research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of hydrated μ-oxa­lato-bis­­{bis­­[3-methyl-5-(pyridin-2-yl)-1H-1,2,4-triazole]iron(II)} bis­­(toluene­sulfonate) 2.75-hydrate

crossmark logo

aDepartment of Chemistry, Kyiv National Taras Shevchenko University, Volodymyrska, st. 64, Kyiv, Ukraine, bEnamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine, and c"Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica, Voda 41A, 700487 Iasi, Romania
*Correspondence e-mail: ilonabatyuk@gmail.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 5 July 2022; accepted 20 July 2022; online 26 July 2022)

In the title compound [Fe2(C2O4)(C8H8N4)4](CH3C6H4SO3)2·2.75H2O, the two FeII ions have a highly distorted octa­hedral FeN4O2 environment formed by two bidentate triazole-based chelating ligands and a bis-bidentate oxalate bridging anion that connects the metal ions. Stabilization within the crystal structure is provided via a system of O—H⋯O and N—H⋯O hydrogen bonding, which determines the formation of a two-dimensional architecture along the a-axis direction.

1. Chemical context

The study of coordination compounds based on substituted 1,2,4-triazoles and 3d and 4d transition metals allows the design of supra­molecular structures that can find applications in various fields such as mol­ecular magnetism, catalysis, electrochemistry or cluster engineering (Zhang et al., 2017[Zhang, X., Wu, X. X., Guo, J. H., Huo, J. Z. & Ding, B. (2017). J. Mol. Struct. 1127, 183-190.]; Zakharchenko et al., 2019[Zakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Starova, V. S., Trachevsky, V. V., Shova, S., Severynovska, O. V., Martins, L. M. D. R. S., Pombeiro, A. J. L., Arion, V. B. & Lampeka, R. D. (2019). New J. Chem. 43, 10973-10984.]; Chen et al., 2015[Chen, D. M., Ma, X. Z., Zhang, X. J., Xu, N. & Cheng, P. (2015). Inorg. Chem. 54, 2976-2982.]; Petrenko et al., 2020[Petrenko, Y. P., Khomenko, D. M., Doroshchuk, R. O., Shova, S., Novitchi, G., Piasta, K., Gumienna-Kontecka, E. & Lampeka, R. D. (2020). Inorg. Chim. Acta, 500, 119216.], 2021[Petrenko, Y. P., Piasta, K., Khomenko, D. M., Doroshchuk, R. O., Shova, S., Novitchi, G., Toporivska, Y., Gumienna-Kontecka, E., Martins, L. M. D. R. S. & Lampeka, R. D. (2021). RSC Adv. 11, 23442-23449.]). The presence of the pyridine ring in such triazole systems leads to the formation of inter­esting isolated metal–organic frameworks that demonstrate promising magnetic properties, making them suitable for application as mol­ecule-based magnets (Yao et al., 2015[Yao, P. F., Tao, Y., Li, H. Y., Qin, X. H., Shi, D. W., Huang, F. P., Yu, Q., Qin, X. X. & Bian, H. D. (2015). Cryst. Growth Des. 15, 4394-4405.]; Han et al., 2017[Han, Y., Zheng, H., Li, H., Wang, H., Wang, S. M., Geng, Y. & Wang, L. (2017). RSC Adv. 7, 5578-5582.]; Li et al., 2015[Li, H., Wang, Y., Cai, H., Xu, Z., Jia, L. & Hou, H. (2015). RSC Adv. 5, 89833-89838.]; Huang et al., 2015[Huang, F.-P., Yao, P.-F., Li, H.-Y., Yu, Q., Bian, H.-D. & Liang, H. (2015). Chem. Commun. 51, 7598-7601.]). Moreover, a combination of 3d4–3d7 metals with N-donor bridging ligands may form coordination compounds with switchable spin states (Aromí et al., 2011[Aromí, G., Barrios, L. A., Roubeau, O. & Gamez, P. (2011). Coord. Chem. Rev. 255, 485-546.]; Kucheriv et al., 2021[Kucheriv, O. I., Fritsky, I. O. & Gural'skiy, I. A. (2021). Inorg. Chim. Acta, 521, 120303.]). This phenomenon is called spin crossover. Changes in the external temperature, pressure, magnetic field, light radiation or the presence of a guest alters the magnetic, electrical, mechanical and optical properties significantly in these compounds (Gütlich & Goodwin, 2004[Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 1, 1-47.]). Therefore, the synthesis and crystallographic characterization of these complexes are of current inter­est.

On the other hand, the ability of the oxalate anion to generate homobinuclear complexes is well known (Craig et al., 2010[Craig, G. A., Barrios, L. A., Costa, J. S., Roubeau, O., Ruiz, E., Teat, S. J., Wilson, C. C., Thomas, L. & Aromí, G. (2010). Dalton Trans. 39, 4874.]; Selmi et al., 2021[Selmi, W., Hosni, N., Marchivie, M., Maghraoui-Meherzi, H. & Zid, M. F. (2021). J. Mol. Struct. 1228, 129719.]; Karimpour et al., 2013[Karimpour, T., Safaei, E., Wojtczak, A. & Cotič, P. (2013). J. Mol. Struct. 1038, 230-234.]; Paine et al., 2007[Paine, T. K., England, J. & Que, L. (2007). Chem. Eur. J. 13, 6073-6081.]). The coordination chemistry of oxalato-bridged binuclear FeII complexes with pyridyl-triazole chelating ligands is less studied. A few examples with a similar type of ligand indicate that complexes of this kind possess inter­esting magnetic and oxidizing properties (de Ruiter et al., 2008[Ruiter, G. de, Costa, J. S., Lappalainen, K., Roubeau, O., Gamez, P. & Reedijk, J. (2008). Inorg. Chem. Commun. 11, 787-790.]; Oliveira et al., 2018[Oliveira, W. X. C., Pereira, C. L. M., Pinheiro, C. B., Lloret, F. & Julve, M. (2018). Inorg. Chem. Front. 5, 1294-1306.]). In order to continue research in this field and in the course of our studies dedicated to the investigation of triazoles and, in particular, 3-methyl-5-(pyrid-2-yl)-2H-1,2,4-triazole (metrzpy) (Zakharchenko et al., 2017[Zakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Severynovska, O. V., Raspertova, I. V., Starova, V. S. & Lampeka, R. D. (2017). Chem. Pap. 71, 2003-2009.]; Zakharchenko, Khomenko, Doroschuk, Raspertova, Fesych et al., 2021[Zakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Fesych, I. V., Starova, V. S., Rusakova, N. V., Smola, S. S., Shova, S. & Lampeka, R. D. (2021). Theor. Exp. Chem. 57, 358-365.]; Zakharchenko, Khomenko, Doroshchuk, Raspertova, Shova et al., 2021[Zakharchenko, B. V., Khomenko, D. M., Doroschuk, R. O., Raspertova, I. V., Shova, S., Grebinyk, A. G., Grynyuk, I. I., Prylutska, S. V., Matyshevska, O. P., Slobodyanik, M. S., Frohme, M. & Lampeka, R. D. (2021). Chem. Pap. 75, 4899-4906.]), we report herein the synthesis and crystal structure of a new binuclear iron(II) complex with this ligand.

[Scheme 1]

2. Structural commentary

The structure of the title compound is built up from dinuclear [Fe2(metrzpy)4(C2O4)]2+ complex cations, p-toluene­sulfonate anions and co-crystallized water mol­ecules in a 1:2:2.75 ratio. It crystallizes in the triclinic space group P[\overline{1}] with two complex mol­ecules per unit cell. Each iron(II) ion has an N4O2 coordination environment in a distorted octa­hedral geometry provided by two chelating metrzpy ligands in cis positions and a bidentate bridging oxalate anion (Fig. 1[link], Table 1[link]). The reduced values of the angles subtended at the iron atom by the metrzpy and oxalate ligands are the main factors behind this distortion. The Fe—N and Fe—O bond lengths vary in the ranges 2.150 (3)–2.209 (3) Å and 2.123 (2)–2.171 (2) Å, respectively. The Fe1⋯Fe2 separation across the oxalate bridge of 5.576 (6) Å is in good agreement with previously reported values for other oxalate-bridged iron(II) complexes. The sets of coordinating atoms (O1/O2/N2/N6 for Fe1 and O3/O4/N10/N14 for Fe2) defining the mean equatorial planes are co-planar within 0.22 and 0.20 Å, while the displacement of the metal atom from these planes is 0.015 (1) and 0.037 (1) Å, respectively. The dihedral angle formed by each plane and the mean plane of the oxalate atoms is of 9.74 (6)° for Fe1 and 10.04 (7)° for Fe2.

Table 1
Selected bond lengths (Å)

Fe1—O1 2.171 (2) Fe2—O3 2.123 (2)
Fe1—O2 2.123 (2) Fe2—O4 2.157 (2)
Fe1—N1 2.203 (3) Fe2—N9 2.209 (3)
Fe1—N2 2.150 (3) Fe2—N10 2.165 (3)
Fe1—N5 2.197 (3) Fe2—N13 2.206 (3)
Fe1—N6 2.162 (3) Fe2—N14 2.159 (3)
[Figure 1]
Figure 1
X-ray mol­ecular structure of the title compound with selected atom labels and displacement ellipsoids drawn at the 50% level. Some H atoms are omitted for clarity. Key: carbon, grey; nitrogen, blue; oxygen, red; sulfur, yellow; iron, light green.

3. Supra­molecular features

All the species present in the structure are inter­connected via a system of O—H⋯O and N—H⋯O hydrogen bonds (Table 2[link]), which determines the formation of a two-dimensional architecture, as shown in Fig. 2[link]. Further analysis has shown that the main crystal-structure motif consists of the parallel packing of 2D layers consolidated by the ππ stacking inter­actions observed between triazole and pyridine rings of adjacent cationic entities (Fig. 3[link]) with a centroid-to-centroid distance of 3.746 (1) Å.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O10i 0.86 1.95 2.766 (4) 159
N7—H7⋯O6ii 0.86 2.34 3.064 (5) 142
N7—H7⋯O7ii 0.86 2.34 3.141 (6) 154
N11—H11⋯O9iii 0.86 1.92 2.769 (4) 170
N15—H15⋯O5iv 0.86 1.99 2.825 (4) 163
C4—H4⋯O2Wv 0.93 2.48 3.383 (5) 165
C11—H11A⋯O5W 0.93 2.49 3.206 (8) 134
C28—H28⋯O4Wvi 0.93 2.54 3.421 (6) 159
O2W—H2WA⋯O4 0.85 2.10 2.949 (4) 174
O2W—H2WB⋯O5 0.86 1.99 2.838 (4) 172
O4W—H4WA⋯O1 0.87 2.34 3.123 (5) 150
O4W—H4WA⋯O3 0.87 2.25 3.037 (4) 151
O4W—H4WB⋯O10 0.87 1.92 2.788 (5) 174
O5W—H5WA⋯O4Wvi 0.86 1.98 2.810 (11) 159
O5W—H5WB⋯O4W 0.86 2.28 2.850 (10) 123
C13—H13⋯O8vi 0.93 2.57 3.256 (5) 131
C21—H21⋯O7v 0.93 2.44 3.280 (6) 150
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [-x, -y, -z]; (iii) [-x+1, -y+2, -z+1]; (iv) [-x+1, -y+1, -z]; (v) [-x, -y+1, -z]; (vi) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
Two-dimensional supra­molecular network viewed along the a axis.
[Figure 3]
Figure 3
π--π stacking between adjacent complex cations. Centroid-to-centroid contacts are shown as green dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.43, last update November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 189 hits for the Fe2(μ-C2O4) unit, the majority of which are iron(II)-based metal–organic coordination polymers. Besides them, there are several homobimetallic structures with an [FeN4O2] coordination environment: AVIMUN (Spek et al., 2004[Spek, A. L., van Koningsbruggen, P. J. & Haasnoot, J. G. (2004). Private Communication (CCDC 232594). CCDC, Cambridge, England.]), LOZHOA (Oliveira et al., 2018[Oliveira, W. X. C., Pereira, C. L. M., Pinheiro, C. B., Lloret, F. & Julve, M. (2018). Inorg. Chem. Front. 5, 1294-1306.]), NOLSUF and NOLTAM (Gusev et al., 2019[Gusev, A., Nemec, I., Herchel, R., Riush, I., Titiš, J., Boča, R., Lyssenko, K., Kiskin, M., Eremenko, I. & Linert, W. (2019). Dalton Trans. 48, 10526-10536.]) and VIHCIZ (Paine et al., 2007[Paine, T. K., England, J. & Que, L. (2007). Chem. Eur. J. 13, 6073-6081.]). It must be noted that AVIMUN is a homologue of the title compound and contains a 3-ethyl-1,2,4-triazole fragment; however, it has a different packing and the crystal structure belongs to the monoclinic system.

A search for the structures of coordination compounds based on 3-methyl-5-(pyrid-2-yl)-2H-1,2,4-triazole revealed ten hits. Three of these structures represent our previous studies: CAMSUI (Zakharchenko, Khomenko, Doroschuk, Raspertova, Shova et al., 2021[Zakharchenko, B. V., Khomenko, D. M., Doroschuk, R. O., Raspertova, I. V., Shova, S., Grebinyk, A. G., Grynyuk, I. I., Prylutska, S. V., Matyshevska, O. P., Slobodyanik, M. S., Frohme, M. & Lampeka, R. D. (2021). Chem. Pap. 75, 4899-4906.]), IXIBID and IXIBOJ (Petrenko et al., 2021[Petrenko, Y. P., Piasta, K., Khomenko, D. M., Doroshchuk, R. O., Shova, S., Novitchi, G., Toporivska, Y., Gumienna-Kontecka, E., Martins, L. M. D. R. S. & Lampeka, R. D. (2021). RSC Adv. 11, 23442-23449.]). The other structures correspond to mixed-ligand complexes with various metals, among them: NIYRAQ (Cao et al., 2014[Cao, H., Sun, H., Yin, Y., Wen, X., Shan, G., Su, Z., Zhong, R., Xie, W., Li, P. & Zhu, D. (2014). J. Mater. Chem. C. 2, 2150.]), QURBIQ (Guetlich & Schollmeyer, 2015[Guetlich, P. & Schollmeyer, D. (2015). Private Communication (CCDC 1434401). CCDC, Cambridge, England.]), REWSOC (Cheng et al., 2007[Cheng, L., Zhang, W.-X., Ye, B.-H., Lin, J.-B. & Chen, X.-M. (2007). Inorg. Chem. 46, 1135-1143.]), SARQIO (Muller et al., 2013[Muller, K., Sun, Y., Heimermann, A., Menges, F., Niedner-Schatteburg, G., van Wüllen, C. & Thiel, W. R. (2013). Chem. Eur. J. 19, 7825-7834.]) and VESZOI (Buchanan et al., 1990[Buchanan, B. E., Vos, J. G., Kaneko, M., van der Putten, W. J. M., Kelly, J. M., Hage, R., de Graaff, R. A. G., Prins, R., Haasnoot, J. G. & Reedijk, J. (1990). J. Chem. Soc. Dalton Trans. pp. 2425-2431.]).

5. Synthesis and crystallization

The triazole ligand was prepared according to a synthesis described in the literature (Zakharchenko et al., 2017[Zakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Severynovska, O. V., Raspertova, I. V., Starova, V. S. & Lampeka, R. D. (2017). Chem. Pap. 71, 2003-2009.]). Single crystals of [Fe2(C2O4)(metrzpy)4](CH3C6H4SO3)2·2.75H2O were obtained by the liquid-to-liquid diffusion technique using a layering tube. The bottom was filled with Fe(CH3C6H4SO3)2·6H2O (50.6 mg, 0.1 mmol) in 2 ml of water. The middle was filled with a solution of 2 ml methanol/water (1:1) containing ascorbic acid (35.2 mg, 0.2 mmol). Then the top was filled with a solution of metrzpy ligand (32.0 mg, 0.2 mmol) in 2 ml of methanol. Afterwards, the tube was sealed with parafilm and light brown square-plate single crystals were formed within 3 days in relative high yield (ca 50%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogen atoms were placed geometrically and refined as riding, with C—H = 0.96 (CH3), 0.93 Å (Carom), N—H = 0.86 Å and O—H = 0.85–0.87Å, and with Uiso(H) = 1.2Ueq(Carom) or 1.5Ueq(C-meth­yl). N-bound H atoms were refined with Uiso(H) = 1.2Ueq(N). The idealized OH2 mol­ecule was fixed using an AFIX 3, Uiso(H) = 1.5Ueq(Owater).

Table 3
Experimental details

Crystal data
Chemical formula [Fe2(C2O4)(C8H8N4)4](C7H7O3S)2·2.75H2O
Mr 1232.37
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 9.9635 (4), 14.4905 (6), 20.1131 (8)
α, β, γ (°) 96.736 (4), 101.490 (4), 95.216 (4)
V3) 2806.5 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.67
Crystal size (mm) 0.35 × 0.2 × 0.15
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.923, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 20140, 9886, 7117
Rint 0.031
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.132, 1.06
No. of reflections 9886
No. of parameters 739
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.59, −0.52
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

µ-Oxalato-κ4O1,O2:O1',O2'-bis{bis[3-methyl-5-(pyridin-2-yl)-1H-1,2,4-triazole-κ2N4,N5]iron(II)} bis(toluenesulfonate) 2.75-hydrate top
Crystal data top
[Fe2(C2O4)(C8H8N4)4](C7H7O3S)2·2.75H2OZ = 2
Mr = 1232.37F(000) = 1275
Triclinic, P1Dx = 1.458 Mg m3
a = 9.9635 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.4905 (6) ÅCell parameters from 5996 reflections
c = 20.1131 (8) Åθ = 2.0–26.2°
α = 96.736 (4)°µ = 0.67 mm1
β = 101.490 (4)°T = 293 K
γ = 95.216 (4)°Block, clear light brown
V = 2806.5 (2) Å30.35 × 0.2 × 0.15 mm
Data collection top
Rigaku Oxford Diffraction Xcalibur, Eos
diffractometer
9886 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source7117 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 8.0797 pixels mm-1θmax = 25.0°, θmin = 1.7°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
k = 1715
Tmin = 0.923, Tmax = 1.000l = 2323
20140 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0447P)2 + 1.2466P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
9886 reflectionsΔρmax = 0.59 e Å3
739 parametersΔρmin = 0.52 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.06627 (5)0.33384 (3)0.24663 (2)0.04095 (15)
Fe20.46059 (5)0.63703 (3)0.25705 (2)0.04295 (15)
O10.1636 (2)0.46283 (16)0.31108 (11)0.0477 (6)
O20.2035 (3)0.38999 (16)0.18929 (11)0.0485 (6)
O30.3255 (3)0.58058 (16)0.31534 (11)0.0505 (6)
O40.3654 (3)0.50805 (16)0.19378 (11)0.0487 (6)
N10.1150 (3)0.38744 (19)0.18860 (13)0.0445 (7)
N20.0855 (3)0.3172 (2)0.30813 (13)0.0451 (7)
N30.2364 (3)0.2948 (2)0.36995 (14)0.0553 (8)
H30.2717360.2798200.4034170.066*
N40.3071 (3)0.3274 (2)0.31482 (15)0.0540 (8)
N50.2127 (3)0.2521 (2)0.30396 (13)0.0462 (7)
N60.0155 (3)0.19564 (19)0.18814 (13)0.0440 (7)
N70.0330 (4)0.0583 (2)0.13003 (17)0.0922 (14)
H70.0712770.0140050.0976910.111*
N80.0632 (4)0.0470 (2)0.18557 (17)0.0848 (13)
N90.3081 (3)0.7159 (2)0.19942 (14)0.0507 (8)
N100.5106 (3)0.77723 (19)0.31263 (13)0.0432 (7)
N110.5722 (3)0.9187 (2)0.36334 (15)0.0597 (9)
H110.6150930.9650620.3928870.072*
N120.4736 (4)0.9271 (2)0.30800 (16)0.0621 (9)
N130.6489 (3)0.58921 (19)0.31364 (13)0.0455 (7)
N140.6070 (3)0.65457 (19)0.19219 (13)0.0445 (7)
N150.7518 (3)0.6810 (2)0.12811 (14)0.0543 (8)
H150.7839580.6958360.0936500.065*
N160.8289 (3)0.6538 (2)0.18426 (14)0.0529 (8)
C10.2527 (4)0.5063 (2)0.28770 (16)0.0386 (8)
C20.2758 (3)0.4641 (2)0.21719 (16)0.0374 (8)
C30.1234 (4)0.4204 (3)0.12807 (18)0.0589 (11)
H3A0.0437880.4295790.1109840.071*
C40.2462 (5)0.4407 (3)0.0907 (2)0.0667 (12)
H40.2492560.4626940.0488770.080*
C50.3627 (5)0.4285 (3)0.1156 (2)0.0702 (13)
H50.4460720.4419860.0908060.084*
C60.3568 (4)0.3958 (3)0.17799 (19)0.0575 (10)
H60.4353660.3875060.1960460.069*
C70.2312 (4)0.3760 (2)0.21249 (16)0.0427 (8)
C80.2112 (4)0.3405 (2)0.27900 (16)0.0421 (8)
C90.1053 (4)0.2887 (3)0.36643 (17)0.0503 (9)
C100.0023 (4)0.2548 (4)0.4192 (2)0.0807 (14)
H10A0.0247590.1971750.4003110.121*
H10B0.0421440.2444840.4578430.121*
H10C0.0771270.3007380.4337440.121*
C110.3084 (4)0.2830 (3)0.36143 (18)0.0577 (10)
H11A0.3267910.3470580.3758720.069*
C120.3799 (4)0.2239 (3)0.3996 (2)0.0659 (12)
H120.4462700.2478020.4387450.079*
C130.3528 (4)0.1295 (3)0.3796 (2)0.0704 (13)
H130.3981790.0883860.4058020.084*
C140.2570 (4)0.0956 (3)0.31978 (18)0.0625 (11)
H140.2375820.0317530.3046860.075*
C150.1912 (4)0.1594 (3)0.28328 (17)0.0463 (9)
C160.0893 (4)0.1317 (3)0.21895 (17)0.0491 (9)
C170.0606 (4)0.1457 (3)0.13178 (19)0.0617 (11)
C180.1622 (5)0.1779 (3)0.0775 (2)0.0832 (15)
H18A0.2358510.2005960.0966820.125*
H18B0.1989350.1266800.0417860.125*
H18C0.1177220.2273460.0588490.125*
C190.2082 (4)0.6836 (3)0.14435 (19)0.0642 (11)
H190.1886570.6192090.1317490.077*
C200.1332 (4)0.7406 (4)0.1055 (2)0.0755 (14)
H200.0636500.7153030.0679880.091*
C210.1627 (5)0.8348 (4)0.1230 (2)0.0803 (15)
H210.1146640.8747220.0966930.096*
C220.2640 (5)0.8712 (3)0.17987 (19)0.0702 (13)
H220.2847700.9354710.1927850.084*
C230.3334 (4)0.8092 (3)0.21697 (17)0.0501 (9)
C240.4396 (4)0.8401 (3)0.27894 (17)0.0485 (9)
C250.5944 (4)0.8301 (3)0.36629 (17)0.0487 (9)
C260.6950 (4)0.8004 (3)0.42185 (18)0.0677 (12)
H26A0.6506050.7514600.4409600.102*
H26B0.7298150.8527380.4569190.102*
H26C0.7699060.7778340.4037590.102*
C270.6645 (4)0.5565 (3)0.37394 (18)0.0592 (11)
H270.5868200.5442590.3920170.071*
C280.7898 (5)0.5401 (3)0.4102 (2)0.0684 (12)
H280.7964180.5183660.4523340.082*
C290.9047 (5)0.5560 (3)0.3841 (2)0.0702 (12)
H290.9905040.5450420.4079880.084*
C300.8916 (4)0.5886 (3)0.32143 (19)0.0594 (11)
H300.9680950.5999350.3023210.071*
C310.7626 (4)0.6039 (2)0.28800 (16)0.0436 (8)
C320.7366 (4)0.6382 (2)0.22115 (16)0.0429 (8)
C330.6205 (4)0.6820 (3)0.13259 (17)0.0515 (10)
C340.5110 (4)0.7077 (3)0.07895 (18)0.0773 (14)
H34A0.4863490.7680280.0939150.116*
H34B0.4315150.6619190.0707290.116*
H34C0.5441650.7098510.0374290.116*
S10.19815 (11)0.15158 (8)0.01003 (5)0.0625 (3)
O50.1921 (3)0.25052 (19)0.00942 (11)0.0669 (8)
O60.2457 (4)0.1123 (2)0.06992 (14)0.1116 (13)
O70.0732 (4)0.1004 (3)0.0048 (2)0.1409 (18)
C350.3234 (4)0.1378 (3)0.06207 (17)0.0470 (9)
C360.3414 (4)0.1958 (3)0.12319 (18)0.0534 (10)
H360.2875800.2445580.1269150.064*
C370.4393 (4)0.1816 (3)0.17913 (18)0.0566 (10)
H370.4500620.2210470.2202600.068*
C380.5207 (4)0.1109 (3)0.1753 (2)0.0596 (11)
C390.5008 (5)0.0528 (3)0.1146 (2)0.0840 (15)
H390.5542980.0037510.1110590.101*
C400.4026 (5)0.0656 (3)0.0582 (2)0.0755 (13)
H400.3903600.0249970.0175570.091*
C410.6316 (5)0.0972 (3)0.2360 (2)0.0912 (16)
H41A0.7187860.1274420.2318790.137*
H41B0.6373370.0315480.2367500.137*
H41C0.6086870.1239840.2776730.137*
S20.30295 (10)0.86078 (7)0.49751 (4)0.0531 (3)
O80.4317 (3)0.8827 (3)0.47784 (15)0.0979 (12)
O90.2802 (3)0.9233 (2)0.55456 (13)0.0826 (9)
O100.2837 (3)0.76442 (18)0.51006 (11)0.0620 (7)
C420.1701 (4)0.8707 (2)0.42682 (17)0.0451 (9)
C430.0828 (4)0.9383 (3)0.4305 (2)0.0641 (11)
H430.0921980.9793050.4707970.077*
C440.0196 (4)0.9454 (3)0.3740 (2)0.0705 (12)
H440.0786460.9911010.3769280.085*
C450.0353 (4)0.8857 (3)0.3134 (2)0.0570 (10)
C460.0549 (4)0.8200 (3)0.31052 (18)0.0561 (10)
H460.0472030.7798620.2699500.067*
C470.1565 (4)0.8119 (3)0.36615 (17)0.0529 (10)
H470.2162380.7667000.3628610.063*
C480.1485 (5)0.8935 (3)0.2527 (2)0.0843 (15)
H48A0.1219720.8697880.2111560.126*
H48B0.1632940.9579700.2518770.126*
H48C0.2320410.8578150.2563270.126*
O1W0.018 (2)0.4596 (12)0.0131 (10)0.159 (7)*0.25
H1WA0.0265710.5165860.0007000.239*0.25
H1WB0.0650890.4538360.0039900.239*0.25
O2W0.2693 (5)0.4417 (2)0.04606 (14)0.1319 (16)
H2WA0.3023460.4585790.0884280.198*
H2WB0.2493860.3825990.0331480.198*
O4W0.2661 (6)0.5760 (3)0.45735 (18)0.1135 (19)0.75
H4WA0.2646260.5579250.4144910.170*0.75
H4WB0.2728060.6355250.4709710.170*0.75
O5W0.4606 (9)0.4449 (5)0.4825 (4)0.136 (3)*0.5
H5WA0.5367860.4398000.5104730.205*0.5
H5WB0.4581660.4995900.4696930.205*0.5
O3W0.3943 (15)0.6210 (10)0.4573 (6)0.094 (4)*0.25
H3WA0.3763360.6113970.4130010.141*0.25
H3WB0.3621260.6719970.4696710.141*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0381 (3)0.0391 (3)0.0426 (3)0.0045 (2)0.0063 (2)0.0040 (2)
Fe20.0400 (3)0.0413 (3)0.0438 (3)0.0073 (2)0.0079 (2)0.0018 (2)
O10.0493 (16)0.0481 (15)0.0453 (13)0.0074 (12)0.0213 (12)0.0037 (11)
O20.0551 (17)0.0440 (15)0.0427 (13)0.0099 (13)0.0163 (12)0.0072 (11)
O30.0580 (17)0.0450 (15)0.0430 (13)0.0135 (13)0.0169 (12)0.0121 (12)
O40.0513 (16)0.0495 (15)0.0445 (13)0.0114 (13)0.0222 (12)0.0044 (12)
N10.052 (2)0.0367 (17)0.0414 (16)0.0027 (15)0.0042 (14)0.0044 (13)
N20.0431 (19)0.0498 (19)0.0416 (15)0.0004 (15)0.0066 (13)0.0113 (14)
N30.052 (2)0.070 (2)0.0449 (17)0.0014 (18)0.0152 (15)0.0103 (16)
N40.050 (2)0.060 (2)0.0526 (18)0.0041 (17)0.0121 (16)0.0090 (16)
N50.0345 (18)0.053 (2)0.0460 (16)0.0007 (15)0.0018 (13)0.0039 (15)
N60.0462 (19)0.0392 (17)0.0406 (15)0.0001 (14)0.0013 (13)0.0033 (14)
N70.129 (4)0.044 (2)0.071 (2)0.015 (2)0.045 (2)0.0138 (18)
N80.115 (3)0.047 (2)0.070 (2)0.020 (2)0.031 (2)0.0039 (18)
N90.0393 (19)0.058 (2)0.0488 (17)0.0012 (16)0.0014 (14)0.0024 (16)
N100.0425 (18)0.0401 (17)0.0431 (16)0.0029 (14)0.0056 (14)0.0018 (14)
N110.073 (3)0.046 (2)0.0486 (18)0.0023 (18)0.0015 (17)0.0093 (15)
N120.073 (3)0.049 (2)0.0565 (19)0.0093 (19)0.0003 (18)0.0017 (17)
N130.055 (2)0.0399 (17)0.0403 (16)0.0028 (15)0.0102 (14)0.0066 (14)
N140.0420 (19)0.0462 (18)0.0436 (16)0.0027 (15)0.0077 (14)0.0076 (14)
N150.053 (2)0.068 (2)0.0427 (17)0.0013 (18)0.0145 (15)0.0130 (16)
N160.050 (2)0.057 (2)0.0520 (18)0.0007 (16)0.0143 (16)0.0084 (16)
C10.038 (2)0.038 (2)0.0391 (18)0.0007 (17)0.0105 (16)0.0000 (16)
C20.037 (2)0.036 (2)0.0373 (18)0.0023 (17)0.0074 (15)0.0002 (16)
C30.074 (3)0.053 (3)0.049 (2)0.000 (2)0.010 (2)0.013 (2)
C40.092 (4)0.048 (3)0.053 (2)0.008 (3)0.006 (2)0.014 (2)
C50.072 (3)0.059 (3)0.069 (3)0.014 (3)0.012 (2)0.012 (2)
C60.048 (3)0.053 (3)0.066 (2)0.009 (2)0.001 (2)0.004 (2)
C70.046 (2)0.034 (2)0.0463 (19)0.0050 (17)0.0077 (17)0.0026 (16)
C80.043 (2)0.036 (2)0.0445 (19)0.0007 (17)0.0064 (17)0.0014 (16)
C90.048 (3)0.057 (2)0.043 (2)0.003 (2)0.0067 (18)0.0087 (18)
C100.067 (3)0.119 (4)0.062 (3)0.008 (3)0.012 (2)0.038 (3)
C110.044 (2)0.062 (3)0.057 (2)0.001 (2)0.0035 (19)0.000 (2)
C120.046 (3)0.086 (3)0.056 (2)0.008 (2)0.0080 (19)0.001 (2)
C130.066 (3)0.088 (4)0.057 (2)0.029 (3)0.000 (2)0.014 (3)
C140.070 (3)0.057 (3)0.055 (2)0.021 (2)0.000 (2)0.001 (2)
C150.043 (2)0.049 (2)0.0449 (19)0.0076 (19)0.0052 (17)0.0060 (18)
C160.052 (2)0.040 (2)0.050 (2)0.0036 (19)0.0015 (18)0.0043 (18)
C170.075 (3)0.044 (2)0.053 (2)0.001 (2)0.012 (2)0.0018 (19)
C180.099 (4)0.061 (3)0.066 (3)0.010 (3)0.032 (2)0.005 (2)
C190.045 (3)0.074 (3)0.062 (2)0.003 (2)0.002 (2)0.004 (2)
C200.049 (3)0.106 (4)0.060 (3)0.015 (3)0.011 (2)0.001 (3)
C210.080 (4)0.098 (4)0.061 (3)0.041 (3)0.002 (2)0.009 (3)
C220.076 (3)0.072 (3)0.059 (2)0.029 (3)0.000 (2)0.004 (2)
C230.047 (2)0.056 (3)0.046 (2)0.007 (2)0.0083 (17)0.0035 (19)
C240.051 (2)0.047 (2)0.044 (2)0.004 (2)0.0057 (17)0.0004 (18)
C250.051 (2)0.044 (2)0.047 (2)0.0008 (19)0.0079 (18)0.0006 (18)
C260.075 (3)0.062 (3)0.052 (2)0.002 (2)0.011 (2)0.002 (2)
C270.075 (3)0.053 (3)0.052 (2)0.004 (2)0.017 (2)0.014 (2)
C280.095 (4)0.059 (3)0.047 (2)0.010 (3)0.000 (2)0.016 (2)
C290.068 (3)0.068 (3)0.067 (3)0.012 (3)0.007 (2)0.015 (2)
C300.051 (3)0.062 (3)0.062 (2)0.005 (2)0.006 (2)0.009 (2)
C310.048 (2)0.034 (2)0.0438 (19)0.0022 (17)0.0052 (17)0.0004 (16)
C320.043 (2)0.038 (2)0.0451 (19)0.0010 (17)0.0081 (17)0.0019 (16)
C330.052 (3)0.057 (2)0.044 (2)0.002 (2)0.0097 (18)0.0089 (19)
C340.058 (3)0.120 (4)0.053 (2)0.000 (3)0.005 (2)0.029 (3)
S10.0572 (7)0.0586 (7)0.0618 (6)0.0095 (5)0.0082 (5)0.0159 (6)
O50.089 (2)0.0629 (19)0.0442 (14)0.0177 (16)0.0011 (14)0.0063 (13)
O60.165 (4)0.101 (3)0.0500 (17)0.034 (3)0.011 (2)0.0208 (17)
O70.061 (2)0.183 (4)0.164 (3)0.046 (2)0.036 (2)0.115 (3)
C350.044 (2)0.043 (2)0.053 (2)0.0010 (18)0.0101 (17)0.0041 (18)
C360.049 (2)0.047 (2)0.059 (2)0.0110 (19)0.0022 (19)0.0021 (19)
C370.058 (3)0.056 (3)0.049 (2)0.000 (2)0.0037 (19)0.0006 (19)
C380.057 (3)0.048 (2)0.068 (3)0.000 (2)0.004 (2)0.016 (2)
C390.081 (4)0.065 (3)0.102 (4)0.038 (3)0.001 (3)0.004 (3)
C400.081 (4)0.069 (3)0.068 (3)0.023 (3)0.006 (2)0.017 (2)
C410.087 (4)0.066 (3)0.106 (4)0.008 (3)0.022 (3)0.029 (3)
S20.0474 (6)0.0611 (7)0.0441 (5)0.0079 (5)0.0009 (4)0.0066 (5)
O80.0445 (19)0.161 (3)0.086 (2)0.019 (2)0.0025 (16)0.053 (2)
O90.098 (3)0.074 (2)0.0562 (16)0.0014 (18)0.0095 (16)0.0212 (15)
O100.081 (2)0.0599 (18)0.0435 (14)0.0076 (15)0.0072 (13)0.0104 (13)
C420.043 (2)0.042 (2)0.049 (2)0.0022 (18)0.0102 (17)0.0060 (17)
C430.063 (3)0.064 (3)0.061 (2)0.007 (2)0.011 (2)0.009 (2)
C440.061 (3)0.057 (3)0.091 (3)0.020 (2)0.007 (3)0.005 (3)
C450.053 (3)0.051 (2)0.062 (2)0.001 (2)0.002 (2)0.013 (2)
C460.058 (3)0.059 (3)0.045 (2)0.005 (2)0.0049 (19)0.0040 (19)
C470.052 (3)0.052 (2)0.051 (2)0.012 (2)0.0035 (18)0.0016 (19)
C480.074 (3)0.082 (4)0.088 (3)0.012 (3)0.012 (3)0.023 (3)
O2W0.252 (5)0.086 (3)0.0506 (18)0.024 (3)0.012 (2)0.0135 (18)
O4W0.201 (6)0.096 (4)0.051 (2)0.046 (4)0.034 (3)0.004 (2)
Geometric parameters (Å, º) top
Fe1—O12.171 (2)C18—H18C0.9600
Fe1—O22.123 (2)C19—H190.9300
Fe1—N12.203 (3)C19—C201.372 (5)
Fe1—N22.150 (3)C20—H200.9300
Fe1—N52.197 (3)C20—C211.359 (6)
Fe1—N62.162 (3)C21—H210.9300
Fe2—O32.123 (2)C21—C221.381 (6)
Fe2—O42.157 (2)C22—H220.9300
Fe2—N92.209 (3)C22—C231.381 (5)
Fe2—N102.165 (3)C23—C241.460 (5)
Fe2—N132.206 (3)C25—C261.478 (5)
Fe2—N142.159 (3)C26—H26A0.9600
O1—C11.241 (4)C26—H26B0.9600
O2—C21.243 (4)C26—H26C0.9600
O3—C11.245 (4)C27—H270.9300
O4—C21.249 (4)C27—C281.371 (5)
N1—C31.349 (4)C28—H280.9300
N1—C71.343 (4)C28—C291.364 (6)
N2—C81.363 (4)C29—H290.9300
N2—C91.333 (4)C29—C301.384 (5)
N3—H30.8600C30—H300.9300
N3—N41.350 (4)C30—C311.377 (5)
N3—C91.332 (4)C31—C321.471 (4)
N4—C81.320 (4)C33—C341.481 (5)
N5—C111.344 (4)C34—H34A0.9600
N5—C151.344 (4)C34—H34B0.9600
N6—C161.364 (4)C34—H34C0.9600
N6—C171.323 (4)S1—O51.439 (3)
N7—H70.8600S1—O61.454 (3)
N7—N81.356 (4)S1—O71.419 (3)
N7—C171.318 (5)S1—C351.758 (4)
N8—C161.305 (4)C35—C361.375 (5)
N9—C191.338 (4)C35—C401.371 (5)
N9—C231.344 (4)C36—H360.9300
N10—C241.365 (4)C36—C371.383 (5)
N10—C251.334 (4)C37—H370.9300
N11—H110.8600C37—C381.368 (5)
N11—N121.355 (4)C38—C391.368 (6)
N11—C251.329 (4)C38—C411.520 (5)
N12—C241.309 (4)C39—H390.9300
N13—C271.339 (4)C39—C401.384 (5)
N13—C311.345 (4)C40—H400.9300
N14—C321.361 (4)C41—H41A0.9600
N14—C331.334 (4)C41—H41B0.9600
N15—H150.8600C41—H41C0.9600
N15—N161.354 (4)S2—O81.435 (3)
N15—C331.331 (4)S2—O91.444 (3)
N16—C321.312 (4)S2—O101.450 (3)
C1—C21.546 (4)S2—C421.768 (4)
C3—H3A0.9300C42—C431.373 (5)
C3—C41.379 (5)C42—C471.379 (5)
C4—H40.9300C43—H430.9300
C4—C51.357 (6)C43—C441.388 (5)
C5—H50.9300C44—H440.9300
C5—C61.385 (5)C44—C451.381 (5)
C6—H60.9300C45—C461.372 (5)
C6—C71.377 (5)C45—C481.512 (5)
C7—C81.472 (4)C46—H460.9300
C9—C101.484 (5)C46—C471.375 (5)
C10—H10A0.9600C47—H470.9300
C10—H10B0.9600C48—H48A0.9600
C10—H10C0.9600C48—H48B0.9600
C11—H11A0.9300C48—H48C0.9600
C11—C121.370 (5)O1W—H1WA0.8500
C12—H120.9300O1W—H1WB0.8499
C12—C131.366 (6)O2W—H2WA0.8482
C13—H130.9300O2W—H2WB0.8577
C13—C141.384 (5)O4W—H4WA0.8679
C14—H140.9300O4W—H4WB0.8665
C14—C151.378 (5)O5W—H5WA0.8651
C15—C161.465 (5)O5W—H5WB0.8618
C17—C181.483 (5)O3W—H3WA0.8642
C18—H18A0.9600O3W—H3WB0.8617
C18—H18B0.9600
O1—Fe1—N198.95 (10)N7—C17—C18123.1 (4)
O1—Fe1—N591.45 (10)C17—C18—H18A109.5
O2—Fe1—O176.88 (8)C17—C18—H18B109.5
O2—Fe1—N194.10 (10)C17—C18—H18C109.5
O2—Fe1—N2163.77 (10)H18A—C18—H18B109.5
O2—Fe1—N596.26 (10)H18A—C18—H18C109.5
O2—Fe1—N697.91 (10)H18B—C18—H18C109.5
N2—Fe1—O191.45 (10)N9—C19—H19118.3
N2—Fe1—N176.39 (10)N9—C19—C20123.4 (4)
N2—Fe1—N595.26 (10)C20—C19—H19118.3
N2—Fe1—N695.76 (11)C19—C20—H20120.7
N5—Fe1—N1166.75 (11)C21—C20—C19118.6 (4)
N6—Fe1—O1167.01 (10)C21—C20—H20120.7
N6—Fe1—N193.25 (10)C20—C21—H21120.0
N6—Fe1—N577.17 (10)C20—C21—C22119.9 (4)
O3—Fe2—O477.01 (8)C22—C21—H21120.0
O3—Fe2—N995.46 (10)C21—C22—H22121.0
O3—Fe2—N1099.08 (9)C21—C22—C23118.0 (4)
O3—Fe2—N1396.09 (10)C23—C22—H22121.0
O3—Fe2—N14164.19 (10)N9—C23—C22122.9 (4)
O4—Fe2—N990.81 (10)N9—C23—C24114.7 (3)
O4—Fe2—N10166.87 (10)C22—C23—C24122.4 (4)
O4—Fe2—N13100.13 (10)N10—C24—C23120.9 (3)
O4—Fe2—N1490.65 (9)N12—C24—N10114.2 (3)
N10—Fe2—N976.99 (11)N12—C24—C23124.9 (3)
N10—Fe2—N1392.72 (10)N10—C25—C26128.6 (3)
N13—Fe2—N9165.61 (11)N11—C25—N10108.2 (3)
N14—Fe2—N994.55 (10)N11—C25—C26123.2 (3)
N14—Fe2—N1095.07 (10)C25—C26—H26A109.5
N14—Fe2—N1376.15 (10)C25—C26—H26B109.5
C1—O1—Fe1113.9 (2)C25—C26—H26C109.5
C2—O2—Fe1115.3 (2)H26A—C26—H26B109.5
C1—O3—Fe2115.4 (2)H26A—C26—H26C109.5
C2—O4—Fe2114.1 (2)H26B—C26—H26C109.5
C3—N1—Fe1126.0 (3)N13—C27—H27118.5
C7—N1—Fe1115.9 (2)N13—C27—C28123.0 (4)
C7—N1—C3117.7 (3)C28—C27—H27118.5
C8—N2—Fe1113.6 (2)C27—C28—H28120.3
C9—N2—Fe1142.8 (2)C29—C28—C27119.5 (4)
C9—N2—C8103.6 (3)C29—C28—H28120.3
N4—N3—H3124.0C28—C29—H29120.6
C9—N3—H3124.0C28—C29—C30118.9 (4)
C9—N3—N4112.1 (3)C30—C29—H29120.6
C8—N4—N3101.7 (3)C29—C30—H30120.8
C11—N5—Fe1127.1 (3)C31—C30—C29118.5 (4)
C15—N5—Fe1115.0 (2)C31—C30—H30120.8
C15—N5—C11117.3 (3)N13—C31—C30123.1 (3)
C16—N6—Fe1111.9 (2)N13—C31—C32113.9 (3)
C17—N6—Fe1144.8 (2)C30—C31—C32123.1 (3)
C17—N6—C16103.3 (3)N14—C32—C31119.8 (3)
N8—N7—H7124.2N16—C32—N14114.6 (3)
C17—N7—H7124.2N16—C32—C31125.6 (3)
C17—N7—N8111.6 (3)N14—C33—C34127.4 (4)
C16—N8—N7101.8 (3)N15—C33—N14108.0 (3)
C19—N9—Fe2128.0 (3)N15—C33—C34124.6 (3)
C19—N9—C23117.1 (3)C33—C34—H34A109.5
C23—N9—Fe2114.2 (2)C33—C34—H34B109.5
C24—N10—Fe2111.8 (2)C33—C34—H34C109.5
C25—N10—Fe2144.1 (2)H34A—C34—H34B109.5
C25—N10—C24103.8 (3)H34A—C34—H34C109.5
N12—N11—H11124.2H34B—C34—H34C109.5
C25—N11—H11124.2O5—S1—O6110.60 (19)
C25—N11—N12111.6 (3)O5—S1—C35106.93 (17)
C24—N12—N11102.2 (3)O6—S1—C35106.78 (19)
C27—N13—Fe2126.7 (3)O7—S1—O5114.3 (2)
C27—N13—C31117.1 (3)O7—S1—O6110.8 (3)
C31—N13—Fe2115.8 (2)O7—S1—C35106.96 (18)
C32—N14—Fe2113.6 (2)C36—C35—S1121.8 (3)
C33—N14—Fe2142.5 (3)C40—C35—S1119.4 (3)
C33—N14—C32103.7 (3)C40—C35—C36118.8 (3)
N16—N15—H15124.0C35—C36—H36120.0
C33—N15—H15124.0C35—C36—C37120.1 (3)
C33—N15—N16112.0 (3)C37—C36—H36120.0
C32—N16—N15101.7 (3)C36—C37—H37119.3
O1—C1—O3126.5 (3)C38—C37—C36121.4 (4)
O1—C1—C2116.8 (3)C38—C37—H37119.3
O3—C1—C2116.6 (3)C37—C38—C39118.1 (4)
O2—C2—O4126.3 (3)C37—C38—C41121.5 (4)
O2—C2—C1117.0 (3)C39—C38—C41120.4 (4)
O4—C2—C1116.7 (3)C38—C39—H39119.4
N1—C3—H3A119.0C38—C39—C40121.2 (4)
N1—C3—C4122.1 (4)C40—C39—H39119.4
C4—C3—H3A119.0C35—C40—C39120.4 (4)
C3—C4—H4120.3C35—C40—H40119.8
C5—C4—C3119.4 (4)C39—C40—H40119.8
C5—C4—H4120.3C38—C41—H41A109.5
C4—C5—H5120.1C38—C41—H41B109.5
C4—C5—C6119.8 (4)C38—C41—H41C109.5
C6—C5—H5120.1H41A—C41—H41B109.5
C5—C6—H6121.0H41A—C41—H41C109.5
C7—C6—C5118.0 (4)H41B—C41—H41C109.5
C7—C6—H6121.0O8—S2—O9114.8 (2)
N1—C7—C6123.1 (3)O8—S2—O10111.9 (2)
N1—C7—C8113.6 (3)O8—S2—C42107.17 (16)
C6—C7—C8123.4 (3)O9—S2—O10110.33 (16)
N2—C8—C7120.0 (3)O9—S2—C42106.35 (17)
N4—C8—N2114.5 (3)O10—S2—C42105.76 (17)
N4—C8—C7125.5 (3)C43—C42—S2121.0 (3)
N2—C9—C10127.2 (3)C43—C42—C47119.2 (3)
N3—C9—N2108.2 (3)C47—C42—S2119.7 (3)
N3—C9—C10124.5 (3)C42—C43—H43120.1
C9—C10—H10A109.5C42—C43—C44119.9 (4)
C9—C10—H10B109.5C44—C43—H43120.1
C9—C10—H10C109.5C43—C44—H44119.4
H10A—C10—H10B109.5C45—C44—C43121.2 (4)
H10A—C10—H10C109.5C45—C44—H44119.4
H10B—C10—H10C109.5C44—C45—C48120.5 (4)
N5—C11—H11A118.7C46—C45—C44117.9 (4)
N5—C11—C12122.7 (4)C46—C45—C48121.6 (4)
C12—C11—H11A118.7C45—C46—H46119.2
C11—C12—H12120.3C45—C46—C47121.6 (4)
C13—C12—C11119.4 (4)C47—C46—H46119.2
C13—C12—H12120.3C42—C47—H47119.9
C12—C13—H13120.4C46—C47—C42120.3 (3)
C12—C13—C14119.2 (4)C46—C47—H47119.9
C14—C13—H13120.4C45—C48—H48A109.5
C13—C14—H14120.9C45—C48—H48B109.5
C15—C14—C13118.1 (4)C45—C48—H48C109.5
C15—C14—H14120.9H48A—C48—H48B109.5
N5—C15—C14123.2 (3)H48A—C48—H48C109.5
N5—C15—C16114.0 (3)H48B—C48—H48C109.5
C14—C15—C16122.8 (3)H1WA—O1W—H1WB104.5
N6—C16—C15121.1 (3)H2WA—O2W—H2WB116.3
N8—C16—N6114.5 (3)H4WA—O4W—H4WB117.9
N8—C16—C15124.4 (3)H5WA—O5W—H5WB112.9
N6—C17—C18128.1 (4)H3WA—O3W—H3WB107.7
N7—C17—N6108.8 (3)
Fe1—O1—C1—O3178.1 (3)C8—N2—C9—C10180.0 (4)
Fe1—O1—C1—C21.9 (4)C9—N2—C8—N40.7 (4)
Fe1—O2—C2—O4178.1 (3)C9—N2—C8—C7179.9 (3)
Fe1—O2—C2—C12.0 (4)C9—N3—N4—C80.3 (4)
Fe1—N1—C3—C4171.0 (3)C11—N5—C15—C143.3 (5)
Fe1—N1—C7—C6172.4 (3)C11—N5—C15—C16177.8 (3)
Fe1—N1—C7—C87.7 (4)C11—C12—C13—C142.2 (6)
Fe1—N2—C8—N4177.6 (2)C12—C13—C14—C150.9 (6)
Fe1—N2—C8—C71.8 (4)C13—C14—C15—N52.0 (6)
Fe1—N2—C9—N3176.9 (3)C13—C14—C15—C16179.2 (4)
Fe1—N2—C9—C102.6 (7)C14—C15—C16—N6172.9 (3)
Fe1—N5—C11—C12169.2 (3)C14—C15—C16—N88.9 (6)
Fe1—N5—C15—C14168.8 (3)C15—N5—C11—C121.9 (5)
Fe1—N5—C15—C1610.1 (4)C16—N6—C17—N70.1 (5)
Fe1—N6—C16—N8179.6 (3)C16—N6—C17—C18180.0 (4)
Fe1—N6—C16—C151.2 (4)C17—N6—C16—N80.1 (5)
Fe1—N6—C17—N7179.3 (3)C17—N6—C16—C15178.3 (4)
Fe1—N6—C17—C180.8 (8)C17—N7—N8—C160.1 (5)
Fe2—O3—C1—O1177.3 (3)C19—N9—C23—C221.8 (5)
Fe2—O3—C1—C22.7 (4)C19—N9—C23—C24177.7 (3)
Fe2—O4—C2—O2177.4 (3)C19—C20—C21—C221.6 (7)
Fe2—O4—C2—C12.5 (3)C20—C21—C22—C230.6 (7)
Fe2—N9—C19—C20168.9 (3)C21—C22—C23—N91.1 (6)
Fe2—N9—C23—C22169.3 (3)C21—C22—C23—C24178.3 (4)
Fe2—N9—C23—C2411.2 (4)C22—C23—C24—N10177.0 (3)
Fe2—N10—C24—N12175.3 (3)C22—C23—C24—N124.6 (6)
Fe2—N10—C24—C236.1 (4)C23—N9—C19—C200.7 (6)
Fe2—N10—C25—N11172.5 (3)C24—N10—C25—N110.0 (4)
Fe2—N10—C25—C268.4 (7)C24—N10—C25—C26179.1 (4)
Fe2—N13—C27—C28170.8 (3)C25—N10—C24—N120.1 (4)
Fe2—N13—C31—C30172.0 (3)C25—N10—C24—C23178.6 (3)
Fe2—N13—C31—C327.7 (4)C25—N11—N12—C240.1 (4)
Fe2—N14—C32—N16176.2 (2)C27—N13—C31—C301.4 (5)
Fe2—N14—C32—C315.1 (4)C27—N13—C31—C32179.0 (3)
Fe2—N14—C33—N15174.8 (3)C27—C28—C29—C300.2 (7)
Fe2—N14—C33—C346.4 (7)C28—C29—C30—C310.1 (6)
O1—C1—C2—O20.0 (4)C29—C30—C31—N130.5 (6)
O1—C1—C2—O4179.9 (3)C29—C30—C31—C32179.9 (3)
O3—C1—C2—O2180.0 (3)C30—C31—C32—N14177.9 (3)
O3—C1—C2—O40.1 (4)C30—C31—C32—N163.5 (6)
N1—C3—C4—C50.7 (6)C31—N13—C27—C281.7 (5)
N1—C7—C8—N24.0 (5)C32—N14—C33—N150.1 (4)
N1—C7—C8—N4176.7 (3)C32—N14—C33—C34178.9 (4)
N3—N4—C8—N20.6 (4)C33—N14—C32—N160.3 (4)
N3—N4—C8—C7179.9 (3)C33—N14—C32—C31178.4 (3)
N4—N3—C9—N20.1 (4)C33—N15—N16—C320.6 (4)
N4—N3—C9—C10179.7 (4)S1—C35—C36—C37178.8 (3)
N5—C11—C12—C130.9 (6)S1—C35—C40—C39179.3 (4)
N5—C15—C16—N66.1 (5)O5—S1—C35—C3636.1 (4)
N5—C15—C16—N8172.2 (4)O5—S1—C35—C40146.0 (3)
N7—N8—C16—N60.1 (5)O6—S1—C35—C36154.5 (3)
N7—N8—C16—C15178.2 (4)O6—S1—C35—C4027.6 (4)
N8—N7—C17—N60.0 (6)O7—S1—C35—C3686.8 (4)
N8—N7—C17—C18179.9 (4)O7—S1—C35—C4091.1 (4)
N9—C19—C20—C211.0 (7)C35—C36—C37—C380.4 (6)
N9—C23—C24—N103.5 (5)C36—C35—C40—C391.3 (7)
N9—C23—C24—N12174.8 (4)C36—C37—C38—C391.3 (6)
N11—N12—C24—N100.1 (4)C36—C37—C38—C41177.9 (4)
N11—N12—C24—C23178.6 (3)C37—C38—C39—C400.8 (7)
N12—N11—C25—N100.1 (4)C38—C39—C40—C350.5 (8)
N12—N11—C25—C26179.1 (3)C40—C35—C36—C370.9 (6)
N13—C27—C28—C291.1 (6)C41—C38—C39—C40178.4 (4)
N13—C31—C32—N141.8 (5)S2—C42—C43—C44179.2 (3)
N13—C31—C32—N16176.8 (3)S2—C42—C47—C46179.0 (3)
N15—N16—C32—N140.5 (4)O8—S2—C42—C43114.5 (4)
N15—N16—C32—C31178.1 (3)O8—S2—C42—C4763.3 (4)
N16—N15—C33—N140.5 (4)O9—S2—C42—C438.7 (4)
N16—N15—C33—C34179.3 (4)O9—S2—C42—C47173.5 (3)
C3—N1—C7—C60.3 (5)O10—S2—C42—C43126.1 (3)
C3—N1—C7—C8179.6 (3)O10—S2—C42—C4756.2 (3)
C3—C4—C5—C60.0 (6)C42—C43—C44—C450.3 (7)
C4—C5—C6—C70.6 (6)C43—C42—C47—C461.2 (6)
C5—C6—C7—N10.4 (6)C43—C44—C45—C461.0 (7)
C5—C6—C7—C8179.7 (3)C43—C44—C45—C48179.2 (4)
C6—C7—C8—N2176.1 (3)C44—C45—C46—C471.2 (6)
C6—C7—C8—N43.2 (6)C45—C46—C47—C420.1 (6)
C7—N1—C3—C40.9 (5)C47—C42—C43—C441.4 (6)
C8—N2—C9—N30.4 (4)C48—C45—C46—C47179.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O10i0.861.952.766 (4)159
N7—H7···O6ii0.862.343.064 (5)142
N7—H7···O7ii0.862.343.141 (6)154
N11—H11···O9iii0.861.922.769 (4)170
N15—H15···O5iv0.861.992.825 (4)163
C4—H4···O2Wv0.932.483.383 (5)165
C11—H11A···O5W0.932.493.206 (8)134
C28—H28···O4Wvi0.932.543.421 (6)159
O2W—H2WA···O40.852.102.949 (4)174
O2W—H2WB···O50.861.992.838 (4)172
O4W—H4WA···O10.872.343.123 (5)150
O4W—H4WA···O30.872.253.037 (4)151
O4W—H4WB···O100.871.922.788 (5)174
O5W—H5WA···O4Wvi0.861.982.810 (11)159
O5W—H5WB···O4W0.862.282.850 (10)123
C13—H13···O8vi0.932.573.256 (5)131
C21—H21···O7v0.932.443.280 (6)150
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z; (iii) x+1, y+2, z+1; (iv) x+1, y+1, z; (v) x, y+1, z; (vi) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge the courage of the Armed Forces of Ukraine that made the submission of this manuscript possible.

Funding information

This work was supported by grants 22BF037–06 obtained from the Ministry of Education and Science of Ukraine.

References

First citationAromí, G., Barrios, L. A., Roubeau, O. & Gamez, P. (2011). Coord. Chem. Rev. 255, 485–546.  Google Scholar
First citationBuchanan, B. E., Vos, J. G., Kaneko, M., van der Putten, W. J. M., Kelly, J. M., Hage, R., de Graaff, R. A. G., Prins, R., Haasnoot, J. G. & Reedijk, J. (1990). J. Chem. Soc. Dalton Trans. pp. 2425–2431.  CSD CrossRef Google Scholar
First citationCao, H., Sun, H., Yin, Y., Wen, X., Shan, G., Su, Z., Zhong, R., Xie, W., Li, P. & Zhu, D. (2014). J. Mater. Chem. C. 2, 2150.  CSD CrossRef Google Scholar
First citationChen, D. M., Ma, X. Z., Zhang, X. J., Xu, N. & Cheng, P. (2015). Inorg. Chem. 54, 2976–2982.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCheng, L., Zhang, W.-X., Ye, B.-H., Lin, J.-B. & Chen, X.-M. (2007). Inorg. Chem. 46, 1135–1143.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCraig, G. A., Barrios, L. A., Costa, J. S., Roubeau, O., Ruiz, E., Teat, S. J., Wilson, C. C., Thomas, L. & Aromí, G. (2010). Dalton Trans. 39, 4874.  CSD CrossRef PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuetlich, P. & Schollmeyer, D. (2015). Private Communication (CCDC 1434401). CCDC, Cambridge, England.  Google Scholar
First citationGusev, A., Nemec, I., Herchel, R., Riush, I., Titiš, J., Boča, R., Lyssenko, K., Kiskin, M., Eremenko, I. & Linert, W. (2019). Dalton Trans. 48, 10526–10536.  CSD CrossRef CAS PubMed Google Scholar
First citationGütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 1, 1–47.  Google Scholar
First citationHan, Y., Zheng, H., Li, H., Wang, H., Wang, S. M., Geng, Y. & Wang, L. (2017). RSC Adv. 7, 5578–5582.  CSD CrossRef CAS Google Scholar
First citationHuang, F.-P., Yao, P.-F., Li, H.-Y., Yu, Q., Bian, H.-D. & Liang, H. (2015). Chem. Commun. 51, 7598–7601.  CSD CrossRef CAS Google Scholar
First citationKarimpour, T., Safaei, E., Wojtczak, A. & Cotič, P. (2013). J. Mol. Struct. 1038, 230–234.  CSD CrossRef CAS Google Scholar
First citationKucheriv, O. I., Fritsky, I. O. & Gural'skiy, I. A. (2021). Inorg. Chim. Acta, 521, 120303.  Web of Science CrossRef Google Scholar
First citationLi, H., Wang, Y., Cai, H., Xu, Z., Jia, L. & Hou, H. (2015). RSC Adv. 5, 89833–89838.  CSD CrossRef CAS Google Scholar
First citationMuller, K., Sun, Y., Heimermann, A., Menges, F., Niedner-Schatteburg, G., van Wüllen, C. & Thiel, W. R. (2013). Chem. Eur. J. 19, 7825–7834.  CSD CrossRef CAS PubMed Google Scholar
First citationOliveira, W. X. C., Pereira, C. L. M., Pinheiro, C. B., Lloret, F. & Julve, M. (2018). Inorg. Chem. Front. 5, 1294–1306.  CSD CrossRef CAS Google Scholar
First citationPaine, T. K., England, J. & Que, L. (2007). Chem. Eur. J. 13, 6073–6081.  CSD CrossRef PubMed CAS Google Scholar
First citationPetrenko, Y. P., Khomenko, D. M., Doroshchuk, R. O., Shova, S., Novitchi, G., Piasta, K., Gumienna-Kontecka, E. & Lampeka, R. D. (2020). Inorg. Chim. Acta, 500, 119216.  CSD CrossRef Google Scholar
First citationPetrenko, Y. P., Piasta, K., Khomenko, D. M., Doroshchuk, R. O., Shova, S., Novitchi, G., Toporivska, Y., Gumienna-Kontecka, E., Martins, L. M. D. R. S. & Lampeka, R. D. (2021). RSC Adv. 11, 23442–23449.  CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRuiter, G. de, Costa, J. S., Lappalainen, K., Roubeau, O., Gamez, P. & Reedijk, J. (2008). Inorg. Chem. Commun. 11, 787–790.  Google Scholar
First citationSelmi, W., Hosni, N., Marchivie, M., Maghraoui-Meherzi, H. & Zid, M. F. (2021). J. Mol. Struct. 1228, 129719.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L., van Koningsbruggen, P. J. & Haasnoot, J. G. (2004). Private Communication (CCDC 232594). CCDC, Cambridge, England.  Google Scholar
First citationYao, P. F., Tao, Y., Li, H. Y., Qin, X. H., Shi, D. W., Huang, F. P., Yu, Q., Qin, X. X. & Bian, H. D. (2015). Cryst. Growth Des. 15, 4394–4405.  CSD CrossRef CAS Google Scholar
First citationZakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Fesych, I. V., Starova, V. S., Rusakova, N. V., Smola, S. S., Shova, S. & Lampeka, R. D. (2021). Theor. Exp. Chem. 57, 358–365.  CSD CrossRef CAS Google Scholar
First citationZakharchenko, B. V., Khomenko, D. M., Doroschuk, R. O., Raspertova, I. V., Shova, S., Grebinyk, A. G., Grynyuk, I. I., Prylutska, S. V., Matyshevska, O. P., Slobodyanik, M. S., Frohme, M. & Lampeka, R. D. (2021). Chem. Pap. 75, 4899–4906.  CSD CrossRef CAS Google Scholar
First citationZakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Starova, V. S., Trachevsky, V. V., Shova, S., Severynovska, O. V., Martins, L. M. D. R. S., Pombeiro, A. J. L., Arion, V. B. & Lampeka, R. D. (2019). New J. Chem. 43, 10973–10984.  CSD CrossRef CAS Google Scholar
First citationZakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Severynovska, O. V., Raspertova, I. V., Starova, V. S. & Lampeka, R. D. (2017). Chem. Pap. 71, 2003–2009.  CrossRef CAS Google Scholar
First citationZhang, X., Wu, X. X., Guo, J. H., Huo, J. Z. & Ding, B. (2017). J. Mol. Struct. 1127, 183–190.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds