research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of 1,3-bis­­{[N,N-bis­­(2-hy­dr­oxy­eth­yl)amino]­meth­yl}-5-{[(4,6-di­methyl­pyridin-2-yl)amino]­meth­yl}-2,4,6-tri­ethyl­benzene

crossmark logo

aInstitut für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg/Sachsen, Germany
*Correspondence e-mail: monika.mazik@chemie.tu-freiberg.de

Edited by V. Jancik, Universidad Nacional Autónoma de México, México (Received 22 April 2022; accepted 19 July 2022; online 26 July 2022)

In the crystal structure of the title compound, C30H50N4O4, the two bis­(hy­droxy­eth­yl)amino moieties and the 2,4-di­methyl­pyridinyl­amino unit of the mol­ecule are located on one side of the central benzene ring, while the ethyl substituents are oriented in the opposite direction. The dihedral angle between the planes of the aromatic rings is 73.6 (1)°. The conformation of the mol­ecule is stabilized by intra­molecular O—H⋯O (1.86–2.12 Å) and C—H⋯N (2.40, 2.54 Å) hydrogen bonds. Dimers of inversion-related mol­ecules represent the basic supra­molecular entities of the crystal structure. They are further connected via O—H⋯O hydrogen bonding into undulating layers extending parallel to the crystallographic bc plane. Inter­layer inter­action is accomplished by weak C—H⋯π contacts.

1. Chemical context

The 1,3,5-tris­ubstituted 2,4,6-tri­alkyl­benzene scaffold has shown to be valuable for the construction of various artificial receptors (Hennrich & Anslyn, 2002[Hennrich, G. & Anslyn, E. V. (2002). Chem. Eur. J. 8, 2218-2224.]). In the course of our research work, we have successfully used this mol­ecular scaffold in the design of acyclic and macrocyclic receptors for neutral (Mazik, 2009[Mazik, M. (2009). Chem. Soc. Rev. 38, 935-956.], 2012[Mazik, M. (2012). RSC Adv. 2, 2630-2642.]; Lippe & Mazik, 2015[Lippe, J. & Mazik, M. (2015). J. Org. Chem. 80, 1427-1439.]; Lippe et al., 2015[Lippe, J., Seichter, W. & Mazik, M. (2015). Org. Biomol. Chem. 13, 11622-11632.]; Amrhein et al., 2016[Amrhein, F., Lippe, J. & Mazik, M. (2016). Org. Biomol. Chem. 14, 10648-10659.]; Koch et al., 2016[Koch, N., Seichter, W. & Mazik, M. (2016). Synthesis, 48, 2757-2767.]; Amrhein & Mazik, 2021[Amrhein, F. & Mazik, M. (2021). Eur. J. Org. Chem. pp. 6282-6303.]; Köhler et al., 2020[Köhler, L., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 7023-7034.], 2021[Köhler, L., Hübler, C., Seichter, W. & Mazik, M. (2021). RSC Adv. 11, 22221-22229.]) and ionic substrates (Geffert et al., 2013[Geffert, C., Kuschel, M. & Mazik, M. (2013). J. Org. Chem. 78, 292-300.]; Stapf et al., 2015[Stapf, M., Seichter, W. & Mazik, M. (2015). Chem. Eur. J. 21, 6350-6354.]; Schulze et al., 2018[Schulze, M. M., Koch, N., Seichter, W. & Mazik, M. (2018). Eur. J. Org. Chem. pp. 4317-4330.]). Our studies on the mol­ecular recognition of carbohydrates have shown that the participation of different types of recognition groups in the complexation of the substrate favourably influences the binding process (Stapf et al., 2020a[Stapf, M., Seichter, W. & Mazik, M. (2020a). Acta Cryst. E76, 1679-1683.],b[Stapf, M., Seichter, W. & Mazik, M. (2020b). Eur. J. Org. Chem. pp. 4900-4915.]; Kaiser et al., 2019[Kaiser, S., Geffert, C. & Mazik, M. (2019). Eur. J. Org. Chem. pp. 7555-7562.]). Such a combination of two types of recognition units, namely heterocyclic and hy­droxy groups, is realised in the tri­ethyl­benzene-based title compound 1 (see also Stapf et al., 2020a[Stapf, M., Seichter, W. & Mazik, M. (2020a). Acta Cryst. E76, 1679-1683.]). The design of the receptors consisting of the aforementioned recognition units was inspired by the nature of the protein binding sites involved in the inter­actions stabilizing the crystalline protein–carbohydrate complexes (Quiocho, 1989[Quiocho, F. A. (1989). Pure Appl. Chem. 61, 1293-1306.]). For example, 2-amino­pyridine can be considered as a heterocyclic analogue of the asparagine/glutamine primary amide side chain. Furthermore, it should be noted that the formation of intra­molecular inter­actions is also one of the factors influencing the binding properties of a receptor mol­ecule (Rosien et al., 2013[Rosien, J.-R., Seichter, W. & Mazik, M. (2013). Org. Biomol. Chem. 11, 6569-6579.]). Intra­molecular inter­actions can also be observed in the crystal structure of 1.

[Scheme 1]

2. Structural commentary

In the title mol­ecule, the structure of which is shown in Fig. 1[link], the functionalized side arms are arranged on one side of the central benzene ring, while the ethyl substituents are oriented in the opposite direction. One of the bis­(hy­droxy­eth­yl)amino moieties is disordered over two positions [s.o.f. 0.879 (2)/0.121 (2)]. The inter­planar angle between the aromatic rings is 73.6 (1)°. Within the mol­ecule, three hy­droxy groups create a continuous pattern of O—H⋯O hydrogen bonds [d(H⋯O) 1.86–2.12 Å]. The amino nitro­gen atoms N3 and N4 are involved in intra­molecular C—H⋯N hydrogen bonding [d(H⋯N) 2.40, 2.54 Å]. The crystal structure contains four potentially solvent-accessible voids with a total volume of 110 Å3 per unit cell (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). The void volume of 27.5 Å3 and the maximum residual electron density of 0.55 e Å−3 indicate that the voids could be partially occupied by water mol­ecules.

[Figure 1]
Figure 1
Perspective view of the mol­ecular structure of the title compound including atom numbering. Anisotropic displacement ellipsoids are drawn at a 50% probability level. Dashed lines represent hydrogen-bonding inter­actions. For the sake of clarity, only the major position of the disordered bis­(hy­droxy­eth­yl)amino moiety is shown.

3. Supra­molecular features

As depicted in Fig. 2[link] and Fig. 3[link], the crystal structure is constructed of inversion-symmetric mol­ecular dimers held together by O—H⋯N and N—H⋯O hydrogen bonding [d(H⋯N) 1.89 (2) Å; d(H⋯O) 2.19 (2) Å; graph set R22(6) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.])]. These dimers are further assembled via O—H⋯O [d(H⋯O) 1.99 (2) Å] and C—H⋯O [d(H⋯O) 2.45 Å] bonds (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond In Structural Chemistry and Biology, IUCr Monographs on Crystallography, Vol. 9. New York: Oxford University Press.]) into layers extending parallel to the crystallographic bc plane (Fig. 4[link]). As the layer surfaces are defined by the ethyl groups of the mol­ecules, inter­layer association is restricted to weak C—H⋯π contacts (Nishio et al., 1995[Nishio, M., Umezawa, Y., Hirota, M. & Takeuchi, Y. (1995). Tetrahedron, 51, 8665-8701.]). Information regarding non-covalent bonding present in the crystal is found in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2A—H2A⋯O4i 0.84 1.99 2.763 (18) 152
O1A—H1A⋯N2ii 0.84 1.99 2.832 (12) 178
C18A—H18D⋯O2A 0.99 2.46 3.08 (2) 120
O2—H2⋯O3i 0.87 (2) 1.99 (2) 2.828 (2) 162 (3)
O1—H1⋯N2ii 0.87 (2) 1.89 (2) 2.7449 (19) 167 (3)
N1—H1N⋯O1ii 0.89 (2) 2.19 (2) 3.014 (2) 152.0 (17)
C22—H22A⋯N4 0.99 2.40 3.152 (2) 132
C18—H18A⋯O2 0.99 2.39 3.106 (3) 128
C15—H15A⋯N3 0.99 2.54 3.282 (3) 131
C13—H13A⋯O2Aiii 0.98 2.33 3.220 (14) 151
C10—H10⋯O4iv 0.95 2.45 3.365 (2) 161
O4—H4⋯O3 0.86 (2) 2.12 (2) 2.9200 (18) 155 (3)
O3—H3⋯O1A 0.87 (2) 1.93 (2) 2.727 (13) 152 (3)
O3—H3⋯O1 0.87 (2) 1.86 (2) 2.7156 (19) 172 (3)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, -y+1, -z]; (iii) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iv) [x, y, z-1].
[Figure 2]
Figure 2
Structure of the mol­ecular dimer including the numbering of atoms involved in hydrogen-bonding inter­actions. For the sake of clarity, only the major position of the disordered hy­droxy­ethyl moiety is shown. Hydrogen bonds are shown as dashed lines.
[Figure 3]
Figure 3
Packing excerpt of the title compound with numbering of coordinating atoms. Oxygen atoms are displayed as red, nitro­gen atoms as blue circles. Hydrogen atoms excluded from inter­molecular inter­actions are omitted for clarity. Hydrogen bonds are shown as broken lines.
[Figure 4]
Figure 4
Packing diagram of the title compound viewed down the c axis. Oxygen atoms are displayed as red, nitro­gen atoms as blue circles. Hydrogen-bonding inter­actions are shown as dashed lines.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.43, update November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 2,4,6-tri­ethyl­benzene derivatives bearing the (4,6-di­methyl­pyridin-2-yl)amino­methyl unit gave eight hits. In the crystal structures of the monohydrate and the methanol solvate of {1-[(3,5-bis­{[(4,6-di­methyl­pyridin-2-yl)amino]­meth­yl}-2,4,6-tri­ethyl­benz­yl)amino]­cyclo­pent­yl}methanol (CADTAG, CADTEK; Stapf et al., 2020a[Stapf, M., Seichter, W. & Mazik, M. (2020a). Acta Cryst. E76, 1679-1683.]), the host mol­ecules reveal similar geometries with an alternating arrangement of the substituents above and below the plane of the central benzene ring. The crystals of these solvates are composed of inversion-symmetric dimers of 1:1 host–guest complexes held together by O—H⋯N and N—H⋯O hydrogen bonds.

In the case of the ethanol solvate of 1,3,5-tris­[(4,6-di­meth­yl­pyridin-2-yl)amino­meth­yl]-2,4,6-tri­ethyl­benzene (RAJ­ZAE; Mazik et al., 2004[Mazik, M., Radunz, W. & Boese, R. (2004). J. Org. Chem. 69, 7448-7462.]), dimers of host–guest units stabilized by O—H⋯Npyr and N—H⋯O bonds represent the basic supra­molecular aggregates. The latter compound is also capable of forming crystalline complexes with methyl β-D-gluco­pyran­oside (LAJZOP; Köhler et al., 2020[Köhler, L., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 7023-7034.]). This crystal structure (aceto­nitrile tetra­solvate monohydrate) contains two structurally different 2:1 receptor-carbohydrate complexes in which the sugar substrate is located in a cavity formed by the functionalized side arms of a pair of receptor mol­ecules.

In the crystal structure of 1-{[N-(1,10-phenanthrolin-2-ylcarbon­yl)amino]­meth­yl}-3,5-bis­{[(4,6-di­methyl­pyridin-2-yl)amino]­meth­yl}-2,4,6-tri­ethyl­benzene (ROKJEH; Mazik et al., 2008[Mazik, M. & Hartmann, A. (2008). J. Org. Chem. 73, 7444-7450.]), three water mol­ecules are accommodated in the binding pocket created by the heterocyclic units (one phenanthrolinyl and two pyridinyl groups) of the host mol­ecule. This host–water aggregate is stabilized by O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds. In a similar way, two water mol­ecules and one ethanol mol­ecule are accommodated in the binding pocket of 1,3-bis­{[N-(1,10-phenanthrolin-2-ylcarbon­yl)amino]­meth­yl}-5-{[(4,6-di­methyl­pyridin-2-yl)amino]­meth­yl}-2,4,6-tri­ethyl­benzene (TUGVEX; Mazik et al., 2009[Mazik, M., Hartmann, A. & Jones, P. G. (2009). Chem. Eur. J. 15, 9147-9159.]), containing one pyridinyl and two phenanthrolinyl groups.

5. Synthesis and crystallization

A mixture of di­ethano­lamine (0.18 mL, 0.20 g, 1.88 mmol), THF (10 mL) and potassium carbonate (86 mg, 0.62 mmol) was stirred at room temperature for 30 minutes. After that, a solution of 1,3-bis­(bromo­meth­yl)-5-{[(4,6-di­methyl­pyridin-2-yl)amino]­meth­yl}-2,4,6-tri­ethyl­benzene (150 mg, 0.31 mmol) in 10 mL of THF/CH3CN (1:1) was added dropwise and the resulting mixture was stirred at room temperature and under light exclusion (the progress of the reaction was monitored by TLC). After filtration, the solvents were removed under reduced pressure and the residual yellow oil was treated with a THF/water mixture. Then the THF was evaporated and the resulting oil was separated from the water. The oil was again dissolved in THF and dried over MgSO4. By addition of n-hexane, the product was precipitated as a white solid (58% yield, 95 mg, 0.18 mmol). Analysis data: m.p. = 408 K; 1H NMR (500 MHz, CDCl3) δ 1.14 (t, J = 7.5 Hz, 3H, CH3), 1.19 (t, J = 7.5 Hz, 6H, CH3), 2.29 (s, 3H, CH3), 2.35 (s, 3H, CH3), 2.63 (t, J = 5.0 Hz, 8H, CH2), 2.80 (q, J = 7.5 Hz, 4H, CH2), 3.26 (q, J = 7.5 Hz, 2H, CH2), 3.50 (t, J = 5.0 Hz, 8H, CH2), 3.77 (s, 4H, CH2), 4.22 (d, J = 4.0 Hz, 2H, CH2), 4.60 (br, 1H, NH), 6.17 (s, 1H, ArH), 6.38 (s, 1H, ArH); 13C NMR (126 MHz, CDCl3) δ 15.7, 16.5, 21.2, 21.3, 22.9, 23.8, 40.8, 52.3, 55.2, 59.7, 102.7, 114.1, 131.6, 132.6, 143.5, 145.8, 149.7, 156.2, 158.0; MS (ESI): m/z calculated for C30H51N4O4: 531.4 [M + H]+, found 531.4; Rf = 0.50 (Al2O3, CHCl3/CH3OH 7:1). Crystals of the title compound suitable for X-ray analysis were obtained as colourless blocks by diffusion of n-hexane into a solution of the compound in THF.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Carbon-bound hydrogen atoms and protons of the minor (12%) positions of the disordered OH groups (H1A, H2A) were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.95 Å (aromatic) and 0.99 Å (methyl­ene) and Uiso(H) = 1.2 Ueq(C), and O—H = 0.84 Å (OH) and C—H = 0.98 Å (meth­yl) and Uiso(H) = 1.5 Ueq(C,O), respectively. The protons of the N—H and O—H (undisordered or the main positions) were located from the residual electron density map and refined with Uiso(H) bound to the parent atom (1.2, for NH and 1.5 for OH) with distance restraints for the OH bonds (SADI). The refinement of the disordered N(CH2CH2OH)2 group was performed using geometry (SAME) and Uij (SIMU, RIGU) restrains implemented in SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]). The refined proportion of the two positions is 88:12%. The maximum residual peak of 0.55 e Å−3 is located inside a 27.5 Å3 void and can be refined as a partially occupied water mol­ecule (∼6%); however, due to the low occupancy, it was not included in the final refinement.

Table 2
Experimental details

Crystal data
Chemical formula C30H50N4O4
Mr 530.74
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 14.2508 (3), 15.3046 (4), 15.2593 (3)
β (°) 113.3107 (13)
V3) 3056.43 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.20 × 0.13 × 0.12
 
Data collection
Diffractometer Bruker Kappa APEXII with CCD area detector
No. of measured, independent and observed [I > 2σ(I)] reflections 22458, 6881, 4968
Rint 0.031
(sin θ/λ)max−1) 0.647
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.144, 1.03
No. of reflections 6881
No. of parameters 431
No. of restraints 290
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.55, −0.26
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2-{[(3-{[Bis(2-hydroxyethyl)amino]methyl}-5-{[(4,6-dimethylpyridin-2-yl)amino]methyl}-2,4,6-triethylphenyl)methyl](2-hydroxyethyl)amino}ethan-1-ol top
Crystal data top
C30H50N4O4F(000) = 1160
Mr = 530.74Dx = 1.153 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.2508 (3) ÅCell parameters from 5468 reflections
b = 15.3046 (4) Åθ = 2.7–28.2°
c = 15.2593 (3) ŵ = 0.08 mm1
β = 113.3107 (13)°T = 100 K
V = 3056.43 (12) Å3Rod, colourless
Z = 40.20 × 0.13 × 0.12 mm
Data collection top
Bruker Kappa APEXII with CCD area detector
diffractometer
Rint = 0.031
Radiation source: fine-focus sealed X-Ray tubeθmax = 27.4°, θmin = 3.1°
phi and ω scansh = 1817
22458 measured reflectionsk = 1912
6881 independent reflectionsl = 1919
4968 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: mixed
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0773P)2 + 0.7833P]
where P = (Fo2 + 2Fc2)/3
6881 reflections(Δ/σ)max = 0.001
431 parametersΔρmax = 0.55 e Å3
290 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O30.06213 (10)0.37633 (9)0.20622 (9)0.0317 (3)
H30.0307 (19)0.4220 (14)0.1746 (17)0.066 (8)*
O40.14319 (11)0.36916 (9)0.41431 (9)0.0344 (3)
H40.133 (2)0.3843 (18)0.3569 (14)0.075 (9)*
N10.27113 (11)0.44288 (9)0.07113 (9)0.0208 (3)
H1N0.2143 (16)0.4558 (13)0.0622 (13)0.031 (5)*
N20.15327 (11)0.43433 (8)0.22623 (9)0.0228 (3)
N40.27759 (10)0.34248 (8)0.32090 (9)0.0205 (3)
C10.35480 (12)0.49260 (10)0.09155 (10)0.0187 (3)
C20.31562 (12)0.57360 (10)0.10358 (11)0.0194 (3)
C30.30179 (12)0.59065 (9)0.18829 (11)0.0181 (3)
C40.32351 (11)0.52609 (10)0.25834 (10)0.0173 (3)
C50.35813 (12)0.44317 (9)0.24358 (10)0.0174 (3)
C60.37449 (11)0.42637 (10)0.16047 (10)0.0177 (3)
C70.36773 (12)0.47485 (11)0.00056 (11)0.0221 (3)
H7A0.3879390.5291680.0237670.027*
H7B0.4219620.4306980.0102950.027*
C80.25215 (12)0.43984 (9)0.16689 (11)0.0193 (3)
C90.12953 (14)0.42942 (11)0.32090 (12)0.0267 (4)
C100.20380 (14)0.43045 (11)0.35800 (12)0.0275 (4)
H100.1850410.4277540.4250110.033*
C110.30622 (14)0.43547 (11)0.29619 (12)0.0273 (4)
C120.33091 (13)0.43981 (10)0.19916 (11)0.0233 (3)
H120.4002350.4427320.1553170.028*
C130.01792 (15)0.42276 (15)0.38339 (14)0.0410 (5)
H13A0.0093300.4148060.4498640.062*
H13B0.0168510.4764130.3778280.062*
H13C0.0116390.3726990.3633170.062*
C140.38925 (17)0.43524 (14)0.33408 (15)0.0413 (5)
H14A0.3960020.3763960.3562330.062*
H14B0.4541170.4527310.2832490.062*
H14C0.3715540.4764510.3873720.062*
C150.28910 (15)0.64292 (11)0.02668 (12)0.0301 (4)
H15A0.2321640.6789920.0283520.036*
H15B0.2653640.6140870.0364850.036*
C160.37980 (19)0.70256 (13)0.03842 (16)0.0468 (6)
H16A0.4352850.6676120.0338100.070*
H16B0.4037920.7312120.1009140.070*
H16C0.3582680.7469770.0119540.070*
C170.25925 (12)0.67846 (10)0.20094 (12)0.0220 (3)
H17A0.2756540.6880140.2696110.026*0.879 (2)
H17B0.2929370.7252430.1791470.026*0.879 (2)
H17C0.2951740.6995480.2672520.026*0.121 (2)
H17D0.2681600.7221740.1570270.026*0.121 (2)
N30.14881 (13)0.68479 (11)0.14808 (13)0.0210 (4)0.879 (2)
C180.09000 (15)0.61856 (13)0.17436 (13)0.0257 (4)0.879 (2)
H18A0.0672310.6432670.2226410.031*0.879 (2)
H18B0.1344820.5677610.2033340.031*0.879 (2)
C190.0016 (2)0.5886 (3)0.0894 (3)0.0291 (8)0.879 (2)
H19A0.0505990.6375130.0649460.035*0.879 (2)
H19B0.0198090.5699920.0379410.035*0.879 (2)
O10.04980 (13)0.51746 (9)0.11566 (11)0.0291 (4)0.879 (2)
H10.0746 (19)0.5386 (16)0.1552 (16)0.044*0.879 (2)
C200.11081 (16)0.77397 (12)0.14305 (16)0.0307 (5)0.879 (2)
H20A0.0352850.7721080.1119540.037*0.879 (2)
H20B0.1350470.8080130.1009130.037*0.879 (2)
C210.1402 (2)0.82323 (15)0.2360 (2)0.0441 (6)0.879 (2)
H21A0.2151400.8318910.2640510.053*0.879 (2)
H21B0.1077650.8816610.2225820.053*0.879 (2)
O20.11150 (16)0.78077 (12)0.30323 (13)0.0529 (5)0.879 (2)
H20.0511 (16)0.801 (2)0.292 (2)0.088 (12)*0.879 (2)
N3A0.1503 (6)0.6654 (8)0.1793 (8)0.028 (3)0.121 (2)
C18A0.0841 (8)0.6365 (8)0.0834 (7)0.022 (2)0.121 (2)
H18C0.1192910.5902290.0625510.026*0.121 (2)
H18D0.0710140.6861760.0385710.026*0.121 (2)
C19A0.0162 (11)0.6017 (19)0.0800 (16)0.025 (4)0.121 (2)
H19C0.0610270.6504700.0819170.030*0.121 (2)
H19D0.0516010.5681340.0205040.030*0.121 (2)
O1A0.0064 (10)0.5463 (9)0.1615 (10)0.051 (3)0.121 (2)
H1A0.0401110.5508600.1819420.076*0.121 (2)
C20A0.1121 (12)0.7331 (9)0.2246 (10)0.050 (3)0.121 (2)
H20C0.1524330.7322860.2944240.060*0.121 (2)
H20D0.0399760.7205610.2131060.060*0.121 (2)
C21A0.1192 (18)0.8226 (10)0.1859 (13)0.066 (5)0.121 (2)
H21C0.1063390.8675120.2264970.079*0.121 (2)
H21D0.1893890.8314350.1892930.079*0.121 (2)
O2A0.0491 (14)0.8342 (12)0.0907 (11)0.087 (5)0.121 (2)
H2A0.0105530.8259470.0872010.130*0.121 (2)
C220.31398 (13)0.54528 (10)0.35242 (11)0.0229 (3)
H22A0.2991540.4903070.3786700.027*
H22B0.2560900.5857630.3407780.027*
C230.41152 (14)0.58586 (11)0.42515 (11)0.0261 (4)
H23A0.4693520.5467530.4352840.039*
H23B0.4040180.5946120.4856700.039*
H23C0.4238400.6422690.4012070.039*
C240.37421 (12)0.37309 (10)0.31879 (11)0.0205 (3)
H24A0.4105430.3229460.3055910.025*
H24B0.4178700.3968410.3822510.025*
C250.21403 (13)0.29319 (11)0.23560 (11)0.0246 (4)
H25A0.1825950.2431880.2550980.029*
H25B0.2580860.2693810.2048620.029*
C260.13072 (13)0.34762 (11)0.16397 (12)0.0265 (4)
H26A0.1609100.3987880.1450410.032*
H26B0.0930410.3125340.1061520.032*
C270.29400 (14)0.29730 (11)0.41001 (12)0.0264 (4)
H27A0.3446840.3300230.4639860.032*
H27B0.3221710.2383980.4087990.032*
C280.19565 (15)0.28872 (12)0.42530 (13)0.0320 (4)
H28A0.1505490.2459620.3790680.038*
H28B0.2114910.2658170.4902910.038*
C290.41588 (13)0.33905 (10)0.14462 (12)0.0246 (4)
H29A0.3891510.3267800.0753120.029*
H29B0.3911720.2923700.1750830.029*
C300.53240 (14)0.33718 (12)0.18528 (13)0.0336 (4)
H30A0.5555280.2799910.1728310.050*
H30B0.5592550.3474700.2542600.050*
H30C0.5572660.3828860.1548620.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0266 (7)0.0379 (7)0.0313 (7)0.0018 (6)0.0122 (6)0.0082 (6)
O40.0409 (8)0.0418 (8)0.0244 (7)0.0039 (6)0.0170 (6)0.0003 (6)
N10.0216 (7)0.0258 (7)0.0169 (7)0.0023 (6)0.0096 (6)0.0033 (5)
N20.0267 (8)0.0207 (7)0.0218 (7)0.0009 (5)0.0103 (6)0.0008 (5)
N40.0258 (7)0.0192 (6)0.0153 (6)0.0026 (5)0.0068 (6)0.0014 (5)
C10.0180 (7)0.0219 (7)0.0168 (7)0.0045 (6)0.0077 (6)0.0025 (6)
C20.0188 (8)0.0188 (7)0.0194 (8)0.0033 (6)0.0063 (6)0.0013 (6)
C30.0167 (7)0.0153 (7)0.0221 (8)0.0014 (6)0.0075 (6)0.0011 (6)
C40.0169 (7)0.0172 (7)0.0188 (7)0.0023 (6)0.0084 (6)0.0027 (6)
C50.0178 (7)0.0169 (7)0.0168 (7)0.0005 (6)0.0062 (6)0.0000 (6)
C60.0167 (7)0.0182 (7)0.0183 (7)0.0008 (6)0.0069 (6)0.0036 (6)
C70.0215 (8)0.0286 (8)0.0180 (8)0.0041 (7)0.0096 (7)0.0028 (6)
C80.0261 (8)0.0147 (7)0.0185 (7)0.0000 (6)0.0104 (7)0.0001 (6)
C90.0325 (10)0.0221 (8)0.0232 (8)0.0002 (7)0.0088 (7)0.0002 (6)
C100.0395 (10)0.0268 (9)0.0174 (8)0.0027 (7)0.0127 (8)0.0005 (6)
C110.0360 (10)0.0255 (8)0.0261 (9)0.0049 (7)0.0184 (8)0.0036 (7)
C120.0246 (9)0.0254 (8)0.0210 (8)0.0029 (7)0.0101 (7)0.0038 (6)
C130.0350 (11)0.0513 (12)0.0294 (10)0.0004 (9)0.0047 (9)0.0011 (9)
C140.0483 (13)0.0514 (12)0.0367 (11)0.0127 (10)0.0301 (10)0.0116 (9)
C150.0458 (11)0.0221 (8)0.0234 (8)0.0009 (8)0.0145 (8)0.0052 (7)
C160.0773 (17)0.0288 (10)0.0509 (13)0.0146 (10)0.0429 (13)0.0012 (9)
C170.0218 (8)0.0189 (7)0.0255 (8)0.0010 (6)0.0093 (7)0.0014 (6)
N30.0214 (9)0.0169 (8)0.0247 (9)0.0047 (6)0.0092 (7)0.0066 (7)
C180.0249 (10)0.0268 (10)0.0260 (10)0.0008 (8)0.0109 (8)0.0009 (8)
C190.0286 (13)0.0305 (17)0.0260 (13)0.0004 (12)0.0085 (10)0.0001 (10)
O10.0237 (8)0.0311 (8)0.0342 (8)0.0008 (6)0.0130 (7)0.0026 (6)
C200.0276 (11)0.0183 (9)0.0487 (13)0.0081 (8)0.0178 (10)0.0071 (9)
C210.0336 (14)0.0276 (11)0.0711 (18)0.0065 (10)0.0207 (14)0.0135 (12)
O20.0628 (13)0.0487 (10)0.0471 (10)0.0246 (9)0.0218 (10)0.0080 (8)
N3A0.025 (5)0.018 (5)0.035 (5)0.001 (4)0.006 (4)0.002 (4)
C18A0.013 (4)0.020 (5)0.027 (5)0.003 (4)0.002 (4)0.004 (4)
C19A0.019 (6)0.021 (7)0.033 (7)0.005 (5)0.008 (5)0.014 (5)
O1A0.026 (6)0.069 (8)0.053 (7)0.011 (6)0.011 (5)0.021 (6)
C20A0.046 (6)0.042 (5)0.054 (6)0.008 (5)0.010 (5)0.012 (5)
C21A0.060 (8)0.047 (7)0.077 (8)0.007 (6)0.013 (7)0.004 (6)
O2A0.077 (10)0.096 (11)0.080 (8)0.027 (8)0.023 (7)0.017 (7)
C220.0326 (9)0.0182 (7)0.0236 (8)0.0005 (7)0.0174 (7)0.0018 (6)
C230.0374 (10)0.0228 (8)0.0195 (8)0.0007 (7)0.0126 (7)0.0035 (6)
C240.0243 (8)0.0183 (7)0.0173 (7)0.0015 (6)0.0066 (7)0.0012 (6)
C250.0284 (9)0.0214 (8)0.0227 (8)0.0037 (7)0.0088 (7)0.0026 (6)
C260.0259 (9)0.0329 (9)0.0197 (8)0.0065 (7)0.0077 (7)0.0001 (7)
C270.0341 (10)0.0245 (8)0.0195 (8)0.0002 (7)0.0094 (7)0.0060 (6)
C280.0398 (11)0.0338 (10)0.0249 (9)0.0032 (8)0.0153 (8)0.0042 (7)
C290.0306 (9)0.0212 (8)0.0230 (8)0.0032 (7)0.0118 (7)0.0040 (6)
C300.0323 (10)0.0331 (9)0.0348 (10)0.0130 (8)0.0128 (8)0.0021 (8)
Geometric parameters (Å, º) top
O3—C261.436 (2)C18—C191.502 (4)
O3—H30.867 (16)C18—H18A0.9900
O4—C281.415 (2)C18—H18B0.9900
O4—H40.863 (16)C19—O11.427 (3)
N1—C81.3775 (19)C19—H19A0.9900
N1—C71.456 (2)C19—H19B0.9900
N1—H1N0.89 (2)O1—H10.873 (16)
N2—C81.343 (2)C20—C211.512 (3)
N2—C91.349 (2)C20—H20A0.9900
N4—C271.4595 (19)C20—H20B0.9900
N4—C251.466 (2)C21—O21.404 (3)
N4—C241.467 (2)C21—H21A0.9900
C1—C21.401 (2)C21—H21B0.9900
C1—C61.407 (2)O2—H20.865 (17)
C1—C71.513 (2)N3A—C18A1.461 (9)
C2—C31.407 (2)N3A—C20A1.466 (9)
C2—C151.515 (2)C18A—C19A1.507 (10)
C3—C41.397 (2)C18A—H18C0.9900
C3—C171.518 (2)C18A—H18D0.9900
C4—C51.412 (2)C19A—O1A1.433 (10)
C4—C221.523 (2)C19A—H19C0.9900
C5—C61.4010 (19)C19A—H19D0.9900
C5—C241.521 (2)O1A—H1A0.8400
C6—C291.518 (2)C20A—C21A1.511 (10)
C7—H7A0.9900C20A—H20C0.9900
C7—H7B0.9900C20A—H20D0.9900
C8—C121.393 (2)C21A—O2A1.411 (10)
C9—C101.384 (2)C21A—H21C0.9900
C9—C131.500 (3)C21A—H21D0.9900
C10—C111.392 (3)O2A—H2A0.8400
C10—H100.9500C22—C231.526 (2)
C11—C121.381 (2)C22—H22A0.9900
C11—C141.509 (2)C22—H22B0.9900
C12—H120.9500C23—H23A0.9800
C13—H13A0.9800C23—H23B0.9800
C13—H13B0.9800C23—H23C0.9800
C13—H13C0.9800C24—H24A0.9900
C14—H14A0.9800C24—H24B0.9900
C14—H14B0.9800C25—C261.507 (2)
C14—H14C0.9800C25—H25A0.9900
C15—C161.534 (3)C25—H25B0.9900
C15—H15A0.9900C26—H26A0.9900
C15—H15B0.9900C26—H26B0.9900
C16—H16A0.9800C27—C281.515 (2)
C16—H16B0.9800C27—H27A0.9900
C16—H16C0.9800C27—H27B0.9900
C17—N31.460 (2)C28—H28A0.9900
C17—N3A1.468 (8)C28—H28B0.9900
C17—H17A0.9900C29—C301.526 (2)
C17—H17B0.9900C29—H29A0.9900
C17—H17C0.9900C29—H29B0.9900
C17—H17D0.9900C30—H30A0.9800
N3—C201.459 (2)C30—H30B0.9800
N3—C181.469 (2)C30—H30C0.9800
C26—O3—H3106.9 (18)H19A—C19—H19B108.2
C28—O4—H4102.7 (19)C19—O1—H1106.4 (17)
C8—N1—C7121.81 (13)N3—C20—C21117.25 (18)
C8—N1—H1N111.1 (12)N3—C20—H20A108.0
C7—N1—H1N117.4 (12)C21—C20—H20A108.0
C8—N2—C9118.51 (14)N3—C20—H20B108.0
C27—N4—C25113.46 (12)C21—C20—H20B108.0
C27—N4—C24111.47 (13)H20A—C20—H20B107.2
C25—N4—C24113.60 (12)O2—C21—C20113.70 (19)
C2—C1—C6120.77 (13)O2—C21—H21A108.8
C2—C1—C7118.81 (13)C20—C21—H21A108.8
C6—C1—C7120.24 (13)O2—C21—H21B108.8
C1—C2—C3119.50 (13)C20—C21—H21B108.8
C1—C2—C15120.56 (13)H21A—C21—H21B107.7
C3—C2—C15119.94 (14)C21—O2—H2104 (2)
C4—C3—C2120.16 (13)C18A—N3A—C20A118.3 (9)
C4—C3—C17120.50 (13)C18A—N3A—C17118.2 (8)
C2—C3—C17119.29 (13)C20A—N3A—C17110.8 (8)
C3—C4—C5119.95 (13)N3A—C18A—C19A111.7 (11)
C3—C4—C22120.61 (13)N3A—C18A—H18C109.3
C5—C4—C22119.40 (13)C19A—C18A—H18C109.3
C6—C5—C4120.22 (13)N3A—C18A—H18D109.3
C6—C5—C24121.63 (13)C19A—C18A—H18D109.3
C4—C5—C24118.13 (12)H18C—C18A—H18D107.9
C5—C6—C1119.28 (13)O1A—C19A—C18A107.1 (10)
C5—C6—C29121.33 (13)O1A—C19A—H19C110.3
C1—C6—C29119.37 (12)C18A—C19A—H19C110.3
N1—C7—C1108.68 (12)O1A—C19A—H19D110.3
N1—C7—H7A110.0C18A—C19A—H19D110.3
C1—C7—H7A110.0H19C—C19A—H19D108.5
N1—C7—H7B110.0C19A—O1A—H1A109.5
C1—C7—H7B110.0N3A—C20A—C21A111.2 (12)
H7A—C7—H7B108.3N3A—C20A—H20C109.4
N2—C8—N1115.51 (13)C21A—C20A—H20C109.4
N2—C8—C12122.62 (14)N3A—C20A—H20D109.4
N1—C8—C12121.84 (15)C21A—C20A—H20D109.4
N2—C9—C10121.94 (16)H20C—C20A—H20D108.0
N2—C9—C13115.99 (15)O2A—C21A—C20A112.8 (12)
C10—C9—C13122.07 (16)O2A—C21A—H21C109.0
C9—C10—C11119.35 (15)C20A—C21A—H21C109.0
C9—C10—H10120.3O2A—C21A—H21D109.0
C11—C10—H10120.3C20A—C21A—H21D109.0
C12—C11—C10118.89 (15)H21C—C21A—H21D107.8
C12—C11—C14120.34 (17)C21A—O2A—H2A109.5
C10—C11—C14120.76 (15)C4—C22—C23111.64 (13)
C11—C12—C8118.68 (16)C4—C22—H22A109.3
C11—C12—H12120.7C23—C22—H22A109.3
C8—C12—H12120.7C4—C22—H22B109.3
C9—C13—H13A109.5C23—C22—H22B109.3
C9—C13—H13B109.5H22A—C22—H22B108.0
H13A—C13—H13B109.5C22—C23—H23A109.5
C9—C13—H13C109.5C22—C23—H23B109.5
H13A—C13—H13C109.5H23A—C23—H23B109.5
H13B—C13—H13C109.5C22—C23—H23C109.5
C11—C14—H14A109.5H23A—C23—H23C109.5
C11—C14—H14B109.5H23B—C23—H23C109.5
H14A—C14—H14B109.5N4—C24—C5112.30 (13)
C11—C14—H14C109.5N4—C24—H24A109.1
H14A—C14—H14C109.5C5—C24—H24A109.1
H14B—C14—H14C109.5N4—C24—H24B109.1
C2—C15—C16112.70 (16)C5—C24—H24B109.1
C2—C15—H15A109.1H24A—C24—H24B107.9
C16—C15—H15A109.1N4—C25—C26113.08 (14)
C2—C15—H15B109.1N4—C25—H25A109.0
C16—C15—H15B109.1C26—C25—H25A109.0
H15A—C15—H15B107.8N4—C25—H25B109.0
C15—C16—H16A109.5C26—C25—H25B109.0
C15—C16—H16B109.5H25A—C25—H25B107.8
H16A—C16—H16B109.5O3—C26—C25108.92 (13)
C15—C16—H16C109.5O3—C26—H26A109.9
H16A—C16—H16C109.5C25—C26—H26A109.9
H16B—C16—H16C109.5O3—C26—H26B109.9
N3—C17—C3112.70 (14)C25—C26—H26B109.9
N3A—C17—C3106.9 (5)H26A—C26—H26B108.3
N3—C17—H17A109.1N4—C27—C28111.58 (14)
C3—C17—H17A109.1N4—C27—H27A109.3
N3—C17—H17B109.1C28—C27—H27A109.3
C3—C17—H17B109.1N4—C27—H27B109.3
H17A—C17—H17B107.8C28—C27—H27B109.3
N3A—C17—H17C110.3H27A—C27—H27B108.0
C3—C17—H17C110.3O4—C28—C27112.57 (14)
N3A—C17—H17D110.3O4—C28—H28A109.1
C3—C17—H17D110.3C27—C28—H28A109.1
H17C—C17—H17D108.6O4—C28—H28B109.1
C20—N3—C17112.80 (16)C27—C28—H28B109.1
C20—N3—C18114.82 (16)H28A—C28—H28B107.8
C17—N3—C18114.22 (15)C6—C29—C30112.38 (14)
N3—C18—C19111.71 (17)C6—C29—H29A109.1
N3—C18—H18A109.3C30—C29—H29A109.1
C19—C18—H18A109.3C6—C29—H29B109.1
N3—C18—H18B109.3C30—C29—H29B109.1
C19—C18—H18B109.3H29A—C29—H29B107.9
H18A—C18—H18B107.9C29—C30—H30A109.5
O1—C19—C18109.9 (2)C29—C30—H30B109.5
O1—C19—H19A109.7H30A—C30—H30B109.5
C18—C19—H19A109.7C29—C30—H30C109.5
O1—C19—H19B109.7H30A—C30—H30C109.5
C18—C19—H19B109.7H30B—C30—H30C109.5
C6—C1—C2—C33.9 (2)N2—C8—C12—C111.1 (2)
C7—C1—C2—C3179.11 (14)N1—C8—C12—C11179.13 (15)
C6—C1—C2—C15176.63 (15)C1—C2—C15—C1688.89 (19)
C7—C1—C2—C151.5 (2)C3—C2—C15—C1690.55 (19)
C1—C2—C3—C42.3 (2)C4—C3—C17—N399.98 (17)
C15—C2—C3—C4178.26 (15)C2—C3—C17—N377.67 (18)
C1—C2—C3—C17179.95 (14)C4—C3—C17—N3A77.6 (6)
C15—C2—C3—C170.6 (2)C2—C3—C17—N3A100.1 (6)
C2—C3—C4—C50.8 (2)C3—C17—N3—C20167.61 (15)
C17—C3—C4—C5176.79 (14)C3—C17—N3—C1858.88 (19)
C2—C3—C4—C22176.88 (14)C20—N3—C18—C1983.7 (3)
C17—C3—C4—C225.5 (2)C17—N3—C18—C19143.8 (2)
C3—C4—C5—C62.4 (2)N3—C18—C19—O1173.3 (2)
C22—C4—C5—C6175.35 (14)C17—N3—C20—C2152.4 (2)
C3—C4—C5—C24176.09 (14)C18—N3—C20—C2180.8 (2)
C22—C4—C5—C246.2 (2)N3—C20—C21—O256.8 (3)
C4—C5—C6—C10.8 (2)C3—C17—N3A—C18A61.6 (11)
C24—C5—C6—C1177.64 (14)C3—C17—N3A—C20A157.2 (8)
C4—C5—C6—C29177.43 (14)C20A—N3A—C18A—C19A58.0 (19)
C24—C5—C6—C294.1 (2)C17—N3A—C18A—C19A163.7 (14)
C2—C1—C6—C52.4 (2)N3A—C18A—C19A—O1A45 (3)
C7—C1—C6—C5177.49 (14)C18A—N3A—C20A—C21A77.9 (15)
C2—C1—C6—C29179.35 (14)C17—N3A—C20A—C21A63.2 (15)
C7—C1—C6—C294.2 (2)N3A—C20A—C21A—O2A70 (2)
C8—N1—C7—C1165.06 (14)C3—C4—C22—C2385.93 (18)
C2—C1—C7—N185.21 (17)C5—C4—C22—C2391.81 (17)
C6—C1—C7—N190.00 (17)C27—N4—C24—C5162.08 (12)
C9—N2—C8—N1178.75 (14)C25—N4—C24—C568.22 (16)
C9—N2—C8—C120.6 (2)C6—C5—C24—N4108.97 (16)
C7—N1—C8—N2161.06 (14)C4—C5—C24—N469.50 (18)
C7—N1—C8—C1220.8 (2)C27—N4—C25—C26132.61 (15)
C8—N2—C9—C100.4 (2)C24—N4—C25—C2698.70 (15)
C8—N2—C9—C13179.58 (15)N4—C25—C26—O363.25 (17)
N2—C9—C10—C110.9 (2)C25—N4—C27—C2866.62 (18)
C13—C9—C10—C11179.07 (17)C24—N4—C27—C28163.61 (13)
C9—C10—C11—C120.4 (2)N4—C27—C28—O450.53 (19)
C9—C10—C11—C14179.00 (16)C5—C6—C29—C3088.66 (18)
C10—C11—C12—C80.6 (2)C1—C6—C29—C3089.57 (18)
C14—C11—C12—C8179.97 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A—H2A···O4i0.841.992.763 (18)152
O1A—H1A···N2ii0.841.992.832 (12)178
C18A—H18D···O2A0.992.463.08 (2)120
O2—H2···O3i0.87 (2)1.99 (2)2.828 (2)162 (3)
O1—H1···N2ii0.87 (2)1.89 (2)2.7449 (19)167 (3)
N1—H1N···O1ii0.89 (2)2.19 (2)3.014 (2)152.0 (17)
C22—H22A···N40.992.403.152 (2)132
C18—H18A···O20.992.393.106 (3)128
C15—H15A···N30.992.543.282 (3)131
C13—H13A···O2Aiii0.982.333.220 (14)151
C10—H10···O4iv0.952.453.365 (2)161
O4—H4···O30.86 (2)2.12 (2)2.9200 (18)155 (3)
O3—H3···O1A0.87 (2)1.93 (2)2.727 (13)152 (3)
O3—H3···O10.87 (2)1.86 (2)2.7156 (19)172 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x, y1/2, z1/2; (iv) x, y, z1.
 

Funding information

Open access funding by the Publication Fund of the Technische Universität Bergakademie Freiberg is gratefully acknowledged.

References

First citationAmrhein, F., Lippe, J. & Mazik, M. (2016). Org. Biomol. Chem. 14, 10648–10659.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAmrhein, F. & Mazik, M. (2021). Eur. J. Org. Chem. pp. 6282–6303.  Web of Science CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond In Structural Chemistry and Biology, IUCr Monographs on Crystallography, Vol. 9. New York: Oxford University Press.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGeffert, C., Kuschel, M. & Mazik, M. (2013). J. Org. Chem. 78, 292–300.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHennrich, G. & Anslyn, E. V. (2002). Chem. Eur. J. 8, 2218–2224.  CrossRef PubMed CAS Google Scholar
First citationKaiser, S., Geffert, C. & Mazik, M. (2019). Eur. J. Org. Chem. pp. 7555–7562.  Web of Science CrossRef Google Scholar
First citationKoch, N., Seichter, W. & Mazik, M. (2016). Synthesis, 48, 2757–2767.  CAS Google Scholar
First citationKöhler, L., Hübler, C., Seichter, W. & Mazik, M. (2021). RSC Adv. 11, 22221–22229.  Web of Science PubMed Google Scholar
First citationKöhler, L., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 7023–7034.  Google Scholar
First citationLippe, J. & Mazik, M. (2015). J. Org. Chem. 80, 1427–1439.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLippe, J., Seichter, W. & Mazik, M. (2015). Org. Biomol. Chem. 13, 11622–11632.  CSD CrossRef CAS PubMed Google Scholar
First citationMazik, M. (2009). Chem. Soc. Rev. 38, 935–956.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMazik, M. (2012). RSC Adv. 2, 2630–2642.  Web of Science CrossRef CAS Google Scholar
First citationMazik, M. & Hartmann, A. (2008). J. Org. Chem. 73, 7444–7450.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMazik, M., Hartmann, A. & Jones, P. G. (2009). Chem. Eur. J. 15, 9147–9159.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMazik, M., Radunz, W. & Boese, R. (2004). J. Org. Chem. 69, 7448–7462.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNishio, M., Umezawa, Y., Hirota, M. & Takeuchi, Y. (1995). Tetrahedron, 51, 8665–8701.  CrossRef CAS Web of Science Google Scholar
First citationQuiocho, F. A. (1989). Pure Appl. Chem. 61, 1293–1306.  CrossRef CAS Web of Science Google Scholar
First citationRosien, J.-R., Seichter, W. & Mazik, M. (2013). Org. Biomol. Chem. 11, 6569–6579.  CSD CrossRef CAS PubMed Google Scholar
First citationSchulze, M. M., Koch, N., Seichter, W. & Mazik, M. (2018). Eur. J. Org. Chem. pp. 4317–4330.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStapf, M., Seichter, W. & Mazik, M. (2015). Chem. Eur. J. 21, 6350–6354.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationStapf, M., Seichter, W. & Mazik, M. (2020a). Acta Cryst. E76, 1679–1683.  CSD CrossRef IUCr Journals Google Scholar
First citationStapf, M., Seichter, W. & Mazik, M. (2020b). Eur. J. Org. Chem. pp. 4900–4915.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds