research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (±)-N′-(2-hy­dr­oxy-3-meth­­oxy­benzyl­­idene)-2-(4-iso­butyl­phen­yl)propionohydrazide

crossmark logo

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Sohag University, 82534 Sohag, Egypt, fDepartment of Chemistry, College of Science, Kirkuk University, Kirkuk, Iraq, and gChemistry Department, Faculty of Science, Sana'a University, Sana'a, Yemen
*Correspondence e-mail: e.altaifi@su.edu.ye

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 8 June 2022; accepted 26 July 2022; online 29 July 2022)

The title mol­ecule, C21H26N2O3, adopts a V-shaped conformation and is chiral at the C atom with methyl group attached at the common cut of the edges of the V-conformation and crystallizes as a racemate. It also contains an intra­molecular O—H⋯N hydrogen bond. In the crystal, N—H⋯O hydrogen bonds form chains of mol­ecules extending along the c-axis direction, together with normal van der Waals contacts. The roles of the various inter­molecular inter­actions were clarified by Hirshfeld surface analysis, which reveals that the most important contributions to the crystal packing are from H⋯H (62.6%), C⋯H/H⋯C (15.8%) and O⋯H/H⋯O (15.3%) contacts.

1. Chemical context

Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used as analgesics and anti­pyretics to manage pain and inflammation in people with chronic pain, osteoarthritis, rheumatoid arthritis, postoperative surgical conditions, and menstrual cramps (Manzano et al., 2018[Manzano, C. M., Bergamini, F. R. G., Lustri, W. R., Ruiz, A. L. T. G., de Oliveira, E. C. S., Ribeiro, M. A., Formiga, A. L. B. & Corbi, P. P. (2018). J. Mol. Struct. 1154, 469-479.]; Gupta & Bah, 2016[Gupta, A. & Bah, M. (2016). Curr. Pain Headache Rep. 20, 62. https://doi.org/10.1007/s11916-016-0591-7]; Budoff, 1979[Budoff, P. W. (1979). JAMA: J. Am. Med. Assoc. 241, 2713-2716.]). Azo-methine structure-based ibuprofen core compounds in particular have been used as anti-viral and anti-bacterial agents (El Bakri et al., 2022[El Bakri, Y., Mohamed, S. K., Ahmad, S., Albayati, M. R., Elgarhy, S. M. I., Lai, C. H. & Mague, J. T. (2022). J. Biochem. Mol. Toxicol. e23082 (Early View). https://doi.org/10.1002/jbt.23082]). Based on such significant activity, we herein report the crystal structure of a member of this family, namely (±)-N′-(2-hy­droxy-3-meth­oxy­benzyl­idene)-2-(4-iso­butyl­phen­yl)propionohydrazide.

[Scheme 1]

2. Structural commentary

In the solid state, the mol­ecule adopts a wide, V-shaped conformation (Fig. 1[link]) with a dihedral angle of 1.08 (11)° between the mean plane of the C1–C6 ring and the chain defined by C8, C9, N1 and N2. This is likely due to the intra­molecular O1—H1⋯N1 hydrogen bond (Table 1[link] and Fig. 1[link]). The dihedral angle between the latter chain and the mean plane of the C12–C17 ring is 59.34 (6)°. There is one stereogenic center in the racemic title compound and the chirality of the C10 atom is S in the chosen asymmetric unit. All bond distances and angles appear as expected.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—HO1⋯N1 0.85 (1) 1.83 (1) 2.5914 (13) 149 (2)
N2—HN2⋯O1i 0.90 (1) 2.40 (1) 3.2470 (14) 157 (1)
N2—HN2⋯O2i 0.90 (1) 2.18 (1) 2.8745 (14) 133 (1)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The title mol­ecule with labeling scheme and 30% probability level ellipsoids. The intra­molecular O—H⋯N hydrogen bond is depicted by a dashed line. Only the major component of the disorder is shown.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, N2—H2⋯O2 and weaker N2—H2⋯O1 hydrogen bonds (Table 1[link]) form chains of mol­ecules extending along the c-axis direction (Fig. 2[link]). The mol­ecular packing is provided by normal van der Waals inter­actions between chains.

[Figure 2]
Figure 2
A portion of one chain viewed along the b-axis with the O—H⋯N and N—H⋯O hydrogen bonds depicted by dashed lines and non-inter­acting hydrogen atoms omitted for clarity.

Hirshfeld surfaces and their related two-dimensional fingerprint plots were generated using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, M. A., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17. University of Western Australia.]) to visually represent the inter­molecular inter­actions in the crystal structure of the title compound. The Hirshfeld surface plotted over dnorm in the range −0.3801 to +1.4738 a.u. is shown in Fig. 3[link]. The inter­actions shown in Tables 1[link] and 2[link] are important in the mol­ecular packing of the title compound.

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
HO1⋯H7C 2.49 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z
O2⋯HN2 2.18 x, [{3\over 2}] − y, [{1\over 2}] + z
H13⋯H7C 2.47 1 − x, 2 − y, 1 − z
H11B⋯C2 2.95 1 − x, 1 − y, 1 − z
C6⋯H19A 2.90 1 + x, [{3\over 2}] − y, [{1\over 2}] + z
H6⋯C13 2.98 1 − x, [{1\over 2}] + y, [{1\over 2}] − z
H7A⋯H20D 2.26 1 + x, y, 1 + z
H11A⋯H20F 2.05 x, −[{1\over 2}] + y, [{1\over 2}] − z
H20C⋯H14 2.58 -x, 2 − y, −z
H21D⋯H21A 2.02 -x, 1 − y, −z
[Figure 3]
Figure 3
(a) Front view and (b) back view of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.3801 to +1.4738 a.u. The red, white and blue regions visible on the dnorm surfaces indicate contacts with distances shorter, longer and equal to the van der Waals separations, respectively. The red spots highlight the inter­atomic contacts, including the O—H⋯N and N—H⋯O hydrogen bonds.

The overall two-dimensional fingerprint plot is illustrated in Fig. 4[link]a, and those delineated into the major contacts: H⋯H (62.6%; Fig. 4[link]b), C⋯H/H⋯C (15.8%; Fig. 4[link]c), O⋯H/H⋯O and (15.3%; Fig. 4[link]d). The other contacts are negligible with individual contributions of less than 2.2% [N⋯H/H⋯N (2.2%), N⋯C/C⋯N (2.1%), C⋯C (1.3%) and N⋯C/C⋯N (0.7%)].

[Figure 4]
Figure 4
Two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C and (d) O⋯H/H⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

Six related compounds were found in a search of the Cambridge Structural Database (CSD, version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), viz. N′-benzyl­idene-2-({5-[(4-chloro­phen­oxy)meth­yl]-4-phenyl-4H-1,2,4-triazol-3-yl}sulfan­yl)acetohydrazide hemihydrate [CSD refcode ULARIK (I); Mague et al., 2016[Mague, J. T., Mohamed, S. K., Akkurt, M., Bakhite, E. A. & Albayati, M. R. (2016). IUCrData, 1, x160627.]], N′-[(3-cyano­phen­yl)meth­yl­idene]-N-methyl-2-(thio­phen-2-yl)acetohydrazide [ECO­WEB (II); Cardoso et al., 2017[Cardoso, L. N. F., Noguiera, T. C. M., Kaiser, C. R., Wardell, J. L., Souza, M. V. N. de & Harrison, W. T. A. (2017). Acta Cryst. E73, 1636-1641.]], N′-[(4-meth­oxy­phen­yl)methyl­idene]-N-methyl-2-(thio­phen-2-yl)acetohydrazide [ECO­WIF (III); Cardoso et al., 2017[Cardoso, L. N. F., Noguiera, T. C. M., Kaiser, C. R., Wardell, J. L., Souza, M. V. N. de & Harrison, W. T. A. (2017). Acta Cryst. E73, 1636-1641.]], N′-[(1Z)-1-(3-methyl-5-oxo-1-phenyl-1,5-di­hydro-4H-pyrazol-4-yl­idene)eth­yl]-2-[(4-methyl­phen­yl)sulfan­yl]acetohydrazide [GEMQIB (IV); Mohamed et al., 2017[Mohamed, S. K., Mague, J. T., Akkurt, M., Abbady, M. S., Bakhite, E. A. & Albayati, M. R. (2017). IUCrData, 2, x171666.]], (E)-N′-(4-fluoro­benzyl­idene)-2-(3-methyl­phen­yl)acetohydrazide [MEWMUY (V); Praveen et al., 2013[Praveen, A. S., Jasinski, J. P., Keeley, A. C., Yathirajan, H. S. & Narayana, B. (2013). Acta Cryst. E69, o421.]] and N′-[4-(di­methyl­amino)­benzyl­idene]-2-(4-methyl­phen­oxy)aceto­hydrazide [ZIYSOR (VI); Usha et al., 2014[Usha, M. K., Madan Kumar, S., Nitinchandra, , Kalluraya, B., Lokanath, N. K. & Revannasiddaiah, D. (2014). Acta Cryst. E70, o140.]].

In (I), three independent mol­ecules in the asymmetric unit and two water mol­ecules of crystallization are observed. The three unique organic mol­ecules differ in the conformations of the substituents on the pyrazole ring. In the crystal, extensive O—H⋯O, O—H⋯N, N—H⋯O and C—H⋯O hydrogen bonding generates a three-dimensional network and C—H⋯π inter­actions are also observed. Compounds (II) and (III) crystallize with two mol­ecules in the asymmetric unit, with generally similar conformations that approximate to L-shapes. The packing for (II) features short C—H⋯O inter­actions arising from the C—H adjacent to the cyanide group and C—H⋯Nc (c = cyanide) links arising from the methine groups to generate [110] double chains. Weak C—H⋯π inter­actions inter­link the chains into a three-dimensional network. The packing for (III) features numerous C—H⋯O and C—H⋯π inter­actions arising from different donor groups to generate a three-dimensional network. In (IV), the mol­ecular conformation is influenced by intra­molecular N—H⋯O and C—H⋯O hydrogen bonds. In the crystal, N—H⋯O hydrogen bonds plus C—H⋯π and ππ stacking inter­actions lead to the formation of chains extending in the a-axis direction. The chains are linked by complementary pairs of C—H⋯π inter­actions. Compound (V) has four independent mol­ecules in the asymmetric unit. In the crystal, N—H—O hydrogen bonds involving the hydrazide and acetyl groups, which form R22(18) ring motifs, link the mol­ecules into dimers, which form columns along the [010] plane. In the crystal of (VI), the mol­ecules are linked by C—H⋯O and N—H⋯O hydrogen bonds, as well as weak C—H⋯π contacts, forming a three-dimensional supra­molecular architecture.

5. Synthesis and crystallization

The title compound was synthesized by mixing 1.101g (5 mmol) of ibuprofen hydrazide in 15 mL of chloro­form with 0.76 g (5 mmol) of 2-hy­droxy-3-meth­oxy­benzaldehyde in 15 mL of methanol. A few drops of acetic acid were added to the reaction mixture as catalyst and the mixture was refluxed at 333 K for 1 h. The reaction progress was monitored by TLC until completion. The crude product as a pale-yellow precipitate was filtered off, washed, recrystallized from ethanol and dried under vacuum over anhydrous CaCl2 under vacuum. M.p. 444.15 K; 87% yield.

The product was characterized by different spectroscopic analyses. Empirical formula, C21H26N2O3 (354.33 g mol−1); IR (cm−1); 3280 (NH), 1704 (C=O), 1612 (C=N), and 1248 (C—O). 1H NMR (400 MHz, CDCl3) ppm δ = 0.83–0.86 (d, J = 6.6 Hz, 6H), 1.37–1.43 (d, J = 7.0 Hz, 3H), 1.45–1.84 (m, 1H), 2.37–2.52 (d, J = 7.1 Hz, 2H), 3.65–3.70 (q, J = 7.0 Hz, 3H), 3.80–3.82 (s, 3H), 6.81–7.30 (m, 7H), 8.41 (s, 1H), 10.82 (s, 1H), 11.73 (s, 1H). 13C NMR (75 MHz, CDCl3) δ = 18.88, 19.10, 22.64, 30.10, 39.55, 39.97, 40.38, 44.70, 56.28, 113.19, 114.12, 118.34, 119.68, 121.12, 127.68, 129.46, 139.72, 140.14, 146.31, 148.34, 170.12.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms attached to carbon were placed in calculated positions (C—H = 0.95–1.00 Å) and were included as riding contributions with isotropic displacement parameters 1.2–1.5 times those of the attached atoms. Those attached to nitro­gen and to oxygen were placed in locations derived from a difference map and refined freely with DFIX 0.91 0.01 and DFIX 0.84 0.01 instructions, respectively. The atoms of the propane group are disordered over two sets of sites with an occupancy ratio of 0.929 (3):0.071 (3).

Table 3
Experimental details

Crystal data
Chemical formula C21H26N2O3
Mr 354.44
Crystal system, space group Monoclinic, P21/c
Temperature (K) 125
a, b, c (Å) 14.5241 (7), 10.0718 (5), 13.2710 (7)
β (°) 97.042 (2)
V3) 1926.69 (17)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.66
Crystal size (mm) 0.20 × 0.20 × 0.03
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 3 CPAD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.90, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 38584, 3758, 3400
Rint 0.035
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.109, 1.06
No. of reflections 3758
No. of parameters 259
No. of restraints 8
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.21
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

(±)-N'-(2-Hydroxy-3-methoxybenzylidene)-2-(4-isobutylphenyl)propionohydrazide top
Crystal data top
C21H26N2O3F(000) = 760
Mr = 354.44Dx = 1.222 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 14.5241 (7) ÅCell parameters from 9778 reflections
b = 10.0718 (5) Åθ = 5.5–72.4°
c = 13.2710 (7) ŵ = 0.66 mm1
β = 97.042 (2)°T = 125 K
V = 1926.69 (17) Å3Plate, colourless
Z = 40.20 × 0.20 × 0.03 mm
Data collection top
Bruker D8 VENTURE PHOTON 3 CPAD
diffractometer
3758 independent reflections
Radiation source: INCOATEC IµS micro—-focus source3400 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.035
Detector resolution: 7.3910 pixels mm-1θmax = 72.4°, θmin = 5.5°
φ and ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1212
Tmin = 0.90, Tmax = 0.98l = 1416
38584 measured reflections
Refinement top
Refinement on F28 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.694P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3758 reflectionsΔρmax = 0.40 e Å3
259 parametersΔρmin = 0.21 e Å3
Special details top

Experimental. The diffraction data were obtained from 15 sets of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX4. The scan time was 10 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.48117 (6)0.83125 (10)0.62950 (7)0.0328 (2)
HO10.4586 (13)0.7973 (19)0.5735 (10)0.061 (6)*
O20.57158 (7)0.95029 (10)0.78175 (7)0.0378 (2)
O30.30167 (6)0.64479 (10)0.44100 (7)0.0353 (2)
N10.46923 (7)0.75956 (10)0.44081 (8)0.0276 (2)
N20.42448 (7)0.69530 (11)0.35782 (8)0.0291 (2)
HN20.4561 (10)0.6800 (17)0.3046 (10)0.041 (4)*
C10.59869 (9)0.88043 (12)0.51948 (9)0.0272 (3)
C20.56349 (8)0.88651 (12)0.61296 (9)0.0259 (3)
C30.61408 (9)0.95151 (12)0.69520 (9)0.0276 (3)
C40.69830 (9)1.01023 (13)0.68500 (10)0.0310 (3)
H40.7321441.0543940.7410150.037*
C50.73341 (9)1.00426 (15)0.59170 (11)0.0364 (3)
H50.7912941.0446880.5842780.044*
C60.68465 (9)0.94019 (14)0.51054 (10)0.0341 (3)
H60.7094520.9363070.4476060.041*
C70.61541 (9)1.02016 (14)0.86811 (10)0.0343 (3)
H7A0.6757740.9795900.8905820.051*
H7B0.5762551.0156960.9231250.051*
H7C0.6243211.1131850.8499370.051*
C80.54787 (9)0.81416 (13)0.43243 (9)0.0289 (3)
H80.5727640.8112690.3695290.035*
C90.34188 (9)0.63537 (13)0.36611 (9)0.0277 (3)
C100.30483 (9)0.55529 (13)0.27208 (9)0.0293 (3)
H100.3521670.5574190.2233740.035*
C110.29224 (12)0.41096 (14)0.30427 (12)0.0427 (4)
H11A0.2500840.4078830.3564980.064*
H11B0.3525380.3738530.3316310.064*
H11C0.2660640.3588290.2452640.064*
C120.21646 (8)0.61920 (12)0.22138 (9)0.0268 (3)
C130.21756 (9)0.68811 (13)0.13073 (9)0.0287 (3)
H130.2738250.6945970.1013260.034*
C140.13798 (10)0.74751 (13)0.08254 (10)0.0340 (3)
H140.1405620.7948010.0210110.041*
C150.05427 (10)0.73865 (15)0.12330 (10)0.0377 (3)
C160.05360 (10)0.66893 (17)0.21379 (11)0.0419 (4)
H160.0028640.6607310.2426080.050*
C170.13317 (10)0.61141 (16)0.26259 (10)0.0364 (3)
H170.1309380.5660280.3249990.044*
C180.03439 (12)0.80231 (19)0.07374 (12)0.0507 (4)
H18A0.0871370.7619370.1033310.061*
H18B0.0328120.8976900.0919000.061*
C190.05346 (11)0.79118 (15)0.04059 (12)0.0363 (4)0.929 (3)
H190.0025950.8387970.0700910.044*0.929 (3)
C200.14474 (15)0.8607 (2)0.07853 (17)0.0478 (5)0.929 (3)
H20A0.1962950.8134470.0533160.072*0.929 (3)
H20B0.1535740.8607490.1529390.072*0.929 (3)
H20C0.1428600.9523710.0536700.072*0.929 (3)
C210.05494 (17)0.6501 (2)0.07825 (16)0.0410 (5)0.929 (3)
H21A0.0044310.6073340.0547980.062*0.929 (3)
H21B0.0649150.6496410.1526320.062*0.929 (3)
H21C0.1053150.6015410.0518290.062*0.929 (3)
C19A0.1011 (12)0.7500 (17)0.0070 (13)0.0363 (4)0.071 (3)
H19A0.1409150.7025440.0377060.044*0.071 (3)
C20A0.172 (2)0.852 (3)0.047 (3)0.0478 (5)0.071 (3)
H20D0.2242900.8075110.0871830.072*0.071 (3)
H20E0.1435330.9149050.0906480.072*0.071 (3)
H20F0.1938090.8995070.0094850.072*0.071 (3)
C21A0.064 (3)0.629 (3)0.054 (3)0.0410 (5)0.071 (3)
H21D0.0725930.5512470.0107810.062*0.071 (3)
H21E0.0019670.6405020.0590410.062*0.071 (3)
H21F0.0978610.6144370.1213560.062*0.071 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0293 (5)0.0422 (5)0.0276 (5)0.0105 (4)0.0059 (4)0.0063 (4)
O20.0384 (5)0.0494 (6)0.0260 (5)0.0148 (4)0.0054 (4)0.0083 (4)
O30.0315 (5)0.0495 (6)0.0245 (5)0.0024 (4)0.0017 (4)0.0011 (4)
N10.0287 (5)0.0295 (5)0.0238 (5)0.0024 (4)0.0005 (4)0.0023 (4)
N20.0290 (5)0.0352 (6)0.0225 (5)0.0011 (4)0.0012 (4)0.0047 (4)
C10.0279 (6)0.0265 (6)0.0270 (6)0.0017 (5)0.0025 (5)0.0029 (5)
C20.0246 (6)0.0252 (6)0.0278 (6)0.0002 (5)0.0025 (5)0.0027 (5)
C30.0291 (6)0.0278 (6)0.0257 (6)0.0003 (5)0.0024 (5)0.0020 (5)
C40.0291 (6)0.0307 (6)0.0315 (6)0.0022 (5)0.0028 (5)0.0013 (5)
C50.0287 (6)0.0412 (7)0.0395 (7)0.0078 (6)0.0052 (5)0.0017 (6)
C60.0330 (7)0.0397 (7)0.0306 (7)0.0043 (6)0.0080 (5)0.0022 (5)
C70.0349 (7)0.0394 (7)0.0275 (6)0.0025 (6)0.0008 (5)0.0065 (5)
C80.0308 (6)0.0306 (6)0.0255 (6)0.0013 (5)0.0039 (5)0.0016 (5)
C90.0286 (6)0.0309 (6)0.0226 (6)0.0050 (5)0.0005 (5)0.0015 (5)
C100.0290 (6)0.0327 (7)0.0255 (6)0.0021 (5)0.0000 (5)0.0024 (5)
C110.0522 (9)0.0326 (7)0.0414 (8)0.0032 (6)0.0021 (7)0.0002 (6)
C120.0277 (6)0.0281 (6)0.0235 (6)0.0009 (5)0.0009 (5)0.0044 (5)
C130.0287 (6)0.0303 (6)0.0270 (6)0.0027 (5)0.0029 (5)0.0034 (5)
C140.0414 (7)0.0330 (7)0.0265 (6)0.0032 (6)0.0002 (5)0.0003 (5)
C150.0359 (7)0.0467 (8)0.0289 (7)0.0122 (6)0.0025 (5)0.0095 (6)
C160.0296 (7)0.0668 (10)0.0297 (7)0.0047 (6)0.0059 (5)0.0063 (6)
C170.0333 (7)0.0531 (8)0.0230 (6)0.0013 (6)0.0036 (5)0.0009 (6)
C180.0439 (9)0.0652 (11)0.0409 (8)0.0229 (8)0.0032 (7)0.0096 (7)
C190.0341 (8)0.0353 (8)0.0376 (8)0.0053 (6)0.0039 (6)0.0017 (6)
C200.0424 (11)0.0441 (9)0.0527 (12)0.0110 (8)0.0112 (8)0.0018 (9)
C210.0414 (10)0.0356 (10)0.0431 (13)0.0014 (8)0.0066 (9)0.0022 (8)
C19A0.0341 (8)0.0353 (8)0.0376 (8)0.0053 (6)0.0039 (6)0.0017 (6)
C20A0.0424 (11)0.0441 (9)0.0527 (12)0.0110 (8)0.0112 (8)0.0018 (9)
C21A0.0414 (10)0.0356 (10)0.0431 (13)0.0014 (8)0.0066 (9)0.0022 (8)
Geometric parameters (Å, º) top
O1—C21.3609 (15)C13—C141.3863 (19)
O1—HO10.847 (9)C13—H130.9500
O2—C31.3690 (15)C14—C151.393 (2)
O2—C71.4265 (15)C14—H140.9500
O3—C91.2167 (16)C15—C161.392 (2)
N1—C81.2847 (17)C15—C181.5146 (19)
N1—N21.3706 (14)C16—C171.381 (2)
N2—C91.3594 (17)C16—H160.9500
N2—HN20.902 (9)C17—H170.9500
C1—C21.3999 (17)C18—C19A1.453 (8)
C1—C61.4042 (18)C18—C191.513 (2)
C1—C81.4545 (17)C18—H18A0.9900
C2—C31.4011 (17)C18—H18B0.9900
C3—C41.3802 (18)C19—C211.505 (3)
C4—C51.397 (2)C19—C201.529 (2)
C4—H40.9500C19—H191.0000
C5—C61.3751 (19)C20—H20A0.9800
C5—H50.9500C20—H20B0.9800
C6—H60.9500C20—H20C0.9800
C7—H7A0.9800C21—H21A0.9800
C7—H7B0.9800C21—H21B0.9800
C7—H7C0.9800C21—H21C0.9800
C8—H80.9500C19A—C21A1.50 (3)
C9—C101.5272 (17)C19A—C20A1.50 (3)
C10—C121.5174 (17)C19A—H19A1.0000
C10—C111.5324 (19)C20A—H20D0.9800
C10—H101.0000C20A—H20E0.9800
C11—H11A0.9800C20A—H20F0.9800
C11—H11B0.9800C21A—H21D0.9800
C11—H11C0.9800C21A—H21E0.9800
C12—C171.3896 (18)C21A—H21F0.9800
C12—C131.3907 (18)
C2—O1—HO1106.1 (14)C13—C14—H14119.6
C3—O2—C7117.83 (10)C15—C14—H14119.6
C8—N1—N2118.14 (11)C16—C15—C14117.78 (12)
C9—N2—N1118.74 (10)C16—C15—C18119.51 (14)
C9—N2—HN2121.8 (11)C14—C15—C18122.71 (14)
N1—N2—HN2118.3 (11)C17—C16—C15121.48 (13)
C2—C1—C6118.76 (12)C17—C16—H16119.3
C2—C1—C8121.27 (11)C15—C16—H16119.3
C6—C1—C8119.97 (11)C16—C17—C12120.70 (13)
O1—C2—C1123.27 (11)C16—C17—H17119.6
O1—C2—C3116.91 (11)C12—C17—H17119.6
C1—C2—C3119.82 (11)C19A—C18—C15128.4 (7)
O2—C3—C4125.61 (11)C19—C18—C15116.46 (13)
O2—C3—C2113.71 (11)C19—C18—H18A108.2
C4—C3—C2120.68 (12)C15—C18—H18A108.2
C3—C4—C5119.52 (12)C19—C18—H18B108.2
C3—C4—H4120.2C15—C18—H18B108.2
C5—C4—H4120.2H18A—C18—H18B107.3
C6—C5—C4120.36 (12)C21—C19—C18113.35 (14)
C6—C5—H5119.8C21—C19—C20110.26 (15)
C4—C5—H5119.8C18—C19—C20109.95 (14)
C5—C6—C1120.86 (12)C21—C19—H19107.7
C5—C6—H6119.6C18—C19—H19107.7
C1—C6—H6119.6C20—C19—H19107.7
O2—C7—H7A109.5C19—C20—H20A109.5
O2—C7—H7B109.5C19—C20—H20B109.5
H7A—C7—H7B109.5H20A—C20—H20B109.5
O2—C7—H7C109.5C19—C20—H20C109.5
H7A—C7—H7C109.5H20A—C20—H20C109.5
H7B—C7—H7C109.5H20B—C20—H20C109.5
N1—C8—C1119.85 (11)C19—C21—H21A109.5
N1—C8—H8120.1C19—C21—H21B109.5
C1—C8—H8120.1H21A—C21—H21B109.5
O3—C9—N2123.24 (12)C19—C21—H21C109.5
O3—C9—C10123.52 (12)H21A—C21—H21C109.5
N2—C9—C10113.23 (11)H21B—C21—H21C109.5
C12—C10—C9109.42 (10)C18—C19A—C21A111.2 (18)
C12—C10—C11113.75 (11)C18—C19A—C20A112.3 (16)
C9—C10—C11108.38 (11)C21A—C19A—C20A132 (2)
C12—C10—H10108.4C18—C19A—H19A96.7
C9—C10—H10108.4C21A—C19A—H19A96.7
C11—C10—H10108.4C20A—C19A—H19A96.7
C10—C11—H11A109.5C19A—C20A—H20D109.5
C10—C11—H11B109.5C19A—C20A—H20E109.5
H11A—C11—H11B109.5H20D—C20A—H20E109.5
C10—C11—H11C109.5C19A—C20A—H20F109.5
H11A—C11—H11C109.5H20D—C20A—H20F109.5
H11B—C11—H11C109.5H20E—C20A—H20F109.5
C17—C12—C13118.13 (12)C19A—C21A—H21D109.5
C17—C12—C10122.10 (11)C19A—C21A—H21E109.5
C13—C12—C10119.77 (11)H21D—C21A—H21E109.5
C14—C13—C12121.14 (12)C19A—C21A—H21F109.5
C14—C13—H13119.4H21D—C21A—H21F109.5
C12—C13—H13119.4H21E—C21A—H21F109.5
C13—C14—C15120.75 (13)
C8—N1—N2—C9179.02 (11)O3—C9—C10—C1158.49 (16)
C6—C1—C2—O1179.68 (12)N2—C9—C10—C11121.52 (12)
C8—C1—C2—O10.51 (19)C9—C10—C12—C1773.14 (15)
C6—C1—C2—C30.03 (18)C11—C10—C12—C1748.22 (17)
C8—C1—C2—C3179.78 (11)C9—C10—C12—C13106.89 (13)
C7—O2—C3—C42.85 (19)C11—C10—C12—C13131.75 (13)
C7—O2—C3—C2176.72 (11)C17—C12—C13—C140.01 (19)
O1—C2—C3—O20.43 (16)C10—C12—C13—C14179.96 (11)
C1—C2—C3—O2179.84 (11)C12—C13—C14—C150.6 (2)
O1—C2—C3—C4179.97 (11)C13—C14—C15—C160.3 (2)
C1—C2—C3—C40.25 (18)C13—C14—C15—C18179.73 (13)
O2—C3—C4—C5179.74 (13)C14—C15—C16—C170.7 (2)
C2—C3—C4—C50.20 (19)C18—C15—C16—C17178.79 (14)
C3—C4—C5—C60.1 (2)C15—C16—C17—C121.3 (2)
C4—C5—C6—C10.4 (2)C13—C12—C17—C161.0 (2)
C2—C1—C6—C50.4 (2)C10—C12—C17—C16179.00 (13)
C8—C1—C6—C5179.46 (13)C16—C15—C18—C19A96.1 (12)
N2—N1—C8—C1178.45 (11)C14—C15—C18—C19A84.4 (13)
C2—C1—C8—N10.19 (18)C16—C15—C18—C19139.06 (16)
C6—C1—C8—N1180.00 (12)C14—C15—C18—C1941.5 (2)
N1—N2—C9—O36.17 (18)C15—C18—C19—C2156.4 (2)
N1—N2—C9—C10173.84 (10)C15—C18—C19—C20179.71 (16)
O3—C9—C10—C1266.06 (16)C15—C18—C19A—C21A11 (3)
N2—C9—C10—C12113.93 (12)C15—C18—C19A—C20A170.6 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HO1···N10.85 (1)1.83 (1)2.5914 (13)149 (2)
N2—HN2···O1i0.90 (1)2.40 (1)3.2470 (14)157 (1)
N2—HN2···O2i0.90 (1)2.18 (1)2.8745 (14)133 (1)
C10—H10···O1i1.002.633.5545 (16)155
Symmetry code: (i) x, y+3/2, z1/2.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
HO1···H7C2.491 - x, -1/2 + y, 3/2 - z
O2···HN22.18x, 3/2 - y, 1/2 + z
H13···H7C2.471 - x, 2 - y, 1 - z
H11B···C22.951 - x, 1 - y, 1 - z
C6···H19A2.901 + x, 3/2 - y, 1/2 + z
H6···C132.981 - x, 1/2 + y, 1/2 - z
H7A···H20D2.261 + x, y, 1 + z
H11A···H20F2.05-x, -1/2 + y, 1/2 - z
H20C···H142.58-x, 2 - y, -z
H21D···H21A2.02-x, 1 - y, -z
 

Acknowledgements

Author contributions to this paper are as follows: synthesis and organic chemistry parts preparation, MAH, MRA; EAAT; conceptualization and study guide, LHAR, SKM; financial support, EAA; crystal data production and validation, JTM; paper preparation and Hirshfeld study, MA, SKM.

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBruker (2016). APEX3 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.  Google Scholar
First citationBudoff, P. W. (1979). JAMA: J. Am. Med. Assoc. 241, 2713–2716.  Google Scholar
First citationCardoso, L. N. F., Noguiera, T. C. M., Kaiser, C. R., Wardell, J. L., Souza, M. V. N. de & Harrison, W. T. A. (2017). Acta Cryst. E73, 1636–1641.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEl Bakri, Y., Mohamed, S. K., Ahmad, S., Albayati, M. R., Elgarhy, S. M. I., Lai, C. H. & Mague, J. T. (2022). J. Biochem. Mol. Toxicol. e23082 (Early View). https://doi.org/10.1002/jbt.23082  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGupta, A. & Bah, M. (2016). Curr. Pain Headache Rep. 20, 62. https://doi.org/10.1007/s11916-016-0591-7  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMague, J. T., Mohamed, S. K., Akkurt, M., Bakhite, E. A. & Albayati, M. R. (2016). IUCrData, 1, x160627.  Google Scholar
First citationManzano, C. M., Bergamini, F. R. G., Lustri, W. R., Ruiz, A. L. T. G., de Oliveira, E. C. S., Ribeiro, M. A., Formiga, A. L. B. & Corbi, P. P. (2018). J. Mol. Struct. 1154, 469–479.  CrossRef CAS Google Scholar
First citationMohamed, S. K., Mague, J. T., Akkurt, M., Abbady, M. S., Bakhite, E. A. & Albayati, M. R. (2017). IUCrData, 2, x171666.  Google Scholar
First citationPraveen, A. S., Jasinski, J. P., Keeley, A. C., Yathirajan, H. S. & Narayana, B. (2013). Acta Cryst. E69, o421.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, M. A., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17. University of Western Australia.  Google Scholar
First citationUsha, M. K., Madan Kumar, S., Nitinchandra, , Kalluraya, B., Lokanath, N. K. & Revannasiddaiah, D. (2014). Acta Cryst. E70, o140.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds