)2[Co(H2O)6][Co(C9H3O6)2(H2O)4] (1), was synthesized from cobalt(II) chloride, 1,3,5-benzene tri­carb­oxy­lic acid (Hbtc) and 2-methyl-imidazole (H-2mIm) under ambient conditions. The structure of 1 is here reported and compared with the parent complex hexa­aqua­cobalt bis­(1H-imidazol-3-ium) tetra­aqua­bis­(benzene-1,3,5-tri­carboxyl­ato)cobalt (2).

1. Chemical context

Effective bifunctional electrocatalysts for oxygen reduction/evolution reactions (ORR/OER) are indispensable for the development of energy storage and conversion systems, such as fuel cells and rechargeable metal–air batteries (Cai et al., 2017[Cai, X., Lai, L., Lin, J. & Shen, Z. (2017). Mater. Horiz. 4, 945-976.]; Wang et al., 2014[Wang, Z.-L., Xu, D., Xu, J.-J. & Zhang, X.-B. (2014). Chem. Soc. Rev. 43, 7746-7786.]). Currently, platinum-based materials are considered the most effective due to their superior catalytic activity and stability. However, their high cost, caused by the scarcity of the metal, rules them out for scale-up development. Therefore, a great deal of effort has been devoted to the development of cost-effective and earth-abundant replacements for platinum-based catalysts. Among the different substitute materials, a hexa­aqua­cobalt bis­(1H-imidazol-3-ium) tetra­aqua­bis­(benzene-1,3,5-tri­carboxyl­ato)cobalt complex, 2, has shown excellent bifunctional catalytic activity and durability for both the oxygen-reduction reaction and oxygen-evolution reaction in alkaline media (Wang et al., 2020[Wang, H., Zhang, X., Yin, F., Chu, W. & Chen, B. (2020). J. Mater. Chem. A, 8, 22111-22123.]). Unfortunately, the solvothermal synthesis required to produce the material hinders its implementation on a large scale.

[Scheme 1]

Herein, we present the synthesis and structure of a hexa­aqua­cobalt bis­(1H-2-methyl-imidazol-3-ium) tetra­aqua­bis­(benzene-1,3,5-tri­carboxyl­ato)cobalt complex, a related mat­erial with the imidazolium cations replaced by 2-methyl­imidazolium, which can be obtained under ambient conditions. The introduction of the methyl substituent to the C2 position of the imidazolium ring induces only small structural changes, when compared to 2, and therefore, the title compound could be a promising material for ORR and OER.

2. Structural commentary

The complete mol­ecule of 1 (Fig. 1[link]) is generated by a crystallographic centre of symmetry. Both Co-containing ions lie about an inversion centre, and therefore only half of the coordinating ions and mol­ecules are crystallographically independent. One of the two metal centres (Co1) is coordinated by six water mol­ecules to constitute a hexa­aqua­cobalt cation, while the second (Co2) binds with four water mol­ecules and two carboxyl­ate oxygen atoms from two btc3− ligands to form a [Co(H2O)4(btc)2]4− anion. Charge neutrality of the mol­ecule is provided by the presence of two 1-H-2-methyl-imidazol-3-ium cations. The observed Co—Ocarboxyl­ate bond length is 2.0835 (9) Å and the C—Owater bond lengths are in the range 2.0576 (9)–2.1196 (9) Å. To estimate the distortion from the ideal octa­hedral geometry, the parameters Σ (Halcrow, 2011[Halcrow, M. A. (2011). Chem. Soc. Rev. 40, 4119-4142.]) and Θ (Marchivie et al., 2005[Marchivie, M., Guionneau, P., Létard, J.-F. & Chasseau, D. (2005). Acta Cryst. B61, 25-28.]) were calculated using the OctaDist program (Ketkaew et al., 2021[Ketkaew, R., Tantirungrotechai, Y., Harding, P., Chastanet, G., Guionneau, P., Marchivie, M. & Harding, D. J. (2021). Dalton Trans. 50, 1086-1096.]). While Σ summarizes the deviation of the cis O—Cu—O angles from 90°, Θ indicates the degree of twist from a perfect octa­hedron towards a trigonal prism. Both parameters are equal to zero for an ideal octa­hedron. The calculated values of the distortion parameters Σ/Θ for Co1 and Co2 are equal to 19°/62° and 11°/31°, respectively. Both parameters indicate a slight distortion of the coordination environment of both metal centres.

[Figure 1]
Figure 1
The mol­ecular structure of 1 with displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (_a) 2 − x, −y, 2 − z; (_b) 2 − x, 1 − y, 1 − z.

3. Supra­molecular features

A packing diagram of the compound as viewed down [[\overline{1}]01] is shown in Fig. 2[link]. The figure shows layers parallel to the (111) plane formed by all ions. Each ion inter­acts with others via hydrogen bonds of the O—H⋯O or N—H⋯O type. A summary of the hydrogen-bonding inter­actions is given in Table 1[link]. The table demonstrates that all possible donor and acceptor groups are involved in moderate hydrogen bonds. The presence of various hydrogen bonds in 1 results in characteristic arrays that may be described by graph-set analysis (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). In the structure of 1, there are 27 possible motifs involved in discrete D (types a–f and k–l) and inter­molecular S (type h) motifs, as well as rings R (types g, i and j) and chains C (types a–f). It is worth noting that while hydrogen bonds b, c and i hold the aforementioned layers together through C22(20) and D arrays, other hydrogen bonds, such as type a and e, form C22(20) arrays, which generates a three-dimensional network with channels along the a and c axes in which the imidazolium ions are located (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A Type Graph-set D—H H⋯A DA D—H⋯A
O9—H9A⋯O4 a DC22(20) 0.785 (12) 1.850 (12) 2.6339 (12) 176.4 (19)
O9—H9B⋯O7iv b DC22(20) 0.775 (12) 1.957 (12) 2.7150 (13) 165.9 (18)
O10—H10A⋯O7ii c DC22(20) 0.791 (12) 2.085 (12) 2.8592 (13) 166.1 (17)
O10—H10B⋯O6iii d DC22(20) 0.793 (12) 1.891 (12) 2.6835 (12) 176.3 (18)
O11—H11A⋯O8v e DC22(20) 0.778 (12) 1.919 (13) 2.6911 (13) 171.6 (18)
O11—H11B⋯O5vi f DC22(20) 0.809 (17) 1.896 (18) 2.6989 (13) 172.0 (17)
O1—H1A⋯O7i g C(10) C22(20) R22(20) 0.787 (12) 2.096 (12) 2.8789 (13) 173.5 (19)
O1—H1B⋯O4 h S(6) 0.785 (12) 1.904 (13) 2.6401 (13) 155.8 (18)
O2—H2A⋯O5ii i C(10) C22(20) R22(20) 0.778 (12) 2.175 (13) 2.9371 (13) 166.5 (19)
O2—H2B⋯O6iii j C(10) C22(20) R22(20) 0.783 (12) 1.965 (12) 2.7458 (13) 175 (2)
N1—H1⋯O8iv k DD22(17) 0.913 (15) 1.811 (15) 2.7214 (13) 174.6 (16)
N2—H2⋯O5vii l DD22(17) 0.890 (15) 1.931 (15) 2.8206 (14) 178.0 (17)
Symmetry codes: (i) x + 1, y − 1, z; (ii) x + 1, y, z; (iii) −x + 1, −y + 1, −z + 2; (iv) −x + 1, −y + 1, −z + 1; (v) −x + 2, −y + 1, −z + 1; (vi) x + 1, y, z − 1; (vii) −x + 1, −y, −z + 2.
[Figure 2]
Figure 2
Packing diagram of 1 down the [[\overline{1}]01] direction. O—H⋯O hydrogen bonds of type b, c and i are shown in the magnified region.
[Figure 3]
Figure 3
The three-dimensional supra­molecular network with one-dimensional channels along the (a) a and (b) c axes showing O—H⋯O hydrogen bonds of type a and e in the magnified area. Imidazolium ions are drawn in green for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.41, update of August 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for hexa­aqua­cobalt and the ditrimesate tetra­aqua­cobalt moiety revealed only one hit, namely refcode: VUHQIA (imidazolium)2[Co(H2O)6][Co(H2O)4(btc)2], 2, (Wang et al., 2020[Wang, H., Zhang, X., Yin, F., Chu, W. & Chen, B. (2020). J. Mater. Chem. A, 8, 22111-22123.]). Compounds 1 and 2 crystallize in the triclinic system, space group P[\overline{1}]. The Co—Ocarboxyl­ate and C—Owater bond lengths are similar in both complexes. The coordination polyhedra of compound 2 are slightly more distorted. The calculated values of Σ/Θ for compound 2 are equal to 21°/63° for Co1 and 10°/39° for Co2 – that is, the trigonal distortion (Θ) in 2 is higher by 1 and 8° for Co1 and Co2, respectively. The slightly different distortion of the metal centres in 2 and the introduction of the imidazolium allow for shorter hydrogen bonds with distances between 1.73 and 2.00 Å. Other complexes with a low degree of similarity to the title compound were also found, for example refcodes DOWFUS (Clegg & Holcroft, 2014[Clegg, W. & Holcroft, J. M. (2014). Cryst. Growth Des. 14, 6282-6293.]), IQOZUK (Li et al., 2011[Li, Y., Zou, W.-Q., Wu, M.-F., Lin, J.-D., Zheng, F.-K., Liu, Z.-F., Wang, S.-H., Guo, G.-C. & Huang, J.-S. (2011). CrystEngComm, 13, 3868-3877.]) and SETQOX (Wolodkiewicz et al., 1996[Wolodkiewicz, W., Brzyska, W. & Glowiak, T. (1996). Pol. J. Chem. 70, 409-416.]). However, these compounds are polymeric and/or incorporate a different organic ligand than btc. Additionally, none of them contain the imidazolium anion. These changes in chemical composition may provide them with totally different properties than those desired for ORR and OER, and therefore, they will not be discussed further.

5. Synthesis and crystallization

In a typical synthesis, H-2mIm (160 mg, 1.96 mmol), Hbtc (412, 1.96 mmol) and cobalt chloride (127 mg, 0.95mmol) were dissolved in 160 ml of a 1:1:1 mixture of deionized water, ethanol and di­methyl­formamide by stirring for 10 min at room temperature. After 5 minutes, light-pink crystals of 1 were obtained. The product was collected by filtration and washed three times with ethanol.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Positions of remaining non-H atoms were found from the electron density difference maps. The positions of hydrogen atoms were refined with Uiso(H) = 1.5Ueq(C or N) for CH and NH groups and Uiso(H) = 1.5Ueq(C or O) for others. The O—H and H⋯H distances in the water mol­ecules as well as the N—H distances were restrained to be approximately equal within each type (SHELXL instruction SADI). The protons of the methyl group were refined as disordered over two geometrically idealized positions.

Table 2
Experimental details

Crystal data
Chemical formula (C4H7N2)2[Co(H2O)6][Co(C9H3O6)2(H2O)4]
Mr 878.48
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 9.2008 (4), 9.3137 (4), 10.6470 (4)
α, β, γ (°) 86.551 (2), 79.378 (2), 72.369 (2)
V3) 854.61 (6)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.07
Crystal size (mm) 0.20 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker CCD area detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.699, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 26203, 5250, 4605
Rint 0.026
(sin θ/λ)max−1) 0.719
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.069, 1.04
No. of reflections 5250
No. of parameters 285
No. of restraints 47
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.60, −0.42
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2018[Sheldrick, G. (2018). Acta Cryst. A74, a353.]), SHELXL2019/2 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2018); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Hexaaquacobalt bis(2-methyl-1H-imidazol-3-ium) tetraaquabis(benzene-1,3,5-tricarboxylato-κO)cobalt top
Crystal data top
(C4H7N2)2[Co(H2O)6][Co(C9H3O6)2(H2O)4]Z = 1
Mr = 878.48F(000) = 454
Triclinic, P1Dx = 1.707 Mg m3
a = 9.2008 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3137 (4) ÅCell parameters from 9913 reflections
c = 10.6470 (4) Åθ = 2.3–30.6°
α = 86.551 (2)°µ = 1.07 mm1
β = 79.378 (2)°T = 296 K
γ = 72.369 (2)°Prism, clear light pink
V = 854.61 (6) Å30.20 × 0.10 × 0.10 mm
Data collection top
Bruker CCD area detector
diffractometer
4605 reflections with I > 2σ(I)
phi and ω scansRint = 0.026
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 30.7°, θmin = 2.0°
Tmin = 0.699, Tmax = 0.746h = 1313
26203 measured reflectionsk = 1312
5250 independent reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: dual
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: mixed
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0331P)2 + 0.4935P]
where P = (Fo2 + 2Fc2)/3
5250 reflections(Δ/σ)max < 0.001
285 parametersΔρmax = 0.60 e Å3
47 restraintsΔρmin = 0.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co11.0000000.5000000.5000000.00661 (6)
Co21.0000000.0000001.0000000.00734 (6)
O11.09226 (11)0.04186 (11)0.80639 (9)0.01446 (19)
H1A1.128 (2)0.1158 (16)0.7654 (16)0.022*
H1B1.0319 (19)0.0150 (17)0.7699 (17)0.022*
O21.06874 (11)0.19677 (11)0.98183 (10)0.01395 (18)
H2A1.107 (2)0.215 (2)1.0361 (15)0.021*
H2B1.0153 (19)0.2726 (17)0.9590 (17)0.021*
O30.78549 (10)0.12296 (10)0.95554 (8)0.01077 (17)
O40.85774 (10)0.18407 (10)0.75266 (8)0.01246 (18)
O50.23219 (10)0.29950 (10)1.15378 (8)0.01007 (16)
O60.10354 (10)0.53500 (10)1.10793 (8)0.01151 (17)
O70.24698 (10)0.69230 (10)0.65394 (8)0.00982 (16)
O80.49974 (10)0.65513 (10)0.58167 (8)0.01243 (18)
O90.91967 (10)0.31282 (10)0.53041 (9)0.01031 (17)
H9A0.898 (2)0.278 (2)0.5975 (12)0.015*
H9B0.8655 (19)0.302 (2)0.4862 (14)0.015*
O101.09204 (10)0.46619 (10)0.67157 (8)0.00996 (16)
H10A1.1344 (18)0.5265 (17)0.6797 (16)0.015*
H10B1.0313 (17)0.4689 (19)0.7355 (13)0.015*
O111.20606 (10)0.36656 (11)0.40161 (9)0.01061 (17)
H11A1.2898 (16)0.368 (2)0.4028 (16)0.016*
H11B1.2048 (19)0.350 (2)0.3281 (17)0.016*
N10.50458 (13)0.14060 (12)0.61249 (10)0.0119 (2)
H10.510 (2)0.2077 (18)0.5469 (15)0.014*
N20.57535 (12)0.03974 (12)0.74458 (10)0.0119 (2)
H20.6351 (19)0.1208 (18)0.7785 (16)0.014*
C10.76058 (13)0.19797 (13)0.85484 (11)0.0081 (2)
C20.60272 (13)0.31087 (13)0.85916 (11)0.0074 (2)
C30.57120 (13)0.41453 (13)0.76032 (11)0.0082 (2)
H30.6478750.4132320.6895990.010*
C40.42546 (13)0.52015 (13)0.76680 (11)0.0079 (2)
C50.31078 (13)0.52211 (13)0.87313 (11)0.0082 (2)
H50.2138990.5932100.8782840.010*
C60.34094 (13)0.41785 (13)0.97165 (11)0.0076 (2)
C70.48664 (13)0.31248 (13)0.96411 (11)0.0081 (2)
H70.5066410.2426051.0296730.010*
C80.21698 (13)0.41903 (13)1.08554 (11)0.0078 (2)
C90.38899 (13)0.63054 (13)0.65934 (11)0.0081 (2)
C100.37595 (15)0.14698 (15)0.70562 (13)0.0143 (2)
H100.2779870.2160420.7102130.017*
C110.42065 (15)0.03308 (15)0.78863 (12)0.0137 (2)
H110.3592390.0085350.8612280.016*
C120.62411 (14)0.02705 (14)0.63723 (12)0.0110 (2)
C130.78039 (15)0.01811 (15)0.55720 (13)0.0156 (2)
H13A0.8069620.1217880.5331130.023*0.58 (5)
H13B0.8547290.0056330.6048260.023*0.58 (5)
H13C0.7807280.0438240.4818020.023*0.58 (5)
H13D0.8045800.0698700.5192730.023*0.42 (5)
H13E0.7823250.0846950.4910830.023*0.42 (5)
H13F0.8555130.0687710.6093850.023*0.42 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.00602 (10)0.00746 (11)0.00589 (10)0.00185 (8)0.00054 (7)0.00102 (7)
Co20.00718 (10)0.00685 (11)0.00737 (10)0.00111 (8)0.00184 (7)0.00140 (8)
O10.0144 (4)0.0133 (5)0.0109 (4)0.0036 (4)0.0031 (3)0.0002 (3)
O20.0155 (4)0.0092 (4)0.0193 (5)0.0037 (3)0.0097 (4)0.0036 (3)
O30.0100 (4)0.0115 (4)0.0088 (4)0.0005 (3)0.0021 (3)0.0035 (3)
O40.0111 (4)0.0131 (4)0.0089 (4)0.0006 (3)0.0006 (3)0.0034 (3)
O50.0123 (4)0.0081 (4)0.0085 (4)0.0021 (3)0.0008 (3)0.0027 (3)
O60.0101 (4)0.0103 (4)0.0105 (4)0.0001 (3)0.0013 (3)0.0021 (3)
O70.0078 (4)0.0110 (4)0.0099 (4)0.0013 (3)0.0029 (3)0.0019 (3)
O80.0091 (4)0.0151 (4)0.0116 (4)0.0030 (3)0.0012 (3)0.0066 (3)
O90.0123 (4)0.0129 (4)0.0077 (4)0.0067 (3)0.0029 (3)0.0038 (3)
O100.0089 (4)0.0138 (4)0.0077 (4)0.0047 (3)0.0011 (3)0.0016 (3)
O110.0077 (4)0.0144 (4)0.0092 (4)0.0028 (3)0.0006 (3)0.0009 (3)
N10.0147 (5)0.0096 (5)0.0111 (5)0.0029 (4)0.0036 (4)0.0030 (4)
N20.0116 (5)0.0096 (5)0.0127 (5)0.0012 (4)0.0017 (4)0.0031 (4)
C10.0081 (5)0.0075 (5)0.0086 (5)0.0020 (4)0.0021 (4)0.0009 (4)
C20.0073 (5)0.0067 (5)0.0080 (5)0.0016 (4)0.0021 (4)0.0004 (4)
C30.0082 (5)0.0083 (5)0.0079 (5)0.0026 (4)0.0014 (4)0.0011 (4)
C40.0089 (5)0.0084 (5)0.0068 (5)0.0033 (4)0.0020 (4)0.0018 (4)
C50.0081 (5)0.0082 (5)0.0082 (5)0.0022 (4)0.0018 (4)0.0005 (4)
C60.0084 (5)0.0079 (5)0.0066 (5)0.0028 (4)0.0010 (4)0.0007 (4)
C70.0095 (5)0.0073 (5)0.0074 (5)0.0022 (4)0.0024 (4)0.0014 (4)
C80.0086 (5)0.0094 (5)0.0067 (5)0.0039 (4)0.0027 (4)0.0005 (4)
C90.0099 (5)0.0072 (5)0.0077 (5)0.0025 (4)0.0026 (4)0.0003 (4)
C100.0121 (5)0.0126 (6)0.0171 (6)0.0020 (4)0.0028 (4)0.0015 (5)
C110.0123 (5)0.0136 (6)0.0134 (6)0.0030 (5)0.0000 (4)0.0017 (4)
C120.0140 (5)0.0082 (5)0.0113 (5)0.0042 (4)0.0022 (4)0.0005 (4)
C130.0148 (6)0.0137 (6)0.0168 (6)0.0046 (5)0.0023 (5)0.0015 (5)
Geometric parameters (Å, º) top
Co1—O112.0576 (9)N1—C121.3289 (16)
Co1—O11i2.0576 (9)N1—C101.3854 (16)
Co1—O9i2.0772 (9)N1—H10.913 (15)
Co1—O92.0772 (9)N2—C121.3375 (15)
Co1—O102.1196 (9)N2—C111.3832 (16)
Co1—O10i2.1196 (9)N2—H20.890 (15)
Co2—O3ii2.0835 (9)C1—C21.5078 (16)
Co2—O32.0835 (9)C2—C71.3934 (15)
Co2—O1ii2.0912 (9)C2—C31.3944 (16)
Co2—O12.0912 (9)C3—C41.3948 (16)
Co2—O2ii2.1000 (9)C3—H30.9300
Co2—O22.1000 (9)C4—C51.3949 (15)
O1—H1A0.787 (12)C4—C91.5066 (16)
O1—H1B0.785 (12)C5—C61.3934 (15)
O2—H2A0.778 (12)C5—H50.9300
O2—H2B0.783 (12)C6—C71.3926 (16)
O3—C11.2624 (14)C6—C81.5019 (15)
O4—C11.2601 (14)C7—H70.9300
O5—C81.2777 (14)C10—C111.3537 (17)
O6—C81.2526 (15)C10—H100.9300
O7—C91.2687 (14)C11—H110.9300
O8—C91.2580 (14)C12—C131.4818 (17)
O9—H9A0.785 (12)C13—H13A0.9600
O9—H9B0.775 (12)C13—H13B0.9600
O10—H10A0.791 (12)C13—H13C0.9600
O10—H10B0.793 (12)C13—H13D0.9600
O11—H11A0.778 (12)C13—H13E0.9600
O11—H11B0.809 (17)C13—H13F0.9600
O11—Co1—O11i180.0C7—C2—C3119.40 (10)
O11—Co1—O9i90.60 (4)C7—C2—C1119.49 (10)
O11i—Co1—O9i89.40 (4)C3—C2—C1121.11 (10)
O11—Co1—O989.40 (4)C2—C3—C4120.45 (10)
O11i—Co1—O990.60 (4)C2—C3—H3119.8
O9i—Co1—O9180.0C4—C3—H3119.8
O11—Co1—O1090.76 (4)C3—C4—C5119.66 (10)
O11i—Co1—O1089.24 (4)C3—C4—C9120.93 (10)
O9i—Co1—O1086.64 (3)C5—C4—C9119.40 (10)
O9—Co1—O1093.36 (4)C6—C5—C4120.20 (11)
O11—Co1—O10i89.24 (4)C6—C5—H5119.9
O11i—Co1—O10i90.76 (4)C4—C5—H5119.9
O9i—Co1—O10i93.36 (3)C7—C6—C5119.71 (10)
O9—Co1—O10i86.64 (4)C7—C6—C8120.09 (10)
O10—Co1—O10i180.0C5—C6—C8120.19 (10)
O3ii—Co2—O3180.00 (5)C6—C7—C2120.56 (10)
O3ii—Co2—O1ii90.97 (4)C6—C7—H7119.7
O3—Co2—O1ii89.03 (4)C2—C7—H7119.7
O3ii—Co2—O189.03 (4)O6—C8—O5123.36 (11)
O3—Co2—O190.97 (4)O6—C8—C6118.94 (10)
O1ii—Co2—O1180.0O5—C8—C6117.70 (10)
O3ii—Co2—O2ii89.79 (4)O8—C9—O7124.60 (11)
O3—Co2—O2ii90.21 (4)O8—C9—C4118.45 (10)
O1ii—Co2—O2ii88.38 (4)O7—C9—C4116.95 (10)
O1—Co2—O2ii91.62 (4)C11—C10—N1106.62 (11)
O3ii—Co2—O290.21 (4)C11—C10—H10126.7
O3—Co2—O289.79 (4)N1—C10—H10126.7
O1ii—Co2—O291.62 (4)C10—C11—N2106.72 (11)
O1—Co2—O288.38 (4)C10—C11—H11126.6
O2ii—Co2—O2180.0N2—C11—H11126.6
Co2—O1—H1A133.6 (14)N1—C12—N2107.33 (11)
Co2—O1—H1B104.8 (13)N1—C12—C13125.58 (11)
H1A—O1—H1B107.5 (16)N2—C12—C13127.07 (11)
Co2—O2—H2A117.6 (14)C12—C13—H13A109.5
Co2—O2—H2B121.0 (13)C12—C13—H13B109.5
H2A—O2—H2B108.3 (16)H13A—C13—H13B109.5
C1—O3—Co2126.90 (8)C12—C13—H13C109.5
Co1—O9—H9A125.1 (13)H13A—C13—H13C109.5
Co1—O9—H9B117.8 (13)H13B—C13—H13C109.5
H9A—O9—H9B108.5 (16)C12—C13—H13D109.5
Co1—O10—H10A111.8 (12)H13A—C13—H13D135.3
Co1—O10—H10B115.7 (13)H13B—C13—H13D76.7
H10A—O10—H10B106.0 (15)H13C—C13—H13D35.5
Co1—O11—H11A128.6 (13)C12—C13—H13E109.5
Co1—O11—H11B114.9 (12)H13A—C13—H13E35.5
H11A—O11—H11B105.6 (16)H13B—C13—H13E135.3
C12—N1—C10109.77 (10)H13C—C13—H13E76.7
C12—N1—H1124.4 (11)H13D—C13—H13E109.5
C10—N1—H1125.7 (11)C12—C13—H13F109.5
C12—N2—C11109.55 (11)H13A—C13—H13F76.7
C12—N2—H2123.4 (11)H13B—C13—H13F35.5
C11—N2—H2127.0 (11)H13C—C13—H13F135.3
O4—C1—O3124.51 (11)H13D—C13—H13F109.5
O4—C1—C2118.73 (10)H13E—C13—H13F109.5
O3—C1—C2116.76 (10)
Co2—O3—C1—O416.76 (18)C1—C2—C7—C6178.56 (11)
Co2—O3—C1—C2163.49 (8)C7—C6—C8—O6161.30 (11)
O4—C1—C2—C7170.61 (11)C5—C6—C8—O618.68 (17)
O3—C1—C2—C79.15 (17)C7—C6—C8—O519.76 (17)
O4—C1—C2—C39.89 (17)C5—C6—C8—O5160.27 (11)
O3—C1—C2—C3170.35 (11)C3—C4—C9—O819.45 (17)
C7—C2—C3—C40.72 (18)C5—C4—C9—O8161.70 (11)
C1—C2—C3—C4178.78 (11)C3—C4—C9—O7160.47 (11)
C2—C3—C4—C50.16 (18)C5—C4—C9—O718.38 (17)
C2—C3—C4—C9178.68 (11)C12—N1—C10—C110.03 (15)
C3—C4—C5—C60.83 (18)N1—C10—C11—N20.19 (15)
C9—C4—C5—C6178.03 (11)C12—N2—C11—C100.29 (15)
C4—C5—C6—C70.61 (18)C10—N1—C12—N20.15 (15)
C4—C5—C6—C8179.42 (11)C10—N1—C12—C13178.19 (12)
C5—C6—C7—C20.29 (18)C11—N2—C12—N10.27 (15)
C8—C6—C7—C2179.69 (11)C11—N2—C12—C13178.04 (13)
C3—C2—C7—C60.95 (18)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O7iii0.79 (1)2.10 (1)2.8789 (13)174 (2)
O1—H1B···O40.79 (1)1.90 (1)2.6401 (13)156 (2)
O2—H2A···O5iv0.78 (1)2.17 (1)2.9371 (13)167 (2)
O2—H2B···O6v0.78 (1)1.97 (1)2.7458 (13)175 (2)
O9—H9A···O40.79 (1)1.85 (1)2.6339 (12)176 (2)
O9—H9B···O7vi0.78 (1)1.96 (1)2.7150 (13)166 (2)
O10—H10A···O7iv0.79 (1)2.09 (1)2.8592 (13)166 (2)
O10—H10B···O6v0.79 (1)1.89 (1)2.6835 (12)176 (2)
O11—H11A···O8i0.78 (1)1.92 (1)2.6911 (13)172 (2)
O11—H11B···O5vii0.81 (2)1.90 (2)2.6989 (13)172 (2)
N1—H1···O8vi0.91 (2)1.81 (2)2.7214 (13)175 (2)
N2—H2···O5viii0.89 (2)1.93 (2)2.8206 (14)178 (2)
Symmetry codes: (i) x+2, y+1, z+1; (iii) x+1, y1, z; (iv) x+1, y, z; (v) x+1, y+1, z+2; (vi) x+1, y+1, z+1; (vii) x+1, y, z1; (viii) x+1, y, z+2.
Hydrogen-bond geometry (Å, °) top
D—H···ATypeGraph-setD—HH···AD···AD—H···A
O9—H9A···O4aDC22(20)0.785 (12)1.850 (12)2.6339 (12)176.4 (19)
O9—H9B···O7ivbDC22(20)0.775 (12)1.957 (12)2.7150 (13)165.9 (18)
O10—H10A···O7iicDC22(20)0.791 (12)2.085 (12)2.8592 (13)166.1 (17)
O10—H10B···O6iiidDC22(20)0.793 (12)1.891 (12)2.6835 (12)176.3 (18)
O11—H11A···O8veDC22(20)0.778 (12)1.919 (13)2.6911 (13)171.6 (18)
O11—H11B···O5vifDC22(20)0.809 (17)1.896 (18)2.6989 (13)172.0 (17)
O1—H1A···O7igC(10)C22(20)R22(20)0.787 (12)2.096 (12)2.8789 (13)173.5 (19)
O1—H1B···O4hS(6)0.785 (12)1.904 (13)2.6401 (13)155.8 (18)
O2—H2A···O5iiiC(10)C22(20)R22(20)0.778 (12)2.175 (13)2.9371 (13)166.5 (19)
O2—H2B···O6iiijC(10)C22(20)R22(20)0.783 (12)1.965 (12)2.7458 (13)175 (2)
N1—H1···O8ivkDD22(17)0.913 (15)1.811 (15)2.7214 (13)174.6 (16)
N2—H2···O5viilDD22(17)0.890 (15)1.931 (15)2.8206 (14)178.0 (17)
Symmetry codes: (i) x + 1, y - 1, z; (ii) x + 1, y, z; (iii) -x + 1, -y + 1, -z + 2; (iv) -x + 1, -y + 1, -z + 1; (v) -x + 2, -y + 1, -z + 1; (vi) x + 1, y, z - 1; (vii) -x + 1, -y, -z + 2.
 

Funding information

Funding for this research was provided by: HG-recruitment, HG-Innovation "ECRAPS", HG-Innovation DSF, DASHH, DGP and CMWS (grant to Simone Techert).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, X., Lai, L., Lin, J. & Shen, Z. (2017). Mater. Horiz. 4, 945–976.  CrossRef CAS Google Scholar
First citationClegg, W. & Holcroft, J. M. (2014). Cryst. Growth Des. 14, 6282–6293.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHalcrow, M. A. (2011). Chem. Soc. Rev. 40, 4119–4142.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKetkaew, R., Tantirungrotechai, Y., Harding, P., Chastanet, G., Guionneau, P., Marchivie, M. & Harding, D. J. (2021). Dalton Trans. 50, 1086–1096.  CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, Y., Zou, W.-Q., Wu, M.-F., Lin, J.-D., Zheng, F.-K., Liu, Z.-F., Wang, S.-H., Guo, G.-C. & Huang, J.-S. (2011). CrystEngComm, 13, 3868–3877.  CSD CrossRef CAS Google Scholar
First citationMarchivie, M., Guionneau, P., Létard, J.-F. & Chasseau, D. (2005). Acta Cryst. B61, 25–28.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. (2018). Acta Cryst. A74, a353.  CrossRef IUCr Journals Google Scholar
First citationWang, H., Zhang, X., Yin, F., Chu, W. & Chen, B. (2020). J. Mater. Chem. A, 8, 22111–22123.  CSD CrossRef CAS Google Scholar
First citationWang, Z.-L., Xu, D., Xu, J.-J. & Zhang, X.-B. (2014). Chem. Soc. Rev. 43, 7746–7786.  CrossRef CAS PubMed Google Scholar
First citationWolodkiewicz, W., Brzyska, W. & Glowiak, T. (1996). Pol. J. Chem. 70, 409–416.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds