research communications
H,5H)-dione
Hirshfeld surface and frontier molecular orbital analysis of 10-benzyl-9-(4-hydroxy-3-methoxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2aDepartment of Chemistry, Periyar Government Arts College, Cuddalore-607 001, Tamil Nadu, India, bDepartment of Chemistry (Science and Humanities), Dr. N.G.P. Institute of Technology, Coimbatore-641 048, Tamil Nadu, India, cDepartment of Chemistry, Swami Vivekananda Arts and Science College, Orathur-605 601, Tamil Nadu, India, dDepartment of Physics, Government College of Engineering-Sengipatti, Thanjavur-613 402, Tamil Nadu, India, eDepartment of Chemistry, Annamalai University, Annamalai Nagar-608 002, Tamil Nadu, India, fDepartment of Chemistry, CK College of Engineering and Technology, Chellangkuppam, Cuddalore-607003, Tamil Nadu, India, and gDepartment of Chemistry, Government College of Engineering-Sengipatti, Thanjavur-613 402, Tamil Nadu, India
*Correspondence e-mail: babusuresh1982@gmail.com
In the fused ring system of the title molecule, C31H35NO4, the conformation of the central dihydropyridine ring is intermediate between boat and envelope with the N and the opposite C atoms lying out of the basal plane. The conformations of terminal rings are close to envelope, with the atoms substituted by two methyl groups as the flaps. In the crystal, the molecules are linked by O—H⋯O hydrogen bonds into helical chains. The Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (63.2%), O⋯H/H⋯O (20.1%) and C⋯H/H⋯C (14.4%) contacts. Quantum chemical calculations of the frontier molecular orbitals were carried out to characterize the chemical reactivity of the title compound.
Keywords: crystal structure; benzylamine; acridinedione; hydrogen bonding; Hirshfeld analysis; frontier orbitals.
CCDC reference: 2153580
1. Chemical context
The acridine fragment is a part of a number of naturally occurring substances, and its derivatives have been used as photoinitiators. Acridine-1,8-diones have been shown to have very high lasing efficiencies and have been used as dyes (Niknam & Damya, 2009). Some acridine derivatives (Nasim & Brychcy, 1979; Thull & Testa, 1994), also well known as therapeutic agents, have a wide range of applications in the pharmaceutical and dye industries. These include compounds that are used as anti-cancer (Sondhi et al., 2004; Sugaya et al., 1994; Kimura et al., 1993), anti-tubercular (Aly & Abadi, 2004; Tripathi et al., 2006), anti-inflammatory (Chen et al., 2002), anti-malarial (Kumar et al., 2009; Tomar et al., 2010), anti-viral (Gupta & Jaiswal, 2010; Tonelli et al., 2011), anti-parasitic (Di Giorgio, et al., 2005) and fungicidal agents (Srivastava & Nizamuddin, 2004). In this context, we report here the synthesis, Hirshfeld surface and frontier molecular orbital analysis of the title acridine-1,8-dione derivative.
2. Structural commentary
The title compound (Fig. 1) crystallizes in the monoclinic P21/n with Z = 4. The conformation of the central dihydropyridine ring is intermediate between boat and envelope: four atoms (C8, C9, C17 and C18) form the basal plane with a deviation of 0.008 (2) Å for all of them, whereas atoms N1 and C16 deviate from this plane by 0.168 (2) and 0.476 (2) Å, respectively. The conformations of the terminal C8–C13 and C17–C22 rings are close to envelope with C12 and C20, respectively, as the flap atoms. The basal planes of these envelopes are twisted, and the deviations of corresponding atoms from their least-squares planes are between 0.005 (2) and 0.100 (2) Å. The N1 atom has an essentially planar environment, deviating from the plane through atoms C7, C8 and C18 by only 0.018 (2) Å. The bond lengths in the N1—C8—C9—C10—O2 and N1—C18—C17—C22—O chains indicate π-conjugation of N1 with the carbonyl groups C10=O2 and C22=O1 (Table 1). All other bond lengths and angles in the title structure are within the ranges normal for analogous compounds (Allen et al., 1987; Thamotharan et al., 2021; Allah et al., 2021; Mohamed et al., 2013; Akkurt et al., 2014).
|
3. Supramolecular features and Hirshfeld analysis
In the crystal, the molecules are linked via O3—H3A⋯O1i hydrogen bonds [symmetry code (i): −x + , y − , −z + ] forming helical chains along the b-axis direction (Fig. 2, Table 2). The chains are further connected by weak C7—H7B⋯O1ii hydrogen bonds [symmetry code (ii): x − , −y + , z − ] forming sheets parallel to (10).
|
To quantify the intermolecular contacts in the crystal, Hirshfeld surfaces and two-dimensional fingerprint plots were generated using Crystal Explorer (Version 17.5; Turner et al., 2017). The Hirshfeld surface mapped over dnorm in the range −0.436 to 1.583 a.u. (Fig. 3) show the intermolecular contacts as red-coloured spots, which indicate the C—H⋯O and O—H⋯O hydrogen bonds. The red and blue regions corresponding to negative (hydrogen-bond acceptors) and positive (hydrogen-bond donors) potentials on the Hirshfeld surface mapped over electrostatic potential are shown in Fig. 4. The two-dimensional fingerprint plots are presented in Fig. 5. The H⋯H contacts comprise 63.2% of the total interactions. Besides these contacts, O⋯H/H⋯O (20.1%) and C⋯H/H⋯C (14.4%) interactions make significant contributions to the total Hirshfeld surface. The percentage contributions of the N⋯C/C⋯N, C⋯O/H⋯O, and C⋯C contacts are 0.3, 1.2 and 0.5%, respectively.
4. Frontier molecular orbital analysis
The chemical reactivity of the title compound was studied by frontier molecular orbital analysis. For the calculation, the molecular structure obtained from X-ray diffraction data was used as the molecular model. The energy levels, summarized in Table 3, were computed at the DFT-B3LYP/6-311G++(d,p) level of theory as implemented in Gaussian09W (Frisch et al., 2013). The calculated frontier molecular orbitals, LUMO+1, LUMO, HOMO, and HOMO-1, are shown in Fig. 6. The energies of LUMO+1, LUMO, HOMO and HOMO−1 were calculated to be −0.9021, −1.7652, −5.5800 and −5.9005 eV, respectively, and the energies required to excite one electron from HOMO−1 to LUMO+1 and from HOMO to LUMO are 4.9984 and 3.8148 eV, respectively. The chemical hardness, chemical softness and index of the title molecule are listed in Table 4. The index value of 3.3429 eV shows the global electrophilic nature of the molecule. Based on the wide band gap and chemical hardness value of 2.0174 eV, the title molecule seems to be hard.
|
|
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.43, updated September 2021; Groom et al., 2016) for the acridine-1,8(2H)dione unit resulted in 22 hits. They include the following acridine-1,8(2H)dione derivatives similar to the title compound: 4-ethoxyphenyl (QEDYAB; Sughanya & Sureshbabu, 2012), 3,4-dimethoxyphenyl (PUSJEU; Sureshbabu & Sughanya, 2015) and 3-ethoxy-4-hydroxyphenyl (MULWUO; Suresh Babu et al., 2020). In the title compound, the dihedral angle between the phenyl and dihydropyridine rings is 85.39 (2)°, similar to the values observed for the 4-ethoxyphenyl analogue QEDYAB, the 3,4-dimethoxyphenyl analogue PUSJEU, and 3-ethoxy-4-hydroxyphenyl analogue MULWUO, for which the dihedral angles are 75.20 (4), 89.47 (9) and 85.81 (2)°, respectively.
6. Synthesis and crystallization
A mixture of benzylamine (0.214g, 2 mmol), 4-hydroxy-3-methoxybenzaldehyde (0.304g, 2 mmol) and 5,5-dimethylcyclohexane-1,3-dione (0.56g, 4 mmol) was dissolved in 25 ml of acetic acid. The solution was refluxed for 2 h with the reaction being monitored by TLC. After the reaction was about to the end, the reaction mixture was poured into 150 ml of ice-cold water, stirred at 298–303K for 10 min and then kept at room temperature for 12 h. The solid was filtered, washed repeatedly with water and dried. Yellow single crystals suitable for X-ray diffraction were obtained from 95% ethanol (m.p. 483 K, 0.718 g, 1.48 mmol, yield 74%). IR (KBr): cm−1 2957-2871, 1634, 1455, 1373. 1H NMR(400 MHz, CDCl3): 0.90 (s, 6H), 0.99 (s, 6H), 2.21 (s, 4H), 2.40 (dd, 4H), 3.86 (s, 3H), 4.90 (s, 2H), 5.24 (s, 1H), 5.51 (s, 1H), 6.56 (d, 1H), 6.70 (d, 1H), 7.12 (d, 1H), 7.17 (s, 2H), 7.35–7.40 (m, 3H). 13C NMR (100 MHz, CDCl3): 28.11, 28.65, 31.70, 32.73, 40.27, 48.73, 50.05, 55.88, 111.90, 113.60, 115.44, 119.45, 125.38, 128.01, 129.25, 137.10, 138.36, 143.69, 145.92, 150.31, 195.90. ESI–MS: m/z:485.12 [M + H]+.
7. Refinement
Crystal data, data collection and structure . Hydrogen atoms were fixed geometrically and treated as riding atoms, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl).
details are summarized in Table 5Supporting information
CCDC reference: 2153580
https://doi.org/10.1107/S2056989022006557/yk2171sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022006557/yk2171Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022006557/yk2171Isup3.cml
Data collection: APEX2 (Bruker, 2016); cell
APEX2 and SAINT (Bruker, 2016); data reduction: SAINT and XPREP (Bruker, 2016); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b) and publCIF (Westrip, 2010).C31H35NO4 | Dx = 1.235 Mg m−3 |
Mr = 485.60 | Melting point: 483 K |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 10.4430 (6) Å | Cell parameters from 3522 reflections |
b = 18.4563 (11) Å | θ = 2.4–21.4° |
c = 14.2378 (9) Å | µ = 0.08 mm−1 |
β = 107.930 (2)° | T = 296 K |
V = 2610.9 (3) Å3 | BLOCK, yellow |
Z = 4 | 0.40 × 0.30 × 0.20 mm |
F(000) = 1040 |
Bruker Kappa APEXII diffractometer | 5135 independent reflections |
Radiation source: fine-focus sealed tube | 3061 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.096 |
ω and φ scan | θmax = 26.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −12→12 |
Tmin = 0.953, Tmax = 0.982 | k = −22→22 |
37271 measured reflections | l = −17→17 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.052 | w = 1/[σ2(Fo2) + (0.049P)2 + 1.0354P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.145 | (Δ/σ)max < 0.001 |
S = 1.02 | Δρmax = 0.19 e Å−3 |
5135 reflections | Δρmin = −0.19 e Å−3 |
330 parameters | Extinction correction: SHELXL-2018 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0095 (9) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4603 (3) | 0.09167 (14) | 0.35227 (19) | 0.0494 (7) | |
H1 | 0.410397 | 0.089768 | 0.396205 | 0.059* | |
C2 | 0.5467 (3) | 0.03535 (15) | 0.3501 (2) | 0.0594 (8) | |
H2 | 0.554683 | −0.003955 | 0.392392 | 0.071* | |
C3 | 0.6205 (3) | 0.03758 (19) | 0.2855 (3) | 0.0730 (9) | |
H3 | 0.678749 | −0.000235 | 0.284067 | 0.088* | |
C4 | 0.6087 (3) | 0.0954 (2) | 0.2230 (3) | 0.0783 (10) | |
H4 | 0.658479 | 0.096554 | 0.178917 | 0.094* | |
C5 | 0.5225 (3) | 0.15239 (16) | 0.2254 (2) | 0.0600 (8) | |
H5 | 0.515644 | 0.191685 | 0.183241 | 0.072* | |
C6 | 0.4467 (2) | 0.15115 (13) | 0.28985 (17) | 0.0387 (6) | |
C7 | 0.3509 (2) | 0.21207 (12) | 0.29182 (16) | 0.0373 (6) | |
H7A | 0.363873 | 0.251425 | 0.250493 | 0.045* | |
H7B | 0.259084 | 0.194959 | 0.264697 | 0.045* | |
C8 | 0.2902 (2) | 0.21609 (11) | 0.44966 (16) | 0.0315 (5) | |
C9 | 0.3279 (2) | 0.22925 (11) | 0.54880 (16) | 0.0324 (5) | |
C10 | 0.2338 (2) | 0.21768 (12) | 0.60510 (18) | 0.0397 (6) | |
C11 | 0.0907 (2) | 0.19725 (14) | 0.54753 (19) | 0.0486 (7) | |
H11A | 0.040547 | 0.240759 | 0.520922 | 0.058* | |
H11B | 0.048053 | 0.174697 | 0.591747 | 0.058* | |
C12 | 0.0856 (2) | 0.14502 (13) | 0.46279 (18) | 0.0415 (6) | |
C13 | 0.1588 (2) | 0.17948 (13) | 0.39549 (17) | 0.0387 (6) | |
H13A | 0.176286 | 0.142145 | 0.353090 | 0.046* | |
H13B | 0.099539 | 0.214945 | 0.353460 | 0.046* | |
C14 | 0.1542 (3) | 0.07360 (14) | 0.5055 (2) | 0.0621 (8) | |
H14A | 0.151247 | 0.040740 | 0.452607 | 0.093* | |
H14B | 0.246283 | 0.082828 | 0.542975 | 0.093* | |
H14C | 0.108158 | 0.052524 | 0.547691 | 0.093* | |
C15 | −0.0603 (3) | 0.12956 (17) | 0.4002 (2) | 0.0640 (8) | |
H15A | −0.060687 | 0.096791 | 0.347760 | 0.096* | |
H15B | −0.108169 | 0.108161 | 0.441002 | 0.096* | |
H15C | −0.103353 | 0.174084 | 0.372739 | 0.096* | |
C16 | 0.4694 (2) | 0.25611 (11) | 0.60194 (15) | 0.0321 (5) | |
H16 | 0.467180 | 0.283642 | 0.660269 | 0.039* | |
C17 | 0.5082 (2) | 0.30702 (11) | 0.53197 (16) | 0.0317 (5) | |
C18 | 0.4708 (2) | 0.29183 (11) | 0.43328 (16) | 0.0314 (5) | |
C19 | 0.5302 (2) | 0.33043 (12) | 0.36254 (17) | 0.0390 (6) | |
H19A | 0.460873 | 0.360347 | 0.318604 | 0.047* | |
H19B | 0.556907 | 0.294509 | 0.322496 | 0.047* | |
C20 | 0.6522 (2) | 0.37834 (13) | 0.41290 (18) | 0.0408 (6) | |
C21 | 0.6196 (3) | 0.42101 (13) | 0.49464 (19) | 0.0487 (7) | |
H21A | 0.696940 | 0.450341 | 0.528884 | 0.058* | |
H21B | 0.545178 | 0.453567 | 0.464992 | 0.058* | |
C22 | 0.5830 (2) | 0.37329 (12) | 0.56887 (17) | 0.0363 (5) | |
C23 | 0.7793 (2) | 0.33202 (16) | 0.4554 (2) | 0.0584 (8) | |
H23A | 0.798030 | 0.305676 | 0.403007 | 0.088* | |
H23B | 0.854105 | 0.362932 | 0.486968 | 0.088* | |
H23C | 0.765097 | 0.298526 | 0.502852 | 0.088* | |
C24 | 0.6754 (3) | 0.43065 (15) | 0.3363 (2) | 0.0599 (8) | |
H24A | 0.695827 | 0.403567 | 0.285106 | 0.090* | |
H24B | 0.595667 | 0.458964 | 0.308109 | 0.090* | |
H24C | 0.749294 | 0.462223 | 0.367536 | 0.090* | |
C25 | 0.5679 (2) | 0.19226 (11) | 0.63605 (16) | 0.0323 (5) | |
C26 | 0.6453 (2) | 0.16638 (12) | 0.57974 (17) | 0.0382 (6) | |
H26 | 0.640648 | 0.189108 | 0.520478 | 0.046* | |
C27 | 0.7300 (2) | 0.10688 (12) | 0.61051 (18) | 0.0422 (6) | |
H27 | 0.780002 | 0.090040 | 0.571065 | 0.051* | |
C28 | 0.7407 (2) | 0.07262 (12) | 0.69872 (17) | 0.0383 (6) | |
C29 | 0.6655 (2) | 0.09867 (12) | 0.75739 (16) | 0.0363 (5) | |
C30 | 0.5783 (2) | 0.15702 (12) | 0.72569 (16) | 0.0361 (5) | |
H30 | 0.526356 | 0.172875 | 0.764243 | 0.043* | |
C31 | 0.6164 (3) | 0.08606 (17) | 0.9100 (2) | 0.0762 (10) | |
H31A | 0.639254 | 0.056029 | 0.967848 | 0.114* | |
H31B | 0.641437 | 0.135279 | 0.928749 | 0.114* | |
H31C | 0.521270 | 0.083510 | 0.877369 | 0.114* | |
N1 | 0.37180 (17) | 0.23959 (9) | 0.39359 (13) | 0.0323 (4) | |
O1 | 0.61215 (17) | 0.39158 (9) | 0.65671 (12) | 0.0508 (5) | |
O2 | 0.26832 (18) | 0.22551 (11) | 0.69568 (13) | 0.0585 (5) | |
O3 | 0.82731 (18) | 0.01471 (9) | 0.72534 (15) | 0.0533 (5) | |
O4 | 0.68627 (18) | 0.06155 (9) | 0.84518 (13) | 0.0554 (5) | |
H3A | 0.819 (3) | −0.009 (2) | 0.782 (3) | 0.113 (14)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0509 (15) | 0.0494 (16) | 0.0490 (16) | 0.0025 (13) | 0.0172 (13) | −0.0031 (13) |
C2 | 0.0593 (18) | 0.0502 (17) | 0.0631 (19) | 0.0088 (14) | 0.0105 (15) | −0.0073 (15) |
C3 | 0.065 (2) | 0.075 (2) | 0.076 (2) | 0.0198 (17) | 0.0177 (18) | −0.0218 (19) |
C4 | 0.074 (2) | 0.100 (3) | 0.075 (2) | 0.011 (2) | 0.0425 (18) | −0.017 (2) |
C5 | 0.0650 (18) | 0.072 (2) | 0.0508 (17) | −0.0001 (16) | 0.0284 (14) | −0.0038 (15) |
C6 | 0.0358 (12) | 0.0447 (14) | 0.0335 (13) | −0.0070 (11) | 0.0076 (10) | −0.0110 (11) |
C7 | 0.0415 (13) | 0.0401 (13) | 0.0287 (12) | −0.0049 (11) | 0.0087 (10) | −0.0021 (10) |
C8 | 0.0337 (12) | 0.0270 (11) | 0.0333 (12) | 0.0029 (9) | 0.0093 (10) | 0.0006 (10) |
C9 | 0.0344 (12) | 0.0309 (12) | 0.0322 (12) | 0.0036 (10) | 0.0105 (10) | 0.0020 (10) |
C10 | 0.0458 (14) | 0.0376 (13) | 0.0374 (14) | 0.0045 (11) | 0.0155 (11) | 0.0015 (11) |
C11 | 0.0424 (14) | 0.0537 (16) | 0.0537 (16) | −0.0016 (12) | 0.0206 (12) | −0.0004 (13) |
C12 | 0.0395 (13) | 0.0406 (14) | 0.0444 (14) | −0.0046 (11) | 0.0130 (11) | 0.0014 (11) |
C13 | 0.0370 (13) | 0.0393 (13) | 0.0376 (13) | −0.0032 (11) | 0.0083 (10) | 0.0000 (11) |
C14 | 0.078 (2) | 0.0404 (15) | 0.068 (2) | 0.0007 (14) | 0.0221 (16) | 0.0101 (14) |
C15 | 0.0470 (16) | 0.078 (2) | 0.0665 (19) | −0.0225 (15) | 0.0166 (14) | −0.0063 (16) |
C16 | 0.0373 (12) | 0.0299 (12) | 0.0276 (11) | 0.0019 (10) | 0.0078 (9) | −0.0025 (9) |
C17 | 0.0331 (12) | 0.0281 (11) | 0.0320 (12) | 0.0007 (9) | 0.0071 (10) | −0.0003 (10) |
C18 | 0.0306 (11) | 0.0278 (11) | 0.0335 (12) | 0.0014 (9) | 0.0065 (9) | 0.0018 (10) |
C19 | 0.0423 (13) | 0.0375 (13) | 0.0369 (13) | −0.0016 (11) | 0.0118 (11) | 0.0041 (11) |
C20 | 0.0435 (14) | 0.0367 (13) | 0.0441 (14) | −0.0068 (11) | 0.0163 (11) | 0.0004 (11) |
C21 | 0.0626 (17) | 0.0347 (13) | 0.0523 (16) | −0.0116 (12) | 0.0228 (13) | −0.0058 (12) |
C22 | 0.0352 (12) | 0.0318 (12) | 0.0390 (14) | 0.0019 (10) | 0.0071 (10) | −0.0030 (11) |
C23 | 0.0392 (14) | 0.0672 (19) | 0.0686 (19) | 0.0025 (13) | 0.0164 (13) | 0.0030 (16) |
C24 | 0.0667 (18) | 0.0572 (17) | 0.0613 (19) | −0.0174 (14) | 0.0277 (15) | 0.0053 (14) |
C25 | 0.0310 (12) | 0.0289 (12) | 0.0328 (12) | −0.0031 (9) | 0.0035 (10) | −0.0020 (10) |
C26 | 0.0447 (14) | 0.0349 (13) | 0.0344 (13) | 0.0041 (11) | 0.0110 (11) | 0.0050 (10) |
C27 | 0.0467 (14) | 0.0387 (14) | 0.0445 (15) | 0.0076 (11) | 0.0188 (12) | 0.0031 (12) |
C28 | 0.0379 (13) | 0.0298 (12) | 0.0425 (14) | 0.0028 (10) | 0.0055 (11) | 0.0017 (11) |
C29 | 0.0429 (13) | 0.0327 (12) | 0.0309 (12) | −0.0008 (10) | 0.0078 (10) | 0.0066 (10) |
C30 | 0.0413 (13) | 0.0328 (12) | 0.0336 (13) | −0.0001 (10) | 0.0106 (10) | −0.0014 (10) |
C31 | 0.117 (3) | 0.072 (2) | 0.0530 (18) | 0.0312 (19) | 0.0444 (19) | 0.0244 (16) |
N1 | 0.0347 (10) | 0.0340 (10) | 0.0270 (10) | −0.0035 (8) | 0.0078 (8) | −0.0013 (8) |
O1 | 0.0639 (12) | 0.0427 (10) | 0.0406 (10) | −0.0104 (8) | 0.0084 (8) | −0.0098 (8) |
O2 | 0.0616 (12) | 0.0802 (14) | 0.0377 (10) | −0.0048 (10) | 0.0213 (9) | −0.0042 (10) |
O3 | 0.0598 (12) | 0.0433 (10) | 0.0583 (12) | 0.0200 (9) | 0.0205 (10) | 0.0155 (9) |
O4 | 0.0753 (13) | 0.0514 (11) | 0.0431 (10) | 0.0193 (9) | 0.0236 (9) | 0.0164 (9) |
C1—C2 | 1.383 (3) | C16—H16 | 0.9800 |
C1—C6 | 1.392 (3) | C17—C18 | 1.367 (3) |
C1—H1 | 0.9300 | C17—C22 | 1.459 (3) |
C2—C3 | 1.371 (4) | C18—N1 | 1.400 (3) |
C2—H2 | 0.9300 | C18—C19 | 1.513 (3) |
C3—C4 | 1.370 (5) | C19—C20 | 1.535 (3) |
C3—H3 | 0.9300 | C19—H19A | 0.9700 |
C4—C5 | 1.392 (4) | C19—H19B | 0.9700 |
C4—H4 | 0.9300 | C20—C21 | 1.528 (3) |
C5—C6 | 1.384 (3) | C20—C24 | 1.531 (3) |
C5—H5 | 0.9300 | C20—C23 | 1.538 (3) |
C6—C7 | 1.511 (3) | C21—C22 | 1.512 (3) |
C7—N1 | 1.487 (3) | C21—H21A | 0.9700 |
C7—H7A | 0.9700 | C21—H21B | 0.9700 |
C7—H7B | 0.9700 | C22—O1 | 1.240 (3) |
C8—C9 | 1.365 (3) | C23—H23A | 0.9600 |
C8—N1 | 1.404 (3) | C23—H23B | 0.9600 |
C8—C13 | 1.511 (3) | C23—H23C | 0.9600 |
C9—C10 | 1.462 (3) | C24—H24A | 0.9600 |
C9—C16 | 1.522 (3) | C24—H24B | 0.9600 |
C10—O2 | 1.236 (3) | C24—H24C | 0.9600 |
C10—C11 | 1.514 (3) | C25—C26 | 1.387 (3) |
C11—C12 | 1.532 (3) | C25—C30 | 1.407 (3) |
C11—H11A | 0.9700 | C26—C27 | 1.393 (3) |
C11—H11B | 0.9700 | C26—H26 | 0.9300 |
C12—C14 | 1.534 (3) | C27—C28 | 1.380 (3) |
C12—C13 | 1.535 (3) | C27—H27 | 0.9300 |
C12—C15 | 1.537 (3) | C28—O3 | 1.376 (3) |
C13—H13A | 0.9700 | C28—C29 | 1.396 (3) |
C13—H13B | 0.9700 | C29—O4 | 1.383 (3) |
C14—H14A | 0.9600 | C29—C30 | 1.393 (3) |
C14—H14B | 0.9600 | C30—H30 | 0.9300 |
C14—H14C | 0.9600 | C31—O4 | 1.415 (3) |
C15—H15A | 0.9600 | C31—H31A | 0.9600 |
C15—H15B | 0.9600 | C31—H31B | 0.9600 |
C15—H15C | 0.9600 | C31—H31C | 0.9600 |
C16—C17 | 1.512 (3) | O3—H3A | 0.94 (4) |
C16—C25 | 1.541 (3) | ||
C2—C1—C6 | 121.2 (3) | C18—C17—C22 | 119.6 (2) |
C2—C1—H1 | 119.4 | C18—C17—C16 | 120.02 (19) |
C6—C1—H1 | 119.4 | C22—C17—C16 | 120.38 (19) |
C3—C2—C1 | 119.9 (3) | C17—C18—N1 | 119.9 (2) |
C3—C2—H2 | 120.1 | C17—C18—C19 | 122.82 (19) |
C1—C2—H2 | 120.1 | N1—C18—C19 | 117.30 (18) |
C4—C3—C2 | 120.2 (3) | C18—C19—C20 | 114.28 (18) |
C4—C3—H3 | 119.9 | C18—C19—H19A | 108.7 |
C2—C3—H3 | 119.9 | C20—C19—H19A | 108.7 |
C3—C4—C5 | 120.1 (3) | C18—C19—H19B | 108.7 |
C3—C4—H4 | 119.9 | C20—C19—H19B | 108.7 |
C5—C4—H4 | 119.9 | H19A—C19—H19B | 107.6 |
C6—C5—C4 | 120.7 (3) | C21—C20—C24 | 109.8 (2) |
C6—C5—H5 | 119.7 | C21—C20—C19 | 107.77 (19) |
C4—C5—H5 | 119.7 | C24—C20—C19 | 108.7 (2) |
C5—C6—C1 | 118.0 (2) | C21—C20—C23 | 110.8 (2) |
C5—C6—C7 | 121.1 (2) | C24—C20—C23 | 108.9 (2) |
C1—C6—C7 | 120.9 (2) | C19—C20—C23 | 110.8 (2) |
N1—C7—C6 | 111.90 (18) | C22—C21—C20 | 113.29 (19) |
N1—C7—H7A | 109.2 | C22—C21—H21A | 108.9 |
C6—C7—H7A | 109.2 | C20—C21—H21A | 108.9 |
N1—C7—H7B | 109.2 | C22—C21—H21B | 108.9 |
C6—C7—H7B | 109.2 | C20—C21—H21B | 108.9 |
H7A—C7—H7B | 107.9 | H21A—C21—H21B | 107.7 |
C9—C8—N1 | 120.03 (19) | O1—C22—C17 | 122.0 (2) |
C9—C8—C13 | 122.3 (2) | O1—C22—C21 | 120.7 (2) |
N1—C8—C13 | 117.57 (19) | C17—C22—C21 | 117.3 (2) |
C8—C9—C10 | 120.8 (2) | C20—C23—H23A | 109.5 |
C8—C9—C16 | 119.9 (2) | C20—C23—H23B | 109.5 |
C10—C9—C16 | 119.26 (19) | H23A—C23—H23B | 109.5 |
O2—C10—C9 | 121.7 (2) | C20—C23—H23C | 109.5 |
O2—C10—C11 | 121.1 (2) | H23A—C23—H23C | 109.5 |
C9—C10—C11 | 117.2 (2) | H23B—C23—H23C | 109.5 |
C10—C11—C12 | 111.8 (2) | C20—C24—H24A | 109.5 |
C10—C11—H11A | 109.2 | C20—C24—H24B | 109.5 |
C12—C11—H11A | 109.2 | H24A—C24—H24B | 109.5 |
C10—C11—H11B | 109.2 | C20—C24—H24C | 109.5 |
C12—C11—H11B | 109.2 | H24A—C24—H24C | 109.5 |
H11A—C11—H11B | 107.9 | H24B—C24—H24C | 109.5 |
C11—C12—C14 | 109.2 (2) | C26—C25—C30 | 118.0 (2) |
C11—C12—C13 | 109.12 (19) | C26—C25—C16 | 122.2 (2) |
C14—C12—C13 | 110.0 (2) | C30—C25—C16 | 119.8 (2) |
C11—C12—C15 | 111.2 (2) | C25—C26—C27 | 121.1 (2) |
C14—C12—C15 | 109.2 (2) | C25—C26—H26 | 119.5 |
C13—C12—C15 | 108.1 (2) | C27—C26—H26 | 119.5 |
C8—C13—C12 | 114.50 (19) | C28—C27—C26 | 120.9 (2) |
C8—C13—H13A | 108.6 | C28—C27—H27 | 119.6 |
C12—C13—H13A | 108.6 | C26—C27—H27 | 119.6 |
C8—C13—H13B | 108.6 | O3—C28—C27 | 118.0 (2) |
C12—C13—H13B | 108.6 | O3—C28—C29 | 123.1 (2) |
H13A—C13—H13B | 107.6 | C27—C28—C29 | 119.0 (2) |
C12—C14—H14A | 109.5 | O4—C29—C30 | 125.5 (2) |
C12—C14—H14B | 109.5 | O4—C29—C28 | 114.2 (2) |
H14A—C14—H14B | 109.5 | C30—C29—C28 | 120.3 (2) |
C12—C14—H14C | 109.5 | C29—C30—C25 | 120.8 (2) |
H14A—C14—H14C | 109.5 | C29—C30—H30 | 119.6 |
H14B—C14—H14C | 109.5 | C25—C30—H30 | 119.6 |
C12—C15—H15A | 109.5 | O4—C31—H31A | 109.5 |
C12—C15—H15B | 109.5 | O4—C31—H31B | 109.5 |
H15A—C15—H15B | 109.5 | H31A—C31—H31B | 109.5 |
C12—C15—H15C | 109.5 | O4—C31—H31C | 109.5 |
H15A—C15—H15C | 109.5 | H31A—C31—H31C | 109.5 |
H15B—C15—H15C | 109.5 | H31B—C31—H31C | 109.5 |
C17—C16—C9 | 106.92 (17) | C18—N1—C8 | 119.06 (18) |
C17—C16—C25 | 113.24 (18) | C18—N1—C7 | 119.81 (18) |
C9—C16—C25 | 111.08 (17) | C8—N1—C7 | 121.08 (17) |
C17—C16—H16 | 108.5 | C28—O3—H3A | 112 (2) |
C9—C16—H16 | 108.5 | C29—O4—C31 | 117.53 (19) |
C25—C16—H16 | 108.5 | ||
C6—C1—C2—C3 | −0.1 (4) | C18—C19—C20—C21 | −44.2 (3) |
C1—C2—C3—C4 | −0.1 (5) | C18—C19—C20—C24 | −163.2 (2) |
C2—C3—C4—C5 | 0.5 (5) | C18—C19—C20—C23 | 77.2 (3) |
C3—C4—C5—C6 | −0.7 (5) | C24—C20—C21—C22 | 174.9 (2) |
C4—C5—C6—C1 | 0.4 (4) | C19—C20—C21—C22 | 56.6 (3) |
C4—C5—C6—C7 | −178.9 (2) | C23—C20—C21—C22 | −64.8 (3) |
C2—C1—C6—C5 | −0.1 (4) | C18—C17—C22—O1 | 175.6 (2) |
C2—C1—C6—C7 | 179.3 (2) | C16—C17—C22—O1 | −3.1 (3) |
C5—C6—C7—N1 | −129.5 (2) | C18—C17—C22—C21 | −2.0 (3) |
C1—C6—C7—N1 | 51.1 (3) | C16—C17—C22—C21 | 179.3 (2) |
N1—C8—C9—C10 | 168.45 (19) | C20—C21—C22—O1 | 147.2 (2) |
C13—C8—C9—C10 | −8.8 (3) | C20—C21—C22—C17 | −35.1 (3) |
N1—C8—C9—C16 | −11.7 (3) | C17—C16—C25—C26 | −26.1 (3) |
C13—C8—C9—C16 | 171.10 (19) | C9—C16—C25—C26 | 94.3 (2) |
C8—C9—C10—O2 | 176.0 (2) | C17—C16—C25—C30 | 155.81 (19) |
C16—C9—C10—O2 | −3.9 (3) | C9—C16—C25—C30 | −83.9 (2) |
C8—C9—C10—C11 | −5.3 (3) | C30—C25—C26—C27 | 0.5 (3) |
C16—C9—C10—C11 | 174.81 (19) | C16—C25—C26—C27 | −177.6 (2) |
O2—C10—C11—C12 | −142.6 (2) | C25—C26—C27—C28 | −0.9 (3) |
C9—C10—C11—C12 | 38.8 (3) | C26—C27—C28—O3 | −179.3 (2) |
C10—C11—C12—C14 | 63.9 (3) | C26—C27—C28—C29 | −0.3 (3) |
C10—C11—C12—C13 | −56.4 (3) | O3—C28—C29—O4 | 0.5 (3) |
C10—C11—C12—C15 | −175.5 (2) | C27—C28—C29—O4 | −178.5 (2) |
C9—C8—C13—C12 | −11.7 (3) | O3—C28—C29—C30 | −179.2 (2) |
N1—C8—C13—C12 | 171.05 (19) | C27—C28—C29—C30 | 1.8 (3) |
C11—C12—C13—C8 | 43.4 (3) | O4—C29—C30—C25 | 178.1 (2) |
C14—C12—C13—C8 | −76.5 (3) | C28—C29—C30—C25 | −2.2 (3) |
C15—C12—C13—C8 | 164.4 (2) | C26—C25—C30—C29 | 1.0 (3) |
C8—C9—C16—C17 | 36.7 (3) | C16—C25—C30—C29 | 179.24 (19) |
C10—C9—C16—C17 | −143.48 (19) | C17—C18—N1—C8 | 15.0 (3) |
C8—C9—C16—C25 | −87.3 (2) | C19—C18—N1—C8 | −163.75 (19) |
C10—C9—C16—C25 | 92.5 (2) | C17—C18—N1—C7 | −167.41 (19) |
C9—C16—C17—C18 | −38.3 (3) | C19—C18—N1—C7 | 13.8 (3) |
C25—C16—C17—C18 | 84.3 (2) | C9—C8—N1—C18 | −16.6 (3) |
C9—C16—C17—C22 | 140.35 (19) | C13—C8—N1—C18 | 160.74 (18) |
C25—C16—C17—C22 | −97.0 (2) | C9—C8—N1—C7 | 165.86 (19) |
C22—C17—C18—N1 | −163.77 (18) | C13—C8—N1—C7 | −16.8 (3) |
C16—C17—C18—N1 | 14.9 (3) | C6—C7—N1—C18 | 84.6 (2) |
C22—C17—C18—C19 | 14.9 (3) | C6—C7—N1—C8 | −97.9 (2) |
C16—C17—C18—C19 | −166.38 (19) | C30—C29—O4—C31 | −2.1 (4) |
C17—C18—C19—C20 | 10.0 (3) | C28—C29—O4—C31 | 178.3 (2) |
N1—C18—C19—C20 | −171.28 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O1i | 0.94 (4) | 2.07 (4) | 2.780 (2) | 131 (3) |
C7—H7B···O1ii | 0.97 | 2.41 | 3.260 (3) | 146 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (ii) x−1/2, −y+1/2, z−1/2. |
Orbitals | a.u | eV | Type |
V136 | -0.00997 | -0.27129 | LUMO+5 |
V135 | -0.02093 | -0.56953 | LUMO+4 |
V134 | -0.02288 | -0.62260 | LUMO+3 |
V133 | -0.02951 | -0.80301 | LUMO+2 |
V132 | -0.03315 | -0.90205 | LUMO+1 |
V131 | -0.06487 | -1.76519 | LUMO |
O130 | -0.20506 | -5.57995 | HOMO |
O129 | -0.21684 | -5.90050 | HOMO-1 |
O128 | -0.23178 | -6.30704 | HOMO-2 |
O127 | -0.23655 | -6.43684 | HOMO-3 |
O126 | -0.24414 | -6.64337 | HOMO-4 |
O125 | -0.26023 | -7.08120 | HOMO-5 |
Frontier molecular orbitals | Energy |
EHOMO | -5.5800 |
ELUMO | -1.7652 |
EHOMO-1 | -5.9005 |
ELUMO+1 | -0.9021 |
(EHOMO–ELUMO) gap | 3.8148 |
(EHOMO-100ELUMO+1) gap | 4.9984 |
Chemical potential (µ) | 3.6726 |
Chemical hardness (η) | 2.0017 |
Chemical softness (S) | 0.4957 |
Electrophilicity index (ω) | 3.3429 |
Acknowledgements
The authors thank Dr Sudhadevi Antharjanam and SAIF, IIT Madras, for the intensity data collection.
References
Akkurt, M., Mohamed, S. K., Abdelhamid, A. A., Gaber, A.-A. M. & Albayati, M. R. (2014). Acta Cryst. E70, o663–o664. CSD CrossRef IUCr Journals Google Scholar
Allah, O. A. A. A., Kaur, M., Akkurt, M., Mohamed, S. K., Jasinski, J. P. & Elgarhy, S. M. I. (2021). Acta Cryst. E77, 247–250. Web of Science CrossRef IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, 12, S1–S19. Google Scholar
Aly, E. I. & Abadi, A. H. (2004). Arch. Pharm. Res. 27, 713–719. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Chen, Y. L., Lu, C. M., Chen, I. L., Tsao, L. T. & Wang, J. P. (2002). J. Med. Chem. 45, 4689–4694. Web of Science CrossRef PubMed CAS Google Scholar
Di Giorgio, C., De Meo, M., Chiron, J., Delmas, F., Nikoyan, A., Jean, S., Dumenil, G., Timon-David, P. & Galy, J. P. (2005). Bioorg. Med. Chem. 13, 5560–5568. Web of Science PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2013). Gaussian09W. Gaussian Inc., Wallingford CT, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gupta, H. C. & Jaiswal, V. (2010). Indian J. Heterocycl. Chem. 19, 409–410. CAS Google Scholar
Kimura, M., Okabayashi, I. & Kato, A. (1993). J. Heterocycl. Chem. 30, 1101–1104. CrossRef CAS Web of Science Google Scholar
Kumar, A., Srivastava, K., Raja Kumar, S., Puri, S. K. & Chauhan, M. S. (2009). Bioorg. Med. Chem. Lett. 19, 6996–6999. Web of Science CrossRef PubMed CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mohamed, S. K., Akkurt, M., Horton, P. N., Abdelhamid, A. A. & Remaily, M. A. A. E. (2013). Acta Cryst. E69, o85–o86. CSD CrossRef CAS IUCr Journals Google Scholar
Nasim, A. & Brychcy, T. (1979). Mutat. Res./Rev. Genet. Toxicol. 65, 261–288. CrossRef CAS Web of Science Google Scholar
Niknam, K. & Damya, M. (2009). Jnl Chin. Chem. Soc. 56, 659–665. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sondhi, S. M., Bhattacharjee, G., Jameel, R. K., Shukla, R., Raghubir, R., Lozach, O. & Meijer, L. (2004). Cent. Eur. J. Chem. 2, 1–15. Web of Science CrossRef CAS Google Scholar
Srivastava, A. & Nizamuddin, A. (2004). Indian J. Heterocycl. Chem. 13, 261–264. CAS Google Scholar
Sugaya, T., Mimura, Y., Shida, Y., Osawa, Y., Matsukuma, I., Ikeda, S., Akinaga, S., Morimoto, M., Ashizawa, T., Okabe, M., Ohno, H., Gomi, K. & Kasai, M. (1994). J. Med. Chem. 37, 1028–1032. CrossRef CAS PubMed Web of Science Google Scholar
Sughanya, V. & Sureshbabu, N. (2012). Acta Cryst. E68, o2755. CSD CrossRef IUCr Journals Google Scholar
Sureshbabu, N. & Sughanya, V. (2015). Acta Cryst. E71, o688–o689. Web of Science CSD CrossRef IUCr Journals Google Scholar
Suresh Babu, N., Sughanya, V., Dhandapani, A. & Kalaivanan, R. (2020). Acta Cryst. E76, 585–588. Web of Science CrossRef IUCr Journals Google Scholar
Thamotharan, S., Prasanna Kumari, S., Selva Ganesan, S., Madan Kumar, S., Percino, M. J. & Lokanath, N. K. (2021). J. Mol. Struct. 1227, 129694. Web of Science CrossRef Google Scholar
Thull, U. & Testa, B. (1994). Biochem. Pharmacol. 47, 2307–2310. CrossRef CAS PubMed Web of Science Google Scholar
Tomar, V., Bhattacharjee, G., Kamaluddin, S. R., Rajakumar, S., Srivastava, K. & Puri, S. K. (2010). Eur. J. Med. Chem. 45, 745–751. Web of Science CrossRef CAS PubMed Google Scholar
Tonelli, M., Vettoretti, G., Tasso, B., Novelli, F., Boido, V., Sparatore, F., Busonera, B., Ouhtit, A., Farci, P., Blois, S., Giliberti, G. & La Colla, P. (2011). Antiviral Res. 91, 133–141. Web of Science CrossRef CAS PubMed Google Scholar
Tripathi, R. P., Verma, S. S., Pandey, J., Agarwal, K. C., Chaturvedi, V., Manju, Y. K., Srivastva, A. K., Gaikwad, A. & Sinha, S. (2006). Bioorg. Med. Chem. Lett. 16, 5144–5147. Web of Science CrossRef PubMed CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.