research communications
and Hirshfeld surface analysis of 2-(4-amino-6-phenyl-1,2,5,6-tetrahydro-1,3,5-triazin-2-ylidene)malononitrile dimethylformamide hemisolvate
aInstitute of Chemistry of Additives, Azerbaijan National Academy of Sciences, 1029 Baku, Azerbaijan, bDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Turkey, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dInstitute of Petrochemical Processes, Azerbaijan National Academy of Sciences, 1025 Baku, Azerbaijan, eBaku Engineering University, 0101 Baku, Azerbaijan, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np
The title compound, 2C12H10N6·C3H7NO, crystallizes as a racemate in the monoclinic P21/c with two independent molecules (I and II) and one dimethylformamide solvent molecule in the Both molecules (I and II) have chiral centers at the carbon atoms where the triazine rings of molecules I and II are attached to the phenyl ring. In the crystal, molecules I and II are linked by intermolecular N—H⋯N, N—H⋯O and C—H⋯N hydrogen bonds through the solvent dimethylformamide molecule into layers parallel to (001). In addition, C—H⋯π interactions also connect adjacent molecules into layers parallel to (001). The stability of the molecular packing is ensured by van der Waals interactions between the layers. The Hirshfeld surface analysis indicates that N⋯H/H⋯N (38.3% for I; 35.0% for II), H⋯H (28.2% for I; 27.0% for II) and C⋯H/H⋯C (23.4% for I; 26.3% for II) interactions are the most significant contributors to the crystal packing.
Keywords: crystal structure; disorder; hydrogen bonds; C—H⋯π interactions; Hirshfeld surface analysis.
CCDC reference: 2184452
1. Chemical context
The synthesis, design, and fabrication of novel biological and therapeutic agents remain some of the main objectives of medicinal and organic chemistry (Khalilov et al., 2021; Naghiyev et al., 2020; Safavora et al., 2019; Yadigarov et al., 2009). The crucial role of triazines is well recognized in the field of synthetic organic chemistry as well as in medicinal chemistry because these N-heterocyclic compounds are structurally similar to adenine and purine (Ganai et al., 2021; Kopylovich et al., 2014; Gurbanov et al., 2020a,b). Moreover, triazines play an important role in photo-triggered structural switching, in the printing market, as ionophores, in the design of functional materials attributed to smart hydrogen bonding, in liquid crystals, self-assembled layers, semiconductors, as analytical reagents for the detection of metal ions, indicators, photoluminescent materials, catalysts, spin-coating films, and optical recording media (Blotny, 2006; Liu et al., 2019). Depending on the attached non-covalent bond donor or acceptor substituents, the functional properties of N-heterocyclic compounds and their metal complexes can be improved (Ma et al., 2020, 2021; Mahmudov et al., 2020, 2021, 2022). Substituted triazine derivatives can be synthesized by several different routes. The most common protocols are nucleophilic aromatic substitution of cyanuric chloride, cycloaddition reactions to form the triazine ring, and cyclotrimerization of organic cyanamides and Notably, the direct multicomponent reaction is both effective and easy, and can yield the desired compounds in a Herein, we have synthesized 2-(4-amino-6-phenyl-5,6-dihydro-1,3,5-triazin-2(1H)-ylidene)malononitrile by a one-pot multicomponent reaction of (E)-1-[amino(1H-pyrazol-1-yl)methylene]guanidinium chloride with benzaldehyde in the presence of malononitrile in methanol.
2. Structural commentary
The title compound (Fig. 1) contains the two independent molecules (molecule I with N1 and molecule II with N7) and one dimethylformamide solvent molecule in the The triazine ring (N1–N3/C1–C3) in I adopts a distorted with puckering parameters (Cremer & Pople, 1975) Q(2) = 0.2149 (17) Å and φ(2) = 246.1 (4)°, while the triazine ring (N7–N9/C13–C15) in II has an [Q(2) = 0.2242 (17) Å, φ(2) = 238.4 (4)°]. Fig. 2 shows the overlay of molecules I and II in the with an r.m.s. deviation of 0.170 Å. The phenyl ring of molecule I is disordered over two sets of sites with an occupancy ratio of 0.67 (3):0.33 (3) (major component C4–C9 and minor component C4A–C9A). These disordered phenyl rings are at a dihedral angle of 6.0 (13)° to each other and the major and minor disorder components make dihedral angles of 86.9 (5) and 87.5 (12)°, respectively, with the mean plane of the triazine ring of molecule I. The phenyl ring (C16–C21) in II makes a dihedral angle of 86.65 (9)° with the mean plane of the triazine ring. There is one stereogenic center in both racemic molecules and the about atoms C1 in I and C13 in II is S in the chosen Molecules I and II have normal geometric parameters.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, molecules I and II are linked by intermolecular N—H⋯N, N—H⋯O and C—H⋯N hydrogen bonds (Table 1) through the solvent dimethylformamide molecule into layers parallel to (001) (Figs. 3 and 4). Furthermore, C—H⋯π interactions (Table 1) connect the molecules into layers parallel to (001) (Figs. 5 and 6). van der Waals interactions between the layers ensure the stability of the molecular packing.
Hirshfeld surfaces for both molecules were calculated using Crystal Explorer17 (Turner et al., 2017). The dnorm mappings for molecules I and II were performed in the ranges −0.4528 to +1.2207 a.u. and −0.4546 to +1.3342 a.u., respectively. The locations of the N—H⋯N, N—H⋯O and C—H⋯N interactions are shown by intense red circles on the dnorm surfaces (Fig. 7a,b for I and Fig. 7c,d for II).
Fig. 8 shows the full two-dimensional fingerprint plots for each molecule and those delineated into the major contacts. N⋯H/H⋯N interactions (Fig. 8b; 38.3% contribution for I; 35.0% for II) are the major factor in the crystal packing with H⋯H (Fig. 8c; 28.2% for I; 27.0% for II) and C⋯H/H⋯C (Fig. 8d; 23.4% for I; 26.3% for II) interactions representing the next highest contributions. The percentage contributions of comparatively weaker interactions are N⋯C/C⋯N (3.7% for I; 5.5% for II), N⋯N (2.6% for I; 1.9% for II), O⋯H/H⋯O (2.3% for I; 2.7% for II), C⋯C (1.3% for I; 1.3% for II) and O⋯N/N⋯O (0.2% for I; 0.2% for II). The data comparison shows that the surroundings of molecules I and II are quite similar. Short contacts are summarized in Table 2.
|
4. Database survey
Two related compounds with the 1,2,3,4-tetrahydro-1,3,5-triazine unit have been reported, viz. 3-(p-chlorophenyl)-4-[(dimethyl-4,6 pyridyl-2) methyl]-4,6-diphenyl-2-oxo-1,2,3,4-tetrahydro-13,5-triazine [(A); Viossat et al., 1989] and 1-[(3,4-dichlorophenyl)methoxy]-1,6-dihydro-6,6-dimethyl-1,3,5-triazine-2,4-diamine hydrochloride 0.29-hydrate [(B); Ammon & Plastas, 1979].
In the crystal of (A), the 1,2,3,4-tetrahydro-1,3,5-triazine ring exhibits a sofa conformation. Intermolecular N—H⋯O hydrogen bonding links pairs of molecules connected by a symmetry center, forming an octagonal unit.
In the crystal of (B), the dihydrotriazine nucleus is protonated at N5, where positive-charge delocalization is maximized. Except for one H atom on N4, all of the N-bound H atoms are involved in either H⋯N or H⋯CI interactions.
5. Synthesis and crystallization
A mixture of (E)-1-[amino(1H-pyrazol-1-yl)methylene]guanidinium chloride (188 mg, 1 mmol), benzaldehyde (106 mg, 1 mmol) and malononitrile (66 mg, 1 mmol) was refluxed in methanol for 5 h. The solvent was subsequently removed in vacuo, and the residue was recrystallized from methanol using charcoal. Crystals suitable for X-ray analysis were obtained by slow evaporation of a DMF solution. Colorless solid (47%); Analysis calculated for C27H27N13O (M = 549.6): C 59.01, H 4.95, N 33.13; found: C 58.98, H 4.89, N 33.07%. 1H NMR (DMSO-d6) δ 8.58 (NH), 8.30 (NH), 7.95 (CH), 7.31–7.45 (5H, Ar–H), 5.62 (CH), 2.72 and 2.88 (2CH3). 13C NMR (DMSO-d6) δ 165.17, 162.44, 155.68, 141.91, 128.78, 128.72, 125.73, 119.45, 119.19, 61.80, 37.67, 35.87. ESI–MS: m/z: 550.5 [M + H]+.
6. Refinement
Crystal data, data collection and structure . Carbon-bound H atoms were placed in calculated positions [C—H = 0.95–1.00 Å; Uiso(H) = 1.2 or 1.5Ueq(C)] and were included in the in the riding-model approximation. The N-bound H atoms were located in a difference-Fourier map and were fixed at their found positions and refined with a riding model with Uiso(H) set to 1.2Ueq(N). In molecule I, the C6(C6A)–C9(C9A) atoms in the C4–C9 phenyl ring are disordered over two sets of sites with an occupancy ratio of 0.67 (3):0.33 (3). The H atoms of a methyl group (C26) of the dimethylformamide solvent were refined as disordered [C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C)], using AFIX 127 (rotating disordered methyl group) and a free variable for the two groups of H atoms with an occupancy ratio of 0.66 (3):0.34 (3). For the two disordered parts of the phenyl ring of molecule I, the corresponding ring of molecule II, which is not disordered, was used as a template using a SAME command. Furthermore, the displacement parameters of the C atoms of the major and minor components of the disordered phenyl ring were restrained with a SIMU 0.02 command, while the displacement parameters of the C atoms of the major and minor components of the disordered phenyl ring attached to the triazine ring of molecule I (C4 and C4A) were constrained to have identical ADPs using an EADP instruction. All the C—C bonds between the phenyl and triazine rings were restrained to be similar to each other using a SADI instruction.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2184452
https://doi.org/10.1107/S2056989022006910/zl5032sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022006910/zl5032Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022006910/zl5032Isup3.cml
Data collection: APEX3 (Bruker, 2018); cell
SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).2C12H10N6·C3H7NO | F(000) = 1152 |
Mr = 549.61 | Dx = 1.384 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.9102 (4) Å | Cell parameters from 7300 reflections |
b = 13.5595 (7) Å | θ = 2.4–26.4° |
c = 22.0520 (12) Å | µ = 0.09 mm−1 |
β = 98.024 (2)° | T = 150 K |
V = 2638.2 (2) Å3 | Block, colourless |
Z = 4 | 0.30 × 0.26 × 0.26 mm |
Bruker D8 Quest PHOTON 100 detector diffractometer | 4215 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.045 |
Absorption correction: multi-scan (SADABS; Bruker, 2018) | θmax = 26.4°, θmin = 2.4° |
Tmin = 0.960, Tmax = 0.965 | h = −11→11 |
19167 measured reflections | k = −16→15 |
5368 independent reflections | l = −27→27 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.045 | H-atom parameters constrained |
wR(F2) = 0.111 | w = 1/[σ2(Fo2) + (0.0406P)2 + 1.738P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
5368 reflections | Δρmax = 0.24 e Å−3 |
422 parameters | Δρmin = −0.23 e Å−3 |
219 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.30549 (14) | 0.59988 (10) | 0.36140 (6) | 0.0299 (3) | |
N1 | 0.52574 (16) | 0.42828 (11) | 0.43293 (7) | 0.0221 (3) | |
H1N | 0.431602 | 0.454984 | 0.432599 | 0.027* | |
N2 | 0.78571 (15) | 0.45380 (10) | 0.42654 (6) | 0.0171 (3) | |
N3 | 0.69117 (16) | 0.29369 (11) | 0.44016 (7) | 0.0215 (3) | |
H3N | 0.703754 | 0.227992 | 0.443812 | 0.026* | |
N4 | 0.61899 (16) | 0.58380 (11) | 0.42444 (7) | 0.0227 (3) | |
H4A | 0.524426 | 0.608445 | 0.416945 | 0.027* | |
H4B | 0.696850 | 0.625464 | 0.422575 | 0.027* | |
N5 | 1.19175 (17) | 0.42192 (12) | 0.43645 (8) | 0.0280 (4) | |
N6 | 0.99550 (18) | 0.12911 (12) | 0.42191 (8) | 0.0302 (4) | |
N7 | 0.11862 (16) | 0.77458 (11) | 0.41760 (7) | 0.0206 (3) | |
H7N | 0.210064 | 0.747167 | 0.414922 | 0.025* | |
N8 | −0.14262 (15) | 0.74913 (10) | 0.42123 (6) | 0.0176 (3) | |
N9 | −0.03848 (16) | 0.90970 (10) | 0.42920 (7) | 0.0197 (3) | |
H9N | −0.052583 | 0.976797 | 0.430802 | 0.024* | |
N10 | 0.01996 (17) | 0.61859 (11) | 0.41453 (7) | 0.0228 (3) | |
H10A | 0.110823 | 0.595869 | 0.407432 | 0.027* | |
H10B | −0.055088 | 0.577908 | 0.422065 | 0.027* | |
N11 | −0.53959 (18) | 0.78121 (12) | 0.43275 (8) | 0.0307 (4) | |
N12 | −0.33307 (19) | 1.07238 (11) | 0.45473 (8) | 0.0298 (4) | |
N13 | 0.27178 (17) | 0.59511 (12) | 0.25719 (7) | 0.0265 (3) | |
C1 | 0.53378 (19) | 0.32208 (13) | 0.42361 (8) | 0.0224 (4) | |
H1A | 0.471224 | 0.288129 | 0.451612 | 0.027* | |
C2 | 0.64407 (18) | 0.48767 (12) | 0.42791 (7) | 0.0177 (3) | |
C3 | 0.80600 (18) | 0.35521 (12) | 0.43296 (7) | 0.0168 (3) | |
C4 | 0.475 (3) | 0.293 (2) | 0.3576 (4) | 0.0241 (10) | 0.67 (3) |
C5 | 0.5563 (13) | 0.3177 (10) | 0.3101 (4) | 0.0246 (14) | 0.67 (3) |
H5 | 0.650282 | 0.351418 | 0.318958 | 0.030* | 0.67 (3) |
C6 | 0.5012 (13) | 0.2932 (9) | 0.2499 (4) | 0.0305 (15) | 0.67 (3) |
H6 | 0.557368 | 0.310779 | 0.217927 | 0.037* | 0.67 (3) |
C7 | 0.3649 (13) | 0.2433 (8) | 0.2360 (5) | 0.0336 (18) | 0.67 (3) |
H7 | 0.327883 | 0.226416 | 0.194827 | 0.040* | 0.67 (3) |
C8 | 0.2835 (11) | 0.2183 (9) | 0.2827 (6) | 0.0387 (19) | 0.67 (3) |
H8 | 0.189913 | 0.184280 | 0.273567 | 0.046* | 0.67 (3) |
C9 | 0.3386 (15) | 0.2431 (11) | 0.3432 (5) | 0.0328 (18) | 0.67 (3) |
H9 | 0.281954 | 0.225472 | 0.375038 | 0.039* | 0.67 (3) |
C4A | 0.463 (6) | 0.290 (5) | 0.3608 (8) | 0.0241 (10) | 0.33 (3) |
C5A | 0.525 (3) | 0.317 (2) | 0.3093 (10) | 0.034 (4) | 0.33 (3) |
H5A | 0.611348 | 0.358019 | 0.313107 | 0.041* | 0.33 (3) |
C6A | 0.461 (3) | 0.2832 (19) | 0.2514 (9) | 0.037 (3) | 0.33 (3) |
H6A | 0.504516 | 0.299588 | 0.215823 | 0.045* | 0.33 (3) |
C7A | 0.333 (3) | 0.2263 (16) | 0.2477 (10) | 0.037 (3) | 0.33 (3) |
H7A | 0.286987 | 0.203583 | 0.208748 | 0.044* | 0.33 (3) |
C8A | 0.269 (2) | 0.2011 (17) | 0.2988 (11) | 0.039 (3) | 0.33 (3) |
H8A | 0.179205 | 0.162676 | 0.294487 | 0.047* | 0.33 (3) |
C9A | 0.335 (3) | 0.231 (2) | 0.3568 (10) | 0.031 (3) | 0.33 (3) |
H9A | 0.293473 | 0.212108 | 0.392413 | 0.037* | 0.33 (3) |
C10 | 0.95264 (19) | 0.31541 (12) | 0.43229 (8) | 0.0183 (3) | |
C11 | 1.08173 (19) | 0.37632 (12) | 0.43463 (8) | 0.0190 (4) | |
C12 | 0.97619 (19) | 0.21242 (13) | 0.42722 (8) | 0.0201 (4) | |
C13 | 0.10164 (19) | 0.88025 (13) | 0.40755 (8) | 0.0196 (4) | |
H13A | 0.187900 | 0.914501 | 0.432945 | 0.023* | |
C14 | −0.00174 (18) | 0.71515 (12) | 0.41738 (7) | 0.0178 (3) | |
C15 | −0.15596 (18) | 0.84747 (12) | 0.42933 (7) | 0.0168 (3) | |
C16 | 0.1034 (2) | 0.90787 (13) | 0.34077 (8) | 0.0219 (4) | |
C17 | −0.0200 (2) | 0.88610 (15) | 0.29677 (8) | 0.0292 (4) | |
H17A | −0.106544 | 0.854486 | 0.308568 | 0.035* | |
C18 | −0.0172 (3) | 0.91034 (16) | 0.23572 (9) | 0.0357 (5) | |
H18A | −0.101889 | 0.895731 | 0.205920 | 0.043* | |
C19 | 0.1086 (3) | 0.95557 (16) | 0.21852 (10) | 0.0398 (5) | |
H19A | 0.110939 | 0.971849 | 0.176760 | 0.048* | |
C20 | 0.2309 (3) | 0.97723 (17) | 0.26174 (11) | 0.0424 (6) | |
H20A | 0.317372 | 1.008472 | 0.249608 | 0.051* | |
C21 | 0.2291 (2) | 0.95370 (15) | 0.32333 (10) | 0.0337 (5) | |
H21A | 0.313711 | 0.969113 | 0.352997 | 0.040* | |
C22 | −0.29893 (19) | 0.88657 (12) | 0.43818 (8) | 0.0193 (3) | |
C23 | −0.42860 (19) | 0.82637 (13) | 0.43560 (8) | 0.0203 (4) | |
C24 | −0.31897 (19) | 0.98876 (13) | 0.44757 (8) | 0.0208 (4) | |
C25 | 0.3387 (2) | 0.56969 (14) | 0.31214 (9) | 0.0270 (4) | |
H25A | 0.419969 | 0.523933 | 0.313982 | 0.032* | |
C26 | 0.1468 (3) | 0.66418 (18) | 0.24990 (11) | 0.0448 (6) | |
H26A | 0.109491 | 0.673180 | 0.289282 | 0.067* | 0.66 (3) |
H26B | 0.064973 | 0.638462 | 0.219737 | 0.067* | 0.66 (3) |
H26C | 0.181335 | 0.727686 | 0.235740 | 0.067* | 0.66 (3) |
H26D | 0.127708 | 0.686372 | 0.207224 | 0.067* | 0.34 (3) |
H26E | 0.172226 | 0.721090 | 0.276769 | 0.067* | 0.34 (3) |
H26F | 0.055864 | 0.631866 | 0.260765 | 0.067* | 0.34 (3) |
C27 | 0.3222 (3) | 0.55731 (17) | 0.20144 (9) | 0.0368 (5) | |
H27A | 0.397900 | 0.505441 | 0.212058 | 0.055* | |
H27B | 0.367225 | 0.611049 | 0.180343 | 0.055* | |
H27C | 0.235333 | 0.530070 | 0.174488 | 0.055* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0223 (7) | 0.0420 (8) | 0.0255 (7) | 0.0013 (6) | 0.0040 (5) | −0.0020 (6) |
N1 | 0.0142 (7) | 0.0216 (8) | 0.0311 (8) | 0.0016 (6) | 0.0051 (6) | −0.0015 (6) |
N2 | 0.0144 (7) | 0.0186 (7) | 0.0183 (7) | 0.0008 (5) | 0.0026 (5) | −0.0012 (6) |
N3 | 0.0167 (7) | 0.0166 (7) | 0.0310 (8) | 0.0005 (6) | 0.0027 (6) | 0.0037 (6) |
N4 | 0.0155 (7) | 0.0195 (7) | 0.0326 (8) | 0.0013 (6) | 0.0015 (6) | −0.0006 (6) |
N5 | 0.0183 (8) | 0.0261 (8) | 0.0397 (9) | 0.0009 (7) | 0.0046 (7) | 0.0008 (7) |
N6 | 0.0291 (9) | 0.0205 (9) | 0.0409 (10) | 0.0016 (7) | 0.0050 (7) | −0.0011 (7) |
N7 | 0.0137 (7) | 0.0211 (7) | 0.0272 (8) | 0.0027 (6) | 0.0040 (6) | 0.0033 (6) |
N8 | 0.0161 (7) | 0.0178 (7) | 0.0191 (7) | 0.0008 (6) | 0.0032 (5) | 0.0003 (6) |
N9 | 0.0195 (7) | 0.0162 (7) | 0.0243 (7) | −0.0003 (6) | 0.0059 (6) | −0.0001 (6) |
N10 | 0.0190 (7) | 0.0184 (7) | 0.0324 (8) | 0.0025 (6) | 0.0092 (6) | 0.0001 (6) |
N11 | 0.0206 (8) | 0.0250 (8) | 0.0471 (10) | 0.0012 (7) | 0.0075 (7) | −0.0042 (7) |
N12 | 0.0307 (9) | 0.0217 (9) | 0.0385 (10) | 0.0011 (7) | 0.0105 (7) | −0.0035 (7) |
N13 | 0.0242 (8) | 0.0297 (9) | 0.0254 (8) | 0.0020 (7) | 0.0027 (6) | −0.0001 (7) |
C1 | 0.0166 (8) | 0.0200 (9) | 0.0311 (10) | −0.0011 (7) | 0.0052 (7) | 0.0029 (7) |
C2 | 0.0170 (8) | 0.0205 (9) | 0.0154 (8) | −0.0008 (7) | 0.0014 (6) | −0.0014 (6) |
C3 | 0.0167 (8) | 0.0201 (8) | 0.0133 (8) | −0.0017 (6) | 0.0010 (6) | 0.0000 (6) |
C4 | 0.018 (4) | 0.019 (2) | 0.0351 (13) | 0.003 (2) | −0.0004 (14) | −0.0016 (19) |
C5 | 0.019 (3) | 0.029 (2) | 0.024 (2) | −0.001 (3) | −0.0033 (18) | −0.0002 (17) |
C6 | 0.026 (4) | 0.029 (3) | 0.034 (2) | 0.001 (2) | −0.004 (2) | −0.0017 (17) |
C7 | 0.026 (4) | 0.035 (3) | 0.036 (3) | 0.001 (3) | −0.008 (3) | −0.010 (2) |
C8 | 0.021 (3) | 0.043 (4) | 0.051 (5) | −0.006 (2) | 0.000 (3) | −0.011 (3) |
C9 | 0.023 (2) | 0.033 (4) | 0.043 (3) | −0.002 (2) | 0.007 (3) | −0.005 (3) |
C4A | 0.018 (4) | 0.019 (2) | 0.0351 (13) | 0.003 (2) | −0.0004 (14) | −0.0016 (19) |
C5A | 0.020 (7) | 0.030 (5) | 0.049 (6) | −0.006 (5) | −0.009 (4) | −0.004 (4) |
C6A | 0.036 (8) | 0.038 (6) | 0.035 (5) | 0.001 (6) | −0.008 (5) | −0.003 (4) |
C7A | 0.024 (7) | 0.036 (6) | 0.048 (7) | −0.005 (5) | −0.006 (5) | −0.009 (5) |
C8A | 0.026 (5) | 0.040 (7) | 0.049 (7) | 0.000 (4) | −0.003 (5) | −0.012 (5) |
C9A | 0.018 (4) | 0.027 (6) | 0.047 (6) | −0.003 (4) | 0.004 (5) | −0.009 (6) |
C10 | 0.0177 (8) | 0.0184 (8) | 0.0187 (8) | 0.0006 (7) | 0.0027 (6) | −0.0004 (6) |
C11 | 0.0181 (8) | 0.0194 (8) | 0.0195 (8) | 0.0054 (7) | 0.0033 (6) | 0.0011 (7) |
C12 | 0.0165 (8) | 0.0234 (10) | 0.0202 (9) | −0.0009 (7) | 0.0023 (7) | 0.0013 (7) |
C13 | 0.0156 (8) | 0.0214 (9) | 0.0217 (9) | −0.0006 (7) | 0.0027 (6) | 0.0014 (7) |
C14 | 0.0173 (8) | 0.0207 (8) | 0.0152 (8) | −0.0002 (7) | 0.0021 (6) | 0.0012 (6) |
C15 | 0.0178 (8) | 0.0195 (8) | 0.0129 (8) | −0.0003 (7) | 0.0013 (6) | 0.0009 (6) |
C16 | 0.0244 (9) | 0.0184 (9) | 0.0239 (9) | 0.0042 (7) | 0.0074 (7) | 0.0014 (7) |
C17 | 0.0332 (10) | 0.0291 (10) | 0.0250 (9) | 0.0021 (8) | 0.0030 (8) | 0.0006 (8) |
C18 | 0.0478 (13) | 0.0362 (11) | 0.0226 (10) | 0.0112 (10) | 0.0028 (9) | 0.0014 (8) |
C19 | 0.0616 (15) | 0.0346 (12) | 0.0266 (11) | 0.0144 (11) | 0.0181 (10) | 0.0070 (9) |
C20 | 0.0482 (14) | 0.0404 (13) | 0.0447 (13) | 0.0000 (11) | 0.0280 (11) | 0.0081 (10) |
C21 | 0.0309 (11) | 0.0362 (11) | 0.0365 (11) | −0.0016 (9) | 0.0129 (9) | 0.0037 (9) |
C22 | 0.0190 (8) | 0.0176 (8) | 0.0216 (8) | 0.0007 (7) | 0.0040 (7) | −0.0006 (7) |
C23 | 0.0191 (9) | 0.0189 (9) | 0.0234 (9) | 0.0046 (7) | 0.0043 (7) | −0.0006 (7) |
C24 | 0.0175 (8) | 0.0252 (10) | 0.0202 (9) | 0.0003 (7) | 0.0048 (7) | 0.0013 (7) |
C25 | 0.0223 (9) | 0.0297 (10) | 0.0285 (10) | 0.0023 (8) | 0.0024 (8) | −0.0002 (8) |
C26 | 0.0381 (12) | 0.0516 (14) | 0.0442 (13) | 0.0162 (11) | 0.0035 (10) | 0.0100 (11) |
C27 | 0.0419 (12) | 0.0415 (12) | 0.0273 (10) | −0.0010 (10) | 0.0062 (9) | −0.0051 (9) |
O1—C25 | 1.235 (2) | C8—C9 | 1.398 (7) |
N1—C2 | 1.343 (2) | C8—H8 | 0.9500 |
N1—C1 | 1.458 (2) | C9—H9 | 0.9500 |
N1—H1N | 0.9127 | C4A—C5A | 1.379 (13) |
N2—C2 | 1.347 (2) | C4A—C9A | 1.381 (13) |
N2—C3 | 1.354 (2) | C5A—C6A | 1.397 (13) |
N3—C3 | 1.347 (2) | C5A—H5A | 0.9500 |
N3—C1 | 1.451 (2) | C6A—C7A | 1.369 (12) |
N3—H3N | 0.9001 | C6A—H6A | 0.9500 |
N4—C2 | 1.323 (2) | C7A—C8A | 1.373 (12) |
N4—H4A | 0.9000 | C7A—H7A | 0.9500 |
N4—H4B | 0.9000 | C8A—C9A | 1.392 (13) |
N5—C11 | 1.155 (2) | C8A—H8A | 0.9500 |
N6—C12 | 1.151 (2) | C9A—H9A | 0.9500 |
N7—C14 | 1.341 (2) | C10—C11 | 1.411 (2) |
N7—C13 | 1.454 (2) | C10—C12 | 1.419 (2) |
N7—H7N | 0.9050 | C13—C16 | 1.522 (2) |
N8—C14 | 1.351 (2) | C13—H13A | 1.0000 |
N8—C15 | 1.353 (2) | C15—C22 | 1.418 (2) |
N9—C15 | 1.345 (2) | C16—C21 | 1.381 (3) |
N9—C13 | 1.454 (2) | C16—C17 | 1.393 (3) |
N9—H9N | 0.9198 | C17—C18 | 1.389 (3) |
N10—C14 | 1.326 (2) | C17—H17A | 0.9500 |
N10—H10A | 0.9001 | C18—C19 | 1.376 (3) |
N10—H10B | 0.9000 | C18—H18A | 0.9500 |
N11—C23 | 1.157 (2) | C19—C20 | 1.376 (3) |
N12—C24 | 1.154 (2) | C19—H19A | 0.9500 |
N13—C25 | 1.320 (2) | C20—C21 | 1.397 (3) |
N13—C26 | 1.447 (3) | C20—H20A | 0.9500 |
N13—C27 | 1.459 (2) | C21—H21A | 0.9500 |
C1—C4A | 1.506 (12) | C22—C23 | 1.409 (2) |
C1—C4 | 1.527 (6) | C22—C24 | 1.416 (2) |
C1—H1A | 1.0000 | C25—H25A | 0.9500 |
C3—C10 | 1.416 (2) | C26—H26A | 0.9800 |
C4—C9 | 1.392 (7) | C26—H26B | 0.9800 |
C4—C5 | 1.393 (7) | C26—H26C | 0.9800 |
C5—C6 | 1.391 (7) | C26—H26D | 0.9800 |
C5—H5 | 0.9500 | C26—H26E | 0.9800 |
C6—C7 | 1.386 (7) | C26—H26F | 0.9800 |
C6—H6 | 0.9500 | C27—H27A | 0.9800 |
C7—C8 | 1.381 (7) | C27—H27B | 0.9800 |
C7—H7 | 0.9500 | C27—H27C | 0.9800 |
C2—N1—C1 | 121.73 (14) | C8A—C9A—H9A | 121.1 |
C2—N1—H1N | 119.5 | C11—C10—C3 | 121.69 (15) |
C1—N1—H1N | 117.0 | C11—C10—C12 | 116.75 (15) |
C2—N2—C3 | 116.49 (14) | C3—C10—C12 | 121.53 (15) |
C3—N3—C1 | 121.98 (14) | N5—C11—C10 | 176.54 (18) |
C3—N3—H3N | 122.4 | N6—C12—C10 | 178.65 (19) |
C1—N3—H3N | 112.9 | N9—C13—N7 | 107.24 (13) |
C2—N4—H4A | 121.5 | N9—C13—C16 | 112.08 (14) |
C2—N4—H4B | 119.7 | N7—C13—C16 | 112.03 (14) |
H4A—N4—H4B | 117.8 | N9—C13—H13A | 108.5 |
C14—N7—C13 | 121.69 (14) | N7—C13—H13A | 108.5 |
C14—N7—H7N | 118.7 | C16—C13—H13A | 108.5 |
C13—N7—H7N | 118.0 | N10—C14—N7 | 118.14 (15) |
C14—N8—C15 | 116.36 (14) | N10—C14—N8 | 118.86 (15) |
C15—N9—C13 | 122.20 (14) | N7—C14—N8 | 122.99 (15) |
C15—N9—H9N | 120.7 | N9—C15—N8 | 122.37 (15) |
C13—N9—H9N | 114.4 | N9—C15—C22 | 118.69 (15) |
C14—N10—H10A | 119.1 | N8—C15—C22 | 118.93 (15) |
C14—N10—H10B | 118.6 | C21—C16—C17 | 119.55 (17) |
H10A—N10—H10B | 122.1 | C21—C16—C13 | 119.91 (17) |
C25—N13—C26 | 120.88 (17) | C17—C16—C13 | 120.54 (16) |
C25—N13—C27 | 121.94 (17) | C18—C17—C16 | 120.38 (19) |
C26—N13—C27 | 117.16 (17) | C18—C17—H17A | 119.8 |
N3—C1—N1 | 106.94 (14) | C16—C17—H17A | 119.8 |
N3—C1—C4A | 115 (3) | C19—C18—C17 | 119.9 (2) |
N1—C1—C4A | 113 (3) | C19—C18—H18A | 120.1 |
N3—C1—C4 | 111.2 (12) | C17—C18—H18A | 120.1 |
N1—C1—C4 | 111.7 (14) | C20—C19—C18 | 120.05 (19) |
N3—C1—H1A | 109.0 | C20—C19—H19A | 120.0 |
N1—C1—H1A | 109.0 | C18—C19—H19A | 120.0 |
C4—C1—H1A | 109.0 | C19—C20—C21 | 120.6 (2) |
N4—C2—N1 | 117.85 (15) | C19—C20—H20A | 119.7 |
N4—C2—N2 | 119.06 (15) | C21—C20—H20A | 119.7 |
N1—C2—N2 | 123.09 (15) | C16—C21—C20 | 119.5 (2) |
N3—C3—N2 | 122.10 (15) | C16—C21—H21A | 120.2 |
N3—C3—C10 | 118.86 (15) | C20—C21—H21A | 120.2 |
N2—C3—C10 | 119.04 (15) | C23—C22—C24 | 116.95 (15) |
C9—C4—C5 | 118.3 (6) | C23—C22—C15 | 121.67 (15) |
C9—C4—C1 | 120.9 (8) | C24—C22—C15 | 121.33 (15) |
C5—C4—C1 | 120.8 (7) | N11—C23—C22 | 176.48 (19) |
C6—C5—C4 | 120.7 (6) | N12—C24—C22 | 178.8 (2) |
C6—C5—H5 | 119.7 | O1—C25—N13 | 126.02 (18) |
C4—C5—H5 | 119.7 | O1—C25—H25A | 117.0 |
C7—C6—C5 | 120.6 (7) | N13—C25—H25A | 117.0 |
C7—C6—H6 | 119.7 | N13—C26—H26A | 109.5 |
C5—C6—H6 | 119.7 | N13—C26—H26B | 109.5 |
C8—C7—C6 | 119.4 (6) | H26A—C26—H26B | 109.5 |
C8—C7—H7 | 120.3 | N13—C26—H26C | 109.5 |
C6—C7—H7 | 120.3 | H26A—C26—H26C | 109.5 |
C7—C8—C9 | 120.1 (6) | H26B—C26—H26C | 109.5 |
C7—C8—H8 | 119.9 | N13—C26—H26D | 109.5 |
C9—C8—H8 | 119.9 | H26A—C26—H26D | 141.1 |
C4—C9—C8 | 120.9 (7) | H26B—C26—H26D | 56.3 |
C4—C9—H9 | 119.5 | H26C—C26—H26D | 56.3 |
C8—C9—H9 | 119.5 | N13—C26—H26E | 109.5 |
C5A—C4A—C9A | 121.3 (12) | H26A—C26—H26E | 56.3 |
C5A—C4A—C1 | 121.1 (17) | H26B—C26—H26E | 141.1 |
C9A—C4A—C1 | 117.6 (16) | H26C—C26—H26E | 56.3 |
C4A—C5A—C6A | 120.6 (14) | H26D—C26—H26E | 109.5 |
C4A—C5A—H5A | 119.7 | N13—C26—H26F | 109.5 |
C6A—C5A—H5A | 119.7 | H26A—C26—H26F | 56.3 |
C7A—C6A—C5A | 117.8 (13) | H26B—C26—H26F | 56.3 |
C7A—C6A—H6A | 121.1 | H26C—C26—H26F | 141.1 |
C5A—C6A—H6A | 121.1 | H26D—C26—H26F | 109.5 |
C6A—C7A—C8A | 121.8 (13) | H26E—C26—H26F | 109.5 |
C6A—C7A—H7A | 119.1 | N13—C27—H27A | 109.5 |
C8A—C7A—H7A | 119.1 | N13—C27—H27B | 109.5 |
C7A—C8A—C9A | 120.8 (13) | H27A—C27—H27B | 109.5 |
C7A—C8A—H8A | 119.6 | N13—C27—H27C | 109.5 |
C9A—C8A—H8A | 119.6 | H27A—C27—H27C | 109.5 |
C4A—C9A—C8A | 117.7 (13) | H27B—C27—H27C | 109.5 |
C4A—C9A—H9A | 121.1 | ||
C3—N3—C1—N1 | −30.9 (2) | C1—C4A—C9A—C8A | −180 (4) |
C3—N3—C1—C4A | 96 (2) | C7A—C8A—C9A—C4A | 2 (5) |
C3—N3—C1—C4 | 91.4 (10) | N3—C3—C10—C11 | −169.86 (15) |
C2—N1—C1—N3 | 28.4 (2) | N2—C3—C10—C11 | 9.9 (2) |
C2—N1—C1—C4A | −99.2 (16) | N3—C3—C10—C12 | 12.2 (2) |
C2—N1—C1—C4 | −93.5 (8) | N2—C3—C10—C12 | −167.99 (15) |
C1—N1—C2—N4 | 166.32 (16) | C15—N9—C13—N7 | −28.3 (2) |
C1—N1—C2—N2 | −14.0 (3) | C15—N9—C13—C16 | 95.08 (18) |
C3—N2—C2—N4 | 177.19 (15) | C14—N7—C13—N9 | 28.7 (2) |
C3—N2—C2—N1 | −2.5 (2) | C14—N7—C13—C16 | −94.64 (19) |
C1—N3—C3—N2 | 18.8 (2) | C13—N7—C14—N10 | 166.71 (15) |
C1—N3—C3—C10 | −161.37 (16) | C13—N7—C14—N8 | −14.7 (2) |
C2—N2—C3—N3 | 0.2 (2) | C15—N8—C14—N10 | 174.49 (15) |
C2—N2—C3—C10 | −179.59 (14) | C15—N8—C14—N7 | −4.1 (2) |
N3—C1—C4—C9 | 131 (2) | C13—N9—C15—N8 | 13.6 (2) |
N1—C1—C4—C9 | −109 (3) | C13—N9—C15—C22 | −166.34 (15) |
N3—C1—C4—C5 | −50 (3) | C14—N8—C15—N9 | 4.7 (2) |
N1—C1—C4—C5 | 70 (3) | C14—N8—C15—C22 | −175.44 (14) |
C9—C4—C5—C6 | 0 (4) | N9—C13—C16—C21 | 132.95 (17) |
C1—C4—C5—C6 | −178.6 (19) | N7—C13—C16—C21 | −106.44 (19) |
C4—C5—C6—C7 | 0 (2) | N9—C13—C16—C17 | −47.9 (2) |
C5—C6—C7—C8 | 0.3 (14) | N7—C13—C16—C17 | 72.7 (2) |
C6—C7—C8—C9 | −0.1 (14) | C21—C16—C17—C18 | −0.1 (3) |
C5—C4—C9—C8 | 0 (4) | C13—C16—C17—C18 | −179.21 (17) |
C1—C4—C9—C8 | 178.7 (19) | C16—C17—C18—C19 | 0.4 (3) |
C7—C8—C9—C4 | 0 (2) | C17—C18—C19—C20 | −0.4 (3) |
N3—C1—C4A—C5A | −57 (7) | C18—C19—C20—C21 | 0.0 (3) |
N1—C1—C4A—C5A | 66 (6) | C17—C16—C21—C20 | −0.2 (3) |
N3—C1—C4A—C9A | 122 (5) | C13—C16—C21—C20 | 178.87 (18) |
N1—C1—C4A—C9A | −115 (5) | C19—C20—C21—C16 | 0.3 (3) |
C9A—C4A—C5A—C6A | −1 (8) | N9—C15—C22—C23 | 176.58 (15) |
C1—C4A—C5A—C6A | 178 (4) | N8—C15—C22—C23 | −3.3 (2) |
C4A—C5A—C6A—C7A | 2 (5) | N9—C15—C22—C24 | −0.8 (2) |
C5A—C6A—C7A—C8A | −1 (3) | N8—C15—C22—C24 | 179.27 (15) |
C6A—C7A—C8A—C9A | −1 (3) | C26—N13—C25—O1 | −0.1 (3) |
C5A—C4A—C9A—C8A | −1 (8) | C27—N13—C25—O1 | 178.26 (19) |
Cg2 and Cg5 are the centroids of the major component of the C4–C9 phenyl ring of molecule I and the C16–C21 phenyl ring of molecule II, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···N5i | 0.91 | 2.20 | 2.989 (2) | 145 |
N3—H3N···N12ii | 0.90 | 2.15 | 3.029 (2) | 164 |
N4—H4A···O1 | 0.90 | 2.16 | 2.9493 (19) | 147 |
N4—H4A···N11iii | 0.90 | 2.45 | 3.044 (2) | 124 |
N4—H4B···N8iii | 0.90 | 2.21 | 3.096 (2) | 169 |
N7—H7N···O1 | 0.90 | 2.53 | 3.240 (2) | 136 |
N7—H7N···N11iii | 0.90 | 2.26 | 3.018 (2) | 141 |
N9—H9N···N6iv | 0.92 | 2.12 | 2.997 (2) | 158 |
N10—H10A···O1 | 0.90 | 2.13 | 2.9566 (19) | 152 |
N10—H10A···N5i | 0.90 | 2.52 | 3.079 (2) | 121 |
N10—H10B···N2i | 0.90 | 2.21 | 3.094 (2) | 166 |
C1—H1A···N11v | 1.00 | 2.71 | 3.457 (3) | 132 |
C13—H13A···N12vi | 1.00 | 2.64 | 3.484 (2) | 143 |
C27—H27B···Cg2vii | 0.98 | 2.85 | 3.664 (7) | 141 |
C27—H27B···Cg3vii | 0.98 | 2.88 | 3.707 (14) | 143 |
C26—H26E···Cg5 | 0.98 | 2.92 | 3.714 (3) | 139 |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y−1, z; (iii) x+1, y, z; (iv) x−1, y+1, z; (v) −x, −y+1, −z+1; (vi) −x, −y+2, −z+1; (vii) −x+1, y+1/2, −z+1/2. |
H1N···N5 | 2.20 | -1 + x, y, z |
H4B···N8 | 2.21 | 1 + x, y, z |
N2···H19A | 2.59 | 1 - x, -1/2 + y, 1/2 - z |
N6···H9N | 2.12 | 1 + x, -1 + y, z |
H4A···O1 | 2.16 | x, y, z |
N5···N4 | 3.289 | 2 - x, 1 - y, 1 - z |
N5···O1 | 3.171 | 1 + x, y, z |
N6···N9 | 3.294 | 1 - x, 1 - y, 1 - z |
C5···H27B | 2.88 | 1 - x, -1/2 + y, 1/2 - z |
H7A···H17A | 2.60 | -x, -1/2 + y, 1/2 - z |
H8A···C20 | 2.67 | x, -1 + y, z |
H8A···H26B | 2.18 | -x, -1/2 + y, 1/2 - z |
H1A···N11 | 2.71 | -x, 1 - y, 1 - z |
H10A···O1 | 2.13 | x, y, z |
H7N···N11 | 2.26 | 1 + x, y, z |
H10B···N2 | 2.21 | -1 + x, y, z |
N11···O1 | 3.134 | -1 + x, y, z |
H13A···N12 | 2.64 | -x, 2 - y, 1 - z |
C19···H26F | 2.87 | -x, 1/2 + y, 1/2 - z |
H20A···H27A | 2.56 | 1 - x, 1/2 + y, 1/2 - z |
H26B···H8A | 2.18 | -x, 1/2 + y, 1/2 - z |
Acknowledgements
The authors' contributions are as follows. Conceptualization, IM, MA and AB; synthesis, IM; X-ray analysis, ZA and MA; writing (review and editing of the manuscript) IM, MA and AB; funding acquisition, YA and AS; supervision, MA, YA, AS and AB.
Funding information
This work was performed under the support of the SOCAR Science Foundation, S/N 12LR-AMEA (05/01/2022).
References
Ammon, H. L. & Plastas, L. A. (1979). Acta Cryst. B35, 3106–3109. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Blotny, G. (2006). Tetrahedron, 62, 9507–9522. Web of Science CrossRef CAS Google Scholar
Bruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ganai, A. M., Pathan, T. K., Hampannavar, G. A., Pawar, C., Obakachi, V. A., Kushwaha, B., Kushwaha, N. D. & Karpoormath, R. (2021). ChemistrySelect, 6, 1616–1660. Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. Web of Science CSD CrossRef CAS PubMed Google Scholar
Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761. Web of Science CrossRef Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Haukka, M. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 495–498. Web of Science CSD CrossRef CAS Google Scholar
Liu, M., Guo, L., Jin, S. & Tan, B. (2019). J. Mater. Chem. A, 7, 5153–5172. Web of Science CrossRef CAS Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859. Web of Science CrossRef Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482. Web of Science CrossRef Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556. Web of Science CrossRef Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381. Web of Science CrossRef Google Scholar
Mahmudov, K. T., Huseynov, F. E., Aliyeva, V. A., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Chem. Eur. J. 27, 14370–14389. Web of Science CrossRef CAS PubMed Google Scholar
Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235–2248. Web of Science CSD CrossRef CAS Google Scholar
Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net Google Scholar
Viossat, B., Dung, N.-Huy., Compagnon, P.-L. & Kimny, T. (1989). Acta Cryst. C45, 1948–1951. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Yadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856–1858. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.