research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of a new polymorph of (E)-2-(4-bromo­phen­yl)-1-[2,2-di­bromo-1-(3-nitro­phen­yl)ethen­yl]diazene

crossmark logo

aDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ 1148 Baku, Azerbaijan, dAzerbaijan State Pedagogical University, Uzeyir Hajibeyli str., 68, Baku, Azerbaijan, ePeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, N. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 27 June 2022; accepted 10 July 2022; online 14 July 2022)

A new polymorph of the title compound, C14H8Br3N3O2, (form-2) was obtained in the same manner as the previously reported form-1 [Akkurt et al. (2022[Akkurt, M., Yıldırım, S. Ö., Shikhaliyev, N. Q., Mammadova, N. A., Niyazova, A. A., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 732-736.]). Acta Cryst. E78, 732–736]. The structure of the new polymorph is stabilized by a C—H⋯O hydrogen bond that links mol­ecules into chains. These chains are linked by face-to-face ππ stacking inter­actions, resulting in a layered structure. Short inter-mol­ecular Br⋯O contacts and van der Waals inter­actions between the layers aid in the cohesion of the crystal packing. In the previously reported form-1, C—H⋯Br inter­actions connect mol­ecules into zigzag chains, which are linked by C—Br⋯π inter­actions into layers, whereas the van der Waals inter­actions between the layers stabilize the crystal packing of form-2. Hirshfeld mol­ecular surface analysis was used to compare the inter­molecular inter­actions of the polymorphs.

1. Chemical context

Aromatic azo compounds provide ubiquitous motifs in organic chemistry and are widely used as indicators, organic dyes, pigments, radical reaction initiators, food additives, therapeutic agents, etc. (Zollinger 1994[Zollinger, H. (1994). Diazo Chemistry I: Aromatic and Heteroaromatic Compounds. New York: Wiley.], 1995[Zollinger, H. (1995). Diazo Chemistry II: Aliphatic, Inorganic and Organometallic Compounds. Weinheim: VCH.]; Gurbanov et al., 2020a[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628-633.],b[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833-14837.]). Moreover, in azo dyes the ligands play a crucial role in coordination chemistry and in the construction of functional materials, such as ionophores, self-assembled layers, catalysts, anti­microbial agents, liquid crystals and semiconductors (Ma et al., 2020[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.], 2021[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.]; Mahmudov et al., 2010[Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923-2938.], 2013[Mahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord. Chem. Rev. 257, 1244-1281.]). Depending on the attached functional groups, the chemical and physical properties of azo dyes and their transition-metal complexes can be improved. The azo-to-hydrazo tautomerization as well as E/Z isomerization of azo dyes are key phenomena in the synthesis and design of new functional materials (Shixaliyev et al., 2013[Shixaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Nenajdenko, V. G., Muzalevskiy, V. M., Mahmudov, K. T. & Kopylovich, M. N. (2013). Catal. Today, 217, 76-79.], 2014[Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807-4815.]). Moreover, an attachment of donor or acceptor centres of non-covalent bonds to the azo compounds can be applied as a synthetic strategy in the improvement of functional properties of their metal complexes (Mahmudov et al., 2020[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.], 2021[Mahmudov, K. T., Huseynov, F. E., Aliyeva, V. A., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Chem. Eur. J. 27, 14370-14389.], 2022[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.]). Thus, we have attached bromine and nitro substituents to the aryl rings leading to a new azo dye, (E)-1-(2,2-di­bromo-1-(3-nitro­phen­yl)vin­yl)-2-(4-bromo­phen­yl)di­azene, which can participate in inter­molecular halogen and hydrogen bonds as well as in π-inter­actions.

[Scheme 1]

2. Structural commentary

A view of the mol­ecule of the new polymorph (henceforth referred to as form-2) is shown in Fig. 1[link]. The central fragment of the mol­ecule, C1/C2/N2/N3/C3/C9/Br1/Br2, is almost planar with the largest deviation from mean plane being 0.101 (1) Å for Br1. This plane forms dihedral angles of 13.51 (7) and 61.26 (7)° with the planes of the bromine- and nitro-substituted aromatic rings, respectively. In the previously reported polymorph (form-1), the corresponding angles were 26.35 (15) and 72.57 (14)° (Akkurt et al., 2022[Akkurt, M., Yıldırım, S. Ö., Shikhaliyev, N. Q., Mammadova, N. A., Niyazova, A. A., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 732-736.]). All bond lengths and angles in the title compound are in agreement with those reported for the related azo compounds discussed in the Database survey section.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

The crystal packing of the new polymorph is stabilized by a C—H⋯O hydrogen bond that links mol­ecules into chains along the b-axis direction (Table 1[link], Figs. 2[link]–4[link][link]). These chains are joined by zigzag face-to-face ππ stacking inter­actions along the [100] direction [Cg1⋯Cg1(−[{1\over 2}] + x, y, [{1\over 2}] − z) = 3.7305 (11) Å, slippage: 2.057 Å; Cg1⋯Cg1([{1\over 2}] + x, y, [{1\over 2}] − z) = 3.7305 (11) Å, slippage: 0.9775 Å; where Cg1 is the centroid of the nitro­phenyl ring], resulting in the layers parallel to (001) (Fig. 4[link]). Short inter-mol­ecular Br1⋯O2 contacts (Table 2[link]) and van der Waals inter­actions between the layers help to keep the crystal packing together. In the previously reported form-1 of the title compound (Akkurt et al., 2022[Akkurt, M., Yıldırım, S. Ö., Shikhaliyev, N. Q., Mammadova, N. A., Niyazova, A. A., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 732-736.]), C—H⋯Br inter­actions connect mol­ecules, generating zigzag C(8) chains along the [100] direction, which are linked by C—Br⋯π inter­actions into layers parallel to (001), and van der Waals inter­actions between layers contribute to the crystal cohesion.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.95 2.56 3.394 (2) 146
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

H4⋯C13 2.67 −1 + x, y, z
H8⋯O1 2.56 x, −[{1\over 2}] + y, [{1\over 2}] − z
H7⋯N3 2.78 [{1\over 2}] + x, y, [{1\over 2}] − z
Br1⋯O2 3.137 (2) [{1\over 2}] − x, −[{1\over 2}] + y, z
Br1⋯H14 2.98 [{1\over 2}] − x, −[{1\over 2}] + y, z
Br2⋯H13 3.15 [{3\over 2}] − x, −[{1\over 2}] + y, z
Br3⋯H10 3.02 [{1\over 2}] + x, [{1\over 2}] − y, 1 − z
C13⋯Br3 3.569 (2) 2 − x, 1 − y, 1 − z
[Figure 2]
Figure 2
View down the a-axis of the C—H⋯O and ππ inter­actions (dashed lines) in the title compound.
[Figure 3]
Figure 3
View down the b-axis of the C—H⋯O and ππ inter­actions (dashed lines) in the title compound.
[Figure 4]
Figure 4
View down the c-axis of the C—H⋯O and ππ inter­actions (dashed lines) in the title compound.

Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia.https://hirshfeldsuface.net]) was used to perform a Hirshfeld surface analysis of form-2 and to generate the related two-dimensional fingerprint plots, with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.1471 (red) to +1.1715 (blue) a.u. (Fig. 5[link]). The red areas on the surface present short contacts and negative dnorm values, which correspond to the C—H⋯O hydrogen bonds mentioned above (Table 1[link]). The red patch that appears around O1 is due to the C8—H8⋯O1 inter­action, which is critical for the mol­ecular packing of the title compound. In form-1, the C—H⋯Br inter­actions are also prominent (Akkurt et al., 2022[Akkurt, M., Yıldırım, S. Ö., Shikhaliyev, N. Q., Mammadova, N. A., Niyazova, A. A., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 732-736.]).

[Figure 5]
Figure 5
(a) Front and (b) back views of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.1471 to 1.1715 a.u.

The overall two-dimensional fingerprint plot for form-2 is given in Fig. 6[link]a, and those delineated into Br⋯H/H⋯Br (26.5%), H⋯H (12.8%), C⋯H/H⋯C (11.5%) and O⋯H/H⋯O (10.6%) contacts are shown in Fig. 6[link]be, while the numerical details for the shortest contacts are given in Table 2[link]. Other contacts, such as Br⋯C/C⋯Br (7.7%), C⋯C (6.0%), Br⋯Br (5.8%), Br⋯O/O⋯Br (5.3%), N⋯H/H⋯N (5.3%), O⋯C/C⋯O (2.5%), Br⋯N/N⋯Br (2.3%), O⋯N/N⋯O (1.7%), O⋯O (1.3%) and N⋯C/C⋯N (0.8%), have little influence on the mol­ecular packing. For form-1, the set includes only four types of inter­actions, viz. Br⋯H/H⋯Br, H⋯H, C⋯H/H⋯C and O⋯H/H⋯O contacts (Akkurt et al., 2022[Akkurt, M., Yıldırım, S. Ö., Shikhaliyev, N. Q., Mammadova, N. A., Niyazova, A. A., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 732-736.]). The predominant inter­actions in both cases are Br⋯H/H⋯Br and H⋯H, constituting 26.5% and 12.8%, respectively, in form-2 vs 20.9% and 15.2% in form-1.

[Figure 6]
Figure 6
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) Br⋯H/H⋯Br, (c) H⋯H, (d) C⋯H/H⋯C, and (e) O⋯H/H⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for similar structures with the (E)-1-(2,2-di­bromo)-2-(4-bromo­phen­yl)diazene unit showed that the ten closest are those of CSD refcodes HEHKEO (I) (Akkurt et al., 2022[Akkurt, M., Yıldırım, S. Ö., Shikhaliyev, N. Q., Mammadova, N. A., Niyazova, A. A., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 732-736.]), TAZDIL (II) (Atioğlu et al., 2022[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Babayeva, G. V., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 530-535.]), PAXDOL (III) (Çelikesir et al., 2022[Çelikesir, S. T., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Suleymanova, G. T., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 404-408.]), GUPHIL (IV) (Özkaraca et al., 2020b[Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020b). Acta Cryst. E76, 811-815.]), HONBUK (V) (Akkurt et al., 2019[Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199-1204.]), HONBOE (VI) (Akkurt et al., 2019[Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199-1204.]), HODQAV (VII) (Shikhaliyev et al., 2019[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032-5038.]), XIZREG (VIII) (Atioğlu et al., 2019[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237-241.]), LEQXOX (IX) (Shikhaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]) and LEQXIR (X) (Shikhaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]).

C—H⋯Br inter­actions connect the mol­ecules in the crystal of the form-1 polymorph of the title compound, (I), resulting in zigzag C(8) chains along the [100] direction. These chains are connected by C—Br⋯π inter­actions into layers parallel to (001). van der Waals inter­actions between the layers contribute to the crystal cohesion.

The mol­ecules in (II) are joined into layers parallel to (011) by C—H⋯O and C—H⋯F hydrogen bonds. C—Br⋯π and C—F⋯π contacts, as well as ππ stacking inter­actions, strengthen the crystal packing

The mol­ecules in the crystal of (III) are connected into chains running parallel to [001] by C—H⋯O hydrogen bonds. C—F⋯π contacts and ππ stacking inter­actions help to consolidate the crystal packing, and short Br⋯O [2.9828 (13) Å] distances are also observed.

In the crystal of (IV), the mol­ecules are linked into inversion dimers via short halogen–halogen contacts [Cl1⋯Cl1 = 3.3763 (9) Å, C16—Cl1⋯Cl1 = 141.47 (7)° compared to the van der Waals radii sum of 3.50 Å for two chlorine atoms]. No other directional contacts could be identified, and the shortest aromatic ring-centroid separation is greater than 5.25 Å.

In the crystals of (V) and (VI), the mol­ecules are linked through weak X⋯Cl contacts [X = Cl for (V) and Br for (VI)], C—H⋯Cl and C—Cl⋯π inter­actions into sheets lying parallel to (001).

In the crystal of (VII), the mol­ecules are stacked in columns along [100] via weak C—H⋯Cl hydrogen bonds and face-to-face ππ stacking inter­actions. The crystal packing is further consolidated by short Cl⋯Cl contacts.

In (VIII), mol­ecules are linked by C—H⋯O hydrogen bonds into zigzag chains running parallel to [001]. The crystal packing also features C—Cl⋯π, C—F⋯π and N—O⋯π inter­actions.

In (IX), C—H⋯N and short Cl⋯Cl contacts are observed, and in (X), C—H⋯N and C—H⋯O hydrogen bonds and short Cl⋯O contacts occur.

5. Synthesis and crystallization

This dye was synthesized according to the reported method (Akkurt et al., 2019[Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199-1204.]; Maharramov et al., 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.]; Özkaraca et al., 2020a[Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Mammadova, G. Z. & Shadrack, D. M. (2020a). Acta Cryst. E76, 1251-1254.],b[Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020b). Acta Cryst. E76, 811-815.]). A 20 mL screw-neck vial was charged with DMSO (10 mL), (E)-1-(4-bromo­phen­yl)-2-(3-nitro­benzyl­idene)hydrazine (1 mmol), tetra­methyl­ethylenedi­amine (TMEDA; 295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CBr4 (4.5 mmol). After 1–3 h (until TLC analysis showed complete consumption of corresponding Schiff base), the reaction mixture was poured into a 0.01 M solution of HCl (100 mL, pH = 2–3), and extracted with di­chloro­methane (3 × 20 mL). The combined organic phase was washed with water (3 × 50 mL), brine (30 mL), dried over anhydrous Na2SO4 and concentrated in vacuo using a rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and di­chloro­methane (3/1–1/1). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution. Red solid (62%); m.p. 391 K. Analysis calculated for C14H8Br3N3O2 (M = 489.95): C 34.32, H 1.65, N 8.58; found: C 34.29, H 1.66, N 8.55%. 1H NMR (300 MHz, CDCl3) δ 7.90–7.44 (8H, Ar–H). 13C NMR (75MHz, CDCl3) δ 150.88, 148.57, 148.12, 132.81, 132.47, 132.25, 130.04, 126.40, 125.30, 124.53, 123.57, 94.10. ESI-MS: m/z: 490.91 [M + H]+.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically and allowed to ride on their parent atoms (C—H = 0.95 Å) with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C14H8Br3N3O2
Mr 489.96
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 6.6579 (1), 15.7683 (3), 29.0301 (6)
V3) 3047.69 (10)
Z 8
Radiation type Mo Kα
μ (mm−1) 7.95
Crystal size (mm) 0.34 × 0.06 × 0.05
 
Data collection
Diffractometer Bruker AXS D8 QUEST, Photon III detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]).
Tmin, Tmax 0.020, 0.058
No. of measured, independent and observed [I > 2σ(I)] reflections 67179, 5538, 4620
Rint 0.033
(sin θ/λ)max−1) 0.758
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.064, 1.05
No. of reflections 5538
No. of parameters 199
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.68, −0.52
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

(E)-2-(4-Bromophenyl)-1-[2,2-dibromo-1-(3-nitrophenyl)ethenyl]diazene top
Crystal data top
C14H8Br3N3O2Dx = 2.136 Mg m3
Mr = 489.96Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9783 reflections
a = 6.6579 (1) Åθ = 2.7–34.8°
b = 15.7683 (3) ŵ = 7.95 mm1
c = 29.0301 (6) ÅT = 100 K
V = 3047.69 (10) Å3Needle, red
Z = 80.34 × 0.06 × 0.05 mm
F(000) = 1872
Data collection top
Bruker AXS D8 QUEST, Photon III detector
diffractometer
5538 independent reflections
Radiation source: fine-focus sealed X-Ray tube4620 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 7.31 pixels mm-1θmax = 32.6°, θmin = 2.6°
φ and ω shutterless scansh = 1010
Absorption correction: multi-scan
(SADABS; Krause et al., 2015).
k = 2323
Tmin = 0.020, Tmax = 0.058l = 4343
67179 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0318P)2 + 2.0035P]
where P = (Fo2 + 2Fc2)/3
5538 reflections(Δ/σ)max = 0.002
199 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.52 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.15339 (3)0.13530 (2)0.34586 (2)0.02722 (5)
Br20.15481 (3)0.10023 (2)0.42549 (2)0.02936 (5)
Br31.20530 (3)0.41027 (2)0.48664 (2)0.02853 (5)
O10.0475 (3)0.54340 (9)0.25282 (6)0.0379 (3)
O20.0602 (3)0.54406 (9)0.32311 (5)0.0353 (3)
N10.0276 (2)0.50824 (10)0.28639 (6)0.0272 (3)
N20.3641 (2)0.25393 (10)0.38915 (6)0.0238 (3)
N30.4595 (2)0.31953 (10)0.37700 (5)0.0237 (3)
C10.0855 (3)0.16829 (11)0.37477 (6)0.0238 (3)
C20.1967 (3)0.23522 (11)0.36103 (6)0.0226 (3)
C30.1509 (2)0.28572 (11)0.31884 (6)0.0215 (3)
C40.1146 (3)0.37242 (11)0.32230 (6)0.0221 (3)
H40.1159910.4000160.3513860.027*
C50.0763 (3)0.41751 (11)0.28225 (6)0.0224 (3)
C60.0770 (3)0.38058 (12)0.23897 (6)0.0236 (3)
H60.0503380.4131670.2121310.028*
C70.1178 (3)0.29485 (13)0.23606 (6)0.0250 (3)
H70.1211390.2680710.2067550.030*
C80.1540 (3)0.24729 (11)0.27555 (6)0.0228 (3)
H80.1809110.1883070.2730380.027*
C90.6294 (3)0.33715 (12)0.40511 (6)0.0233 (3)
C100.7117 (3)0.27990 (12)0.43672 (7)0.0254 (3)
H100.6508130.2260900.4413760.030*
C110.8820 (3)0.30204 (12)0.46115 (7)0.0267 (3)
H110.9401840.2635400.4824880.032*
C120.9671 (3)0.38174 (12)0.45398 (6)0.0239 (3)
C130.8856 (3)0.43973 (12)0.42367 (6)0.0257 (3)
H130.9443330.4941830.4198490.031*
C140.7154 (3)0.41659 (12)0.39883 (6)0.0248 (3)
H140.6577230.4552670.3775000.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02466 (8)0.02296 (8)0.03404 (10)0.00303 (6)0.00384 (7)0.00397 (7)
Br20.02669 (9)0.02915 (9)0.03225 (10)0.00022 (7)0.00123 (7)0.01012 (7)
Br30.02656 (9)0.02931 (9)0.02972 (9)0.00397 (7)0.00470 (7)0.00276 (7)
O10.0417 (9)0.0284 (7)0.0437 (9)0.0056 (6)0.0074 (7)0.0110 (7)
O20.0422 (8)0.0260 (7)0.0378 (8)0.0048 (6)0.0005 (7)0.0047 (6)
N10.0234 (7)0.0231 (7)0.0352 (8)0.0012 (6)0.0018 (6)0.0035 (6)
N20.0218 (6)0.0251 (7)0.0246 (7)0.0002 (5)0.0002 (6)0.0006 (6)
N30.0220 (6)0.0243 (7)0.0248 (7)0.0003 (5)0.0002 (5)0.0003 (6)
C10.0222 (7)0.0227 (7)0.0264 (8)0.0017 (6)0.0009 (6)0.0028 (6)
C20.0223 (7)0.0222 (7)0.0232 (8)0.0019 (6)0.0003 (6)0.0003 (6)
C30.0188 (7)0.0219 (7)0.0237 (8)0.0000 (6)0.0000 (6)0.0010 (6)
C40.0212 (7)0.0215 (7)0.0237 (8)0.0007 (6)0.0006 (6)0.0006 (6)
C50.0185 (7)0.0214 (7)0.0274 (8)0.0001 (6)0.0003 (6)0.0016 (6)
C60.0177 (7)0.0290 (8)0.0242 (8)0.0007 (6)0.0004 (6)0.0036 (6)
C70.0210 (7)0.0307 (9)0.0232 (8)0.0013 (6)0.0006 (6)0.0031 (7)
C80.0200 (7)0.0223 (7)0.0262 (8)0.0001 (6)0.0013 (6)0.0026 (6)
C90.0235 (7)0.0235 (8)0.0230 (8)0.0007 (6)0.0002 (6)0.0008 (6)
C100.0245 (8)0.0241 (8)0.0275 (8)0.0015 (6)0.0015 (7)0.0032 (7)
C110.0274 (8)0.0252 (8)0.0275 (9)0.0002 (7)0.0035 (7)0.0030 (7)
C120.0225 (7)0.0263 (8)0.0227 (8)0.0011 (6)0.0006 (6)0.0012 (6)
C130.0281 (8)0.0232 (8)0.0259 (8)0.0024 (7)0.0004 (7)0.0004 (6)
C140.0266 (8)0.0235 (8)0.0244 (8)0.0014 (6)0.0004 (6)0.0028 (6)
Geometric parameters (Å, º) top
Br1—C11.8723 (18)C6—C71.381 (3)
Br2—C11.8796 (18)C6—H60.9500
Br3—C121.9016 (18)C7—C81.391 (3)
O1—N11.227 (2)C7—H70.9500
O2—N11.226 (2)C8—H80.9500
N1—C51.472 (2)C9—C141.389 (3)
N2—N31.264 (2)C9—C101.399 (3)
N2—C21.413 (2)C10—C111.382 (3)
N3—C91.422 (2)C10—H100.9500
C1—C21.349 (2)C11—C121.394 (3)
C2—C31.493 (2)C11—H110.9500
C3—C41.392 (2)C12—C131.380 (3)
C3—C81.395 (3)C13—C141.392 (3)
C4—C51.386 (2)C13—H130.9500
C4—H40.9500C14—H140.9500
C5—C61.385 (3)
O2—N1—O1123.67 (17)C6—C7—H7119.6
O2—N1—C5118.68 (16)C8—C7—H7119.6
O1—N1—C5117.64 (17)C7—C8—C3120.37 (17)
N3—N2—C2113.96 (15)C7—C8—H8119.8
N2—N3—C9113.53 (15)C3—C8—H8119.8
C2—C1—Br1123.43 (14)C14—C9—C10120.46 (17)
C2—C1—Br2122.92 (14)C14—C9—N3115.35 (16)
Br1—C1—Br2113.64 (9)C10—C9—N3124.18 (17)
C1—C2—N2115.18 (16)C11—C10—C9119.65 (17)
C1—C2—C3123.21 (16)C11—C10—H10120.2
N2—C2—C3121.60 (15)C9—C10—H10120.2
C4—C3—C8119.61 (16)C10—C11—C12118.98 (17)
C4—C3—C2120.02 (16)C10—C11—H11120.5
C8—C3—C2120.30 (16)C12—C11—H11120.5
C5—C4—C3118.36 (17)C13—C12—C11122.18 (17)
C5—C4—H4120.8C13—C12—Br3119.28 (14)
C3—C4—H4120.8C11—C12—Br3118.53 (14)
C6—C5—C4122.99 (17)C12—C13—C14118.48 (17)
C6—C5—N1118.92 (16)C12—C13—H13120.8
C4—C5—N1118.07 (16)C14—C13—H13120.8
C7—C6—C5117.88 (17)C9—C14—C13120.23 (17)
C7—C6—H6121.1C9—C14—H14119.9
C5—C6—H6121.1C13—C14—H14119.9
C6—C7—C8120.75 (17)
C2—N2—N3—C9179.14 (15)C4—C5—C6—C70.1 (3)
Br1—C1—C2—N2175.57 (13)N1—C5—C6—C7178.28 (16)
Br2—C1—C2—N23.5 (2)C5—C6—C7—C80.9 (3)
Br1—C1—C2—C35.5 (3)C6—C7—C8—C30.4 (3)
Br2—C1—C2—C3175.44 (13)C4—C3—C8—C71.0 (3)
N3—N2—C2—C1176.40 (16)C2—C3—C8—C7177.89 (16)
N3—N2—C2—C34.6 (2)N2—N3—C9—C14168.04 (16)
C1—C2—C3—C4121.4 (2)N2—N3—C9—C1013.1 (3)
N2—C2—C3—C459.7 (2)C14—C9—C10—C111.3 (3)
C1—C2—C3—C861.7 (2)N3—C9—C10—C11177.51 (18)
N2—C2—C3—C8117.13 (19)C9—C10—C11—C120.6 (3)
C8—C3—C4—C51.9 (2)C10—C11—C12—C130.8 (3)
C2—C3—C4—C5178.81 (16)C10—C11—C12—Br3178.42 (15)
C3—C4—C5—C61.5 (3)C11—C12—C13—C141.5 (3)
C3—C4—C5—N1176.87 (15)Br3—C12—C13—C14177.71 (14)
O2—N1—C5—C6167.63 (17)C10—C9—C14—C130.6 (3)
O1—N1—C5—C613.8 (2)N3—C9—C14—C13178.32 (17)
O2—N1—C5—C413.9 (2)C12—C13—C14—C90.8 (3)
O1—N1—C5—C4164.68 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.952.563.394 (2)146
Symmetry code: (i) x, y1/2, z+1/2.
Summary of short interatomic contacts (Å) in the title compound top
H4···C132.67-1 + x, y, z
H8···O12.56-x, -1/2 + y, 1/2 - z
H7···N32.78-1/2 + x, y, 1/2 - z
Br1···O23.137 (2)-1/2 - x, -1/2 + y, z
Br1···H142.981/2 - x, -1/2 + y, z
Br2···H133.153/2 - x, -1/2 + y, z
Br3···H103.021/2 + x, 1/2 - y, 1 - z
C13···Br33.569 (2)2 - x, 1 - y, 1 - z
 

Acknowledgements

The author's contributions are as follows. Conceptualization, NQS, MA and AB; synthesis, NAM and GVB; X-ray analysis, ZA, VNK and MA; writing (review and editing of the manuscript) ZA, MA and AB; funding acquisition, NQS, NAM and GVB; supervision, NQS, MA and AB.

Funding information

This work was performed under the support of the Science Development Foundation under the President of the Republic of Azerbaijan (grant No. EIF-BGM-4- RFTF-1/2017–21/13/4).

References

First citationAkkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Yıldırım, S. Ö., Shikhaliyev, N. Q., Mammadova, N. A., Niyazova, A. A., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 732–736.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAtioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Babayeva, G. V., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 530–535.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAtioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇelikesir, S. T., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Suleymanova, G. T., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 404–408.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.  Web of Science CrossRef Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.  Web of Science CrossRef Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Huseynov, F. E., Aliyeva, V. A., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Chem. Eur. J. 27, 14370–14389.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord. Chem. Rev. 257, 1244–1281.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938.  Web of Science CrossRef CAS Google Scholar
First citationÖzkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Mammadova, G. Z. & Shadrack, D. M. (2020a). Acta Cryst. E76, 1251–1254.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020b). Acta Cryst. E76, 811–815.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.  Web of Science CSD CrossRef CAS Google Scholar
First citationShikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.  Web of Science CSD CrossRef CAS Google Scholar
First citationShixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.  Web of Science CSD CrossRef CAS Google Scholar
First citationShixaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Nenajdenko, V. G., Muzalevskiy, V. M., Mahmudov, K. T. & Kopylovich, M. N. (2013). Catal. Today, 217, 76–79.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia.https://hirshfeldsuface.net  Google Scholar
First citationZollinger, H. (1994). Diazo Chemistry I: Aromatic and Heteroaromatic Compounds. New York: Wiley.  Google Scholar
First citationZollinger, H. (1995). Diazo Chemistry II: Aliphatic, Inorganic and Organometallic Compounds. Weinheim: VCH.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds