research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2-(4-bromo­phen­yl)-4-methyl-6-oxo-1-phenyl-1,6-di­hydro­pyridine-3-carbo­nitrile

crossmark logo

aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St., 6, Moscow, 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, e"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 15 June 2022; accepted 22 June 2022; online 5 July 2022)

In the title compound, C19H13BrN2O, the pyridine ring is essentially planar [maximum deviation = 0.024 (4) Å for the N atom] and makes dihedral angles of 74.6 (2) and 65.8 (2)°, respectively, with the phenyl and bromo­phenyl rings, which subtend a dihedral angle of 63.1 (2)°. In the crystal, mol­ecules are connected along the c-axis direction via C—Br⋯π inter­actions, generating zigzag chains parallel to the (010) plane. C—H⋯N and C—H⋯O hydrogen-bonding inter­actions further connect the mol­ecules, forming a three-dimensional network and reinforcing the mol­ecular packing. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (36.2%), C⋯H/H⋯C (21.6%), N⋯H/H⋯N (12.2%), and Br⋯H/H⋯Br (10.8%) inter­actions.

1. Chemical context

C—C and C—N bond-forming reactions are a cornerstone of organic synthesis, materials science and medicinal chemistry (Zubkov et al., 2018[Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949-952.]; Shikhaliyev et al., 2019[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032-5038.]; Viswanathan et al., 2019[Viswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291-303.]; Gurbanov et al., 2020[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020). CrystEngComm, 22, 628-633.]). Nitro­gen heterocycles, particularly those including the 2-pyridone core, play a key role in medicinal chemistry and natural product synthesis (Sośnicki & Idzik, 2019[Sośnicki, J. G. & Idzik, T. J. (2019). Synthesis, 51, 3369-3396.]; Duruskari et al., 2020[Duruskari, G. S., Asgarova, A. R., Aliyeva, K. N., Musayeva, S. A. & Maharramov, A. M. (2020). Russ. J. Org. Chem. 56, 712-715.]; Sangwan et al., 2022[Sangwan, S., Yadav, N., Kumar, R., Chauhan, S., Dhanda, V., Walia, P. & Duhan, A. (2022). Eur. J. Med. Chem. 232, 114199.]). We report herein the synthesis of 2-pyridone, 2, on the basis of a one-step reaction of acetoacetanilide with 3-(4-bromo­phen­yl)-3-oxo­propane­nitrile (Path B). Under two-step reaction conditions (Fig. 1[link]), the inter­action of acetoacetanilide with 3-oxo-3-phenyl­propane­nitrile led to the formation of another 2-pyridone, 1 (Path A), reported in the literature (Wardakhan & Agami, 2001[Wardakhan, W. W. & Agami, S. M. (2001). Egypt. J. Chem. 44, 315-333.]).

[Scheme 1]
[Figure 1]
Figure 1
The reaction of acetoacetanilide with 3-oxo-3-aryl­propane­nitriles.

Thus, in the framework of our ongoing structural studies (Naghiyev et al., 2020[Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720-723.], 2021[Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516-521.], 2022[Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554-558.]; Khalilov et al., 2022[Khalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525-529.]), we report the crystal structure and Hirshfeld surface analysis of the title compound, 2-(4-bromo­phen­yl)-4-methyl-6-oxo-1-phenyl-1,6-di­hydro­pyridine-3-carbo­nitrile.

2. Structural commentary

In the title compound, (Fig. 2[link]), the pyridine ring (N1/C2–C6) is largely planar [maximum deviation = 0.024 (4) Å for N1]. The phenyl and bromo­phenyl groups are linked to the central pyridine ring in an equatorial arrangement. The pyridine ring subtends dihedral angles of 74.6 (2) and 65.8 (2)° with the phenyl (C7–C12) and bromo­phenyl (C15–C20) rings, which in turn make a dihedral angle of 63.1 (2)° with each other.

[Figure 2]
Figure 2
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

Fig. 3[link] shows a general view of the C—H⋯N and C—H⋯O hydrogen bonds (Table 1[link]) and C—Br⋯π inter­actions in the unit cell of the title compound. In the crystal, mol­ecules are joined along the c-axis direction by C—Br⋯π inter­actions [C18—Br1⋯Cg1iv: C18—Br1 = 1.944 (4) Å, Br1⋯Cg1iv = 3.4788 (18) Å, C18⋯Cg1iv = 4.283 (5) Å, C18—Br1⋯Cg1iv = 100.50 (13)°; Cg1 is the centroid of the N1/C2–C6 pyridine ring; symmetry code: (iv) x + [{3\over 2}], −y − [{1\over 2}], z], generating zigzag chains parallel to the (010) plane (Figs. 4[link] and 5[link]). C—H⋯N and C—H⋯O hydrogen bonds link these mol­ecules, establishing a three-dimensional network and strengthening the mol­ecular packing.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯N2i 0.95 2.55 3.234 (6) 129
C17—H17⋯O1ii 0.95 2.56 3.342 (6) 140
C20—H20⋯O1iii 0.95 2.40 3.256 (6) 150
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iii) [-x+1, -y+1, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
A general view of the C—H⋯N, C—H⋯O hydrogen bonds and C—Br⋯π inter­actions of the title compound. Symmetry codes: (i) x + [{3\over 2}], −y − [{1\over 2}], z − 1; (ii) −x + [{1\over 2}], y + [{1\over 2}], z + [{1\over 2}]; (iii) −x + 1, −y + 1, z + [{1\over 2}]; (iv) [{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] + z.
[Figure 4]
Figure 4
Packing view of the title compound along the a axis showing the C—Br⋯π inter­actions as dashed lines.
[Figure 5]
Figure 5
Packing view of the title compound along the b axis with the C—Br⋯π inter­actions indicated by dashed lines.

CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net]) was used to analyse and visualize the inter­molecular inter­actions of the title compound. Fig. 6[link]a,b depicts the front and back sides of the Hirshfeld surface plotted over dnorm in the range of −0.2437 to 1.2589 a.u. The red spots on the Hirshfeld surface indicate C—H⋯N and C—H⋯O inter­actions (Table 1[link]).

[Figure 6]
Figure 6
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over dnorm, with a fixed colour scale of −0.2437 to 1.2589 a.u.

The overall two-dimensional fingerprint plot for the title compound and those delineated into H⋯H (36.2%, Fig. 7[link]b), C⋯H/H⋯C (21.6%, Fig. 7[link]c), N⋯H/H⋯N (12.2%, Fig. 7[link]d), and Br⋯H/H⋯Br (10.8%, Fig. 7[link]e) inter­actions, as well as their relative contributions to the Hirshfeld surface, are shown in Fig. 7[link], while Tables 1[link] and 2[link] provide data on the distinct inter­molecular contacts. The remaining weak inter­actions (contribution percentages) are O⋯H/H⋯O (7.2%), Br⋯C/C⋯Br (3.6%), C⋯C (3.0%), Br.·N/N⋯Br (2.2%), O⋯C/C⋯O (2.2%) and Br⋯O/O⋯Br (0.8%), these contacts having little directional influence on the packing.

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
H19⋯H13B 2.59 [{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] + z
H17⋯O1 2.56 [{1\over 2}] + x, [{1\over 2}] − y, z
O1⋯H20 2.40 1 − x, 1 − y, −[{1\over 2}] + z
N2⋯H16 2.55 [{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] + z
C9⋯H11 2.99 1 − x, −y, [{1\over 2}] + z
C10⋯H13A 3.03 x, −1 + y, z
[Figure 7]
Figure 7
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) N⋯H/H⋯N and (e) Br⋯H/H⋯Br inter­actions. [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.42, updated September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the basic skeleton of 6-oxo-1,6-di­hydro­pyridine gave five compounds very similar to the title compound.

The cations in the crystal of FONDOC01 (Pérez-Aguirre et al., 2015[Pérez-Aguirre, R., Pérez-Yáñez, S., Beobide, G., Castillo, O., Gutiérrez-Zorrilla, J. M. & Luque, A. (2015). Acta Cryst. E71, m238-m239.]) inter­act with the anions through O—H⋯O and N—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular network.

In the crystal of SECPUN (Thanigaimani et al., 2012[Thanigaimani, K., Farhadikoutenaei, A., Khalib, N. C., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o3151-o3152.]), an N—H⋯O hydrogen bond connects the cation and anion, while a pair of N—H⋯O hydrogen bonds connects the two anions with an R22(8) ring motif. Weak N—H⋯O and C—H⋯O hydrogen bonds connect the aggregates, forming a three-dimensional network.

The ion pairs in the crystal of SUYXIU (Hemamalini & Fun, 2010[Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2246-o2247.]) are linked by O—H⋯O, N—H⋯O, N—H⋯Br and C—H⋯O hydrogen bonds, producing a two-dimensional network parallel to the bc plane.

In the crystal of XOZCUL (Shishkina et al., 2009[Shishkina, S. V., Shishkin, O. V., Ukrainets, I. V., Tkach, A. A. & Grinevich, L. A. (2009). Acta Cryst. E65, o1984.]), the pyridine-3-carboxyl­ate mol­ecules form layers parallel to (010), which are linked by hydrogen bonds mediated by the bridging solvate mol­ecules.

The asymmetric unit of GIHCOQ (Gupta et al., 2007[Gupta, S., Long, S. & Li, T. (2007). Acta Cryst. E63, o2784.]) contains four mol­ecules. The compound forms hydrogen-bonded sheets parallel to the [001] direction via inter­molecular N—H⋯O and O—H⋯O hydrogen bonds. Each sheet is made up of linked dimers generated by R22(8) N—H⋯O hydrogen-bonded motifs. Inter­molecular N—H⋯O and O—H⋯O hydrogen bonds generate sheets parallel to the [001] direction. Each sheet is made up of linked dimers formed by N—H⋯O hydrogen bonds with R22(8) motifs.

5. Synthesis and crystallization

To a solution of 3-(4-bromo­phen­yl)-3-oxo­propane­nitrile (1.14 g; 5.1 mmol) and acetoacetanilide (0.92 g; 5.2 mmol) in methanol (25 mL), methyl­pyperazine (3 drops) was added and the mixture was stirred at room temperature for 48 h. Then 15 mL of methanol were removed from the reaction mixture, which was left overnight. The precipitated crystals were separated by filtration and recrystallized from ethanol/water (1:1) solution (yield 49%; m.p. 484–485 K).

1H NMR (300 MHz, DMSO-d6, ppm): 2.21 (s, 3H, CH3); 6.61 (s, 1H, =CH); 7.19–7.89 (m, 9H, 9Ar—H). 13C NMR (75 MHz, DMSO-d6, ppm): 20.58 (CH3), 94.75 (=Cquat.), 116.17 (CN), 118.27 (=CH), 120.87 (2CHarom.), 122.95 (Br—Carom.), 125.30 (CHarom.), 127.43 (Carom.), 129.55 (2CHarom.), 129.70 (2CHarom.), 134.09 (2CHarom.), 138.94 (Carom.), 143.81 (=Cquat.), 153.68 (=Cquat—N), 165.44 (C=O).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All C-bound H atoms were placed at calculated positions and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms and 0.98 Å for methyl H atoms, and with Uiso(H) = 1.2 or 1.5Ueq(C). Owing to poor agreement between observed and calculated intensities, nineteen outliers (8 4 0, 17 6 2, 13 9 2, 18 5 0, 9 11 2, 18 2 [\overline{5}], 17 3 [\overline{6}], 0 12 4, 4 11 [\overline{1}], 3 5 0, 18 5 2, 2 0 [\overline{1}], 5 3 [\overline{2}], 18 2 5, 15 8 2, 0 10 8, 5 3 2, 0 12 [\overline{4}] and 17 6 1) were omitted in the final cycles of refinement.

Table 3
Experimental details

Crystal data
Chemical formula C19H13BrN2O
Mr 365.21
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 100
a, b, c (Å) 15.58979 (16), 10.33883 (10), 9.91195 (9)
V3) 1597.61 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.55
Crystal size (mm) 0.25 × 0.24 × 0.21
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.])
Tmin, Tmax 0.413, 0.462
No. of measured, independent and observed [I > 2σ(I)] reflections 45325, 3359, 3339
Rint 0.047
(sin θ/λ)max−1) 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.099, 1.05
No. of reflections 3359
No. of parameters 209
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.27, −0.89
Absolute structure Flack x determined using 1531 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter −0.012 (18)
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

2-(4-Bromophenyl)-4-methyl-6-oxo-1-phenyl-1,6-dihydropyridine-3-carbonitrile top
Crystal data top
C19H13BrN2ODx = 1.518 Mg m3
Mr = 365.21Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, Pna21Cell parameters from 35934 reflections
a = 15.58979 (16) Åθ = 2.7–79.0°
b = 10.33883 (10) ŵ = 3.55 mm1
c = 9.91195 (9) ÅT = 100 K
V = 1597.61 (3) Å3Prism, colourless
Z = 40.25 × 0.24 × 0.21 mm
F(000) = 736
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
3339 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.047
φ and ω scansθmax = 88.3°, θmin = 5.1°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 1919
Tmin = 0.413, Tmax = 0.462k = 1212
45325 measured reflectionsl = 1212
3359 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0658P)2 + 1.8045P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3359 reflectionsΔρmax = 1.27 e Å3
209 parametersΔρmin = 0.89 e Å3
1 restraintAbsolute structure: Flack x determined using 1531 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
Primary atom site location: difference Fourier mapAbsolute structure parameter: 0.012 (18)
Special details top

Experimental. CrysAlisPro 1.171.41.117a (Rigaku OD, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.84710 (3)0.04550 (4)0.63282 (7)0.02494 (16)
O10.4307 (2)0.4948 (4)0.3074 (4)0.0278 (7)
N10.5437 (2)0.4161 (4)0.4275 (4)0.0188 (7)
N20.7885 (2)0.6147 (4)0.6339 (5)0.0294 (7)
C20.4948 (3)0.5231 (5)0.3709 (4)0.0216 (10)
C30.5263 (3)0.6562 (5)0.3980 (4)0.0238 (9)
H30.49340.72710.36570.029*
C40.5993 (3)0.6812 (4)0.4665 (4)0.0215 (8)
C50.6468 (3)0.5678 (5)0.5140 (5)0.0222 (10)
C60.6185 (3)0.4373 (4)0.4937 (4)0.0188 (8)
C70.5051 (3)0.2830 (4)0.4247 (4)0.0205 (8)
C80.4705 (3)0.2349 (5)0.5395 (5)0.0237 (9)
H80.47330.28370.62050.028*
C90.4295 (3)0.1103 (5)0.5393 (5)0.0263 (9)
H90.40520.07890.62090.032*
C100.4243 (3)0.0354 (5)0.4255 (5)0.0268 (10)
H100.39700.04670.42610.032*
C110.4602 (3)0.0848 (5)0.3123 (5)0.0290 (10)
H110.45870.03540.23150.035*
C120.5005 (3)0.2097 (5)0.3110 (5)0.0260 (9)
H120.52430.24170.22930.031*
C130.6315 (3)0.8212 (5)0.4893 (5)0.0274 (10)
H13A0.58870.88240.45510.041*
H13B0.68570.83380.44120.041*
H13C0.64030.83590.58590.041*
C140.7262 (3)0.5907 (4)0.5820 (5)0.0233 (9)
C150.6711 (3)0.3187 (4)0.5311 (4)0.0174 (8)
C160.7071 (3)0.2397 (4)0.4329 (4)0.0201 (8)
H160.69560.25890.34090.024*
C170.7600 (3)0.1318 (4)0.4629 (4)0.0214 (8)
H170.78430.08130.39240.026*
C180.7751 (3)0.1027 (4)0.5913 (4)0.0205 (8)
C190.7397 (3)0.1793 (5)0.6909 (4)0.0232 (9)
H190.75050.15870.78280.028*
C200.6878 (3)0.2878 (4)0.6599 (4)0.0230 (9)
H200.66470.33890.73070.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0283 (2)0.0232 (3)0.0233 (2)0.00633 (14)0.0028 (2)0.0055 (2)
O10.0269 (16)0.0306 (17)0.0260 (16)0.0013 (15)0.0068 (13)0.0022 (14)
N10.0179 (16)0.0204 (18)0.0182 (17)0.0037 (15)0.0015 (13)0.0042 (14)
N20.0286 (17)0.0326 (19)0.0270 (17)0.0030 (14)0.003 (2)0.009 (2)
C20.0214 (19)0.027 (3)0.016 (2)0.0027 (19)0.0010 (16)0.0020 (17)
C30.024 (2)0.024 (2)0.024 (2)0.0070 (18)0.0013 (16)0.0046 (18)
C40.026 (2)0.020 (2)0.0187 (19)0.0013 (17)0.0017 (16)0.0013 (15)
C50.024 (2)0.024 (2)0.019 (2)0.0049 (16)0.0004 (16)0.0031 (18)
C60.021 (2)0.023 (2)0.0128 (18)0.0052 (17)0.0003 (15)0.0013 (15)
C70.0197 (19)0.022 (2)0.019 (2)0.0020 (17)0.0003 (15)0.0009 (17)
C80.023 (2)0.029 (2)0.0188 (18)0.0036 (17)0.0015 (16)0.0010 (17)
C90.027 (2)0.028 (2)0.023 (2)0.0004 (18)0.0009 (17)0.0042 (18)
C100.026 (2)0.023 (2)0.031 (3)0.0001 (17)0.0013 (19)0.0009 (18)
C110.033 (2)0.028 (2)0.026 (2)0.001 (2)0.0016 (19)0.004 (2)
C120.027 (2)0.033 (3)0.0172 (19)0.0010 (19)0.0026 (16)0.0004 (18)
C130.031 (2)0.020 (2)0.031 (2)0.0041 (19)0.0016 (19)0.0007 (18)
C140.029 (2)0.021 (2)0.0199 (18)0.0020 (18)0.0007 (16)0.0028 (17)
C150.0170 (17)0.017 (2)0.018 (2)0.0035 (16)0.0027 (15)0.0001 (16)
C160.025 (2)0.022 (2)0.0131 (18)0.0017 (16)0.0016 (15)0.0015 (15)
C170.0219 (19)0.025 (2)0.0174 (19)0.0030 (16)0.0019 (15)0.0021 (16)
C180.0228 (19)0.019 (2)0.0196 (19)0.0006 (16)0.0029 (14)0.0030 (15)
C190.026 (2)0.028 (2)0.0150 (18)0.0051 (18)0.0014 (16)0.0002 (17)
C200.028 (2)0.027 (2)0.014 (2)0.0015 (17)0.0006 (15)0.0017 (15)
Geometric parameters (Å, º) top
Br1—C181.944 (4)C9—H90.9500
O1—C21.217 (6)C10—C111.354 (7)
N1—C61.356 (6)C10—H100.9500
N1—C21.456 (6)C11—C121.436 (7)
N1—C71.503 (6)C11—H110.9500
N2—C141.127 (6)C12—H120.9500
C2—C31.485 (7)C13—H13A0.9800
C3—C41.352 (7)C13—H13B0.9800
C3—H30.9500C13—H13C0.9800
C4—C51.464 (7)C15—C201.342 (6)
C4—C131.548 (6)C15—C161.389 (6)
C5—C141.429 (6)C16—C171.420 (6)
C5—C61.433 (7)C16—H160.9500
C6—C151.520 (6)C17—C181.329 (6)
C7—C81.353 (6)C17—H170.9500
C7—C121.360 (6)C18—C191.380 (6)
C8—C91.437 (7)C19—C201.417 (6)
C8—H80.9500C19—H190.9500
C9—C101.371 (7)C20—H200.9500
C6—N1—C2121.0 (4)C10—C11—H11119.1
C6—N1—C7120.1 (4)C12—C11—H11119.1
C2—N1—C7118.6 (3)C7—C12—C11121.1 (4)
O1—C2—N1116.5 (4)C7—C12—H12119.5
O1—C2—C3126.0 (4)C11—C12—H12119.5
N1—C2—C3117.5 (4)C4—C13—H13A109.5
C4—C3—C2123.2 (4)C4—C13—H13B109.5
C4—C3—H3118.4H13A—C13—H13B109.5
C2—C3—H3118.4C4—C13—H13C109.5
C3—C4—C5115.7 (4)H13A—C13—H13C109.5
C3—C4—C13121.7 (4)H13B—C13—H13C109.5
C5—C4—C13122.6 (4)N2—C14—C5176.7 (5)
C14—C5—C6119.2 (4)C20—C15—C16116.6 (4)
C14—C5—C4117.1 (4)C20—C15—C6121.9 (4)
C6—C5—C4123.6 (4)C16—C15—C6121.4 (4)
N1—C6—C5118.9 (4)C15—C16—C17123.4 (4)
N1—C6—C15116.8 (4)C15—C16—H16118.3
C5—C6—C15124.0 (4)C17—C16—H16118.3
C8—C7—C12118.1 (4)C18—C17—C16118.8 (4)
C8—C7—N1118.7 (4)C18—C17—H17120.6
C12—C7—N1123.1 (4)C16—C17—H17120.6
C7—C8—C9120.4 (4)C17—C18—C19119.0 (4)
C7—C8—H8119.8C17—C18—Br1118.9 (3)
C9—C8—H8119.8C19—C18—Br1122.1 (3)
C10—C9—C8122.2 (4)C18—C19—C20121.8 (4)
C10—C9—H9118.9C18—C19—H19119.1
C8—C9—H9118.9C20—C19—H19119.1
C11—C10—C9116.4 (4)C15—C20—C19120.4 (4)
C11—C10—H10121.8C15—C20—H20119.8
C9—C10—H10121.8C19—C20—H20119.8
C10—C11—C12121.8 (5)
C6—N1—C2—O1176.5 (4)C2—N1—C7—C1275.3 (5)
C7—N1—C2—O110.1 (6)C12—C7—C8—C90.5 (6)
C6—N1—C2—C34.8 (6)N1—C7—C8—C9177.2 (4)
C7—N1—C2—C3168.5 (4)C7—C8—C9—C100.5 (7)
O1—C2—C3—C4178.3 (5)C8—C9—C10—C110.2 (7)
N1—C2—C3—C43.2 (7)C9—C10—C11—C120.9 (7)
C2—C3—C4—C50.2 (7)C8—C7—C12—C110.1 (7)
C2—C3—C4—C13178.2 (4)N1—C7—C12—C11177.8 (4)
C3—C4—C5—C14177.5 (4)C10—C11—C12—C70.9 (7)
C13—C4—C5—C140.8 (7)N1—C6—C15—C20117.6 (5)
C3—C4—C5—C61.4 (7)C5—C6—C15—C2068.0 (6)
C13—C4—C5—C6179.8 (4)N1—C6—C15—C1665.0 (6)
C2—N1—C6—C53.4 (6)C5—C6—C15—C16109.5 (5)
C7—N1—C6—C5169.9 (4)C20—C15—C16—C170.8 (6)
C2—N1—C6—C15171.3 (4)C6—C15—C16—C17176.8 (4)
C7—N1—C6—C1515.4 (6)C15—C16—C17—C181.3 (7)
C14—C5—C6—N1179.1 (4)C16—C17—C18—C190.9 (7)
C4—C5—C6—N10.2 (7)C16—C17—C18—Br1179.7 (3)
C14—C5—C6—C154.8 (7)C17—C18—C19—C200.1 (7)
C4—C5—C6—C15174.1 (4)Br1—C18—C19—C20179.5 (3)
C6—N1—C7—C871.1 (5)C16—C15—C20—C190.1 (7)
C2—N1—C7—C8102.3 (5)C6—C15—C20—C19177.6 (4)
C6—N1—C7—C12111.3 (5)C18—C19—C20—C150.4 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···N2i0.952.553.234 (6)129
C17—H17···O1ii0.952.563.342 (6)140
C20—H20···O1iii0.952.403.256 (6)150
Symmetry codes: (i) x+3/2, y1/2, z1/2; (ii) x+1/2, y+1/2, z; (iii) x+1, y+1, z+1/2.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
H19···H13B2.593/2 - x, -1/2 + y, 1/2 + z
H17···O12.561/2 + x, 1/2 - y, z
O1···H202.401 - x, 1 - y, -1/2 + z
N2···H162.553/2 - x, 1/2 + y, 1/2 + z
C9···H112.991 - x, -y, 1/2 + z
C10···H13A3.03x, -1 + y, z
 

Acknowledgements

Author contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK and IGM; investigation, FNN, ANK, MA and EVD; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, ANK and IGM; funding acquisition, VNK, AB and ANK; resources, AB, VNK and EVD; supervision, ANK and MA.

Funding information

This study was supported by Baku State University and the Ministry of Science and Higher Education of the Russian Federation [award No. 075–03–2020-223 (FSSF-2020–0017)].

References

First citationDuruskari, G. S., Asgarova, A. R., Aliyeva, K. N., Musayeva, S. A. & Maharramov, A. M. (2020). Russ. J. Org. Chem. 56, 712–715.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGupta, S., Long, S. & Li, T. (2007). Acta Cryst. E63, o2784.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2246–o2247.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525–529.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554–558.  CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516–521.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPérez-Aguirre, R., Pérez-Yáñez, S., Beobide, G., Castillo, O., Gutiérrez-Zorrilla, J. M. & Luque, A. (2015). Acta Cryst. E71, m238–m239.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.  Google Scholar
First citationSangwan, S., Yadav, N., Kumar, R., Chauhan, S., Dhanda, V., Walia, P. & Duhan, A. (2022). Eur. J. Med. Chem. 232, 114199.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.  Web of Science CSD CrossRef CAS Google Scholar
First citationShishkina, S. V., Shishkin, O. V., Ukrainets, I. V., Tkach, A. A. & Grinevich, L. A. (2009). Acta Cryst. E65, o1984.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSośnicki, J. G. & Idzik, T. J. (2019). Synthesis, 51, 3369–3396.  Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThanigaimani, K., Farhadikoutenaei, A., Khalib, N. C., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o3151–o3152.  CSD CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net  Google Scholar
First citationViswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWardakhan, W. W. & Agami, S. M. (2001). Egypt. J. Chem. 44, 315–333.  CAS Google Scholar
First citationZubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds