research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of ethyl (3E)-5-(4-chloro­phen­yl)-3-{[(4-chloro­phen­yl)formamido]­imino}-7-methyl-2H,3H,5H-[1,3]thia­zolo[3,2-a]pyrimidine-6-carboxyl­ate

crossmark logo

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt, fDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, PO Box, 11562, Egypt, gSoil, Water, and Environment Research Institute, Agricultural Research Center, Giza, Egypt, and hChemistry Department, Faculty of Applied Science, Taiz University, Taiz, Yemen
*Correspondence e-mail: mokh.amin@taiz.edu.ye

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 26 May 2022; accepted 7 June 2022; online 26 July 2022)

In the title mol­ecule, C23H20Cl2N4O3S, the thia­zole ring is planar while the pyrimidine unit fused to it adopts a screw-boat conformation. In the crystal, thick sheets parallel to the bc plane are formed by N—H⋯N, C—H⋯N and C—H⋯O hydrogen bonds together with ππ inter­actions between the formamido carbonyl groups and the thia­zole rings. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (30.9%), Cl⋯H/H⋯Cl (20.7%), C⋯H/H⋯C (16.8%) and O⋯H/H⋯O (11.4%) inter­actions.

1. Chemical context

Several compounds bearing 1,3,4-oxa­diazole have been reported to exhibit significant anti­cancer activities (Yadagiri et al., 2015[Yadagiri, B., Gurrala, B., Bantu, S., Nagarapu, R., Polepalli, L., Srujana, G. & Jain, N. (2015). Bioorg. Med. Chem. Lett. 25, 2220-2224.]; Valente et al., 2014[Valente, S., Trisciuoglio, D., De Luca, T., Nebbioso, A., Labella, D., Lenoci, A., Bigogno, C., Dondio, G., Miceli, M., Brosch, G., Del Bufalo, D., Altucci, L. & Mai, A. (2014). J. Med. Chem. 57, 6259-6265.]; El-Din et al., 2015[El-Din, M. M. G., El-Gamal, M. I., Abdel-Maksoud, M. S., Yoo, K. H. & Oh, C.-H. (2015). Eur. J. Med. Chem. 90, 45-52.]). On the other hand, pyrimidine-based compounds have shown significant activity against cancer and tumor cells (Tolba et al., 2022[Tolba, M. S., Kamal El-Dean, A. M., Ahmed, M., Hassanien, R., Sayed, M., Zaki, R. M., Mohamed, S. K., Zawam, S. & Abdel-Raheem, S. A. A. (2022). Curr. Chem. Lett. 11, 121-138.]). Compounds combining the pharmacophores di­hydro­pyrimidine and 1,3,4-oxa­diazole have been prepared with the aim of developing potent anti­cancer agents (Ragab et al., 2017[Ragab, F. A., Abou-Seri, S. M., Abdel-Aziz, S. A., Alfayomy, A. M. & Aboelmagd, M. (2017). Eur. J. Med. Chem. 138, 140-151.]). The target hybrids have been synthesized through condensation of 6-methyl-4-aryl-1,2,3,4-tetra­hydro­pyrimidine-2(1H)-thione derivatives and 2-(chloro­meth­yl)-5-aryl-1,3,4-oxa­diazole derivatives and screened for their in vitro cytotoxic activity against 60 cancer cell lines according to NCI (USA) protocols (Skehan et al., 1990[Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S. & Boyd, M. R. (1990). J. Natl Cancer Inst. 82, 1107-1112.]). Unexpectedly, an intra­molecular cyclization and ring opening of 1,3,4-oxa­diazole has occurred and the title compound was chosen as an example of this series for further structural elucidation through X-ray crystallography.

[Scheme 1]

2. Structural commentary

In the title compound, (Fig. 1[link]), the thia­zole ring is planar (r.m.s. deviation of the fitted atoms = 0.001 Å) and the C11–C16 and C18–C23 benzene rings are inclined to it by 88.95 (8) and 11.47 (7)°, respectively. The pyrimidine ring (C1/C2/C3/N1/C4/N2) exhibits a screw-boat conformation with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) of Q(2) = 0.2383 (15) Å and φ(2) = 188.4 (4)°. This ring is folded about the C1⋯N1 axis by 19.9 (1)°. The torsion angles about the bonds of the N′-methyl­ideneformohydrazide link between the chloro­phenyl ring and the 2,3-di­hydro-5H-[1,3]thia­zolo[3,2-a]pyrimidine ring system are: N2—C6=N3—N4 = −177.82 (12)°, C6=N3—N4—C17 = −171.54 (13)° and N3—N4—C17—C18 = −175.14 (12)°. The stereochemistry about the imine function C6=N3 is E.

[Figure 1]
Figure 1
The title mol­ecule with the labelling scheme and 50% probability ellipsoids.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, a combination of N4—H4⋯N1 and C5—H5B⋯N1 hydrogen bonds (Table 1[link]) form helical chains extending along the b-axis direction (Fig. 2[link]). The chains are connected by C5—H5A⋯O3, C15—H15⋯O3 and C8—H8B⋯Cl1 hydrogen bonds as well as centrosymmetrically related π-inter­actions between the C17=O3 carbonyl groups and the thia­zole rings [O3⋯Cg1i = 3.0299 (14) Å, C17⋯Cg1i = 3.4656 (16) Å, C17=O3⋯Cg1i = 100.48 (10)°; Table 2[link] and Fig. 3[link]; Cg1 is the centroid of the thia­zole ring, symmetry code: (i) 1 − x, 1 − y, 1 − z] into thick layers parallel to the bc plane (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯N1i 0.89 (2) 2.16 (2) 3.0076 (18) 158 (2)
C5—H5A⋯O3ii 0.98 (2) 2.533 (19) 3.081 (2) 115.3 (14)
C5—H5B⋯N1i 0.98 (2) 2.57 (2) 3.453 (2) 150.1 (16)
C8—H8B⋯Cl1iii 1.02 (2) 2.77 (2) 3.4430 (17) 123.1 (14)
C15—H15⋯O3iv 0.95 (2) 2.54 (2) 3.1682 (19) 124.5 (17)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, -y+1, -z+1]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
Cl1⋯H10B 2.96 x, −1 + y, z
H4⋯N1 2.16 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z
H15⋯O3 2.54 x, [{1\over 2}] − y, [{1\over 2}] + z
H13⋯Cl2 2.91 1 − x, −y, 1 − z
H5A⋯O3 2.53 1 − x, 1 − y, 1 − z
H20⋯H9B 2.53 1 + x, [{1\over 2}] − y, [{1\over 2}] + z
H9A⋯H9A 2.43 x, 1 − y, 1 − z
[Figure 2]
Figure 2
A portion of the hydrogen-bonded chain viewed along the c-axis direction. N—H⋯N and C—H⋯N hydrogen bonds are shown. H atoms not involved in these inter­actions have been omitted for clarity.
[Figure 3]
Figure 3
Detail of the C—H⋯O and C—H⋯Cl hydrogen bonds and the π-inter­actions down the b-axis. H atoms not involved in these inter­actions have been omitted for clarity.
[Figure 4]
Figure 4
Packing viewed along the a-axis direction with inter­molecular inter­actions shown as in Fig. 2[link].

A Hirshfeld surface analysis was performed using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, M. A., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17. University of Western Australia.]) to visualize the inter­molecular inter­actions. The Hirshfeld surface mapped over dnorm (Fig. 5[link]) shows the expected bright-red spots near atoms N1, O3, H5A, H5B and H15 involved in the C—H⋯O and C—H⋯N hydrogen-bonding inter­actions (Table 1[link]) and short contacts (Table 2[link]). Analysis of the two-dimensional fingerprint plots (Fig. 6[link]) reveals that H⋯H (30.9%), Cl⋯H/H⋯Cl (20.7%), C⋯H/H⋯C (16.8%) and O⋯H/H⋯O (11.4%) inter­actions make the greatest contributions to the surface contacts. The remaining contributions for the title compound are from N⋯H/H⋯N, S⋯H/H⋯S, S⋯C/C⋯S, N⋯C/C⋯N, S⋯N/N⋯S, C⋯C, Cl⋯O/O⋯Cl, O⋯C/C⋯O, N⋯N, Cl⋯Cl, S⋯O/O⋯S, O⋯N/N⋯O and Cl⋯C/C⋯Cl contacts, which are each less than 4.5% and have a negligible effect on the packing. The percentage contributions of all inter­actions are given in Table 3[link].

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound

Contact Percentage contribution
H⋯H 30.9
Cl⋯H/H⋯Cl 20.7
C⋯H/H⋯C 16.8
O⋯H/H⋯O 11.4
N⋯H/H⋯N 4.5
S⋯H/H⋯S 3.4
S⋯C/C⋯S 2.9
N⋯C/C⋯N 1.4
S⋯N/N⋯S 1.4
C⋯C 2.8
Cl⋯O/O⋯Cl 0.9
O⋯C/C⋯O 0.9
N⋯N 0.8
Cl⋯Cl 0.4
S⋯O/O⋯S 0.3
O⋯N/N⋯O 0.2
Cl⋯C/C⋯Cl 0.1
[Figure 5]
Figure 5
(a) Front view and (b) back view of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.4486 to +1.3171 a.u.
[Figure 6]
Figure 6
Two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) Cl⋯H/H⋯Cl, (d) C⋯H/H⋯C and (e) O⋯H/H⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

A search of the Cambridge Structural Database (CSD Version 5.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for similar structures with the 2,3-di­hydro-5H-[1,3]thia­zolo[3,2-a]pyrimidine ring system showed the three closest are those of rac-(2′′S*,2′R*,4′R*,5′′R*,)-ethyl 4′-meth­oxy­carbonyl-5′′-(4-meth­oxy­phen­yl)-1′,7′′-dimethyl-2,3′′-dioxo-2′′,3′′-di­hydro­indoline-3-spiro-2′-pyrrolidine-3′-spiro-2′′-thia­zolo[3,2-a]pyrimidine-6′′-carboxyl­ate [CSD refcode PONWUL (I); Hou et al., 2009[Hou, Z.-H., Zhou, N.-B., He, B.-H. & Li, X.-F. (2009). Acta Cryst. E65, o398.]], 3-(4-fluoro­phen­yl)-2-sulfanyl­idene-5-(tri­fluoro­meth­yl)-2,3-di­hydro­[1,3]thia­zolo[4,5-d]pyrimidin-7(6H)-one toluene solvate [WEGSUA (II); Becan et al., 2022[Becan, L., Pyra, A., Rembiałkowska, N. & Bryndal, I. (2022). Pharmaceuticals 15, 92. https://doi.org/10.3390/ph15010092]] and 7-ethyl­amino-3-phenyl-5-(tri­fluoro­meth­yl)[1,3]thia­zolo[4,5-d]pyrimidine-2(3H)-thione [WEG­TAH (III); Becan et al., 2022[Becan, L., Pyra, A., Rembiałkowska, N. & Bryndal, I. (2022). Pharmaceuticals 15, 92. https://doi.org/10.3390/ph15010092]].

In compound (I), which crystallizes in the triclinic space group P[\overline{1}], the two spiro junctions link a planar 2-oxindole ring [with a mean deviation from the plane of 0.0319 (3) Å], a pyrrolidine ring in an envelope conformation and a thia­zolo[3,2-a]pyrimidine system. Two mol­ecules are connected into a dimer by two N—H⋯O hydrogen bonds, forming an R22(8) graph-set motif.

Compound (II) crystallizes as a hemi-solvate in the triclinic space group P[\overline{1}]. The asymmetric unit is composed of one mol­ecule in the lactim form and half of a toluene mol­ecule. In the crystal structure of (II), the mol­ecules are linked into a centrosymmetric dimer by N—H⋯O hydrogen bonds. Such dimers are further linked via rather weak C—H⋯S and C—H⋯F inter­actions. In addition, aromatic ππ stacking inter­actions are also observed.

Compound (III) crystallizes in the P21/n space group with one mol­ecule in the asymmetric unit. Both the thia­zolo­pyrimidine and the phenyl rings are flat and subtend a dihedral angle of 70.8 (1)° to each other. In the crystal of (III), N—H⋯S hydrogen bonds link the mol­ecules into zigzag chains running along the b-axis direction. The inter­chain contacts are provided by weak C—H⋯S and C—H⋯F bonds while C—H⋯π and ππ inter­actions generate the three-dimensional network.

5. Synthesis and crystallization

A mixture of ethyl 4-(4-chloro­phen­yl)-6-methyl-2-thioxo-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate (2 mmol), 2-(chloro­meth­yl)-5-(4-chloro­phen­yl)-1,3,4-oxa­diazole (2 mmol), potassium iodide (2 mmol) and triethyl amine (2.5 mmol), was refluxed for 4h in absolute ethanol (20 mL). The reaction mixture was poured onto crushed ice (40 g) and acidified with acetic acid (2 mL). The deposited precipitate was filtered off, washed with cold water, dried and crystallized from a methanol/DMF mixture 4:1 (v/v).

Yield: 80%; melting point: 477–779 K; IR (KBr, νmax/cm−1) : 3402, 3174, 1708, 1693, 1651.1H NMR (400 MHz, DMSO-d6) δ 10.82 (s, 1H, NH), 7.85 (d, J = 8.3 Hz, 2H, Ar—H), 7.57 (d, J = 8.4 Hz, 2H, Ar—H), 7.41 (dd, J = 8.8, 8.4 Hz, 4H, Ar—H), 6.10 (s, 1H, C4—H), 4.46 (d, J = 17.4 Hz, 1H, S—CH2), 4.36 (d, J = 17.4 Hz, 1H, S—CH2), 4.03 (q, J = 5.2 Hz, 2H, CH2—CH3), 2.34 (s, 3H, C6—CH3), 1.12 (t, J = 7.1 Hz, 3H, CH2—CH3). 13C NMR (100 MHz, DMSO-d6) δ 165.02, 162.17, 153.72, 153.44, 139.52, 136.36, 132.78, 132.16, 129.82, 129.55, 128.41, 128.30, 105.37, 59.85, 54.69, 28.11, 22.66, 13.97. Analysis calculated for C23H20Cl2N4O3S (503.40): C 54.88, H 4.00, N 11.13. Found: C 55.13, H 3.94, N 11.36.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Only the hydrogen atoms of the methyl group attached to C10 were included as riding contributions in idealized positions since independent refinement of them led to an unsatisfactory geometry for this methyl group. All the remaining C and N-bound hydrogen atoms were found in difference-Fourier maps and they were refined freely.

Table 4
Experimental details

Crystal data
Chemical formula C23H20Cl2N4O3S
Mr 503.39
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 14.8117 (18), 10.7086 (13), 15.1887 (19)
β (°) 112.417 (3)
V3) 2227.1 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.80
Crystal size (mm) 0.21 × 0.18 × 0.08
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.59, 0.76
No. of measured, independent and observed [I > 2σ(I)] reflections 16958, 4497, 4000
Rint 0.031
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.082, 1.05
No. of reflections 4497
No. of parameters 367
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.35
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

Ethyl (3E)-5-(4-chlorophenyl)-3-{[(4-chlorophenyl)formamido]imino}-7-methyl-2H,3H,5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carboxylate top
Crystal data top
C23H20Cl2N4O3SF(000) = 1040
Mr = 503.39Dx = 1.501 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 14.8117 (18) ÅCell parameters from 9966 reflections
b = 10.7086 (13) Åθ = 3.2–74.6°
c = 15.1887 (19) ŵ = 3.80 mm1
β = 112.417 (3)°T = 150 K
V = 2227.1 (5) Å3Plate, pale yellow
Z = 40.21 × 0.18 × 0.08 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
4497 independent reflections
Radiation source: INCOATEC IµS micro–focus source4000 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 10.4167 pixels mm-1θmax = 74.6°, θmin = 3.2°
ω scansh = 1817
Absorption correction: numerical
(SADABS; Krause et al., 2015)
k = 1312
Tmin = 0.59, Tmax = 0.76l = 1818
16958 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: mixed
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0409P)2 + 1.0281P]
where P = (Fo2 + 2Fc2)/3
4497 reflections(Δ/σ)max = 0.001
367 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The hydrogen atoms attached to C10 were included as riding contributions in idealized positions since independent refinement of them led to an unsatisfactory geometry for this methyl group.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.17142 (3)0.13315 (4)0.78029 (3)0.03577 (12)
Cl20.88333 (3)0.06239 (4)0.59045 (3)0.03541 (12)
S10.54003 (3)0.68437 (3)0.77522 (3)0.02275 (10)
O10.06386 (8)0.72960 (11)0.49406 (8)0.0282 (3)
O20.12796 (7)0.58575 (10)0.42622 (7)0.0214 (2)
O30.46040 (8)0.25187 (11)0.44901 (8)0.0277 (3)
N10.35416 (9)0.75804 (11)0.71116 (9)0.0191 (3)
N20.39614 (8)0.58809 (11)0.63452 (9)0.0167 (2)
N30.45875 (9)0.42363 (11)0.57852 (9)0.0182 (2)
N40.54188 (9)0.35323 (11)0.58917 (9)0.0185 (3)
H40.5851 (16)0.339 (2)0.6478 (16)0.034 (5)*
C10.29435 (10)0.54883 (13)0.58144 (10)0.0164 (3)
H10.2883 (13)0.5261 (17)0.5176 (13)0.020 (4)*
C20.22891 (10)0.66068 (13)0.57591 (10)0.0174 (3)
C30.25829 (11)0.75263 (14)0.64191 (10)0.0187 (3)
C40.41675 (10)0.68010 (13)0.70116 (10)0.0173 (3)
C50.56960 (11)0.55753 (14)0.71172 (12)0.0222 (3)
H5A0.6126 (14)0.5860 (18)0.6802 (14)0.026 (5)*
H5B0.6020 (14)0.490 (2)0.7563 (14)0.030 (5)*
C60.47481 (10)0.51442 (13)0.63687 (10)0.0171 (3)
C70.13182 (10)0.66442 (14)0.49758 (10)0.0187 (3)
C80.03585 (11)0.58383 (16)0.34410 (11)0.0242 (3)
H8A0.0046 (14)0.6678 (18)0.3345 (13)0.025 (5)*
H8B0.0558 (14)0.5674 (18)0.2876 (14)0.031 (5)*
C90.02993 (13)0.48441 (18)0.35603 (13)0.0312 (4)
H9A0.0462 (16)0.505 (2)0.4146 (16)0.046 (6)*
H9B0.0915 (16)0.481 (2)0.2994 (15)0.036 (5)*
H9C0.0007 (15)0.402 (2)0.3634 (15)0.036 (5)*
C100.19597 (11)0.85945 (15)0.64967 (12)0.0244 (3)
H10A0.1636470.8982170.5869850.037*
H10B0.2370710.9214460.6946140.037*
H10C0.1465320.8283650.6724790.037*
C110.26837 (10)0.43898 (13)0.63133 (11)0.0173 (3)
C120.20906 (11)0.34314 (14)0.57860 (11)0.0225 (3)
H120.1865 (15)0.3439 (19)0.5098 (15)0.033 (5)*
C130.17835 (12)0.24801 (15)0.62368 (12)0.0257 (3)
H130.1355 (16)0.183 (2)0.5870 (15)0.038 (6)*
C140.21023 (11)0.24912 (14)0.72190 (12)0.0237 (3)
C150.27240 (12)0.34069 (15)0.77649 (11)0.0228 (3)
H150.2958 (14)0.3367 (18)0.8437 (15)0.026 (5)*
C160.30021 (11)0.43621 (14)0.73052 (11)0.0208 (3)
H160.3430 (14)0.5015 (19)0.7694 (14)0.029 (5)*
C170.53321 (11)0.26487 (14)0.52138 (10)0.0192 (3)
C180.62243 (11)0.18586 (14)0.54149 (10)0.0195 (3)
C190.71484 (11)0.22052 (15)0.60544 (11)0.0203 (3)
H190.7245 (15)0.2983 (19)0.6372 (14)0.030 (5)*
C200.79527 (12)0.14427 (15)0.62055 (11)0.0222 (3)
H200.8601 (14)0.1693 (18)0.6609 (14)0.025 (5)*
C210.78269 (12)0.03304 (15)0.57072 (11)0.0245 (3)
C220.69176 (13)0.00299 (16)0.50590 (12)0.0274 (3)
H220.6864 (15)0.080 (2)0.4729 (15)0.038 (6)*
C230.61184 (12)0.07413 (15)0.49123 (11)0.0245 (3)
H230.5501 (15)0.0493 (18)0.4452 (15)0.030 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0475 (3)0.0231 (2)0.0488 (3)0.00518 (16)0.0318 (2)0.00199 (17)
Cl20.0330 (2)0.0397 (2)0.0294 (2)0.01712 (17)0.00721 (18)0.00225 (17)
S10.01551 (18)0.02385 (19)0.02288 (19)0.00037 (13)0.00060 (15)0.00508 (14)
O10.0180 (5)0.0331 (6)0.0285 (6)0.0073 (4)0.0032 (5)0.0054 (5)
O20.0141 (5)0.0247 (5)0.0197 (5)0.0017 (4)0.0002 (4)0.0039 (4)
O30.0221 (6)0.0340 (6)0.0211 (6)0.0022 (5)0.0016 (5)0.0051 (5)
N10.0173 (6)0.0195 (6)0.0184 (6)0.0006 (5)0.0043 (5)0.0012 (5)
N20.0127 (6)0.0167 (6)0.0181 (6)0.0003 (4)0.0030 (5)0.0006 (5)
N30.0155 (6)0.0189 (6)0.0192 (6)0.0023 (5)0.0053 (5)0.0022 (5)
N40.0156 (6)0.0200 (6)0.0177 (6)0.0037 (5)0.0037 (5)0.0006 (5)
C10.0124 (6)0.0184 (7)0.0155 (7)0.0002 (5)0.0020 (5)0.0013 (5)
C20.0149 (7)0.0178 (7)0.0181 (7)0.0008 (5)0.0046 (6)0.0012 (5)
C30.0174 (7)0.0198 (7)0.0180 (7)0.0001 (5)0.0058 (6)0.0018 (5)
C40.0167 (7)0.0171 (7)0.0163 (7)0.0021 (5)0.0044 (6)0.0011 (5)
C50.0159 (7)0.0218 (7)0.0237 (8)0.0003 (6)0.0019 (6)0.0022 (6)
C60.0146 (6)0.0171 (7)0.0183 (7)0.0005 (5)0.0047 (6)0.0038 (5)
C70.0170 (7)0.0189 (7)0.0187 (7)0.0001 (5)0.0051 (6)0.0008 (5)
C80.0169 (7)0.0306 (8)0.0187 (7)0.0024 (6)0.0004 (6)0.0024 (6)
C90.0210 (8)0.0382 (10)0.0296 (9)0.0060 (7)0.0042 (7)0.0050 (7)
C100.0213 (7)0.0241 (8)0.0245 (8)0.0031 (6)0.0050 (6)0.0044 (6)
C110.0137 (6)0.0167 (7)0.0208 (7)0.0019 (5)0.0056 (6)0.0001 (5)
C120.0218 (7)0.0212 (7)0.0225 (8)0.0018 (6)0.0063 (6)0.0025 (6)
C130.0248 (8)0.0198 (7)0.0323 (9)0.0051 (6)0.0106 (7)0.0055 (6)
C140.0232 (8)0.0183 (7)0.0343 (9)0.0008 (6)0.0162 (7)0.0017 (6)
C150.0242 (8)0.0228 (7)0.0220 (8)0.0028 (6)0.0096 (6)0.0017 (6)
C160.0196 (7)0.0196 (7)0.0209 (7)0.0006 (6)0.0052 (6)0.0012 (6)
C170.0196 (7)0.0211 (7)0.0166 (7)0.0011 (6)0.0063 (6)0.0017 (5)
C180.0207 (7)0.0219 (7)0.0162 (7)0.0012 (6)0.0076 (6)0.0014 (5)
C190.0208 (7)0.0217 (7)0.0186 (7)0.0001 (6)0.0078 (6)0.0001 (6)
C200.0207 (7)0.0259 (8)0.0185 (7)0.0011 (6)0.0058 (6)0.0029 (6)
C210.0267 (8)0.0277 (8)0.0199 (7)0.0077 (6)0.0097 (7)0.0032 (6)
C220.0319 (9)0.0262 (8)0.0230 (8)0.0042 (7)0.0092 (7)0.0046 (6)
C230.0239 (8)0.0266 (8)0.0207 (8)0.0003 (6)0.0060 (7)0.0042 (6)
Geometric parameters (Å, º) top
Cl1—C141.7459 (16)C8—H8B1.02 (2)
Cl2—C211.7365 (16)C9—H9A1.03 (2)
S1—C41.7421 (15)C9—H9B0.99 (2)
S1—C51.8135 (16)C9—H9C0.98 (2)
O1—C71.2092 (18)C10—H10A0.9800
O2—C71.3566 (18)C10—H10B0.9800
O2—C81.4559 (18)C10—H10C0.9800
O3—C171.2193 (19)C11—C121.389 (2)
N1—C41.2987 (19)C11—C161.397 (2)
N1—C31.4097 (19)C12—C131.397 (2)
N2—C41.3612 (19)C12—H120.97 (2)
N2—C61.3963 (18)C13—C141.382 (2)
N2—C11.4740 (17)C13—H130.96 (2)
N3—C61.2754 (19)C14—C151.384 (2)
N3—N41.3995 (17)C15—C161.387 (2)
N4—C171.3680 (19)C15—H150.95 (2)
N4—H40.89 (2)C16—H160.98 (2)
C1—C21.5228 (19)C17—C181.499 (2)
C1—C111.526 (2)C18—C191.393 (2)
C1—H10.970 (18)C18—C231.396 (2)
C2—C31.353 (2)C19—C201.389 (2)
C2—C71.477 (2)C19—H190.95 (2)
C3—C101.503 (2)C20—C211.385 (2)
C5—C61.503 (2)C20—H200.96 (2)
C5—H5A0.98 (2)C21—C221.386 (2)
C5—H5B0.98 (2)C22—C231.390 (2)
C8—C91.500 (2)C22—H220.95 (2)
C8—H8A1.00 (2)C23—H230.95 (2)
C4—S1—C592.48 (7)H9A—C9—H9C110.0 (18)
C7—O2—C8115.69 (11)H9B—C9—H9C107.6 (17)
C4—N1—C3116.56 (12)C3—C10—H10A109.5
C4—N2—C6116.21 (12)C3—C10—H10B109.5
C4—N2—C1120.38 (12)H10A—C10—H10B109.5
C6—N2—C1121.49 (12)C3—C10—H10C109.5
C6—N3—N4114.05 (12)H10A—C10—H10C109.5
C17—N4—N3117.37 (12)H10B—C10—H10C109.5
C17—N4—H4117.6 (14)C12—C11—C16119.03 (14)
N3—N4—H4118.2 (13)C12—C11—C1120.47 (13)
N2—C1—C2107.61 (11)C16—C11—C1120.43 (13)
N2—C1—C11110.33 (11)C11—C12—C13120.58 (15)
C2—C1—C11110.98 (11)C11—C12—H12119.8 (12)
N2—C1—H1107.7 (10)C13—C12—H12119.5 (12)
C2—C1—H1109.1 (11)C14—C13—C12118.79 (15)
C11—C1—H1111.0 (11)C14—C13—H13120.6 (13)
C3—C2—C7121.09 (13)C12—C13—H13120.6 (13)
C3—C2—C1120.89 (13)C13—C14—C15121.88 (15)
C7—C2—C1118.01 (12)C13—C14—Cl1119.93 (12)
C2—C3—N1122.05 (13)C15—C14—Cl1118.19 (13)
C2—C3—C10125.34 (14)C14—C15—C16118.59 (15)
N1—C3—C10112.60 (13)C14—C15—H15120.0 (12)
N1—C4—N2125.77 (13)C16—C15—H15121.4 (12)
N1—C4—S1121.79 (11)C15—C16—C11121.05 (14)
N2—C4—S1112.44 (10)C15—C16—H16118.2 (12)
C6—C5—S1106.67 (10)C11—C16—H16120.7 (12)
C6—C5—H5A108.6 (11)O3—C17—N4123.67 (14)
S1—C5—H5A111.1 (11)O3—C17—C18121.81 (14)
C6—C5—H5B111.6 (12)N4—C17—C18114.50 (13)
S1—C5—H5B109.7 (12)C19—C18—C23119.04 (14)
H5A—C5—H5B109.2 (16)C19—C18—C17123.16 (14)
N3—C6—N2118.70 (13)C23—C18—C17117.77 (14)
N3—C6—C5129.25 (13)C20—C19—C18120.74 (15)
N2—C6—C5112.05 (12)C20—C19—H19118.7 (12)
O1—C7—O2122.84 (13)C18—C19—H19120.5 (12)
O1—C7—C2126.15 (14)C21—C20—C19119.14 (15)
O2—C7—C2110.99 (12)C21—C20—H20118.8 (11)
O2—C8—C9110.25 (13)C19—C20—H20121.9 (11)
O2—C8—H8A110.1 (11)C20—C21—C22121.28 (15)
C9—C8—H8A111.8 (11)C20—C21—Cl2118.95 (13)
O2—C8—H8B104.2 (11)C22—C21—Cl2119.77 (13)
C9—C8—H8B112.8 (11)C21—C22—C23119.08 (15)
H8A—C8—H8B107.4 (16)C21—C22—H22118.6 (13)
C8—C9—H9A109.4 (13)C23—C22—H22122.3 (13)
C8—C9—H9B110.2 (12)C22—C23—C18120.70 (15)
H9A—C9—H9B108.5 (17)C22—C23—H23118.2 (12)
C8—C9—H9C111.2 (12)C18—C23—H23121.1 (12)
C6—N3—N4—C17171.54 (13)C1—C2—C7—O1162.79 (15)
C4—N2—C1—C228.34 (17)C3—C2—C7—O2162.47 (13)
C6—N2—C1—C2168.05 (12)C1—C2—C7—O218.75 (18)
C4—N2—C1—C1192.88 (15)C7—O2—C8—C991.73 (16)
C6—N2—C1—C1170.74 (16)N2—C1—C11—C12142.35 (14)
N2—C1—C2—C325.06 (18)C2—C1—C11—C1298.47 (16)
C11—C1—C2—C395.74 (16)N2—C1—C11—C1640.59 (18)
N2—C1—C2—C7156.14 (12)C2—C1—C11—C1678.60 (16)
C11—C1—C2—C783.05 (16)C16—C11—C12—C132.6 (2)
C7—C2—C3—N1173.09 (13)C1—C11—C12—C13174.50 (14)
C1—C2—C3—N18.2 (2)C11—C12—C13—C141.8 (2)
C7—C2—C3—C105.8 (2)C12—C13—C14—C150.8 (2)
C1—C2—C3—C10172.92 (14)C12—C13—C14—Cl1178.85 (12)
C4—N1—C3—C28.7 (2)C13—C14—C15—C162.4 (2)
C4—N1—C3—C10170.30 (13)Cl1—C14—C15—C16177.23 (12)
C3—N1—C4—N25.4 (2)C14—C15—C16—C111.5 (2)
C3—N1—C4—S1174.58 (10)C12—C11—C16—C150.9 (2)
C6—N2—C4—N1179.75 (14)C1—C11—C16—C15176.17 (13)
C1—N2—C4—N115.3 (2)N3—N4—C17—O36.5 (2)
C6—N2—C4—S10.26 (16)N3—N4—C17—C18175.14 (12)
C1—N2—C4—S1164.71 (10)O3—C17—C18—C19159.59 (15)
C5—S1—C4—N1178.09 (13)N4—C17—C18—C1918.8 (2)
C5—S1—C4—N21.90 (11)O3—C17—C18—C2318.5 (2)
C4—S1—C5—C63.28 (11)N4—C17—C18—C23163.08 (13)
N4—N3—C6—N2177.82 (12)C23—C18—C19—C201.2 (2)
N4—N3—C6—C52.2 (2)C17—C18—C19—C20179.26 (14)
C4—N2—C6—N3177.12 (13)C18—C19—C20—C210.3 (2)
C1—N2—C6—N312.9 (2)C19—C20—C21—C220.4 (2)
C4—N2—C6—C52.92 (18)C19—C20—C21—Cl2179.59 (12)
C1—N2—C6—C5167.18 (13)C20—C21—C22—C230.3 (2)
S1—C5—C6—N3176.04 (13)Cl2—C21—C22—C23179.70 (13)
S1—C5—C6—N24.01 (15)C21—C22—C23—C180.6 (2)
C8—O2—C7—O10.2 (2)C19—C18—C23—C221.3 (2)
C8—O2—C7—C2178.77 (12)C17—C18—C23—C22179.48 (14)
C3—C2—C7—O116.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N1i0.89 (2)2.16 (2)3.0076 (18)158 (2)
C5—H5A···O3ii0.98 (2)2.533 (19)3.081 (2)115.3 (14)
C5—H5B···N1i0.98 (2)2.57 (2)3.453 (2)150.1 (16)
C8—H8B···Cl1iii1.02 (2)2.77 (2)3.4430 (17)123.1 (14)
C15—H15···O3iv0.95 (2)2.54 (2)3.1682 (19)124.5 (17)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z1/2; (iv) x, y+1/2, z+1/2.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
Cl1···H10B2.96x, -1 + y, z
H4···N12.161 - x, -1/2 + y, 3/2 - z
H15···O32.54x, 1/2 - y, 1/2 + z
H13···Cl22.911 - x, -y, 1 - z
H5A···O32.531 - x, 1 - y, 1 - z
H20···H9B2.531 + x, 1/2 - y, 1/2 + z
H9A···H9A2.43-x, 1 - y, 1 - z
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound top
ContactPercentage contribution
H···H30.9
Cl···H/H···Cl20.7
C···H/H···C16.8
O···H/H···O11.4
N···H/H···N4.5
S···H/H···S3.4
S···C/C···S2.9
N···C/C···N1.4
S···N/N···S1.4
C···C2.8
Cl···O/O···Cl0.9
O···C/C···O0.9
N···N0.8
Cl···Cl0.4
S···O/O···S0.3
O···N/N···O0.2
Cl···C/C···Cl0.1
 

Acknowledgements

Author contributions are as follows: synthesis and organic chemistry parts preparation, AMA, SMAS, SAAAR; conceptualization and study guide, AMA, SKM, SMAS; financial support, MAAUM; crystal data production and validation, JTM; paper preparation and Hirshfeld study, MA, SKM.

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBecan, L., Pyra, A., Rembiałkowska, N. & Bryndal, I. (2022). Pharmaceuticals 15, 92. https://doi.org/10.3390/ph15010092  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl-Din, M. M. G., El-Gamal, M. I., Abdel-Maksoud, M. S., Yoo, K. H. & Oh, C.-H. (2015). Eur. J. Med. Chem. 90, 45–52.  PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHou, Z.-H., Zhou, N.-B., He, B.-H. & Li, X.-F. (2009). Acta Cryst. E65, o398.  CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationRagab, F. A., Abou-Seri, S. M., Abdel-Aziz, S. A., Alfayomy, A. M. & Aboelmagd, M. (2017). Eur. J. Med. Chem. 138, 140–151.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S. & Boyd, M. R. (1990). J. Natl Cancer Inst. 82, 1107–1112.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTolba, M. S., Kamal El-Dean, A. M., Ahmed, M., Hassanien, R., Sayed, M., Zaki, R. M., Mohamed, S. K., Zawam, S. & Abdel-Raheem, S. A. A. (2022). Curr. Chem. Lett. 11, 121–138.  CrossRef Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, M. A., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17. University of Western Australia.  Google Scholar
First citationValente, S., Trisciuoglio, D., De Luca, T., Nebbioso, A., Labella, D., Lenoci, A., Bigogno, C., Dondio, G., Miceli, M., Brosch, G., Del Bufalo, D., Altucci, L. & Mai, A. (2014). J. Med. Chem. 57, 6259–6265.  CrossRef CAS PubMed Google Scholar
First citationYadagiri, B., Gurrala, B., Bantu, S., Nagarapu, R., Polepalli, L., Srujana, G. & Jain, N. (2015). Bioorg. Med. Chem. Lett. 25, 2220–2224.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds