research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface and frontier mol­ecular orbital analysis of 10-benzyl-9-(4-hy­droxy-3-meth­­oxy­phen­yl)-3,3,6,6-tetra­methyl-3,4,6,7,9,10-hexa­hydro­acridine-1,8(2H,5H)-dione

crossmark logo

aDepartment of Chemistry, Periyar Government Arts College, Cuddalore-607 001, Tamil Nadu, India, bDepartment of Chemistry (Science and Humanities), Dr. N.G.P. Institute of Technology, Coimbatore-641 048, Tamil Nadu, India, cDepartment of Chemistry, Swami Vivekananda Arts and Science College, Orathur-605 601, Tamil Nadu, India, dDepartment of Physics, Government College of Engineering-Sengipatti, Thanjavur-613 402, Tamil Nadu, India, eDepartment of Chemistry, Annamalai University, Annamalai Nagar-608 002, Tamil Nadu, India, fDepartment of Chemistry, CK College of Engineering and Technology, Chellangkuppam, Cuddalore-607003, Tamil Nadu, India, and gDepartment of Chemistry, Government College of Engineering-Sengipatti, Thanjavur-613 402, Tamil Nadu, India
*Correspondence e-mail: babusuresh1982@gmail.com

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 8 June 2022; accepted 24 June 2022; online 14 July 2022)

In the fused ring system of the title mol­ecule, C31H35NO4, the conformation of the central di­hydro­pyridine ring is inter­mediate between boat and envelope with the N and the opposite C atoms lying out of the basal plane. The conformations of terminal rings are close to envelope, with the atoms substituted by two methyl groups as the flaps. In the crystal, the mol­ecules are linked by O—H⋯O hydrogen bonds into helical chains. The Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (63.2%), O⋯H/H⋯O (20.1%) and C⋯H/H⋯C (14.4%) contacts. Quantum chemical calculations of the frontier mol­ecular orbitals were carried out to characterize the chemical reactivity of the title compound.

1. Chemical context

The acridine fragment is a part of a number of naturally occurring substances, and its derivatives have been used as photoinitiators. Acridine-1,8-diones have been shown to have very high lasing efficiencies and have been used as dyes (Niknam & Damya, 2009[Niknam, K. & Damya, M. (2009). Jnl Chin. Chem. Soc. 56, 659-665.]). Some acridine derivatives (Nasim & Brychcy, 1979[Nasim, A. & Brychcy, T. (1979). Mutat. Res./Rev. Genet. Toxicol. 65, 261-288.]; Thull & Testa, 1994[Thull, U. & Testa, B. (1994). Biochem. Pharmacol. 47, 2307-2310.]), also well known as therapeutic agents, have a wide range of applications in the pharmaceutical and dye industries. These include compounds that are used as anti-cancer (Sondhi et al., 2004[Sondhi, S. M., Bhattacharjee, G., Jameel, R. K., Shukla, R., Raghubir, R., Lozach, O. & Meijer, L. (2004). Cent. Eur. J. Chem. 2, 1-15.]; Sugaya et al., 1994[Sugaya, T., Mimura, Y., Shida, Y., Osawa, Y., Matsukuma, I., Ikeda, S., Akinaga, S., Morimoto, M., Ashizawa, T., Okabe, M., Ohno, H., Gomi, K. & Kasai, M. (1994). J. Med. Chem. 37, 1028-1032.]; Kimura et al., 1993[Kimura, M., Okabayashi, I. & Kato, A. (1993). J. Heterocycl. Chem. 30, 1101-1104.]), anti-tubercular (Aly & Abadi, 2004[Aly, E. I. & Abadi, A. H. (2004). Arch. Pharm. Res. 27, 713-719.]; Tripathi et al., 2006[Tripathi, R. P., Verma, S. S., Pandey, J., Agarwal, K. C., Chaturvedi, V., Manju, Y. K., Srivastva, A. K., Gaikwad, A. & Sinha, S. (2006). Bioorg. Med. Chem. Lett. 16, 5144-5147.]), anti-inflammatory (Chen et al., 2002[Chen, Y. L., Lu, C. M., Chen, I. L., Tsao, L. T. & Wang, J. P. (2002). J. Med. Chem. 45, 4689-4694.]), anti-malarial (Kumar et al., 2009[Kumar, A., Srivastava, K., Raja Kumar, S., Puri, S. K. & Chauhan, M. S. (2009). Bioorg. Med. Chem. Lett. 19, 6996-6999.]; Tomar et al., 2010[Tomar, V., Bhattacharjee, G., Kamaluddin, S. R., Rajakumar, S., Srivastava, K. & Puri, S. K. (2010). Eur. J. Med. Chem. 45, 745-751.]), anti-viral (Gupta & Jaiswal, 2010[Gupta, H. C. & Jaiswal, V. (2010). Indian J. Heterocycl. Chem. 19, 409-410.]; Tonelli et al., 2011[Tonelli, M., Vettoretti, G., Tasso, B., Novelli, F., Boido, V., Sparatore, F., Busonera, B., Ouhtit, A., Farci, P., Blois, S., Giliberti, G. & La Colla, P. (2011). Antiviral Res. 91, 133-141.]), anti-parasitic (Di Giorgio, et al., 2005[Di Giorgio, C., De Meo, M., Chiron, J., Delmas, F., Nikoyan, A., Jean, S., Dumenil, G., Timon-David, P. & Galy, J. P. (2005). Bioorg. Med. Chem. 13, 5560-5568.]) and fungicidal agents (Srivastava & Nizamuddin, 2004[Srivastava, A. & Nizamuddin, A. (2004). Indian J. Heterocycl. Chem. 13, 261-264.]). In this context, we report here the synthesis, crystal structure, Hirshfeld surface and frontier mol­ecular orbital analysis of the title acridine-1,8-dione derivative.

2. Structural commentary

The title compound (Fig. 1[link]) crystallizes in the monoclinic space group P21/n with Z = 4. The conformation of the central di­hydro­pyridine ring is inter­mediate between boat and envelope: four atoms (C8, C9, C17 and C18) form the basal plane with a deviation of 0.008 (2) Å for all of them, whereas atoms N1 and C16 deviate from this plane by 0.168 (2) and 0.476 (2) Å, respectively. The conformations of the terminal C8–C13 and C17–C22 rings are close to envelope with C12 and C20, respectively, as the flap atoms. The basal planes of these envelopes are twisted, and the deviations of corresponding atoms from their least-squares planes are between 0.005 (2) and 0.100 (2) Å. The N1 atom has an essentially planar environment, deviating from the plane through atoms C7, C8 and C18 by only 0.018 (2) Å. The bond lengths in the N1—C8—C9—C10—O2 and N1—C18—C17—C22—O chains indicate π-conjugation of N1 with the carbonyl groups C10=O2 and C22=O1 (Table 1[link]). All other bond lengths and angles in the title structure are within the ranges normal for analogous compounds (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, 12, S1-S19.]; Thamotharan et al., 2021[Thamotharan, S., Prasanna Kumari, S., Selva Ganesan, S., Madan Kumar, S., Percino, M. J. & Lokanath, N. K. (2021). J. Mol. Struct. 1227, 129694.]; Allah et al., 2021[Allah, O. A. A. A., Kaur, M., Akkurt, M., Mohamed, S. K., Jasinski, J. P. & Elgarhy, S. M. I. (2021). Acta Cryst. E77, 247-250.]; Mohamed et al., 2013[Mohamed, S. K., Akkurt, M., Horton, P. N., Abdelhamid, A. A. & Remaily, M. A. A. E. (2013). Acta Cryst. E69, o85-o86.]; Akkurt et al., 2014[Akkurt, M., Mohamed, S. K., Abdelhamid, A. A., Gaber, A.-A. M. & Albayati, M. R. (2014). Acta Cryst. E70, o663-o664.]).

Table 1
Selected bond lengths (Å)

C8—C9 1.365 (3) C17—C18 1.367 (3)
C8—N1 1.404 (3) C17—C22 1.459 (3)
C9—C10 1.462 (3) C18—N1 1.400 (3)
C10—O2 1.236 (3) C22—O1 1.240 (3)
[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld analysis

In the crystal, the mol­ecules are linked via O3—H3A⋯O1i hydrogen bonds [symmetry code (i): −x + [{3\over 2}], y − [{1\over 2}], −z + [{3\over 2}]] forming helical chains along the b-axis direction (Fig. 2[link], Table 2[link]). The chains are further connected by weak C7—H7B⋯O1ii hydrogen bonds [symmetry code (ii): x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]] forming sheets parallel to (10[\overline{1}]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O1i 0.94 (4) 2.07 (4) 2.780 (2) 131 (3)
C7—H7B⋯O1ii 0.97 2.41 3.260 (3) 146
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing view of the title compound showing the O—H⋯O inter­molecular hydrogen bonds.

To qu­antify the inter­molecular contacts in the crystal, Hirshfeld surfaces and two-dimensional fingerprint plots were generated using Crystal Explorer (Version 17.5; Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). The Hirshfeld surface mapped over dnorm in the range −0.436 to 1.583 a.u. (Fig. 3[link]) show the inter­molecular contacts as red-coloured spots, which indicate the C—H⋯O and O—H⋯O hydrogen bonds. The red and blue regions corresponding to negative (hydrogen-bond acceptors) and positive (hydrogen-bond donors) potentials on the Hirshfeld surface mapped over electrostatic potential are shown in Fig. 4[link]. The two-dimensional fingerprint plots are presented in Fig. 5[link]. The H⋯H contacts comprise 63.2% of the total inter­actions. Besides these contacts, O⋯H/H⋯O (20.1%) and C⋯H/H⋯C (14.4%) inter­actions make significant contributions to the total Hirshfeld surface. The percentage contributions of the N⋯C/C⋯N, C⋯O/H⋯O, and C⋯C contacts are 0.3, 1.2 and 0.5%, respectively.

[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the title mol­ecule plotted over dnorm in the range −0.436 to 1.583 a.u.
[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title mol­ecule plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. calculated with the STO-3 G basis set at the Hartree–Fock level of theory. The hydrogen-bond donating and acceptor areas are viewed as blue and red regions, respectively, around atoms, corresponding to positive and negative potentials.
[Figure 5]
Figure 5
The two-dimensional fingerprint plot showing all inter­actions and those delineated into C⋯H/H⋯C, C⋯O/O⋯H, C⋯C, H⋯H, O⋯H/H⋯O and N⋯C/C⋯N contacts.

4. Frontier mol­ecular orbital analysis

The chemical reactivity of the title compound was studied by frontier mol­ecular orbital analysis. For the calculation, the mol­ecular structure obtained from X-ray diffraction data was used as the mol­ecular model. The energy levels, summarized in Table 3[link], were computed at the DFT-B3LYP/6-311G++(d,p) level of theory as implemented in Gaussian09W (Frisch et al., 2013[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2013). Gaussian09W. Gaussian Inc., Wallingford CT, USA.]). The calculated frontier mol­ecular orbitals, LUMO+1, LUMO, HOMO, and HOMO-1, are shown in Fig. 6[link]. The energies of LUMO+1, LUMO, HOMO and HOMO−1 were calculated to be −0.9021, −1.7652, −5.5800 and −5.9005 eV, respectively, and the energies required to excite one electron from HOMO−1 to LUMO+1 and from HOMO to LUMO are 4.9984 and 3.8148 eV, respectively. The chemical hardness, chemical potential, chemical softness and electrophilicity index of the title mol­ecule are listed in Table 4[link]. The electrophilicity index value of 3.3429 eV shows the global electrophilic nature of the mol­ecule. Based on the wide band gap and chemical hardness value of 2.0174 eV, the title mol­ecule seems to be hard.

Table 3
The frontier mol­ecular orbital energies of title compound

Orbitals a.u eV Type
V136 −0.00997 −0.27129 LUMO+5
V135 −0.02093 −0.56953 LUMO+4
V134 −0.02288 −0.62260 LUMO+3
V133 −0.02951 −0.80301 LUMO+2
V132 −0.03315 −0.90205 LUMO+1
V131 −0.06487 −1.76519 LUMO
O130 −0.20506 −5.57995 HOMO
O129 −0.21684 −5.90050 HOMO−1
O128 −0.23178 −6.30704 HOMO−2
O127 −0.23655 −6.43684 HOMO−3
O126 −0.24414 −6.64337 HOMO−4
O125 −0.26023 −7.08120 HOMO−5

Table 4
The global reactivity descriptors of the title compound (eV)

Frontier mol­ecular orbitals Energy
EHOMO −5.5800
ELUMO −1.7652
EHOMO-1 −5.9005
ELUMO+1 −0.9021
(EHOMOELUMO) gap 3.8148
(EHOMO-100ELUMO+1) gap 4.9984
Chemical potential (μ) 3.6726
Chemical hardness (η) 2.0017
Chemical softness (S) 0.4957
Electrophilicity index (ω) 3.3429
[Figure 6]
Figure 6
The frontier mol­ecular orbitals of the title mol­ecule.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, updated September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the acridine-1,8(2H)dione unit resulted in 22 hits. They include the following acridine-1,8(2H)dione derivatives similar to the title compound: 4-eth­oxy­phenyl (QEDYAB; Sughanya & Sureshbabu, 2012[Sughanya, V. & Sureshbabu, N. (2012). Acta Cryst. E68, o2755.]), 3,4-di­meth­oxy­phenyl (PUSJEU; Sureshbabu & Sughanya, 2015[Sureshbabu, N. & Sughanya, V. (2015). Acta Cryst. E71, o688-o689.]) and 3-eth­oxy-4-hy­droxy­phenyl (MULWUO; Suresh Babu et al., 2020[Suresh Babu, N., Sughanya, V., Dhandapani, A. & Kalaivanan, R. (2020). Acta Cryst. E76, 585-588.]). In the title compound, the dihedral angle between the phenyl and di­hydro­pyridine rings is 85.39 (2)°, similar to the values observed for the 4-eth­oxy­phenyl analogue QEDYAB, the 3,4-di­meth­oxy­phenyl analogue PUSJEU, and 3-eth­oxy-4-hy­droxy­phenyl analogue MULWUO, for which the dihedral angles are 75.20 (4), 89.47 (9) and 85.81 (2)°, respectively.

6. Synthesis and crystallization

A mixture of benzyl­amine (0.214g, 2 mmol), 4-hy­droxy-3-meth­oxy­benzaldehyde (0.304g, 2 mmol) and 5,5-di­methyl­cyclo­hexane-1,3-dione (0.56g, 4 mmol) was dissolved in 25 ml of acetic acid. The solution was refluxed for 2 h with the reaction being monitored by TLC. After the reaction was about to the end, the reaction mixture was poured into 150 ml of ice-cold water, stirred at 298–303K for 10 min and then kept at room temperature for 12 h. The solid was filtered, washed repeatedly with water and dried. Yellow single crystals suitable for X-ray diffraction were obtained from 95% ethanol (m.p. 483 K, 0.718 g, 1.48 mmol, yield 74%). IR (KBr): cm−1 2957-2871, 1634, 1455, 1373. 1H NMR(400 MHz, CDCl3): 0.90 (s, 6H), 0.99 (s, 6H), 2.21 (s, 4H), 2.40 (dd, 4H), 3.86 (s, 3H), 4.90 (s, 2H), 5.24 (s, 1H), 5.51 (s, 1H), 6.56 (d, 1H), 6.70 (d, 1H), 7.12 (d, 1H), 7.17 (s, 2H), 7.35–7.40 (m, 3H). 13C NMR (100 MHz, CDCl3): 28.11, 28.65, 31.70, 32.73, 40.27, 48.73, 50.05, 55.88, 111.90, 113.60, 115.44, 119.45, 125.38, 128.01, 129.25, 137.10, 138.36, 143.69, 145.92, 150.31, 195.90. ESI–MS: m/z:485.12 [M + H]+.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. Hydrogen atoms were fixed geometrically and treated as riding atoms, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 5
Experimental details

Crystal data
Chemical formula C31H35NO4
Mr 485.60
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 10.4430 (6), 18.4563 (11), 14.2378 (9)
β (°) 107.930 (2)
V3) 2610.9 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.40 × 0.30 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.953, 0.982
No. of measured, independent and observed [I > 2σ(I)] reflections 37271, 5135, 3061
Rint 0.096
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.145, 1.02
No. of reflections 5135
No. of parameters 330
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.19
Computer programs: APEX2, SAINT and XPREP (Bruker, 2016[Bruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: APEX2 and SAINT (Bruker, 2016); data reduction: SAINT and XPREP (Bruker, 2016); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b) and publCIF (Westrip, 2010).

10-Benzyl-9-(4-hydroxy-3-methoxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-\ hexahydroacridine-1,8(2H,5H)-dione top
Crystal data top
C31H35NO4Dx = 1.235 Mg m3
Mr = 485.60Melting point: 483 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.4430 (6) ÅCell parameters from 3522 reflections
b = 18.4563 (11) Åθ = 2.4–21.4°
c = 14.2378 (9) ŵ = 0.08 mm1
β = 107.930 (2)°T = 296 K
V = 2610.9 (3) Å3BLOCK, yellow
Z = 40.40 × 0.30 × 0.20 mm
F(000) = 1040
Data collection top
Bruker Kappa APEXII
diffractometer
5135 independent reflections
Radiation source: fine-focus sealed tube3061 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
ω and φ scanθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1212
Tmin = 0.953, Tmax = 0.982k = 2222
37271 measured reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.052 w = 1/[σ2(Fo2) + (0.049P)2 + 1.0354P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.145(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.19 e Å3
5135 reflectionsΔρmin = 0.19 e Å3
330 parametersExtinction correction: SHELXL-2018 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0095 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4603 (3)0.09167 (14)0.35227 (19)0.0494 (7)
H10.4103970.0897680.3962050.059*
C20.5467 (3)0.03535 (15)0.3501 (2)0.0594 (8)
H20.5546830.0039550.3923920.071*
C30.6205 (3)0.03758 (19)0.2855 (3)0.0730 (9)
H30.6787490.0002350.2840670.088*
C40.6087 (3)0.0954 (2)0.2230 (3)0.0783 (10)
H40.6584790.0965540.1789170.094*
C50.5225 (3)0.15239 (16)0.2254 (2)0.0600 (8)
H50.5156440.1916850.1832410.072*
C60.4467 (2)0.15115 (13)0.28985 (17)0.0387 (6)
C70.3509 (2)0.21207 (12)0.29182 (16)0.0373 (6)
H7A0.3638730.2514250.2504930.045*
H7B0.2590840.1949590.2646970.045*
C80.2902 (2)0.21609 (11)0.44966 (16)0.0315 (5)
C90.3279 (2)0.22925 (11)0.54880 (16)0.0324 (5)
C100.2338 (2)0.21768 (12)0.60510 (18)0.0397 (6)
C110.0907 (2)0.19725 (14)0.54753 (19)0.0486 (7)
H11A0.0405470.2407590.5209220.058*
H11B0.0480530.1746970.5917470.058*
C120.0856 (2)0.14502 (13)0.46279 (18)0.0415 (6)
C130.1588 (2)0.17948 (13)0.39549 (17)0.0387 (6)
H13A0.1762860.1421450.3530900.046*
H13B0.0995390.2149450.3534600.046*
C140.1542 (3)0.07360 (14)0.5055 (2)0.0621 (8)
H14A0.1512470.0407400.4526070.093*
H14B0.2462830.0828280.5429750.093*
H14C0.1081580.0525240.5476910.093*
C150.0603 (3)0.12956 (17)0.4002 (2)0.0640 (8)
H15A0.0606870.0967910.3477600.096*
H15B0.1081690.1081610.4410020.096*
H15C0.1033530.1740840.3727390.096*
C160.4694 (2)0.25611 (11)0.60194 (15)0.0321 (5)
H160.4671800.2836420.6602690.039*
C170.5082 (2)0.30702 (11)0.53197 (16)0.0317 (5)
C180.4708 (2)0.29183 (11)0.43328 (16)0.0314 (5)
C190.5302 (2)0.33043 (12)0.36254 (17)0.0390 (6)
H19A0.4608730.3603470.3186040.047*
H19B0.5569070.2945090.3224960.047*
C200.6522 (2)0.37834 (13)0.41290 (18)0.0408 (6)
C210.6196 (3)0.42101 (13)0.49464 (19)0.0487 (7)
H21A0.6969400.4503410.5288840.058*
H21B0.5451780.4535670.4649920.058*
C220.5830 (2)0.37329 (12)0.56887 (17)0.0363 (5)
C230.7793 (2)0.33202 (16)0.4554 (2)0.0584 (8)
H23A0.7980300.3056760.4030070.088*
H23B0.8541050.3629320.4869680.088*
H23C0.7650970.2985260.5028520.088*
C240.6754 (3)0.43065 (15)0.3363 (2)0.0599 (8)
H24A0.6958270.4035670.2851060.090*
H24B0.5956670.4589640.3081090.090*
H24C0.7492940.4622230.3675360.090*
C250.5679 (2)0.19226 (11)0.63605 (16)0.0323 (5)
C260.6453 (2)0.16638 (12)0.57974 (17)0.0382 (6)
H260.6406480.1891080.5204780.046*
C270.7300 (2)0.10688 (12)0.61051 (18)0.0422 (6)
H270.7800020.0900400.5710650.051*
C280.7407 (2)0.07262 (12)0.69872 (17)0.0383 (6)
C290.6655 (2)0.09867 (12)0.75739 (16)0.0363 (5)
C300.5783 (2)0.15702 (12)0.72569 (16)0.0361 (5)
H300.5263560.1728750.7642430.043*
C310.6164 (3)0.08606 (17)0.9100 (2)0.0762 (10)
H31A0.6392540.0560290.9678480.114*
H31B0.6414370.1352790.9287490.114*
H31C0.5212700.0835100.8773690.114*
N10.37180 (17)0.23959 (9)0.39359 (13)0.0323 (4)
O10.61215 (17)0.39158 (9)0.65671 (12)0.0508 (5)
O20.26832 (18)0.22551 (11)0.69568 (13)0.0585 (5)
O30.82731 (18)0.01471 (9)0.72534 (15)0.0533 (5)
O40.68627 (18)0.06155 (9)0.84518 (13)0.0554 (5)
H3A0.819 (3)0.009 (2)0.782 (3)0.113 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0509 (15)0.0494 (16)0.0490 (16)0.0025 (13)0.0172 (13)0.0031 (13)
C20.0593 (18)0.0502 (17)0.0631 (19)0.0088 (14)0.0105 (15)0.0073 (15)
C30.065 (2)0.075 (2)0.076 (2)0.0198 (17)0.0177 (18)0.0218 (19)
C40.074 (2)0.100 (3)0.075 (2)0.011 (2)0.0425 (18)0.017 (2)
C50.0650 (18)0.072 (2)0.0508 (17)0.0001 (16)0.0284 (14)0.0038 (15)
C60.0358 (12)0.0447 (14)0.0335 (13)0.0070 (11)0.0076 (10)0.0110 (11)
C70.0415 (13)0.0401 (13)0.0287 (12)0.0049 (11)0.0087 (10)0.0021 (10)
C80.0337 (12)0.0270 (11)0.0333 (12)0.0029 (9)0.0093 (10)0.0006 (10)
C90.0344 (12)0.0309 (12)0.0322 (12)0.0036 (10)0.0105 (10)0.0020 (10)
C100.0458 (14)0.0376 (13)0.0374 (14)0.0045 (11)0.0155 (11)0.0015 (11)
C110.0424 (14)0.0537 (16)0.0537 (16)0.0016 (12)0.0206 (12)0.0004 (13)
C120.0395 (13)0.0406 (14)0.0444 (14)0.0046 (11)0.0130 (11)0.0014 (11)
C130.0370 (13)0.0393 (13)0.0376 (13)0.0032 (11)0.0083 (10)0.0000 (11)
C140.078 (2)0.0404 (15)0.068 (2)0.0007 (14)0.0221 (16)0.0101 (14)
C150.0470 (16)0.078 (2)0.0665 (19)0.0225 (15)0.0166 (14)0.0063 (16)
C160.0373 (12)0.0299 (12)0.0276 (11)0.0019 (10)0.0078 (9)0.0025 (9)
C170.0331 (12)0.0281 (11)0.0320 (12)0.0007 (9)0.0071 (10)0.0003 (10)
C180.0306 (11)0.0278 (11)0.0335 (12)0.0014 (9)0.0065 (9)0.0018 (10)
C190.0423 (13)0.0375 (13)0.0369 (13)0.0016 (11)0.0118 (11)0.0041 (11)
C200.0435 (14)0.0367 (13)0.0441 (14)0.0068 (11)0.0163 (11)0.0004 (11)
C210.0626 (17)0.0347 (13)0.0523 (16)0.0116 (12)0.0228 (13)0.0058 (12)
C220.0352 (12)0.0318 (12)0.0390 (14)0.0019 (10)0.0071 (10)0.0030 (11)
C230.0392 (14)0.0672 (19)0.0686 (19)0.0025 (13)0.0164 (13)0.0030 (16)
C240.0667 (18)0.0572 (17)0.0613 (19)0.0174 (14)0.0277 (15)0.0053 (14)
C250.0310 (12)0.0289 (12)0.0328 (12)0.0031 (9)0.0035 (10)0.0020 (10)
C260.0447 (14)0.0349 (13)0.0344 (13)0.0041 (11)0.0110 (11)0.0050 (10)
C270.0467 (14)0.0387 (14)0.0445 (15)0.0076 (11)0.0188 (12)0.0031 (12)
C280.0379 (13)0.0298 (12)0.0425 (14)0.0028 (10)0.0055 (11)0.0017 (11)
C290.0429 (13)0.0327 (12)0.0309 (12)0.0008 (10)0.0078 (10)0.0066 (10)
C300.0413 (13)0.0328 (12)0.0336 (13)0.0001 (10)0.0106 (10)0.0014 (10)
C310.117 (3)0.072 (2)0.0530 (18)0.0312 (19)0.0444 (19)0.0244 (16)
N10.0347 (10)0.0340 (10)0.0270 (10)0.0035 (8)0.0078 (8)0.0013 (8)
O10.0639 (12)0.0427 (10)0.0406 (10)0.0104 (8)0.0084 (8)0.0098 (8)
O20.0616 (12)0.0802 (14)0.0377 (10)0.0048 (10)0.0213 (9)0.0042 (10)
O30.0598 (12)0.0433 (10)0.0583 (12)0.0200 (9)0.0205 (10)0.0155 (9)
O40.0753 (13)0.0514 (11)0.0431 (10)0.0193 (9)0.0236 (9)0.0164 (9)
Geometric parameters (Å, º) top
C1—C21.383 (3)C16—H160.9800
C1—C61.392 (3)C17—C181.367 (3)
C1—H10.9300C17—C221.459 (3)
C2—C31.371 (4)C18—N11.400 (3)
C2—H20.9300C18—C191.513 (3)
C3—C41.370 (5)C19—C201.535 (3)
C3—H30.9300C19—H19A0.9700
C4—C51.392 (4)C19—H19B0.9700
C4—H40.9300C20—C211.528 (3)
C5—C61.384 (3)C20—C241.531 (3)
C5—H50.9300C20—C231.538 (3)
C6—C71.511 (3)C21—C221.512 (3)
C7—N11.487 (3)C21—H21A0.9700
C7—H7A0.9700C21—H21B0.9700
C7—H7B0.9700C22—O11.240 (3)
C8—C91.365 (3)C23—H23A0.9600
C8—N11.404 (3)C23—H23B0.9600
C8—C131.511 (3)C23—H23C0.9600
C9—C101.462 (3)C24—H24A0.9600
C9—C161.522 (3)C24—H24B0.9600
C10—O21.236 (3)C24—H24C0.9600
C10—C111.514 (3)C25—C261.387 (3)
C11—C121.532 (3)C25—C301.407 (3)
C11—H11A0.9700C26—C271.393 (3)
C11—H11B0.9700C26—H260.9300
C12—C141.534 (3)C27—C281.380 (3)
C12—C131.535 (3)C27—H270.9300
C12—C151.537 (3)C28—O31.376 (3)
C13—H13A0.9700C28—C291.396 (3)
C13—H13B0.9700C29—O41.383 (3)
C14—H14A0.9600C29—C301.393 (3)
C14—H14B0.9600C30—H300.9300
C14—H14C0.9600C31—O41.415 (3)
C15—H15A0.9600C31—H31A0.9600
C15—H15B0.9600C31—H31B0.9600
C15—H15C0.9600C31—H31C0.9600
C16—C171.512 (3)O3—H3A0.94 (4)
C16—C251.541 (3)
C2—C1—C6121.2 (3)C18—C17—C22119.6 (2)
C2—C1—H1119.4C18—C17—C16120.02 (19)
C6—C1—H1119.4C22—C17—C16120.38 (19)
C3—C2—C1119.9 (3)C17—C18—N1119.9 (2)
C3—C2—H2120.1C17—C18—C19122.82 (19)
C1—C2—H2120.1N1—C18—C19117.30 (18)
C4—C3—C2120.2 (3)C18—C19—C20114.28 (18)
C4—C3—H3119.9C18—C19—H19A108.7
C2—C3—H3119.9C20—C19—H19A108.7
C3—C4—C5120.1 (3)C18—C19—H19B108.7
C3—C4—H4119.9C20—C19—H19B108.7
C5—C4—H4119.9H19A—C19—H19B107.6
C6—C5—C4120.7 (3)C21—C20—C24109.8 (2)
C6—C5—H5119.7C21—C20—C19107.77 (19)
C4—C5—H5119.7C24—C20—C19108.7 (2)
C5—C6—C1118.0 (2)C21—C20—C23110.8 (2)
C5—C6—C7121.1 (2)C24—C20—C23108.9 (2)
C1—C6—C7120.9 (2)C19—C20—C23110.8 (2)
N1—C7—C6111.90 (18)C22—C21—C20113.29 (19)
N1—C7—H7A109.2C22—C21—H21A108.9
C6—C7—H7A109.2C20—C21—H21A108.9
N1—C7—H7B109.2C22—C21—H21B108.9
C6—C7—H7B109.2C20—C21—H21B108.9
H7A—C7—H7B107.9H21A—C21—H21B107.7
C9—C8—N1120.03 (19)O1—C22—C17122.0 (2)
C9—C8—C13122.3 (2)O1—C22—C21120.7 (2)
N1—C8—C13117.57 (19)C17—C22—C21117.3 (2)
C8—C9—C10120.8 (2)C20—C23—H23A109.5
C8—C9—C16119.9 (2)C20—C23—H23B109.5
C10—C9—C16119.26 (19)H23A—C23—H23B109.5
O2—C10—C9121.7 (2)C20—C23—H23C109.5
O2—C10—C11121.1 (2)H23A—C23—H23C109.5
C9—C10—C11117.2 (2)H23B—C23—H23C109.5
C10—C11—C12111.8 (2)C20—C24—H24A109.5
C10—C11—H11A109.2C20—C24—H24B109.5
C12—C11—H11A109.2H24A—C24—H24B109.5
C10—C11—H11B109.2C20—C24—H24C109.5
C12—C11—H11B109.2H24A—C24—H24C109.5
H11A—C11—H11B107.9H24B—C24—H24C109.5
C11—C12—C14109.2 (2)C26—C25—C30118.0 (2)
C11—C12—C13109.12 (19)C26—C25—C16122.2 (2)
C14—C12—C13110.0 (2)C30—C25—C16119.8 (2)
C11—C12—C15111.2 (2)C25—C26—C27121.1 (2)
C14—C12—C15109.2 (2)C25—C26—H26119.5
C13—C12—C15108.1 (2)C27—C26—H26119.5
C8—C13—C12114.50 (19)C28—C27—C26120.9 (2)
C8—C13—H13A108.6C28—C27—H27119.6
C12—C13—H13A108.6C26—C27—H27119.6
C8—C13—H13B108.6O3—C28—C27118.0 (2)
C12—C13—H13B108.6O3—C28—C29123.1 (2)
H13A—C13—H13B107.6C27—C28—C29119.0 (2)
C12—C14—H14A109.5O4—C29—C30125.5 (2)
C12—C14—H14B109.5O4—C29—C28114.2 (2)
H14A—C14—H14B109.5C30—C29—C28120.3 (2)
C12—C14—H14C109.5C29—C30—C25120.8 (2)
H14A—C14—H14C109.5C29—C30—H30119.6
H14B—C14—H14C109.5C25—C30—H30119.6
C12—C15—H15A109.5O4—C31—H31A109.5
C12—C15—H15B109.5O4—C31—H31B109.5
H15A—C15—H15B109.5H31A—C31—H31B109.5
C12—C15—H15C109.5O4—C31—H31C109.5
H15A—C15—H15C109.5H31A—C31—H31C109.5
H15B—C15—H15C109.5H31B—C31—H31C109.5
C17—C16—C9106.92 (17)C18—N1—C8119.06 (18)
C17—C16—C25113.24 (18)C18—N1—C7119.81 (18)
C9—C16—C25111.08 (17)C8—N1—C7121.08 (17)
C17—C16—H16108.5C28—O3—H3A112 (2)
C9—C16—H16108.5C29—O4—C31117.53 (19)
C25—C16—H16108.5
C6—C1—C2—C30.1 (4)C18—C19—C20—C2144.2 (3)
C1—C2—C3—C40.1 (5)C18—C19—C20—C24163.2 (2)
C2—C3—C4—C50.5 (5)C18—C19—C20—C2377.2 (3)
C3—C4—C5—C60.7 (5)C24—C20—C21—C22174.9 (2)
C4—C5—C6—C10.4 (4)C19—C20—C21—C2256.6 (3)
C4—C5—C6—C7178.9 (2)C23—C20—C21—C2264.8 (3)
C2—C1—C6—C50.1 (4)C18—C17—C22—O1175.6 (2)
C2—C1—C6—C7179.3 (2)C16—C17—C22—O13.1 (3)
C5—C6—C7—N1129.5 (2)C18—C17—C22—C212.0 (3)
C1—C6—C7—N151.1 (3)C16—C17—C22—C21179.3 (2)
N1—C8—C9—C10168.45 (19)C20—C21—C22—O1147.2 (2)
C13—C8—C9—C108.8 (3)C20—C21—C22—C1735.1 (3)
N1—C8—C9—C1611.7 (3)C17—C16—C25—C2626.1 (3)
C13—C8—C9—C16171.10 (19)C9—C16—C25—C2694.3 (2)
C8—C9—C10—O2176.0 (2)C17—C16—C25—C30155.81 (19)
C16—C9—C10—O23.9 (3)C9—C16—C25—C3083.9 (2)
C8—C9—C10—C115.3 (3)C30—C25—C26—C270.5 (3)
C16—C9—C10—C11174.81 (19)C16—C25—C26—C27177.6 (2)
O2—C10—C11—C12142.6 (2)C25—C26—C27—C280.9 (3)
C9—C10—C11—C1238.8 (3)C26—C27—C28—O3179.3 (2)
C10—C11—C12—C1463.9 (3)C26—C27—C28—C290.3 (3)
C10—C11—C12—C1356.4 (3)O3—C28—C29—O40.5 (3)
C10—C11—C12—C15175.5 (2)C27—C28—C29—O4178.5 (2)
C9—C8—C13—C1211.7 (3)O3—C28—C29—C30179.2 (2)
N1—C8—C13—C12171.05 (19)C27—C28—C29—C301.8 (3)
C11—C12—C13—C843.4 (3)O4—C29—C30—C25178.1 (2)
C14—C12—C13—C876.5 (3)C28—C29—C30—C252.2 (3)
C15—C12—C13—C8164.4 (2)C26—C25—C30—C291.0 (3)
C8—C9—C16—C1736.7 (3)C16—C25—C30—C29179.24 (19)
C10—C9—C16—C17143.48 (19)C17—C18—N1—C815.0 (3)
C8—C9—C16—C2587.3 (2)C19—C18—N1—C8163.75 (19)
C10—C9—C16—C2592.5 (2)C17—C18—N1—C7167.41 (19)
C9—C16—C17—C1838.3 (3)C19—C18—N1—C713.8 (3)
C25—C16—C17—C1884.3 (2)C9—C8—N1—C1816.6 (3)
C9—C16—C17—C22140.35 (19)C13—C8—N1—C18160.74 (18)
C25—C16—C17—C2297.0 (2)C9—C8—N1—C7165.86 (19)
C22—C17—C18—N1163.77 (18)C13—C8—N1—C716.8 (3)
C16—C17—C18—N114.9 (3)C6—C7—N1—C1884.6 (2)
C22—C17—C18—C1914.9 (3)C6—C7—N1—C897.9 (2)
C16—C17—C18—C19166.38 (19)C30—C29—O4—C312.1 (4)
C17—C18—C19—C2010.0 (3)C28—C29—O4—C31178.3 (2)
N1—C18—C19—C20171.28 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1i0.94 (4)2.07 (4)2.780 (2)131 (3)
C7—H7B···O1ii0.972.413.260 (3)146
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x1/2, y+1/2, z1/2.
The frontier molecular orbital energies of title compound top
Orbitalsa.ueVType
V136-0.00997-0.27129LUMO+5
V135-0.02093-0.56953LUMO+4
V134-0.02288-0.62260LUMO+3
V133-0.02951-0.80301LUMO+2
V132-0.03315-0.90205LUMO+1
V131-0.06487-1.76519LUMO
O130-0.20506-5.57995HOMO
O129-0.21684-5.90050HOMO-1
O128-0.23178-6.30704HOMO-2
O127-0.23655-6.43684HOMO-3
O126-0.24414-6.64337HOMO-4
O125-0.26023-7.08120HOMO-5
The global reactivity descriptors of the title compound (eV) top
Frontier molecular orbitalsEnergy
EHOMO-5.5800
ELUMO-1.7652
EHOMO-1-5.9005
ELUMO+1-0.9021
(EHOMOELUMO) gap3.8148
(EHOMO-100ELUMO+1) gap4.9984
Chemical potential (µ)3.6726
Chemical hardness (η)2.0017
Chemical softness (S)0.4957
Electrophilicity index (ω)3.3429
 

Acknowledgements

The authors thank Dr Sudhadevi Antharjanam and SAIF, IIT Madras, for the intensity data collection.

References

First citationAkkurt, M., Mohamed, S. K., Abdelhamid, A. A., Gaber, A.-A. M. & Albayati, M. R. (2014). Acta Cryst. E70, o663–o664.  CSD CrossRef IUCr Journals Google Scholar
First citationAllah, O. A. A. A., Kaur, M., Akkurt, M., Mohamed, S. K., Jasinski, J. P. & Elgarhy, S. M. I. (2021). Acta Cryst. E77, 247–250.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, 12, S1–S19.  Google Scholar
First citationAly, E. I. & Abadi, A. H. (2004). Arch. Pharm. Res. 27, 713–719.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y. L., Lu, C. M., Chen, I. L., Tsao, L. T. & Wang, J. P. (2002). J. Med. Chem. 45, 4689–4694.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDi Giorgio, C., De Meo, M., Chiron, J., Delmas, F., Nikoyan, A., Jean, S., Dumenil, G., Timon-David, P. & Galy, J. P. (2005). Bioorg. Med. Chem. 13, 5560–5568.  Web of Science PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2013). Gaussian09W. Gaussian Inc., Wallingford CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGupta, H. C. & Jaiswal, V. (2010). Indian J. Heterocycl. Chem. 19, 409–410.  CAS Google Scholar
First citationKimura, M., Okabayashi, I. & Kato, A. (1993). J. Heterocycl. Chem. 30, 1101–1104.  CrossRef CAS Web of Science Google Scholar
First citationKumar, A., Srivastava, K., Raja Kumar, S., Puri, S. K. & Chauhan, M. S. (2009). Bioorg. Med. Chem. Lett. 19, 6996–6999.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMohamed, S. K., Akkurt, M., Horton, P. N., Abdelhamid, A. A. & Remaily, M. A. A. E. (2013). Acta Cryst. E69, o85–o86.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationNasim, A. & Brychcy, T. (1979). Mutat. Res./Rev. Genet. Toxicol. 65, 261–288.  CrossRef CAS Web of Science Google Scholar
First citationNiknam, K. & Damya, M. (2009). Jnl Chin. Chem. Soc. 56, 659–665.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSondhi, S. M., Bhattacharjee, G., Jameel, R. K., Shukla, R., Raghubir, R., Lozach, O. & Meijer, L. (2004). Cent. Eur. J. Chem. 2, 1–15.  Web of Science CrossRef CAS Google Scholar
First citationSrivastava, A. & Nizamuddin, A. (2004). Indian J. Heterocycl. Chem. 13, 261–264.  CAS Google Scholar
First citationSugaya, T., Mimura, Y., Shida, Y., Osawa, Y., Matsukuma, I., Ikeda, S., Akinaga, S., Morimoto, M., Ashizawa, T., Okabe, M., Ohno, H., Gomi, K. & Kasai, M. (1994). J. Med. Chem. 37, 1028–1032.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSughanya, V. & Sureshbabu, N. (2012). Acta Cryst. E68, o2755.  CSD CrossRef IUCr Journals Google Scholar
First citationSureshbabu, N. & Sughanya, V. (2015). Acta Cryst. E71, o688–o689.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSuresh Babu, N., Sughanya, V., Dhandapani, A. & Kalaivanan, R. (2020). Acta Cryst. E76, 585–588.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThamotharan, S., Prasanna Kumari, S., Selva Ganesan, S., Madan Kumar, S., Percino, M. J. & Lokanath, N. K. (2021). J. Mol. Struct. 1227, 129694.  Web of Science CrossRef Google Scholar
First citationThull, U. & Testa, B. (1994). Biochem. Pharmacol. 47, 2307–2310.  CrossRef CAS PubMed Web of Science Google Scholar
First citationTomar, V., Bhattacharjee, G., Kamaluddin, S. R., Rajakumar, S., Srivastava, K. & Puri, S. K. (2010). Eur. J. Med. Chem. 45, 745–751.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTonelli, M., Vettoretti, G., Tasso, B., Novelli, F., Boido, V., Sparatore, F., Busonera, B., Ouhtit, A., Farci, P., Blois, S., Giliberti, G. & La Colla, P. (2011). Antiviral Res. 91, 133–141.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTripathi, R. P., Verma, S. S., Pandey, J., Agarwal, K. C., Chaturvedi, V., Manju, Y. K., Srivastva, A. K., Gaikwad, A. & Sinha, S. (2006). Bioorg. Med. Chem. Lett. 16, 5144–5147.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds