research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2-(4-amino-6-phenyl-1,2,5,6-tetra­hydro-1,3,5-triazin-2-yl­­idene)malono­nitrile di­methyl­formamide hemisolvate

crossmark logo

aInstitute of Chemistry of Additives, Azerbaijan National Academy of Sciences, 1029 Baku, Azerbaijan, bDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Turkey, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dInstitute of Petrochemical Processes, Azerbaijan National Academy of Sciences, 1025 Baku, Azerbaijan, eBaku Engineering University, 0101 Baku, Azerbaijan, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by M. Zeller, Purdue University, USA (Received 30 June 2022; accepted 6 July 2022; online 12 July 2022)

The title compound, 2C12H10N6·C3H7NO, crystallizes as a racemate in the monoclinic P21/c space group with two independent mol­ecules (I and II) and one di­methyl­formamide solvent mol­ecule in the asymmetric unit. Both mol­ecules (I and II) have chiral centers at the carbon atoms where the triazine rings of mol­ecules I and II are attached to the phenyl ring. In the crystal, mol­ecules I and II are linked by inter­molecular N—H⋯N, N—H⋯O and C—H⋯N hydrogen bonds through the solvent di­methyl­formamide mol­ecule into layers parallel to (001). In addition, C—H⋯π inter­actions also connect adjacent mol­ecules into layers parallel to (001). The stability of the mol­ecular packing is ensured by van der Waals inter­actions between the layers. The Hirshfeld surface analysis indicates that N⋯H/H⋯N (38.3% for I; 35.0% for II), H⋯H (28.2% for I; 27.0% for II) and C⋯H/H⋯C (23.4% for I; 26.3% for II) inter­actions are the most significant contributors to the crystal packing.

1. Chemical context

The synthesis, design, and fabrication of novel biological and therapeutic agents remain some of the main objectives of medicinal and organic chemistry (Khalilov et al., 2021[Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.]; Naghiyev et al., 2020[Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235-2248.]; Safavora et al., 2019[Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183-1185.]; Yadigarov et al., 2009[Yadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856-1858.]). The crucial role of triazines is well recognized in the field of synthetic organic chemistry as well as in medicinal chemistry because these N-heterocyclic compounds are structurally similar to adenine and purine (Ganai et al., 2021[Ganai, A. M., Pathan, T. K., Hampannavar, G. A., Pawar, C., Obakachi, V. A., Kushwaha, B., Kushwaha, N. D. & Karpoormath, R. (2021). ChemistrySelect, 6, 1616-1660.]; Kopylovich et al., 2014[Kopylovich, M. N., Mahmudov, K. T., Haukka, M. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 495-498.]; Gurbanov et al., 2020a[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628-633.],b[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833-14837.]). Moreover, triazines play an important role in photo-triggered structural switching, in the printing market, as ionophores, in the design of functional materials attributed to smart hydrogen bonding, in liquid crystals, self-assembled layers, semiconductors, as analytical reagents for the detection of metal ions, indicators, photoluminescent materials, catalysts, spin-coating films, and optical recording media (Blotny, 2006[Blotny, G. (2006). Tetrahedron, 62, 9507-9522.]; Liu et al., 2019[Liu, M., Guo, L., Jin, S. & Tan, B. (2019). J. Mater. Chem. A, 7, 5153-5172.]). Depending on the attached non-covalent bond donor or acceptor substituents, the functional properties of N-heterocyclic compounds and their metal complexes can be improved (Ma et al., 2020[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.], 2021[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.]; Mahmudov et al., 2020[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.], 2021[Mahmudov, K. T., Huseynov, F. E., Aliyeva, V. A., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Chem. Eur. J. 27, 14370-14389.], 2022[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.]). Substituted triazine derivatives can be synthesized by several different routes. The most common protocols are nucleophilic aromatic substitution of cyanuric chloride, cyclo­addition reactions to form the triazine ring, and cyclo­trimerization of organic cyanamides and nitriles. Notably, the direct multicomponent reaction is both effective and easy, and can yield the desired compounds in a single-step reaction. Herein, we have synthesized 2-(4-amino-6-phenyl-5,6-di­hydro-1,3,5-triazin-2(1H)-yl­idene)malono­nitrile by a one-pot multicomponent reaction of (E)-1-[amino­(1H-pyrazol-1-yl)meth­yl­ene]guanidinium chloride with benzaldehyde in the presence of malono­nitrile in methanol.

[Scheme 1]

2. Structural commentary

The title compound (Fig. 1[link]) contains the two independent mol­ecules (mol­ecule I with N1 and mol­ecule II with N7) and one di­methyl­formamide solvent mol­ecule in the asymmetric unit. The triazine ring (N1–N3/C1–C3) in I adopts a distorted envelope conformation with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) Q(2) = 0.2149 (17) Å and φ(2) = 246.1 (4)°, while the triazine ring (N7–N9/C13–C15) in II has an envelope conformation [Q(2) = 0.2242 (17) Å, φ(2) = 238.4 (4)°]. Fig. 2[link] shows the overlay of mol­ecules I and II in the asymmetric unit, with an r.m.s. deviation of 0.170 Å. The phenyl ring of mol­ecule I is disordered over two sets of sites with an occupancy ratio of 0.67 (3):0.33 (3) (major component C4–C9 and minor component C4A–C9A). These disordered phenyl rings are at a dihedral angle of 6.0 (13)° to each other and the major and minor disorder components make dihedral angles of 86.9 (5) and 87.5 (12)°, respectively, with the mean plane of the triazine ring of mol­ecule I. The phenyl ring (C16–C21) in II makes a dihedral angle of 86.65 (9)° with the mean plane of the triazine ring. There is one stereogenic center in both racemic mol­ecules and the chirality about atoms C1 in I and C13 in II is S in the chosen asymmetric unit. Mol­ecules I and II have normal geometric parameters.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Only the major disordered fragments are shown for clarity.
[Figure 2]
Figure 2
Least-squares overlay image (OLEX2; Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) of the two independent mol­ecules (I and II) in the asymmetric unit of the title compound. Only the major component of disorder for mol­ecule I is shown. Color code: carbon (gray), hydrogen (white) and nitro­gen (blue).

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecules I and II are linked by inter­molecular N—H⋯N, N—H⋯O and C—H⋯N hydrogen bonds (Table 1[link]) through the solvent di­methyl­formamide mol­ecule into layers parallel to (001) (Figs. 3[link] and 4[link]). Furthermore, C—H⋯π inter­actions (Table 1[link]) connect the mol­ecules into layers parallel to (001) (Figs. 5[link] and 6[link]). van der Waals inter­actions between the layers ensure the stability of the mol­ecular packing.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg5 are the centroids of the major component of the C4–C9 phenyl ring of mol­ecule I and the C16–C21 phenyl ring of mol­ecule II, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N5i 0.91 2.20 2.989 (2) 145
N3—H3N⋯N12ii 0.90 2.15 3.029 (2) 164
N4—H4A⋯O1 0.90 2.16 2.9493 (19) 147
N4—H4A⋯N11iii 0.90 2.45 3.044 (2) 124
N4—H4B⋯N8iii 0.90 2.21 3.096 (2) 169
N7—H7N⋯O1 0.90 2.53 3.240 (2) 136
N7—H7N⋯N11iii 0.90 2.26 3.018 (2) 141
N9—H9N⋯N6iv 0.92 2.12 2.997 (2) 158
N10—H10A⋯O1 0.90 2.13 2.9566 (19) 152
N10—H10A⋯N5i 0.90 2.52 3.079 (2) 121
N10—H10B⋯N2i 0.90 2.21 3.094 (2) 166
C1—H1A⋯N11v 1.00 2.71 3.457 (3) 132
C13—H13A⋯N12vi 1.00 2.64 3.484 (2) 143
C27—H27BCg2vii 0.98 2.85 3.664 (7) 141
C26—H26ECg5 0.98 2.92 3.714 (3) 139
Symmetry codes: (i) [x-1, y, z]; (ii) [x+1, y-1, z]; (iii) x+1, y, z; (iv) [x-1, y+1, z]; (v) [-x, -y+1, -z+1]; (vi) [-x, -y+2, -z+1]; (vii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
A partial view down the a axis of the N—H⋯N, N—H⋯O and C—H⋯N hydrogen bonds (dashed lines) in the title compound. The minor disordered components have been omitted for clarity.
[Figure 4]
Figure 4
View down the c axis of the N—H⋯N, N—H⋯O and C—H⋯N hydrogen bonds (dashed lines) in the title compound. The minor disordered components have been omitted for clarity.
[Figure 5]
Figure 5
A partial view down the a axis of the C—H⋯π inter­actions (dashed lines) in the title compound. The minor disordered components and hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 6]
Figure 6
A partial view down the c axis of the C—H⋯π inter­actions (dashed lines) in the title compound. The minor disordered components and hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.

Hirshfeld surfaces for both mol­ecules were calculated using Crystal Explorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net]). The dnorm mappings for mol­ecules I and II were performed in the ranges −0.4528 to +1.2207 a.u. and −0.4546 to +1.3342 a.u., respectively. The locations of the N—H⋯N, N—H⋯O and C—H⋯N inter­actions are shown by intense red circles on the dnorm surfaces (Fig. 7[link]a,b for I and Fig. 7[link]c,d for II).

[Figure 7]
Figure 7
Front and back views of the three-dimensional Hirshfeld surfaces of mol­ecules I (a,b) and II (c,d) of the title compound.

Fig. 8[link] shows the full two-dimensional fingerprint plots for each mol­ecule and those delineated into the major contacts. N⋯H/H⋯N inter­actions (Fig. 8[link]b; 38.3% contribution for I; 35.0% for II) are the major factor in the crystal packing with H⋯H (Fig. 8[link]c; 28.2% for I; 27.0% for II) and C⋯H/H⋯C (Fig. 8[link]d; 23.4% for I; 26.3% for II) inter­actions representing the next highest contributions. The percentage contributions of comparatively weaker inter­actions are N⋯C/C⋯N (3.7% for I; 5.5% for II), N⋯N (2.6% for I; 1.9% for II), O⋯H/H⋯O (2.3% for I; 2.7% for II), C⋯C (1.3% for I; 1.3% for II) and O⋯N/N⋯O (0.2% for I; 0.2% for II). The data comparison shows that the surroundings of mol­ecules I and II are quite similar. Short contacts are summarized in Table 2[link].

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

H1N⋯N5 2.20 −1 + x, y, z
H4B⋯N8 2.21 1 + x, y, z
N2⋯H19A 2.59 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z
N6⋯H9N 2.12 1 + x, −1 + y, z
H4A⋯O1 2.16 x, y, z
N5⋯N4 3.289 2 − x, 1 − y, 1 − z
N5⋯O1 3.171 1 + x, y, z
N6⋯N9 3.294 1 − x, 1 − y, 1 − z
C5⋯H27B 2.88 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z
H7A⋯H17A 2.60 -x, −[{1\over 2}] + y, [{1\over 2}] − z
H8A⋯C20 2.67 x, −1 + y, z
H8A⋯H26B 2.18 -x, −[{1\over 2}] + y, [{1\over 2}] − z
H1A⋯N11 2.71 -x, 1 − y, 1 − z
H10A⋯O1 2.13 x, y, z
H7N⋯N11 2.26 1 + x, y, z
H10B⋯N2 2.21 −1 + x, y, z
N11⋯O1 3.134 −1 + x, y, z
H13A⋯N12 2.64 -x, 2 − y, 1 − z
C19⋯H26F 2.87 -x, [{1\over 2}] + y, [{1\over 2}] − z
H20A⋯H27A 2.56 1 − x, [{1\over 2}] + y, [{1\over 2}] − z
H26B⋯H8A 2.18 x, [{1\over 2}] + y, [{1\over 2}] − z
[Figure 8]
Figure 8
Two-dimensional fingerprint plots for mol­ecules I and II of the title compound, showing (a) all inter­actions, and delineated into (b) N⋯H/H⋯N, (c) H⋯H and (d) C⋯H/H⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

Two related compounds with the 1,2,3,4-tetra­hydro-1,3,5-triazine unit have been reported, viz. 3-(p-chloro­phen­yl)-4-[(dimethyl-4,6 pyridyl-2) meth­yl]-4,6-diphenyl-2-oxo-1,2,3,4-tetra­hydro-13,5-triazine [(A); Viossat et al., 1989[Viossat, B., Dung, N.-Huy., Compagnon, P.-L. & Kimny, T. (1989). Acta Cryst. C45, 1948-1951.]] and 1-[(3,4-di­chloro­phen­yl)meth­oxy]-1,6-di­hydro-6,6-dimethyl-1,3,5-triazine-2,4-di­amine hydro­chloride 0.29-hydrate [(B); Ammon & Plastas, 1979[Ammon, H. L. & Plastas, L. A. (1979). Acta Cryst. B35, 3106-3109.]].

In the crystal of (A), the 1,2,3,4-tetra­hydro-1,3,5-triazine ring exhibits a sofa conformation. Inter­molecular N—H⋯O hydrogen bonding links pairs of mol­ecules connected by a symmetry center, forming an octa­gonal unit.

In the crystal of (B), the di­hydro­triazine nucleus is protonated at N5, where positive-charge delocalization is maximized. Except for one H atom on N4, all of the N-bound H atoms are involved in either H⋯N or H⋯CI inter­actions.

5. Synthesis and crystallization

A mixture of (E)-1-[amino­(1H-pyrazol-1-yl)methyl­ene]guanidinium chloride (188 mg, 1 mmol), benzaldehyde (106 mg, 1 mmol) and malono­nitrile (66 mg, 1 mmol) was refluxed in methanol for 5 h. The solvent was subsequently removed in vacuo, and the residue was recrystallized from methanol using charcoal. Crystals suitable for X-ray analysis were obtained by slow evaporation of a DMF solution. Colorless solid (47%); Analysis calculated for C27H27N13O (M = 549.6): C 59.01, H 4.95, N 33.13; found: C 58.98, H 4.89, N 33.07%. 1H NMR (DMSO-d6) δ 8.58 (NH), 8.30 (NH), 7.95 (CH), 7.31–7.45 (5H, Ar–H), 5.62 (CH), 2.72 and 2.88 (2CH3). 13C NMR (DMSO-d6) δ 165.17, 162.44, 155.68, 141.91, 128.78, 128.72, 125.73, 119.45, 119.19, 61.80, 37.67, 35.87. ESI–MS: m/z: 550.5 [M + H]+.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Carbon-bound H atoms were placed in calculated positions [C—H = 0.95–1.00 Å; Uiso(H) = 1.2 or 1.5Ueq(C)] and were included in the refinement in the riding-model approximation. The N-bound H atoms were located in a difference-Fourier map and were fixed at their found positions and refined with a riding model with Uiso(H) set to 1.2Ueq(N). In mol­ecule I, the C6(C6A)–C9(C9A) atoms in the C4–C9 phenyl ring are disordered over two sets of sites with an occupancy ratio of 0.67 (3):0.33 (3). The H atoms of a methyl group (C26) of the di­methyl­formamide solvent were refined as disordered [C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C)], using AFIX 127 (rotating disordered methyl group) and a free variable for the two groups of H atoms with an occupancy ratio of 0.66 (3):0.34 (3). For the two disordered parts of the phenyl ring of mol­ecule I, the corresponding ring of mol­ecule II, which is not disordered, was used as a template using a SAME command. Furthermore, the displacement parameters of the C atoms of the major and minor components of the disordered phenyl ring were restrained with a SIMU 0.02 command, while the displacement parameters of the C atoms of the major and minor components of the disordered phenyl ring attached to the triazine ring of mol­ecule I (C4 and C4A) were constrained to have identical ADPs using an EADP instruction. All the C—C bonds between the phenyl and triazine rings were restrained to be similar to each other using a SADI instruction.

Table 3
Experimental details

Crystal data
Chemical formula 2C12H10N6·C3H7NO
Mr 549.61
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 8.9102 (4), 13.5595 (7), 22.0520 (12)
β (°) 98.024 (2)
V3) 2638.2 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.30 × 0.26 × 0.26
 
Data collection
Diffractometer Bruker D8 Quest PHOTON 100 detector
Absorption correction Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.960, 0.965
No. of measured, independent and observed [I > 2σ(I)] reflections 19167, 5368, 4215
Rint 0.045
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.111, 1.02
No. of reflections 5368
No. of parameters 422
No. of restraints 219
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.23
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2018[Bruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

2-(4-Amino-6-phenyl-1,2,5,6-tetrahydro-1,3,5-triazin-2-ylidene)propanedinitrile dimethylformamide hemisolvate top
Crystal data top
2C12H10N6·C3H7NOF(000) = 1152
Mr = 549.61Dx = 1.384 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.9102 (4) ÅCell parameters from 7300 reflections
b = 13.5595 (7) Åθ = 2.4–26.4°
c = 22.0520 (12) ŵ = 0.09 mm1
β = 98.024 (2)°T = 150 K
V = 2638.2 (2) Å3Block, colourless
Z = 40.30 × 0.26 × 0.26 mm
Data collection top
Bruker D8 Quest PHOTON 100 detector
diffractometer
4215 reflections with I > 2σ(I)
φ and ω scansRint = 0.045
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
θmax = 26.4°, θmin = 2.4°
Tmin = 0.960, Tmax = 0.965h = 1111
19167 measured reflectionsk = 1615
5368 independent reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0406P)2 + 1.738P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5368 reflectionsΔρmax = 0.24 e Å3
422 parametersΔρmin = 0.23 e Å3
219 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.30549 (14)0.59988 (10)0.36140 (6)0.0299 (3)
N10.52574 (16)0.42828 (11)0.43293 (7)0.0221 (3)
H1N0.4316020.4549840.4325990.027*
N20.78571 (15)0.45380 (10)0.42654 (6)0.0171 (3)
N30.69117 (16)0.29369 (11)0.44016 (7)0.0215 (3)
H3N0.7037540.2279920.4438120.026*
N40.61899 (16)0.58380 (11)0.42444 (7)0.0227 (3)
H4A0.5244260.6084450.4169450.027*
H4B0.6968500.6254640.4225750.027*
N51.19175 (17)0.42192 (12)0.43645 (8)0.0280 (4)
N60.99550 (18)0.12911 (12)0.42191 (8)0.0302 (4)
N70.11862 (16)0.77458 (11)0.41760 (7)0.0206 (3)
H7N0.2100640.7471670.4149220.025*
N80.14262 (15)0.74913 (10)0.42123 (6)0.0176 (3)
N90.03848 (16)0.90970 (10)0.42920 (7)0.0197 (3)
H9N0.0525830.9767970.4308020.024*
N100.01996 (17)0.61859 (11)0.41453 (7)0.0228 (3)
H10A0.1108230.5958690.4074320.027*
H10B0.0550880.5779080.4220650.027*
N110.53959 (18)0.78121 (12)0.43275 (8)0.0307 (4)
N120.33307 (19)1.07238 (11)0.45473 (8)0.0298 (4)
N130.27178 (17)0.59511 (12)0.25719 (7)0.0265 (3)
C10.53378 (19)0.32208 (13)0.42361 (8)0.0224 (4)
H1A0.4712240.2881290.4516120.027*
C20.64407 (18)0.48767 (12)0.42791 (7)0.0177 (3)
C30.80600 (18)0.35521 (12)0.43296 (7)0.0168 (3)
C40.475 (3)0.293 (2)0.3576 (4)0.0241 (10)0.67 (3)
C50.5563 (13)0.3177 (10)0.3101 (4)0.0246 (14)0.67 (3)
H50.6502820.3514180.3189580.030*0.67 (3)
C60.5012 (13)0.2932 (9)0.2499 (4)0.0305 (15)0.67 (3)
H60.5573680.3107790.2179270.037*0.67 (3)
C70.3649 (13)0.2433 (8)0.2360 (5)0.0336 (18)0.67 (3)
H70.3278830.2264160.1948270.040*0.67 (3)
C80.2835 (11)0.2183 (9)0.2827 (6)0.0387 (19)0.67 (3)
H80.1899130.1842800.2735670.046*0.67 (3)
C90.3386 (15)0.2431 (11)0.3432 (5)0.0328 (18)0.67 (3)
H90.2819540.2254720.3750380.039*0.67 (3)
C4A0.463 (6)0.290 (5)0.3608 (8)0.0241 (10)0.33 (3)
C5A0.525 (3)0.317 (2)0.3093 (10)0.034 (4)0.33 (3)
H5A0.6113480.3580190.3131070.041*0.33 (3)
C6A0.461 (3)0.2832 (19)0.2514 (9)0.037 (3)0.33 (3)
H6A0.5045160.2995880.2158230.045*0.33 (3)
C7A0.333 (3)0.2263 (16)0.2477 (10)0.037 (3)0.33 (3)
H7A0.2869870.2035830.2087480.044*0.33 (3)
C8A0.269 (2)0.2011 (17)0.2988 (11)0.039 (3)0.33 (3)
H8A0.1792050.1626760.2944870.047*0.33 (3)
C9A0.335 (3)0.231 (2)0.3568 (10)0.031 (3)0.33 (3)
H9A0.2934730.2121080.3924130.037*0.33 (3)
C100.95264 (19)0.31541 (12)0.43229 (8)0.0183 (3)
C111.08173 (19)0.37632 (12)0.43463 (8)0.0190 (4)
C120.97619 (19)0.21242 (13)0.42722 (8)0.0201 (4)
C130.10164 (19)0.88025 (13)0.40755 (8)0.0196 (4)
H13A0.1879000.9145010.4329450.023*
C140.00174 (18)0.71515 (12)0.41738 (7)0.0178 (3)
C150.15596 (18)0.84747 (12)0.42933 (7)0.0168 (3)
C160.1034 (2)0.90787 (13)0.34077 (8)0.0219 (4)
C170.0200 (2)0.88610 (15)0.29677 (8)0.0292 (4)
H17A0.1065440.8544860.3085680.035*
C180.0172 (3)0.91034 (16)0.23572 (9)0.0357 (5)
H18A0.1018890.8957310.2059200.043*
C190.1086 (3)0.95557 (16)0.21852 (10)0.0398 (5)
H19A0.1109390.9718490.1767600.048*
C200.2309 (3)0.97723 (17)0.26174 (11)0.0424 (6)
H20A0.3173721.0084720.2496080.051*
C210.2291 (2)0.95370 (15)0.32333 (10)0.0337 (5)
H21A0.3137110.9691130.3529970.040*
C220.29893 (19)0.88657 (12)0.43818 (8)0.0193 (3)
C230.42860 (19)0.82637 (13)0.43560 (8)0.0203 (4)
C240.31897 (19)0.98876 (13)0.44757 (8)0.0208 (4)
C250.3387 (2)0.56969 (14)0.31214 (9)0.0270 (4)
H25A0.4199690.5239330.3139820.032*
C260.1468 (3)0.66418 (18)0.24990 (11)0.0448 (6)
H26A0.1094910.6731800.2892820.067*0.66 (3)
H26B0.0649730.6384620.2197370.067*0.66 (3)
H26C0.1813350.7276860.2357400.067*0.66 (3)
H26D0.1277080.6863720.2072240.067*0.34 (3)
H26E0.1722260.7210900.2767690.067*0.34 (3)
H26F0.0558640.6318660.2607650.067*0.34 (3)
C270.3222 (3)0.55731 (17)0.20144 (9)0.0368 (5)
H27A0.3979000.5054410.2120580.055*
H27B0.3672250.6110490.1803430.055*
H27C0.2353330.5300700.1744880.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0223 (7)0.0420 (8)0.0255 (7)0.0013 (6)0.0040 (5)0.0020 (6)
N10.0142 (7)0.0216 (8)0.0311 (8)0.0016 (6)0.0051 (6)0.0015 (6)
N20.0144 (7)0.0186 (7)0.0183 (7)0.0008 (5)0.0026 (5)0.0012 (6)
N30.0167 (7)0.0166 (7)0.0310 (8)0.0005 (6)0.0027 (6)0.0037 (6)
N40.0155 (7)0.0195 (7)0.0326 (8)0.0013 (6)0.0015 (6)0.0006 (6)
N50.0183 (8)0.0261 (8)0.0397 (9)0.0009 (7)0.0046 (7)0.0008 (7)
N60.0291 (9)0.0205 (9)0.0409 (10)0.0016 (7)0.0050 (7)0.0011 (7)
N70.0137 (7)0.0211 (7)0.0272 (8)0.0027 (6)0.0040 (6)0.0033 (6)
N80.0161 (7)0.0178 (7)0.0191 (7)0.0008 (6)0.0032 (5)0.0003 (6)
N90.0195 (7)0.0162 (7)0.0243 (7)0.0003 (6)0.0059 (6)0.0001 (6)
N100.0190 (7)0.0184 (7)0.0324 (8)0.0025 (6)0.0092 (6)0.0001 (6)
N110.0206 (8)0.0250 (8)0.0471 (10)0.0012 (7)0.0075 (7)0.0042 (7)
N120.0307 (9)0.0217 (9)0.0385 (10)0.0011 (7)0.0105 (7)0.0035 (7)
N130.0242 (8)0.0297 (9)0.0254 (8)0.0020 (7)0.0027 (6)0.0001 (7)
C10.0166 (8)0.0200 (9)0.0311 (10)0.0011 (7)0.0052 (7)0.0029 (7)
C20.0170 (8)0.0205 (9)0.0154 (8)0.0008 (7)0.0014 (6)0.0014 (6)
C30.0167 (8)0.0201 (8)0.0133 (8)0.0017 (6)0.0010 (6)0.0000 (6)
C40.018 (4)0.019 (2)0.0351 (13)0.003 (2)0.0004 (14)0.0016 (19)
C50.019 (3)0.029 (2)0.024 (2)0.001 (3)0.0033 (18)0.0002 (17)
C60.026 (4)0.029 (3)0.034 (2)0.001 (2)0.004 (2)0.0017 (17)
C70.026 (4)0.035 (3)0.036 (3)0.001 (3)0.008 (3)0.010 (2)
C80.021 (3)0.043 (4)0.051 (5)0.006 (2)0.000 (3)0.011 (3)
C90.023 (2)0.033 (4)0.043 (3)0.002 (2)0.007 (3)0.005 (3)
C4A0.018 (4)0.019 (2)0.0351 (13)0.003 (2)0.0004 (14)0.0016 (19)
C5A0.020 (7)0.030 (5)0.049 (6)0.006 (5)0.009 (4)0.004 (4)
C6A0.036 (8)0.038 (6)0.035 (5)0.001 (6)0.008 (5)0.003 (4)
C7A0.024 (7)0.036 (6)0.048 (7)0.005 (5)0.006 (5)0.009 (5)
C8A0.026 (5)0.040 (7)0.049 (7)0.000 (4)0.003 (5)0.012 (5)
C9A0.018 (4)0.027 (6)0.047 (6)0.003 (4)0.004 (5)0.009 (6)
C100.0177 (8)0.0184 (8)0.0187 (8)0.0006 (7)0.0027 (6)0.0004 (6)
C110.0181 (8)0.0194 (8)0.0195 (8)0.0054 (7)0.0033 (6)0.0011 (7)
C120.0165 (8)0.0234 (10)0.0202 (9)0.0009 (7)0.0023 (7)0.0013 (7)
C130.0156 (8)0.0214 (9)0.0217 (9)0.0006 (7)0.0027 (6)0.0014 (7)
C140.0173 (8)0.0207 (8)0.0152 (8)0.0002 (7)0.0021 (6)0.0012 (6)
C150.0178 (8)0.0195 (8)0.0129 (8)0.0003 (7)0.0013 (6)0.0009 (6)
C160.0244 (9)0.0184 (9)0.0239 (9)0.0042 (7)0.0074 (7)0.0014 (7)
C170.0332 (10)0.0291 (10)0.0250 (9)0.0021 (8)0.0030 (8)0.0006 (8)
C180.0478 (13)0.0362 (11)0.0226 (10)0.0112 (10)0.0028 (9)0.0014 (8)
C190.0616 (15)0.0346 (12)0.0266 (11)0.0144 (11)0.0181 (10)0.0070 (9)
C200.0482 (14)0.0404 (13)0.0447 (13)0.0000 (11)0.0280 (11)0.0081 (10)
C210.0309 (11)0.0362 (11)0.0365 (11)0.0016 (9)0.0129 (9)0.0037 (9)
C220.0190 (8)0.0176 (8)0.0216 (8)0.0007 (7)0.0040 (7)0.0006 (7)
C230.0191 (9)0.0189 (9)0.0234 (9)0.0046 (7)0.0043 (7)0.0006 (7)
C240.0175 (8)0.0252 (10)0.0202 (9)0.0003 (7)0.0048 (7)0.0013 (7)
C250.0223 (9)0.0297 (10)0.0285 (10)0.0023 (8)0.0024 (8)0.0002 (8)
C260.0381 (12)0.0516 (14)0.0442 (13)0.0162 (11)0.0035 (10)0.0100 (11)
C270.0419 (12)0.0415 (12)0.0273 (10)0.0010 (10)0.0062 (9)0.0051 (9)
Geometric parameters (Å, º) top
O1—C251.235 (2)C8—C91.398 (7)
N1—C21.343 (2)C8—H80.9500
N1—C11.458 (2)C9—H90.9500
N1—H1N0.9127C4A—C5A1.379 (13)
N2—C21.347 (2)C4A—C9A1.381 (13)
N2—C31.354 (2)C5A—C6A1.397 (13)
N3—C31.347 (2)C5A—H5A0.9500
N3—C11.451 (2)C6A—C7A1.369 (12)
N3—H3N0.9001C6A—H6A0.9500
N4—C21.323 (2)C7A—C8A1.373 (12)
N4—H4A0.9000C7A—H7A0.9500
N4—H4B0.9000C8A—C9A1.392 (13)
N5—C111.155 (2)C8A—H8A0.9500
N6—C121.151 (2)C9A—H9A0.9500
N7—C141.341 (2)C10—C111.411 (2)
N7—C131.454 (2)C10—C121.419 (2)
N7—H7N0.9050C13—C161.522 (2)
N8—C141.351 (2)C13—H13A1.0000
N8—C151.353 (2)C15—C221.418 (2)
N9—C151.345 (2)C16—C211.381 (3)
N9—C131.454 (2)C16—C171.393 (3)
N9—H9N0.9198C17—C181.389 (3)
N10—C141.326 (2)C17—H17A0.9500
N10—H10A0.9001C18—C191.376 (3)
N10—H10B0.9000C18—H18A0.9500
N11—C231.157 (2)C19—C201.376 (3)
N12—C241.154 (2)C19—H19A0.9500
N13—C251.320 (2)C20—C211.397 (3)
N13—C261.447 (3)C20—H20A0.9500
N13—C271.459 (2)C21—H21A0.9500
C1—C4A1.506 (12)C22—C231.409 (2)
C1—C41.527 (6)C22—C241.416 (2)
C1—H1A1.0000C25—H25A0.9500
C3—C101.416 (2)C26—H26A0.9800
C4—C91.392 (7)C26—H26B0.9800
C4—C51.393 (7)C26—H26C0.9800
C5—C61.391 (7)C26—H26D0.9800
C5—H50.9500C26—H26E0.9800
C6—C71.386 (7)C26—H26F0.9800
C6—H60.9500C27—H27A0.9800
C7—C81.381 (7)C27—H27B0.9800
C7—H70.9500C27—H27C0.9800
C2—N1—C1121.73 (14)C8A—C9A—H9A121.1
C2—N1—H1N119.5C11—C10—C3121.69 (15)
C1—N1—H1N117.0C11—C10—C12116.75 (15)
C2—N2—C3116.49 (14)C3—C10—C12121.53 (15)
C3—N3—C1121.98 (14)N5—C11—C10176.54 (18)
C3—N3—H3N122.4N6—C12—C10178.65 (19)
C1—N3—H3N112.9N9—C13—N7107.24 (13)
C2—N4—H4A121.5N9—C13—C16112.08 (14)
C2—N4—H4B119.7N7—C13—C16112.03 (14)
H4A—N4—H4B117.8N9—C13—H13A108.5
C14—N7—C13121.69 (14)N7—C13—H13A108.5
C14—N7—H7N118.7C16—C13—H13A108.5
C13—N7—H7N118.0N10—C14—N7118.14 (15)
C14—N8—C15116.36 (14)N10—C14—N8118.86 (15)
C15—N9—C13122.20 (14)N7—C14—N8122.99 (15)
C15—N9—H9N120.7N9—C15—N8122.37 (15)
C13—N9—H9N114.4N9—C15—C22118.69 (15)
C14—N10—H10A119.1N8—C15—C22118.93 (15)
C14—N10—H10B118.6C21—C16—C17119.55 (17)
H10A—N10—H10B122.1C21—C16—C13119.91 (17)
C25—N13—C26120.88 (17)C17—C16—C13120.54 (16)
C25—N13—C27121.94 (17)C18—C17—C16120.38 (19)
C26—N13—C27117.16 (17)C18—C17—H17A119.8
N3—C1—N1106.94 (14)C16—C17—H17A119.8
N3—C1—C4A115 (3)C19—C18—C17119.9 (2)
N1—C1—C4A113 (3)C19—C18—H18A120.1
N3—C1—C4111.2 (12)C17—C18—H18A120.1
N1—C1—C4111.7 (14)C20—C19—C18120.05 (19)
N3—C1—H1A109.0C20—C19—H19A120.0
N1—C1—H1A109.0C18—C19—H19A120.0
C4—C1—H1A109.0C19—C20—C21120.6 (2)
N4—C2—N1117.85 (15)C19—C20—H20A119.7
N4—C2—N2119.06 (15)C21—C20—H20A119.7
N1—C2—N2123.09 (15)C16—C21—C20119.5 (2)
N3—C3—N2122.10 (15)C16—C21—H21A120.2
N3—C3—C10118.86 (15)C20—C21—H21A120.2
N2—C3—C10119.04 (15)C23—C22—C24116.95 (15)
C9—C4—C5118.3 (6)C23—C22—C15121.67 (15)
C9—C4—C1120.9 (8)C24—C22—C15121.33 (15)
C5—C4—C1120.8 (7)N11—C23—C22176.48 (19)
C6—C5—C4120.7 (6)N12—C24—C22178.8 (2)
C6—C5—H5119.7O1—C25—N13126.02 (18)
C4—C5—H5119.7O1—C25—H25A117.0
C7—C6—C5120.6 (7)N13—C25—H25A117.0
C7—C6—H6119.7N13—C26—H26A109.5
C5—C6—H6119.7N13—C26—H26B109.5
C8—C7—C6119.4 (6)H26A—C26—H26B109.5
C8—C7—H7120.3N13—C26—H26C109.5
C6—C7—H7120.3H26A—C26—H26C109.5
C7—C8—C9120.1 (6)H26B—C26—H26C109.5
C7—C8—H8119.9N13—C26—H26D109.5
C9—C8—H8119.9H26A—C26—H26D141.1
C4—C9—C8120.9 (7)H26B—C26—H26D56.3
C4—C9—H9119.5H26C—C26—H26D56.3
C8—C9—H9119.5N13—C26—H26E109.5
C5A—C4A—C9A121.3 (12)H26A—C26—H26E56.3
C5A—C4A—C1121.1 (17)H26B—C26—H26E141.1
C9A—C4A—C1117.6 (16)H26C—C26—H26E56.3
C4A—C5A—C6A120.6 (14)H26D—C26—H26E109.5
C4A—C5A—H5A119.7N13—C26—H26F109.5
C6A—C5A—H5A119.7H26A—C26—H26F56.3
C7A—C6A—C5A117.8 (13)H26B—C26—H26F56.3
C7A—C6A—H6A121.1H26C—C26—H26F141.1
C5A—C6A—H6A121.1H26D—C26—H26F109.5
C6A—C7A—C8A121.8 (13)H26E—C26—H26F109.5
C6A—C7A—H7A119.1N13—C27—H27A109.5
C8A—C7A—H7A119.1N13—C27—H27B109.5
C7A—C8A—C9A120.8 (13)H27A—C27—H27B109.5
C7A—C8A—H8A119.6N13—C27—H27C109.5
C9A—C8A—H8A119.6H27A—C27—H27C109.5
C4A—C9A—C8A117.7 (13)H27B—C27—H27C109.5
C4A—C9A—H9A121.1
C3—N3—C1—N130.9 (2)C1—C4A—C9A—C8A180 (4)
C3—N3—C1—C4A96 (2)C7A—C8A—C9A—C4A2 (5)
C3—N3—C1—C491.4 (10)N3—C3—C10—C11169.86 (15)
C2—N1—C1—N328.4 (2)N2—C3—C10—C119.9 (2)
C2—N1—C1—C4A99.2 (16)N3—C3—C10—C1212.2 (2)
C2—N1—C1—C493.5 (8)N2—C3—C10—C12167.99 (15)
C1—N1—C2—N4166.32 (16)C15—N9—C13—N728.3 (2)
C1—N1—C2—N214.0 (3)C15—N9—C13—C1695.08 (18)
C3—N2—C2—N4177.19 (15)C14—N7—C13—N928.7 (2)
C3—N2—C2—N12.5 (2)C14—N7—C13—C1694.64 (19)
C1—N3—C3—N218.8 (2)C13—N7—C14—N10166.71 (15)
C1—N3—C3—C10161.37 (16)C13—N7—C14—N814.7 (2)
C2—N2—C3—N30.2 (2)C15—N8—C14—N10174.49 (15)
C2—N2—C3—C10179.59 (14)C15—N8—C14—N74.1 (2)
N3—C1—C4—C9131 (2)C13—N9—C15—N813.6 (2)
N1—C1—C4—C9109 (3)C13—N9—C15—C22166.34 (15)
N3—C1—C4—C550 (3)C14—N8—C15—N94.7 (2)
N1—C1—C4—C570 (3)C14—N8—C15—C22175.44 (14)
C9—C4—C5—C60 (4)N9—C13—C16—C21132.95 (17)
C1—C4—C5—C6178.6 (19)N7—C13—C16—C21106.44 (19)
C4—C5—C6—C70 (2)N9—C13—C16—C1747.9 (2)
C5—C6—C7—C80.3 (14)N7—C13—C16—C1772.7 (2)
C6—C7—C8—C90.1 (14)C21—C16—C17—C180.1 (3)
C5—C4—C9—C80 (4)C13—C16—C17—C18179.21 (17)
C1—C4—C9—C8178.7 (19)C16—C17—C18—C190.4 (3)
C7—C8—C9—C40 (2)C17—C18—C19—C200.4 (3)
N3—C1—C4A—C5A57 (7)C18—C19—C20—C210.0 (3)
N1—C1—C4A—C5A66 (6)C17—C16—C21—C200.2 (3)
N3—C1—C4A—C9A122 (5)C13—C16—C21—C20178.87 (18)
N1—C1—C4A—C9A115 (5)C19—C20—C21—C160.3 (3)
C9A—C4A—C5A—C6A1 (8)N9—C15—C22—C23176.58 (15)
C1—C4A—C5A—C6A178 (4)N8—C15—C22—C233.3 (2)
C4A—C5A—C6A—C7A2 (5)N9—C15—C22—C240.8 (2)
C5A—C6A—C7A—C8A1 (3)N8—C15—C22—C24179.27 (15)
C6A—C7A—C8A—C9A1 (3)C26—N13—C25—O10.1 (3)
C5A—C4A—C9A—C8A1 (8)C27—N13—C25—O1178.26 (19)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg5 are the centroids of the major component of the C4–C9 phenyl ring of molecule I and the C16–C21 phenyl ring of molecule II, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···N5i0.912.202.989 (2)145
N3—H3N···N12ii0.902.153.029 (2)164
N4—H4A···O10.902.162.9493 (19)147
N4—H4A···N11iii0.902.453.044 (2)124
N4—H4B···N8iii0.902.213.096 (2)169
N7—H7N···O10.902.533.240 (2)136
N7—H7N···N11iii0.902.263.018 (2)141
N9—H9N···N6iv0.922.122.997 (2)158
N10—H10A···O10.902.132.9566 (19)152
N10—H10A···N5i0.902.523.079 (2)121
N10—H10B···N2i0.902.213.094 (2)166
C1—H1A···N11v1.002.713.457 (3)132
C13—H13A···N12vi1.002.643.484 (2)143
C27—H27B···Cg2vii0.982.853.664 (7)141
C27—H27B···Cg3vii0.982.883.707 (14)143
C26—H26E···Cg50.982.923.714 (3)139
Symmetry codes: (i) x1, y, z; (ii) x+1, y1, z; (iii) x+1, y, z; (iv) x1, y+1, z; (v) x, y+1, z+1; (vi) x, y+2, z+1; (vii) x+1, y+1/2, z+1/2.
Summary of short interatomic contacts (Å) in the title compound top
H1N···N52.20-1 + x, y, z
H4B···N82.211 + x, y, z
N2···H19A2.591 - x, -1/2 + y, 1/2 - z
N6···H9N2.121 + x, -1 + y, z
H4A···O12.16x, y, z
N5···N43.2892 - x, 1 - y, 1 - z
N5···O13.1711 + x, y, z
N6···N93.2941 - x, 1 - y, 1 - z
C5···H27B2.881 - x, -1/2 + y, 1/2 - z
H7A···H17A2.60-x, -1/2 + y, 1/2 - z
H8A···C202.67x, -1 + y, z
H8A···H26B2.18-x, -1/2 + y, 1/2 - z
H1A···N112.71-x, 1 - y, 1 - z
H10A···O12.13x, y, z
H7N···N112.261 + x, y, z
H10B···N22.21-1 + x, y, z
N11···O13.134-1 + x, y, z
H13A···N122.64-x, 2 - y, 1 - z
C19···H26F2.87-x, 1/2 + y, 1/2 - z
H20A···H27A2.561 - x, 1/2 + y, 1/2 - z
H26B···H8A2.18-x, 1/2 + y, 1/2 - z
 

Acknowledgements

The authors' contributions are as follows. Conceptualization, IM, MA and AB; synthesis, IM; X-ray analysis, ZA and MA; writing (review and editing of the manuscript) IM, MA and AB; funding acquisition, YA and AS; supervision, MA, YA, AS and AB.

Funding information

This work was performed under the support of the SOCAR Science Foundation, S/N 12LR-AMEA (05/01/2022).

References

First citationAmmon, H. L. & Plastas, L. A. (1979). Acta Cryst. B35, 3106–3109.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBlotny, G. (2006). Tetrahedron, 62, 9507–9522.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGanai, A. M., Pathan, T. K., Hampannavar, G. A., Pawar, C., Obakachi, V. A., Kushwaha, B., Kushwaha, N. D. & Karpoormath, R. (2021). ChemistrySelect, 6, 1616–1660.  Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKhalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.  Web of Science CrossRef Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Haukka, M. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 495–498.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, M., Guo, L., Jin, S. & Tan, B. (2019). J. Mater. Chem. A, 7, 5153–5172.  Web of Science CrossRef CAS Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.  Web of Science CrossRef Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Huseynov, F. E., Aliyeva, V. A., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Chem. Eur. J. 27, 14370–14389.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNaghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235–2248.  Web of Science CSD CrossRef CAS Google Scholar
First citationSafavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net  Google Scholar
First citationViossat, B., Dung, N.-Huy., Compagnon, P.-L. & Kimny, T. (1989). Acta Cryst. C45, 1948–1951.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationYadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856–1858.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds