research communications
and Hirshfeld surface analysis of 2-(4-bromophenyl)-4-methyl-6-oxo-1-phenyl-1,6-dihydropyridine-3-carbonitrile
aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St., 6, Moscow, 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, e"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np
In the title compound, C19H13BrN2O, the pyridine ring is essentially planar [maximum deviation = 0.024 (4) Å for the N atom] and makes dihedral angles of 74.6 (2) and 65.8 (2)°, respectively, with the phenyl and bromophenyl rings, which subtend a dihedral angle of 63.1 (2)°. In the crystal, molecules are connected along the c-axis direction via C—Br⋯π interactions, generating zigzag chains parallel to the (010) plane. C—H⋯N and C—H⋯O hydrogen-bonding interactions further connect the molecules, forming a three-dimensional network and reinforcing the molecular packing. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (36.2%), C⋯H/H⋯C (21.6%), N⋯H/H⋯N (12.2%), and Br⋯H/H⋯Br (10.8%) interactions.
Keywords: crystal structure; 1,6-dihydropyridine; hydrogen bond; C—Br⋯π interactions; Hirshfeld surface analysis.
CCDC reference: 2181245
1. Chemical context
C—C and C—N bond-forming reactions are a cornerstone of organic synthesis, materials science and medicinal chemistry (Zubkov et al., 2018; Shikhaliyev et al., 2019; Viswanathan et al., 2019; Gurbanov et al., 2020). Nitrogen heterocycles, particularly those including the 2-pyridone core, play a key role in medicinal chemistry and natural product synthesis (Sośnicki & Idzik, 2019; Duruskari et al., 2020; Sangwan et al., 2022). We report herein the synthesis of 2-pyridone, 2, on the basis of a one-step reaction of acetoacetanilide with 3-(4-bromophenyl)-3-oxopropanenitrile (Path B). Under two-step reaction conditions (Fig. 1), the interaction of acetoacetanilide with 3-oxo-3-phenylpropanenitrile led to the formation of another 2-pyridone, 1 (Path A), reported in the literature (Wardakhan & Agami, 2001).
Thus, in the framework of our ongoing structural studies (Naghiyev et al., 2020, 2021, 2022; Khalilov et al., 2022), we report the and Hirshfeld surface analysis of the title compound, 2-(4-bromophenyl)-4-methyl-6-oxo-1-phenyl-1,6-dihydropyridine-3-carbonitrile.
2. Structural commentary
In the title compound, (Fig. 2), the pyridine ring (N1/C2–C6) is largely planar [maximum deviation = 0.024 (4) Å for N1]. The phenyl and bromophenyl groups are linked to the central pyridine ring in an equatorial arrangement. The pyridine ring subtends dihedral angles of 74.6 (2) and 65.8 (2)° with the phenyl (C7–C12) and bromophenyl (C15–C20) rings, which in turn make a dihedral angle of 63.1 (2)° with each other.
3. Supramolecular features and Hirshfeld surface analysis
Fig. 3 shows a general view of the C—H⋯N and C—H⋯O hydrogen bonds (Table 1) and C—Br⋯π interactions in the of the title compound. In the crystal, molecules are joined along the c-axis direction by C—Br⋯π interactions [C18—Br1⋯Cg1iv: C18—Br1 = 1.944 (4) Å, Br1⋯Cg1iv = 3.4788 (18) Å, C18⋯Cg1iv = 4.283 (5) Å, C18—Br1⋯Cg1iv = 100.50 (13)°; Cg1 is the centroid of the N1/C2–C6 pyridine ring; symmetry code: (iv) x + , −y − , z], generating zigzag chains parallel to the (010) plane (Figs. 4 and 5). C—H⋯N and C—H⋯O hydrogen bonds link these molecules, establishing a three-dimensional network and strengthening the molecular packing.
|
CrystalExplorer17.5 (Turner et al., 2017) was used to analyse and visualize the intermolecular interactions of the title compound. Fig. 6a,b depicts the front and back sides of the Hirshfeld surface plotted over dnorm in the range of −0.2437 to 1.2589 a.u. The red spots on the Hirshfeld surface indicate C—H⋯N and C—H⋯O interactions (Table 1).
The overall two-dimensional fingerprint plot for the title compound and those delineated into H⋯H (36.2%, Fig. 7b), C⋯H/H⋯C (21.6%, Fig. 7c), N⋯H/H⋯N (12.2%, Fig. 7d), and Br⋯H/H⋯Br (10.8%, Fig. 7e) interactions, as well as their relative contributions to the Hirshfeld surface, are shown in Fig. 7, while Tables 1 and 2 provide data on the distinct intermolecular contacts. The remaining weak interactions (contribution percentages) are O⋯H/H⋯O (7.2%), Br⋯C/C⋯Br (3.6%), C⋯C (3.0%), Br.·N/N⋯Br (2.2%), O⋯C/C⋯O (2.2%) and Br⋯O/O⋯Br (0.8%), these contacts having little directional influence on the packing.
|
4. Database survey
A search of the Cambridge Structural Database (CSD version 5.42, updated September 2021; Groom et al., 2016) for the basic skeleton of 6-oxo-1,6-dihydropyridine gave five compounds very similar to the title compound.
The cations in the crystal of FONDOC01 (Pérez-Aguirre et al., 2015) interact with the anions through O—H⋯O and N—H⋯O hydrogen bonds, forming a three-dimensional supramolecular network.
In the crystal of SECPUN (Thanigaimani et al., 2012), an N—H⋯O hydrogen bond connects the cation and anion, while a pair of N—H⋯O hydrogen bonds connects the two anions with an R22(8) ring motif. Weak N—H⋯O and C—H⋯O hydrogen bonds connect the aggregates, forming a three-dimensional network.
The ion pairs in the crystal of SUYXIU (Hemamalini & Fun, 2010) are linked by O—H⋯O, N—H⋯O, N—H⋯Br and C—H⋯O hydrogen bonds, producing a two-dimensional network parallel to the bc plane.
In the crystal of XOZCUL (Shishkina et al., 2009), the pyridine-3-carboxylate molecules form layers parallel to (010), which are linked by hydrogen bonds mediated by the bridging solvate molecules.
The et al., 2007) contains four molecules. The compound forms hydrogen-bonded sheets parallel to the [001] direction via intermolecular N—H⋯O and O—H⋯O hydrogen bonds. Each sheet is made up of linked dimers generated by R22(8) N—H⋯O hydrogen-bonded motifs. Intermolecular N—H⋯O and O—H⋯O hydrogen bonds generate sheets parallel to the [001] direction. Each sheet is made up of linked dimers formed by N—H⋯O hydrogen bonds with R22(8) motifs.
of GIHCOQ (Gupta5. Synthesis and crystallization
To a solution of 3-(4-bromophenyl)-3-oxopropanenitrile (1.14 g; 5.1 mmol) and acetoacetanilide (0.92 g; 5.2 mmol) in methanol (25 mL), methylpyperazine (3 drops) was added and the mixture was stirred at room temperature for 48 h. Then 15 mL of methanol were removed from the reaction mixture, which was left overnight. The precipitated crystals were separated by filtration and recrystallized from ethanol/water (1:1) solution (yield 49%; m.p. 484–485 K).
1H NMR (300 MHz, DMSO-d6, ppm): 2.21 (s, 3H, CH3); 6.61 (s, 1H, =CH); 7.19–7.89 (m, 9H, 9Ar—H). 13C NMR (75 MHz, DMSO-d6, ppm): 20.58 (CH3), 94.75 (=Cquat.), 116.17 (CN), 118.27 (=CH), 120.87 (2CHarom.), 122.95 (Br—Carom.), 125.30 (CHarom.), 127.43 (Carom.), 129.55 (2CHarom.), 129.70 (2CHarom.), 134.09 (2CHarom.), 138.94 (Carom.), 143.81 (=Cquat.), 153.68 (=Cquat—N), 165.44 (C=O).
6. Refinement
Crystal data, data collection and structure . All C-bound H atoms were placed at calculated positions and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms and 0.98 Å for methyl H atoms, and with Uiso(H) = 1.2 or 1.5Ueq(C). Owing to poor agreement between observed and calculated intensities, nineteen outliers (8 4 0, 17 6 2, 13 9 2, 18 5 0, 9 11 2, 18 2 , 17 3 , 0 12 4, 4 11 , 3 5 0, 18 5 2, 2 0 , 5 3 , 18 2 5, 15 8 2, 0 10 8, 5 3 2, 0 12 and 17 6 1) were omitted in the final cycles of refinement.
details are summarized in Table 3Supporting information
CCDC reference: 2181245
https://doi.org/10.1107/S2056989022006466/vm2267sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022006466/vm2267Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022006466/vm2267Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2021); cell
CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C19H13BrN2O | Dx = 1.518 Mg m−3 |
Mr = 365.21 | Cu Kα radiation, λ = 1.54178 Å |
Orthorhombic, Pna21 | Cell parameters from 35934 reflections |
a = 15.58979 (16) Å | θ = 2.7–79.0° |
b = 10.33883 (10) Å | µ = 3.55 mm−1 |
c = 9.91195 (9) Å | T = 100 K |
V = 1597.61 (3) Å3 | Prism, colourless |
Z = 4 | 0.25 × 0.24 × 0.21 mm |
F(000) = 736 |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 3339 reflections with I > 2σ(I) |
Radiation source: micro-focus sealed X-ray tube | Rint = 0.047 |
φ and ω scans | θmax = 88.3°, θmin = 5.1° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | h = −19→19 |
Tmin = 0.413, Tmax = 0.462 | k = −12→12 |
45325 measured reflections | l = −12→12 |
3359 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.099 | w = 1/[σ2(Fo2) + (0.0658P)2 + 1.8045P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
3359 reflections | Δρmax = 1.27 e Å−3 |
209 parameters | Δρmin = −0.89 e Å−3 |
1 restraint | Absolute structure: Flack x determined using 1531 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013). |
Primary atom site location: difference Fourier map | Absolute structure parameter: −0.012 (18) |
Experimental. CrysAlisPro 1.171.41.117a (Rigaku OD, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.84710 (3) | −0.04550 (4) | 0.63282 (7) | 0.02494 (16) | |
O1 | 0.4307 (2) | 0.4948 (4) | 0.3074 (4) | 0.0278 (7) | |
N1 | 0.5437 (2) | 0.4161 (4) | 0.4275 (4) | 0.0188 (7) | |
N2 | 0.7885 (2) | 0.6147 (4) | 0.6339 (5) | 0.0294 (7) | |
C2 | 0.4948 (3) | 0.5231 (5) | 0.3709 (4) | 0.0216 (10) | |
C3 | 0.5263 (3) | 0.6562 (5) | 0.3980 (4) | 0.0238 (9) | |
H3 | 0.4934 | 0.7271 | 0.3657 | 0.029* | |
C4 | 0.5993 (3) | 0.6812 (4) | 0.4665 (4) | 0.0215 (8) | |
C5 | 0.6468 (3) | 0.5678 (5) | 0.5140 (5) | 0.0222 (10) | |
C6 | 0.6185 (3) | 0.4373 (4) | 0.4937 (4) | 0.0188 (8) | |
C7 | 0.5051 (3) | 0.2830 (4) | 0.4247 (4) | 0.0205 (8) | |
C8 | 0.4705 (3) | 0.2349 (5) | 0.5395 (5) | 0.0237 (9) | |
H8 | 0.4733 | 0.2837 | 0.6205 | 0.028* | |
C9 | 0.4295 (3) | 0.1103 (5) | 0.5393 (5) | 0.0263 (9) | |
H9 | 0.4052 | 0.0789 | 0.6209 | 0.032* | |
C10 | 0.4243 (3) | 0.0354 (5) | 0.4255 (5) | 0.0268 (10) | |
H10 | 0.3970 | −0.0467 | 0.4261 | 0.032* | |
C11 | 0.4602 (3) | 0.0848 (5) | 0.3123 (5) | 0.0290 (10) | |
H11 | 0.4587 | 0.0354 | 0.2315 | 0.035* | |
C12 | 0.5005 (3) | 0.2097 (5) | 0.3110 (5) | 0.0260 (9) | |
H12 | 0.5243 | 0.2417 | 0.2293 | 0.031* | |
C13 | 0.6315 (3) | 0.8212 (5) | 0.4893 (5) | 0.0274 (10) | |
H13A | 0.5887 | 0.8824 | 0.4551 | 0.041* | |
H13B | 0.6857 | 0.8338 | 0.4412 | 0.041* | |
H13C | 0.6403 | 0.8359 | 0.5859 | 0.041* | |
C14 | 0.7262 (3) | 0.5907 (4) | 0.5820 (5) | 0.0233 (9) | |
C15 | 0.6711 (3) | 0.3187 (4) | 0.5311 (4) | 0.0174 (8) | |
C16 | 0.7071 (3) | 0.2397 (4) | 0.4329 (4) | 0.0201 (8) | |
H16 | 0.6956 | 0.2589 | 0.3409 | 0.024* | |
C17 | 0.7600 (3) | 0.1318 (4) | 0.4629 (4) | 0.0214 (8) | |
H17 | 0.7843 | 0.0813 | 0.3924 | 0.026* | |
C18 | 0.7751 (3) | 0.1027 (4) | 0.5913 (4) | 0.0205 (8) | |
C19 | 0.7397 (3) | 0.1793 (5) | 0.6909 (4) | 0.0232 (9) | |
H19 | 0.7505 | 0.1587 | 0.7828 | 0.028* | |
C20 | 0.6878 (3) | 0.2878 (4) | 0.6599 (4) | 0.0230 (9) | |
H20 | 0.6647 | 0.3389 | 0.7307 | 0.028* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0283 (2) | 0.0232 (3) | 0.0233 (2) | 0.00633 (14) | −0.0028 (2) | 0.0055 (2) |
O1 | 0.0269 (16) | 0.0306 (17) | 0.0260 (16) | 0.0013 (15) | −0.0068 (13) | 0.0022 (14) |
N1 | 0.0179 (16) | 0.0204 (18) | 0.0182 (17) | 0.0037 (15) | −0.0015 (13) | 0.0042 (14) |
N2 | 0.0286 (17) | 0.0326 (19) | 0.0270 (17) | 0.0030 (14) | −0.003 (2) | −0.009 (2) |
C2 | 0.0214 (19) | 0.027 (3) | 0.016 (2) | 0.0027 (19) | 0.0010 (16) | 0.0020 (17) |
C3 | 0.024 (2) | 0.024 (2) | 0.024 (2) | 0.0070 (18) | 0.0013 (16) | 0.0046 (18) |
C4 | 0.026 (2) | 0.020 (2) | 0.0187 (19) | 0.0013 (17) | 0.0017 (16) | −0.0013 (15) |
C5 | 0.024 (2) | 0.024 (2) | 0.019 (2) | 0.0049 (16) | −0.0004 (16) | −0.0031 (18) |
C6 | 0.021 (2) | 0.023 (2) | 0.0128 (18) | 0.0052 (17) | 0.0003 (15) | 0.0013 (15) |
C7 | 0.0197 (19) | 0.022 (2) | 0.019 (2) | 0.0020 (17) | −0.0003 (15) | 0.0009 (17) |
C8 | 0.023 (2) | 0.029 (2) | 0.0188 (18) | 0.0036 (17) | 0.0015 (16) | 0.0010 (17) |
C9 | 0.027 (2) | 0.028 (2) | 0.023 (2) | 0.0004 (18) | 0.0009 (17) | 0.0042 (18) |
C10 | 0.026 (2) | 0.023 (2) | 0.031 (3) | 0.0001 (17) | 0.0013 (19) | −0.0009 (18) |
C11 | 0.033 (2) | 0.028 (2) | 0.026 (2) | 0.001 (2) | 0.0016 (19) | −0.004 (2) |
C12 | 0.027 (2) | 0.033 (3) | 0.0172 (19) | −0.0010 (19) | 0.0026 (16) | −0.0004 (18) |
C13 | 0.031 (2) | 0.020 (2) | 0.031 (2) | 0.0041 (19) | −0.0016 (19) | 0.0007 (18) |
C14 | 0.029 (2) | 0.021 (2) | 0.0199 (18) | 0.0020 (18) | 0.0007 (16) | −0.0028 (17) |
C15 | 0.0170 (17) | 0.017 (2) | 0.018 (2) | 0.0035 (16) | −0.0027 (15) | −0.0001 (16) |
C16 | 0.025 (2) | 0.022 (2) | 0.0131 (18) | 0.0017 (16) | 0.0016 (15) | 0.0015 (15) |
C17 | 0.0219 (19) | 0.025 (2) | 0.0174 (19) | 0.0030 (16) | 0.0019 (15) | −0.0021 (16) |
C18 | 0.0228 (19) | 0.019 (2) | 0.0196 (19) | 0.0006 (16) | −0.0029 (14) | 0.0030 (15) |
C19 | 0.026 (2) | 0.028 (2) | 0.0150 (18) | 0.0051 (18) | −0.0014 (16) | −0.0002 (17) |
C20 | 0.028 (2) | 0.027 (2) | 0.014 (2) | 0.0015 (17) | −0.0006 (15) | −0.0017 (15) |
Br1—C18 | 1.944 (4) | C9—H9 | 0.9500 |
O1—C2 | 1.217 (6) | C10—C11 | 1.354 (7) |
N1—C6 | 1.356 (6) | C10—H10 | 0.9500 |
N1—C2 | 1.456 (6) | C11—C12 | 1.436 (7) |
N1—C7 | 1.503 (6) | C11—H11 | 0.9500 |
N2—C14 | 1.127 (6) | C12—H12 | 0.9500 |
C2—C3 | 1.485 (7) | C13—H13A | 0.9800 |
C3—C4 | 1.352 (7) | C13—H13B | 0.9800 |
C3—H3 | 0.9500 | C13—H13C | 0.9800 |
C4—C5 | 1.464 (7) | C15—C20 | 1.342 (6) |
C4—C13 | 1.548 (6) | C15—C16 | 1.389 (6) |
C5—C14 | 1.429 (6) | C16—C17 | 1.420 (6) |
C5—C6 | 1.433 (7) | C16—H16 | 0.9500 |
C6—C15 | 1.520 (6) | C17—C18 | 1.329 (6) |
C7—C8 | 1.353 (6) | C17—H17 | 0.9500 |
C7—C12 | 1.360 (6) | C18—C19 | 1.380 (6) |
C8—C9 | 1.437 (7) | C19—C20 | 1.417 (6) |
C8—H8 | 0.9500 | C19—H19 | 0.9500 |
C9—C10 | 1.371 (7) | C20—H20 | 0.9500 |
C6—N1—C2 | 121.0 (4) | C10—C11—H11 | 119.1 |
C6—N1—C7 | 120.1 (4) | C12—C11—H11 | 119.1 |
C2—N1—C7 | 118.6 (3) | C7—C12—C11 | 121.1 (4) |
O1—C2—N1 | 116.5 (4) | C7—C12—H12 | 119.5 |
O1—C2—C3 | 126.0 (4) | C11—C12—H12 | 119.5 |
N1—C2—C3 | 117.5 (4) | C4—C13—H13A | 109.5 |
C4—C3—C2 | 123.2 (4) | C4—C13—H13B | 109.5 |
C4—C3—H3 | 118.4 | H13A—C13—H13B | 109.5 |
C2—C3—H3 | 118.4 | C4—C13—H13C | 109.5 |
C3—C4—C5 | 115.7 (4) | H13A—C13—H13C | 109.5 |
C3—C4—C13 | 121.7 (4) | H13B—C13—H13C | 109.5 |
C5—C4—C13 | 122.6 (4) | N2—C14—C5 | 176.7 (5) |
C14—C5—C6 | 119.2 (4) | C20—C15—C16 | 116.6 (4) |
C14—C5—C4 | 117.1 (4) | C20—C15—C6 | 121.9 (4) |
C6—C5—C4 | 123.6 (4) | C16—C15—C6 | 121.4 (4) |
N1—C6—C5 | 118.9 (4) | C15—C16—C17 | 123.4 (4) |
N1—C6—C15 | 116.8 (4) | C15—C16—H16 | 118.3 |
C5—C6—C15 | 124.0 (4) | C17—C16—H16 | 118.3 |
C8—C7—C12 | 118.1 (4) | C18—C17—C16 | 118.8 (4) |
C8—C7—N1 | 118.7 (4) | C18—C17—H17 | 120.6 |
C12—C7—N1 | 123.1 (4) | C16—C17—H17 | 120.6 |
C7—C8—C9 | 120.4 (4) | C17—C18—C19 | 119.0 (4) |
C7—C8—H8 | 119.8 | C17—C18—Br1 | 118.9 (3) |
C9—C8—H8 | 119.8 | C19—C18—Br1 | 122.1 (3) |
C10—C9—C8 | 122.2 (4) | C18—C19—C20 | 121.8 (4) |
C10—C9—H9 | 118.9 | C18—C19—H19 | 119.1 |
C8—C9—H9 | 118.9 | C20—C19—H19 | 119.1 |
C11—C10—C9 | 116.4 (4) | C15—C20—C19 | 120.4 (4) |
C11—C10—H10 | 121.8 | C15—C20—H20 | 119.8 |
C9—C10—H10 | 121.8 | C19—C20—H20 | 119.8 |
C10—C11—C12 | 121.8 (5) | ||
C6—N1—C2—O1 | 176.5 (4) | C2—N1—C7—C12 | 75.3 (5) |
C7—N1—C2—O1 | −10.1 (6) | C12—C7—C8—C9 | −0.5 (6) |
C6—N1—C2—C3 | −4.8 (6) | N1—C7—C8—C9 | 177.2 (4) |
C7—N1—C2—C3 | 168.5 (4) | C7—C8—C9—C10 | 0.5 (7) |
O1—C2—C3—C4 | −178.3 (5) | C8—C9—C10—C11 | 0.2 (7) |
N1—C2—C3—C4 | 3.2 (7) | C9—C10—C11—C12 | −0.9 (7) |
C2—C3—C4—C5 | −0.2 (7) | C8—C7—C12—C11 | −0.1 (7) |
C2—C3—C4—C13 | 178.2 (4) | N1—C7—C12—C11 | −177.8 (4) |
C3—C4—C5—C14 | 177.5 (4) | C10—C11—C12—C7 | 0.9 (7) |
C13—C4—C5—C14 | −0.8 (7) | N1—C6—C15—C20 | −117.6 (5) |
C3—C4—C5—C6 | −1.4 (7) | C5—C6—C15—C20 | 68.0 (6) |
C13—C4—C5—C6 | −179.8 (4) | N1—C6—C15—C16 | 65.0 (6) |
C2—N1—C6—C5 | 3.4 (6) | C5—C6—C15—C16 | −109.5 (5) |
C7—N1—C6—C5 | −169.9 (4) | C20—C15—C16—C17 | −0.8 (6) |
C2—N1—C6—C15 | −171.3 (4) | C6—C15—C16—C17 | 176.8 (4) |
C7—N1—C6—C15 | 15.4 (6) | C15—C16—C17—C18 | 1.3 (7) |
C14—C5—C6—N1 | −179.1 (4) | C16—C17—C18—C19 | −0.9 (7) |
C4—C5—C6—N1 | −0.2 (7) | C16—C17—C18—Br1 | 179.7 (3) |
C14—C5—C6—C15 | −4.8 (7) | C17—C18—C19—C20 | 0.1 (7) |
C4—C5—C6—C15 | 174.1 (4) | Br1—C18—C19—C20 | 179.5 (3) |
C6—N1—C7—C8 | 71.1 (5) | C16—C15—C20—C19 | −0.1 (7) |
C2—N1—C7—C8 | −102.3 (5) | C6—C15—C20—C19 | −177.6 (4) |
C6—N1—C7—C12 | −111.3 (5) | C18—C19—C20—C15 | 0.4 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
C16—H16···N2i | 0.95 | 2.55 | 3.234 (6) | 129 |
C17—H17···O1ii | 0.95 | 2.56 | 3.342 (6) | 140 |
C20—H20···O1iii | 0.95 | 2.40 | 3.256 (6) | 150 |
Symmetry codes: (i) −x+3/2, y−1/2, z−1/2; (ii) x+1/2, −y+1/2, z; (iii) −x+1, −y+1, z+1/2. |
Contact | Distance | Symmetry operation |
H19···H13B | 2.59 | 3/2 - x, -1/2 + y, 1/2 + z |
H17···O1 | 2.56 | 1/2 + x, 1/2 - y, z |
O1···H20 | 2.40 | 1 - x, 1 - y, -1/2 + z |
N2···H16 | 2.55 | 3/2 - x, 1/2 + y, 1/2 + z |
C9···H11 | 2.99 | 1 - x, -y, 1/2 + z |
C10···H13A | 3.03 | x, -1 + y, z |
Acknowledgements
Author contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK and IGM; investigation, FNN, ANK, MA and EVD; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, ANK and IGM; funding acquisition, VNK, AB and ANK; resources, AB, VNK and EVD; supervision, ANK and MA.
Funding information
This study was supported by Baku State University and the Ministry of Science and Higher Education of the Russian Federation [award No. 075–03–2020-223 (FSSF-2020–0017)].
References
Duruskari, G. S., Asgarova, A. R., Aliyeva, K. N., Musayeva, S. A. & Maharramov, A. M. (2020). Russ. J. Org. Chem. 56, 712–715. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gupta, S., Long, S. & Li, T. (2007). Acta Cryst. E63, o2784. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020). CrystEngComm, 22, 628–633. Web of Science CSD CrossRef CAS Google Scholar
Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2246–o2247. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525–529. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554–558. CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516–521. Web of Science CSD CrossRef IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pérez-Aguirre, R., Pérez-Yáñez, S., Beobide, G., Castillo, O., Gutiérrez-Zorrilla, J. M. & Luque, A. (2015). Acta Cryst. E71, m238–m239. CSD CrossRef IUCr Journals Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan. Google Scholar
Sangwan, S., Yadav, N., Kumar, R., Chauhan, S., Dhanda, V., Walia, P. & Duhan, A. (2022). Eur. J. Med. Chem. 232, 114199. Web of Science CrossRef PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038. Web of Science CSD CrossRef CAS Google Scholar
Shishkina, S. V., Shishkin, O. V., Ukrainets, I. V., Tkach, A. A. & Grinevich, L. A. (2009). Acta Cryst. E65, o1984. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sośnicki, J. G. & Idzik, T. J. (2019). Synthesis, 51, 3369–3396. Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Thanigaimani, K., Farhadikoutenaei, A., Khalib, N. C., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o3151–o3152. CSD CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net Google Scholar
Viswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. Web of Science CrossRef CAS PubMed Google Scholar
Wardakhan, W. W. & Agami, S. M. (2001). Egypt. J. Chem. 44, 315–333. CAS Google Scholar
Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.