research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and DFT calculations of (E)-3-[1-(2-hy­dr­oxy­phenyl­anilino)ethyl­­idene]-6-methyl­pyran-2,4-dione

crossmark logo

aLaboratory of Heterocyclic Organic Chemistry, Medicines Science Research Center, Pharmacochemistry Competence Center, Mohammed V University in Rabat, Faculté des Sciences, Av. Ibn Battouta, BP 1014, Rabat, Morocco, bLaboratory of Chemistry and Environment, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco, cLaboratoire de Synthése Organique et Physico-Chimie Moléculaire, Département de Chimie, Faculté des Sciences, Semlalia, B.P 2390, Marrakech 40001, Morocco, dDepartment Of Chemistry – Faculty of Education – University of Hodiedah, Yemen, eDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and fDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: khalilchem2018@gmail.com

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 13 June 2022; accepted 21 July 2022; online 29 July 2022)

The asymmetric unit of the title compound, C14H13NO4, contains three independent mol­ecules, which differ slightly in conformation. Each contains an intra­molecular N—H⋯O hydrogen bond. In the crystal, O—H⋯O hydrogen bonds form chains of mol­ecules, which are linked into corrugated sheets parallel to ([\overline{1}]03) plane by C—H⋯O hydrogen bonds together with π inter­actions between the carbonyl groups and the 2-hy­droxy­phenyl rings. The layers are linked by further C—H⋯O hydrogen bonds. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (49.0%), H⋯O/O⋯H (28.3%) and H⋯C/C⋯H (10.9%) inter­actions. van der Waals inter­actions are the dominant inter­actions in the crystal packing. Moreover, density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behavior was elucidated to determine the energy gap of 4.53 eV.

1. Chemical context

Heterocyclic mol­ecules play a very important role in life processes and are of major inter­est in the industrial development of dyes, pharmaceuticals, pesticides, and natural products (Saber et al., 2020[Saber, A., Sebbar, N. K., Sert, Y., Alzaqri, N. L., Hökelek, T., El Ghayati, L., Talbaoui, A., Mague, J. T., Baba, Y. F., Urrutigoîty, M. & Essassi, E. M. (2020). J. Mol. Struct. 1200, 127174.]; El Ghayati et al., 2021[El Ghayati, L., Sert, Y., Sebbar, N. K., Ramli, Y., Ahabchane, N. H., Talbaoui, A., Mague, J. T., El Ibrahimi, B., Taha, M. L., Essassi, E. M., Al-Zaqri, N. & Alsalme, A. (2021). J. Heterocycl. Chem. 58, 270-289.]; Patra & Saxena, 2010[Patra, A. K. & Saxena, J. (2010). Phytochemistry, 71, 1198-1222.]). Therefore, scientists have devoted considerable effort to finding efficient synthetic methods for a wide variety of heterocyclic compounds (Yeh et al., 2014[Yeh, P.-P., Daniels, D. S. B., Cordes, D. B., Slawin, A. M. Z. & Smith, A. D. (2014). Org. Lett. 16, 964-967.]; Liaw et al., 2015[Liaw, C.-C., Yang, Y.-L., Lin, C.-K., Lee, J.-C., Liao, W.-Y., Shen, C.-N., Sheu, J.-H. & Wu, S.-H. (2015). Org. Lett. 17, 2330-2333.]). Among these mol­ecules, pyrone derivatives constitute an important class in the heterocycle family since the pyrone structural unit is found in a wide variety of natural bioactive compounds (McGlacken & Fairlamb, 2005[McGlacken, G. P. & Fairlamb, I. J. S. (2005). Nat. Prod. Rep. 22, 369-385.]; Beckert et al., 1997[Beckert, C., Horn, C., Schnitzler, J. P., Lehning, A., Heller, W. & Veit, M. (1997). Phytochemistry, 44, 275-283.]) and also in a wide range of synthetic products with demonstrated efficacy in various fields such as the pharmaceutical and therapeutic field as cytotoxic (Calderón-Montaño et al., 2013[Calderón-Montaño, J. M., Burgos-Morón, E., Orta, M. L., Pastor, N., Austin, C. A., Mateos, S. & López-Lázaro, M. (2013). Toxicol. Lett. 222, 64-71.]), anti­tumor (Suzuki et al., 1997[Suzuki, K., Kuwahara, A., Yoshida, H., Fujita, S. I., Nishikiori, T. & Nakagawa, T. (1997). J. Antibiot. 50, 314-317.]; Kondoh et al., 1998[Kondoh, M., Usui, T., Kobayashi, S., Tsuchiya, K., Nishikawa, K., Nishikiori, T., Mayumi, T. & Osada, H. (1998). Cancer Lett. 126, 29-32.]) and anti­microbial agents (Fairlamb et al., 2004[Fairlamb, I. J. S., Marrison, L. R., Dickinson, J. M., Lu, F.-J. & Schmidt, J. P. (2004). Bioorg. Med. Chem. 12, 4285-4299.]). Another representative example of the pyrone class of compounds, kavalactones, possess many biological activities such as anti­tuberculosis, local anesthetic, anti­convulsant, analgesic, anti­malarial, and sedative activities (Altomare et al., 1997[Altomare, C., Perrone, G., Zonno, M. C., Polonelli, L. & Evidente, A. (1997). Cereal Res. Commun. 25, 349-351.]; Scherer, 1998[Scherer, J. (1998). Adv. Ther. 15, 261-269.]; Bilia et al., 2002[Bilia, A. R., Gallori, S. & Vincieri, F. F. (2002). Life Sci. 70, 2581-2597.]; Ernst, 2007[Ernst, E. (2007). Br. J. Clin. Pharmacol. 64, 415-417.]). In this work, we report the synthesis of (E)-3-[1-(2-hy­droxy­phenyl­anilino)ethyl­idene]-6-methyl­pyran-2,4-dione, (I)[link] (Fig. 1[link]) in good yield by the condensation of 2-amino­phenol and dehydroacetic acid along with its crystal and mol­ecular structures as well as the Hirshfeld surface analysis and the density functional theory (DFT) computational calculations carried out at the B3LYP/6–311G(d,p) levels.

[Scheme 1]
[Figure 1]
Figure 1
The asymmetric unit with the atom-labeling scheme and 50% probability ellipsoids. The intra­molecular hydrogen bonds are depicted by dashed lines.

2. Structural commentary

The asymmetric unit of the title compound comprises three independent mol­ecules, two of which (those containing O5 and O9) differ modestly in the orientations of the methyl groups while the third differs more in conformation from the other two (Fig. 1[link]). In each mol­ecule, the conformation is partially determined by an intra­molecular N—H⋯O hydrogen bond (Fig. 1[link] and Table 1[link]), which can be described as a resonance-assisted hydrogen bond (RAHB). With reference to the scheme below, in the three independent mol­ecules the bonds designated a are the same within experimental error. The same is true for each of the bonds labeled bf and the average values are a = 1.323 (3) Å, b = 1.431 (3) Å, c = 1.447 (3) Å, d = 1.433 (3) Å, e = 1.226 (3) Å and f = 1.254 (3) Å. These compare quite favorably with those found in mol­ecules with R = Me (Gilli et al., 2000[Gilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (2000). J. Am. Chem. Soc. 122, 10405-10417.]) and 4-XC6H4 (X = F, Cl, Br; Boulemche et al., 2019[Boulemche, H., Anak, B., Djedouani, A., Touzani, R., François, M., Fleutot, S. & Rabilloud, F. (2019). J. Mol. Struct. 1178, 606-616.]) and accompanied by in depth discussions of the RAHB.

[Scheme 2]

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯O7i 0.87 1.79 2.662 (2) 177
N1—H1A⋯O2 0.91 1.72 2.538 (3) 148
C8—H8C⋯O8ii 0.98 2.48 3.441 (3) 167
C11—H11⋯O6 0.95 2.57 3.253 (3) 129
O5—H5B⋯O11iii 0.87 1.83 2.689 (2) 170
N2—H2A⋯O6 0.91 1.71 2.539 (3) 151
O9—H9B⋯O3iv 0.87 1.82 2.691 (2) 179
N3—H3A⋯O10 0.91 1.71 2.532 (3) 148
C33—H33⋯O3iv 0.95 2.53 3.225 (3) 130
C36—H36B⋯O12v 0.98 2.56 3.531 (3) 173
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [-x+1, -y+1, -z+1]; (iv) [x-1, y, z]; (v) [-x+1, -y, -z+1].

3. Supra­molecular features

In the crystal, chains containing all three independent mol­ecules are formed by O1—H1B⋯O7, O5—H5B⋯O11 and O9—H9B⋯O3 hydrogen bonds repeating in that order (Table 1[link] and Fig. 2[link]). The chains are linked into corrugated layers parallel to the ([\overline{1}]03) plane by C8—H8C⋯O8, C33—H33⋯O3 and C36—H36B⋯O12 hydrogen bonds together with π inter­actions (Fig. 3[link]) between the carbonyl groups and the 2-hy­droxy­phenyl rings [O2⋯Cg2 = 3.4827 (18) Å, C10⋯Cg2 = 3.731 (2) Å, C10=O2⋯Cg2 = 91.41 (13)° (Cg2 is the centroid of the C1–C6 ring at −x + 3/2, y + [{1\over 2}], −z + [{1\over 2}]); O6⋯Cg6 = 3.451 (2) Å, C24⋯Cg6 = 3.694 (2) Å, C24=O6⋯Cg6 = 91.12 (14)° (Cg6 is the centroid of the C29-C34 ring at x, y, z); O10⋯Cg4 = 3.4110 (18) Å, C38⋯Cg4 = 3.656 (2) Å, C38=O10⋯Cg4 = 91.00 (13)° (Cg4 is the centroid of the C15⋯C20 ring at x, y − 1, z)]. The layers are held together by C11—H11C⋯O6 hydrogen bonds (Table 1[link] and Fig. 3[link]).

[Figure 2]
Figure 2
A portion of one layer viewed along the b-axis direction (left) and along the c-axis direction (right) with O—H⋯O and C—H⋯O hydrogen bonds depicted, respectively, by red and black dashed lines. Non-inter­acting H atoms are omitted for clarity.
[Figure 3]
Figure 3
Detail of the C=O⋯π(ring) stacking inter­actions (pink dashed lines) and the connection of stacks by C—H⋯O hydrogen bonding (black dashed lines). Non-inter­acting H atoms are omitted for clarity.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]) was carried out using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 4[link]), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colors indicate distances shorter (in close contact) or longer (distinct contact) than the sum of the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625-636.]). The shape-index of the HS is a tool to visualize ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 5[link] clearly suggests that there are ππ inter­actions in (I)[link]. The overall two-dimensional fingerprint plot, Fig. 6[link]a, and those delineated into H⋯H, H⋯O/O⋯H, H⋯C/C⋯H, C⋯C, C⋯O/O⋯C, O⋯O, N⋯O/O⋯N, H⋯N/N⋯H, N⋯N and C⋯N/N⋯C contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]) are illustrated in Fig. 6[link] bk, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H contributing 49.0% to the overall crystal packing, which is reflected in Fig. 6[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at de = di = 1.09 Å. The pair of spikes in in the fingerprint plot delineated into H⋯O/O⋯H contacts with a 28.3% contribution to the HS, Fig. 6[link]c, has a symmetric distribution of points with the tips at de + di = 1.69 Å. In the presence of C—H⋯π inter­actions, the pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts, Fig. 6[link]d, with a 10.9% contribution to the HS has the tips at de + di = 2.67 Å. The C⋯C contacts, Fig. 6[link]e, with a 6.2% contribution to the HS have a bullet-shaped distribution of points and the tip at de = di = 1.64 Å. The symmetric distrib­ution of points for the C⋯O/O⋯C contacts, Fig. 6[link]f, with 3.8% contribution to the HS has a pair of the scattered points of spikes with the tips at de + di = 3.11 Å. Finally, the contributions of the remaining O⋯O, N⋯O/O⋯N, H⋯N/N⋯H, N⋯N and C⋯N/N⋯C contacts (Fig. 6[link]gk) are smaller than 1.0% with low densities of points.

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound, plotted over dnorm in the range −0.7208 to 1.5611 a.u.
[Figure 5]
Figure 5
Hirshfeld surface of the title compound plotted over shape-index.
[Figure 6]
Figure 6
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯O/O⋯H, (d) H⋯C/C⋯H, (e) C⋯C, (f) C⋯O/O⋯C, (g) O⋯O, (h) N⋯O/O⋯N, (i) H⋯N/N⋯H, (j) N⋯N and (k) C⋯N/N⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯O/O⋯H and H⋯C/C⋯H inter­actions in Fig. 7[link]ac, respectively. The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯O/O⋯H and H⋯C/C⋯H inter­actions suggest that van der Waals inter­actions play the major role in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

[Figure 7]
Figure 7
The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯H, (b) H⋯O/O⋯H and (c) H⋯C/C⋯H inter­actions.

5. DFT calculations

The optimized structure of the title compound in the gas phase was generated theoretically via density functional theory (DFT) using the standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN 09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). The theoretical and experimental results are in good agreement (Table 2[link]). The highest-occupied mol­ecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied mol­ecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the mol­ecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the mol­ecular framework. EHOMO and ELUMO, which clarify the inevitable charge-exchange collaboration inside the mol­ecule, electronegativity (χ), hardness (η), potential (μ), electrophilicity (ω) and softness (σ) are recorded in Table 3[link]. The significance of η and σ is to evaluate both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 8[link]. The HOMO and LUMO are localized in the plane extending from the whole (E)-3-[1-(2-hy­droxy­phenyl­amino)­ethyl­idene]-6-methyl-3H-pyran-2,4-dione ring. The energy band gap [ΔE = ELUMO − EHOMO] of the mol­ecule is 4.54 eV, and the frontier mol­ecular orbital energies, EHOMO and ELUMO are −6.12 and −1.58 eV, respectively.

Table 2
Comparison of selected (X-ray and DFT) geometric data (Å, °)

Bonds/angles X-ray B3LYP/6–311G(d,p)
O1—C6 1.361 (3) 1.38765
O2—C10 1.253 (3) 1.255
O3—C13 1.228 (3) 1.265
O4—C12 1.381 (3) 1.395
N1—C7 1.326 (3) 1.349
O4—C13 1.389 (3) 1.409
N1—C1 1.420 (3) 1.427
C1—C2 1.392 (3) 1.401
C1—C6 1.397 (3) 1.399
C2—C3 1.373 (4) 1.388
C3—C4 1.393 (4) 1.399
C4—C5 1.384 (4) 1.398
C5—C6 1.390 (3) 1.399
C9—C13 1.435 (3) 1.445
     
C12—O4—C13 121.9 (2) 122.02
C7—N1—C1 126.7 (2) 127.03
C7—N1—H1A 111.6 114.24
C1—N1—H1A 121.7 122.06
C2—C1—C6 120.4 (2) 120.94
C2—C1—N1 121.4 (2) 121.36
C6—C1—N1 118.1 (2) 119.02
C3—C2—C1 120.1 (2) 120.60
C5—C4—C3 120.8 (2) 120.14
C4—C5—C6 119.8 (2) 120.18
N1—C7—C9 117.5 (2) 119.48
N1—C7—C8 119.1 (2) 122.41
O4—C12—C14 112.5 (2) 112.80
O3—C13—O4 114.2 (2) 114.26

Table 3
Calculated energies.

Mol­ecular energy Compound (I)
Total energy, TE (eV) −24399.73
EHOMO (eV) −6.12
ELUMO (eV) −1.58
Gap, ΔE/i> (eV) 4.53
Dipole moment, μ (Debye) 4.1895
Ionization potential, I (eV) 6.12
Electron affinity, A 1.58
Electronegativity, χ 3.85
Hardness, η 2.27
Electrophilicity index, ω 3.27
Softness, σ 0.44
Fraction of electron transferred, ΔN 0.69
[Figure 8]
Figure 8
The energy band gap of the title compound.

6. Mol­ecular electrostatic (MEP)

Mol­ecular electrostatic potential (MEP) was used to broadly predict reactive sites for electrophilic and nucleophilic attack in the title compound by B3LYP/6-31G optimized geometries using Gaussview software (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). The total electron density onto which the electrostatic potential surface has been mapped is shown in Fig. 9[link]. This figure gives a visual representation of the chemically active sites and comparative reactivity of atoms where red regions denote the most negative electrostatic potential, blue represents regions of the most positive electrostatic potential, and green represents the region of zero potential. The distribution favors the existence of the intra and inter­molecular C—H⋯O and N—H⋯O hydrogen bonding.

[Figure 9]
Figure 9
MEP surfaces mapped from the optimized geometries of the B3LYP/6–311 G calculation.

7. Database survey

A search of the Cambridge Structural Database (CSD, version 5.43, updated to March 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the fragment A (allowing R to be any substituent) yielded 66 hits of which 15 were deemed most similar to the title mol­ecule. These include mol­ecules with R = Me (FOTQOW; Kwocz et al., 2015[Kwocz, A., Kochel, A., Chudoba, D. & Filarowski, A. (2015). J. Mol. Struct. 1080, 52-56.]), p-anis (GOWYOG, Gilli et al., 2000[Gilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (2000). J. Am. Chem. Soc. 122, 10405-10417.]), 4-ClC6H4 (GOXLOU, GOXLOU02; Boulemche et al., 2019[Boulemche, H., Anak, B., Djedouani, A., Touzani, R., François, M., Fleutot, S. & Rabilloud, F. (2019). J. Mol. Struct. 1178, 606-616.]), 4-BrC6H4 (VOPLOC01; Boulemche et al., 2019[Boulemche, H., Anak, B., Djedouani, A., Touzani, R., François, M., Fleutot, S. & Rabilloud, F. (2019). J. Mol. Struct. 1178, 606-616.]), Et (HABNED; Xiao et al., 1993[Xiao, G., van der Helm, D., Hider, R. C. & Dobbin, P. S. (1993). Acta Cryst. C49, 980-982.]), H (HIVTUD; Seijas et al. 2014[Seijas, J. A., Crecente-Campo, J., Feás, X. & Vázquez-Tato, M. P. (2014). RSC Adv. 4, 17054-17059.]), Ph (PAEXPY; Gilli et al., 2000[Gilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (2000). J. Am. Chem. Soc. 122, 10405-10417.]), 4-H2NC6H4 (QADRIY; Užarević et al. 2010[Užarević, K., Rubčić, M., Stilinović, V., Kaitner, B. & Cindrić, M. (2010). J. Mol. Struct. 984, 232-239.]), 4-EtOC6H4 (QEQQEL; Djedouani et al., 2018[Djedouani, A., Anak, B., Tabti, S., Cleymand, F., François, M. & Fleutot, S. (2018). Acta Cryst. E74, 172-175.]), 4-MeOC6H4CH2 (XECGEV; Wang et al., 2022[Wang, T.-Y., Su, Y.-C., Ko, B.-T., Hsu, Y., Zeng, Y.-F., Hu, C.-H., Datta, A. & Huang, J.-H. (2022). Molecules, 22, 164. https://doi.org/10.3390/molecules27010164]), PhCH(Me) (XECGOF; Wang et al., 2022[Wang, T.-Y., Su, Y.-C., Ko, B.-T., Hsu, Y., Zeng, Y.-F., Hu, C.-H., Datta, A. & Huang, J.-H. (2022). Molecules, 22, 164. https://doi.org/10.3390/molecules27010164]) and 2-CH2C5H4N (XECHEW; Wang et al., 2022[Wang, T.-Y., Su, Y.-C., Ko, B.-T., Hsu, Y., Zeng, Y.-F., Hu, C.-H., Datta, A. & Huang, J.-H. (2022). Molecules, 22, 164. https://doi.org/10.3390/molecules27010164]). Although not all of these reports discuss the intra­molecular N—H⋯O hydrogen bonds in detail, it is clear that all have very similar metrical parameters to one another and to those in the title mol­ecule.

8. Synthesis and crystallization

To a solution of 2-amino­phenol (2.5 mmol) in 30 mL of ethanol, 2.5 mmol of de­hydro­acetic acid were added. The mixture was refluxed for 1 h. After cooling, the precipitate that formed was recrystallized from ethanol solution to give yellow crystals in 88% yield.

9. Refinement

Crystal, data collection and refinement details are presented in Table 4[link]. Hydrogen atoms were included as riding contributions in idealized positions (O—H = 0.87 Å, N—H = 0.91 Å, C—H = 0.95–0.98 Å) with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(O, C-meth­yl).

Table 4
Experimental details

Crystal data
Chemical formula C14H13NO4
Mr 259.25
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 11.6407 (4), 7.4412 (2), 42.2828 (12)
β (°) 93.038 (2)
V3) 3657.42 (19)
Z 12
Radiation type Cu Kα
μ (mm−1) 0.87
Crystal size (mm) 0.27 × 0.07 × 0.07
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.82, 0.94
No. of measured, independent and observed [I > 2σ(I)] reflections 30476, 7135, 5024
Rint 0.070
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.146, 1.04
No. of reflections 7135
No. of parameters 520
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.43
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(E)-3-[1-(2-Hydroxyphenylanilino)ethylidene]-6-methylpyran-2,4-dione top
Crystal data top
C14H13NO4F(000) = 1632
Mr = 259.25Dx = 1.412 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 11.6407 (4) ÅCell parameters from 9858 reflections
b = 7.4412 (2) Åθ = 4.0–72.3°
c = 42.2828 (12) ŵ = 0.87 mm1
β = 93.038 (2)°T = 150 K
V = 3657.42 (19) Å3Plate, colourless
Z = 120.27 × 0.07 × 0.07 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
7135 independent reflections
Radiation source: INCOATEC IµS micro–focus source5024 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.070
Detector resolution: 10.4167 pixels mm-1θmax = 72.4°, θmin = 3.9°
ω scansh = 1314
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 89
Tmin = 0.82, Tmax = 0.94l = 5251
30476 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: mixed
wR(F2) = 0.146H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0569P)2 + 2.375P]
where P = (Fo2 + 2Fc2)/3
7135 reflections(Δ/σ)max < 0.001
520 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.43 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen and to oxygen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 and O—H = 0.87 Å. All were included as riding contributions with isotropic displacementparameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.61999 (14)0.3312 (2)0.21067 (4)0.0333 (4)
H1B0.5822560.2903880.1938620.050*
O20.58889 (14)0.5447 (2)0.29280 (4)0.0341 (4)
O30.92249 (14)0.2912 (2)0.34495 (4)0.0357 (4)
O40.77660 (15)0.3859 (2)0.37143 (4)0.0383 (4)
N10.75437 (16)0.4599 (3)0.25901 (5)0.0266 (4)
H1A0.6825250.4954590.2637950.032*
C10.7928 (2)0.4732 (3)0.22776 (6)0.0265 (5)
C20.8949 (2)0.5605 (3)0.22159 (6)0.0297 (5)
H20.9413840.6104710.2385230.036*
C30.9286 (2)0.5746 (3)0.19105 (6)0.0352 (6)
H30.9989090.6323410.1868420.042*
C40.8590 (2)0.5037 (4)0.16627 (6)0.0361 (6)
H40.8831230.5113500.1451990.043*
C50.7553 (2)0.4223 (3)0.17201 (6)0.0329 (6)
H50.7075860.3771920.1548880.040*
C60.7211 (2)0.4068 (3)0.20290 (6)0.0279 (5)
C70.81395 (19)0.3983 (3)0.28431 (6)0.0254 (5)
C80.92598 (19)0.3054 (3)0.28010 (6)0.0300 (5)
H8A0.9355800.2848690.2575010.045*
H8B0.9266350.1898180.2912320.045*
H8C0.9891610.3804870.2888170.045*
C90.76450 (19)0.4190 (3)0.31430 (6)0.0269 (5)
C100.6510 (2)0.4963 (3)0.31640 (6)0.0285 (5)
C110.6080 (2)0.5161 (3)0.34727 (6)0.0291 (5)
H110.5348420.5700160.3493960.035*
C120.6685 (2)0.4605 (3)0.37321 (6)0.0334 (6)
C130.8268 (2)0.3612 (3)0.34269 (6)0.0299 (5)
C140.6307 (3)0.4684 (5)0.40622 (7)0.0560 (8)
H14A0.5512870.5124070.4060830.084*
H14B0.6810530.5500150.4187460.084*
H14C0.6347240.3479790.4156050.084*
O50.38904 (14)0.6512 (2)0.45296 (4)0.0318 (4)
H5B0.4420980.6891090.4666200.048*
O60.35346 (14)0.4346 (3)0.37210 (4)0.0377 (4)
O70.00724 (15)0.6953 (2)0.34030 (4)0.0374 (4)
O80.12052 (17)0.6280 (2)0.30612 (4)0.0418 (5)
N20.21857 (16)0.5135 (3)0.41527 (5)0.0271 (4)
H2A0.2825240.4767910.4056020.033*
C150.21047 (19)0.5018 (3)0.44869 (6)0.0264 (5)
C160.1203 (2)0.4113 (3)0.46191 (6)0.0298 (5)
H160.0615190.3577230.4485970.036*
C170.1160 (2)0.3992 (3)0.49450 (6)0.0331 (6)
H170.0546700.3374090.5037160.040*
C180.2028 (2)0.4786 (3)0.51356 (6)0.0350 (6)
H180.1986350.4744950.5359290.042*
C190.2955 (2)0.5638 (3)0.50054 (6)0.0318 (5)
H190.3552800.6142810.5139170.038*
C200.30016 (19)0.5747 (3)0.46783 (6)0.0272 (5)
C210.14059 (19)0.5724 (3)0.39396 (6)0.0261 (5)
C220.0313 (2)0.6523 (3)0.40471 (6)0.0321 (5)
H22A0.0376770.6698620.4277020.048*
H22B0.0329430.5710230.3992310.048*
H22C0.0175990.7683870.3942220.048*
C230.1680 (2)0.5631 (3)0.36137 (6)0.0283 (5)
C240.2774 (2)0.4919 (3)0.35259 (6)0.0320 (5)
C250.3014 (2)0.4926 (3)0.31974 (6)0.0346 (6)
H250.3719300.4440720.3132680.042*
C260.2256 (3)0.5610 (3)0.29800 (7)0.0407 (6)
C270.0887 (2)0.6317 (3)0.33735 (6)0.0321 (5)
C280.2375 (4)0.5756 (5)0.26316 (7)0.0691 (11)
H28A0.3166360.5460880.2581930.104*
H28B0.2196020.6986200.2562360.104*
H28C0.1842780.4917550.2521380.104*
O90.06273 (13)0.1503 (2)0.39114 (4)0.0304 (4)
H9B0.0174400.1971000.3763190.046*
O100.10567 (13)0.0837 (2)0.47274 (4)0.0321 (4)
O110.46131 (14)0.1935 (2)0.50481 (4)0.0326 (4)
O120.33818 (15)0.1056 (2)0.53955 (4)0.0347 (4)
N30.23507 (16)0.0148 (3)0.42968 (5)0.0263 (4)
H3A0.1712810.0270010.4388290.032*
C290.24459 (19)0.0095 (3)0.39632 (6)0.0260 (5)
C300.3378 (2)0.0727 (3)0.38300 (6)0.0304 (5)
H300.3968730.1254180.3963050.036*
C310.3448 (2)0.0780 (3)0.35050 (6)0.0341 (6)
H310.4089730.1325710.3413880.041*
C320.2569 (2)0.0025 (3)0.33125 (6)0.0356 (6)
H320.2622120.0035320.3089060.043*
C330.1620 (2)0.0739 (3)0.34423 (6)0.0321 (5)
H330.1017800.1225150.3308060.039*
C340.1546 (2)0.0799 (3)0.37690 (6)0.0271 (5)
C350.31273 (18)0.0743 (3)0.45111 (6)0.0249 (5)
C360.41921 (19)0.1640 (3)0.44030 (6)0.0289 (5)
H36A0.4094770.1905180.4176140.043*
H36B0.4853270.0839180.4441320.043*
H36C0.4323810.2761400.4520920.043*
C370.28864 (18)0.0540 (3)0.48381 (5)0.0241 (5)
C380.1816 (2)0.0267 (3)0.49249 (6)0.0278 (5)
C390.1615 (2)0.0380 (3)0.52530 (6)0.0296 (5)
H390.0932250.0942920.5316610.036*
C400.2361 (2)0.0283 (3)0.54747 (6)0.0319 (5)
C410.36795 (19)0.1218 (3)0.50804 (5)0.0255 (5)
C420.2234 (3)0.0326 (4)0.58228 (7)0.0551 (8)
H42A0.2167400.1574550.5893050.083*
H42B0.2909430.0230400.5930990.083*
H42C0.1541170.0339870.5873860.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0348 (9)0.0391 (10)0.0249 (9)0.0058 (7)0.0089 (7)0.0014 (7)
O20.0313 (9)0.0448 (10)0.0255 (9)0.0051 (7)0.0051 (7)0.0043 (7)
O30.0324 (9)0.0441 (10)0.0293 (10)0.0025 (8)0.0107 (7)0.0057 (8)
O40.0406 (10)0.0476 (11)0.0258 (9)0.0066 (8)0.0063 (8)0.0060 (8)
N10.0270 (10)0.0296 (10)0.0227 (10)0.0011 (8)0.0041 (8)0.0006 (8)
C10.0312 (12)0.0259 (12)0.0218 (12)0.0054 (9)0.0043 (9)0.0002 (9)
C20.0303 (12)0.0316 (13)0.0270 (13)0.0023 (9)0.0004 (10)0.0009 (10)
C30.0352 (13)0.0358 (14)0.0349 (15)0.0053 (10)0.0039 (11)0.0033 (11)
C40.0443 (14)0.0404 (14)0.0242 (13)0.0105 (11)0.0056 (11)0.0008 (11)
C50.0425 (14)0.0345 (13)0.0210 (12)0.0063 (10)0.0051 (11)0.0045 (10)
C60.0336 (12)0.0263 (12)0.0233 (12)0.0025 (9)0.0039 (10)0.0002 (9)
C70.0246 (11)0.0260 (11)0.0247 (12)0.0041 (9)0.0067 (9)0.0025 (9)
C80.0283 (12)0.0327 (13)0.0280 (13)0.0007 (9)0.0063 (10)0.0017 (10)
C90.0266 (11)0.0300 (12)0.0232 (12)0.0029 (9)0.0068 (9)0.0012 (9)
C100.0306 (12)0.0284 (12)0.0259 (13)0.0046 (9)0.0057 (10)0.0024 (10)
C110.0266 (11)0.0381 (13)0.0224 (12)0.0026 (10)0.0001 (9)0.0011 (10)
C120.0345 (13)0.0413 (14)0.0241 (13)0.0081 (11)0.0009 (10)0.0002 (10)
C130.0341 (13)0.0309 (12)0.0238 (12)0.0073 (10)0.0056 (10)0.0016 (10)
C140.066 (2)0.073 (2)0.0297 (16)0.0211 (17)0.0054 (15)0.0052 (15)
O50.0311 (9)0.0378 (9)0.0255 (9)0.0043 (7)0.0069 (7)0.0001 (7)
O60.0313 (9)0.0514 (11)0.0301 (10)0.0049 (8)0.0010 (8)0.0032 (8)
O70.0354 (10)0.0425 (10)0.0328 (10)0.0009 (8)0.0125 (8)0.0065 (8)
O80.0585 (12)0.0394 (10)0.0262 (10)0.0038 (9)0.0102 (9)0.0012 (8)
N20.0243 (9)0.0356 (11)0.0206 (10)0.0007 (8)0.0055 (8)0.0013 (8)
C150.0291 (12)0.0282 (12)0.0214 (12)0.0063 (9)0.0036 (9)0.0008 (9)
C160.0260 (11)0.0308 (13)0.0320 (14)0.0050 (9)0.0030 (10)0.0022 (10)
C170.0340 (13)0.0326 (13)0.0330 (14)0.0084 (10)0.0049 (11)0.0049 (10)
C180.0433 (14)0.0375 (14)0.0238 (13)0.0132 (11)0.0002 (11)0.0016 (10)
C190.0354 (13)0.0334 (13)0.0256 (13)0.0080 (10)0.0069 (10)0.0025 (10)
C200.0270 (11)0.0291 (12)0.0248 (12)0.0050 (9)0.0043 (9)0.0010 (9)
C210.0266 (11)0.0250 (11)0.0258 (13)0.0042 (9)0.0071 (10)0.0018 (9)
C220.0307 (12)0.0352 (13)0.0295 (13)0.0046 (10)0.0063 (10)0.0018 (10)
C230.0309 (12)0.0301 (12)0.0231 (12)0.0040 (9)0.0057 (10)0.0009 (9)
C240.0361 (13)0.0328 (13)0.0265 (13)0.0045 (10)0.0032 (10)0.0018 (10)
C250.0436 (14)0.0335 (13)0.0273 (13)0.0027 (11)0.0070 (11)0.0030 (10)
C260.0639 (18)0.0306 (14)0.0277 (14)0.0055 (12)0.0029 (13)0.0008 (11)
C270.0395 (14)0.0300 (13)0.0256 (13)0.0072 (10)0.0092 (10)0.0016 (10)
C280.125 (3)0.053 (2)0.0296 (17)0.000 (2)0.013 (2)0.0006 (14)
O90.0282 (8)0.0377 (9)0.0247 (9)0.0051 (7)0.0046 (7)0.0013 (7)
O100.0250 (8)0.0416 (10)0.0293 (9)0.0021 (7)0.0033 (7)0.0011 (7)
O110.0274 (8)0.0390 (9)0.0303 (9)0.0009 (7)0.0085 (7)0.0040 (7)
O120.0383 (9)0.0399 (10)0.0253 (9)0.0056 (7)0.0055 (7)0.0012 (7)
N30.0243 (9)0.0305 (10)0.0235 (10)0.0006 (8)0.0028 (8)0.0004 (8)
C290.0285 (11)0.0270 (12)0.0220 (12)0.0020 (9)0.0033 (9)0.0005 (9)
C300.0308 (12)0.0292 (12)0.0308 (14)0.0035 (9)0.0014 (10)0.0001 (10)
C310.0349 (13)0.0326 (13)0.0354 (15)0.0036 (10)0.0067 (11)0.0028 (11)
C320.0462 (15)0.0381 (14)0.0227 (13)0.0071 (11)0.0028 (11)0.0011 (10)
C330.0354 (13)0.0366 (13)0.0236 (13)0.0038 (10)0.0064 (10)0.0042 (10)
C340.0291 (12)0.0276 (12)0.0243 (12)0.0047 (9)0.0024 (10)0.0005 (9)
C350.0231 (11)0.0253 (11)0.0257 (12)0.0045 (8)0.0055 (9)0.0004 (9)
C360.0255 (11)0.0332 (13)0.0276 (13)0.0010 (9)0.0031 (10)0.0004 (10)
C370.0244 (11)0.0265 (11)0.0207 (12)0.0055 (9)0.0042 (9)0.0018 (9)
C380.0286 (12)0.0261 (12)0.0281 (13)0.0044 (9)0.0029 (10)0.0000 (9)
C390.0283 (12)0.0333 (13)0.0274 (13)0.0043 (9)0.0035 (10)0.0046 (10)
C400.0365 (13)0.0344 (13)0.0246 (13)0.0107 (10)0.0010 (10)0.0039 (10)
C410.0274 (12)0.0265 (12)0.0221 (12)0.0065 (9)0.0041 (9)0.0001 (9)
C420.079 (2)0.0551 (19)0.0318 (16)0.0109 (16)0.0088 (16)0.0042 (14)
Geometric parameters (Å, º) top
O1—C61.361 (3)C19—C201.389 (3)
O1—H1B0.8700C19—H190.9500
O2—C101.253 (3)C21—C231.432 (3)
O3—C131.228 (3)C21—C221.497 (3)
O4—C121.381 (3)C22—H22A0.9800
O4—C131.389 (3)C22—H22B0.9800
N1—C71.326 (3)C22—H22C0.9800
N1—C11.420 (3)C23—C271.430 (3)
N1—H1A0.9101C23—C241.445 (3)
C1—C21.392 (3)C24—C251.432 (4)
C1—C61.397 (3)C25—C261.341 (4)
C2—C31.373 (4)C25—H250.9500
C2—H20.9500C26—C281.491 (4)
C3—C41.393 (4)C28—H28A0.9800
C3—H30.9500C28—H28B0.9800
C4—C51.384 (4)C28—H28C0.9800
C4—H40.9500O9—C341.360 (3)
C5—C61.390 (3)O9—H9B0.8701
C5—H50.9500O10—C381.257 (3)
C7—C91.428 (3)O11—C411.225 (3)
C7—C81.495 (3)O12—C401.377 (3)
C8—H8A0.9800O12—C411.400 (3)
C8—H8B0.9800N3—C351.322 (3)
C8—H8C0.9800N3—C291.422 (3)
C9—C131.435 (3)N3—H3A0.9101
C9—C101.448 (3)C29—C301.390 (3)
C10—C111.430 (3)C29—C341.398 (3)
C11—C121.337 (3)C30—C311.382 (4)
C11—H110.9500C30—H300.9500
C12—C141.487 (4)C31—C321.392 (4)
C14—H14A0.9800C31—H310.9500
C14—H14B0.9800C32—C331.382 (4)
C14—H14C0.9800C32—H320.9500
O5—C201.363 (3)C33—C341.389 (3)
O5—H5B0.8700C33—H330.9500
O6—C241.253 (3)C35—C371.433 (3)
O7—C271.225 (3)C35—C361.500 (3)
O8—C261.381 (4)C36—H36A0.9800
O8—C271.391 (3)C36—H36B0.9800
N2—C211.320 (3)C36—H36C0.9800
N2—C151.424 (3)C37—C411.434 (3)
N2—H2A0.9101C37—C381.448 (3)
C15—C161.390 (3)C38—C391.422 (3)
C15—C201.396 (3)C39—C401.338 (4)
C16—C171.384 (4)C39—H390.9500
C16—H160.9500C40—C421.488 (4)
C17—C181.390 (4)C42—H42A0.9800
C17—H170.9500C42—H42B0.9800
C18—C191.391 (4)C42—H42C0.9800
C18—H180.9500
C6—O1—H1B110.7C21—C22—H22B109.5
C12—O4—C13121.9 (2)H22A—C22—H22B109.5
C7—N1—C1126.7 (2)C21—C22—H22C109.5
C7—N1—H1A111.6H22A—C22—H22C109.5
C1—N1—H1A121.7H22B—C22—H22C109.5
C2—C1—C6120.4 (2)C27—C23—C21119.8 (2)
C2—C1—N1121.4 (2)C27—C23—C24119.5 (2)
C6—C1—N1118.1 (2)C21—C23—C24120.6 (2)
C3—C2—C1120.1 (2)O6—C24—C25118.2 (2)
C3—C2—H2120.0O6—C24—C23123.9 (2)
C1—C2—H2120.0C25—C24—C23117.9 (2)
C2—C3—C4119.7 (2)C26—C25—C24120.7 (3)
C2—C3—H3120.2C26—C25—H25119.6
C4—C3—H3120.2C24—C25—H25119.6
C5—C4—C3120.8 (2)C25—C26—O8121.8 (2)
C5—C4—H4119.6C25—C26—C28127.8 (3)
C3—C4—H4119.6O8—C26—C28110.5 (3)
C4—C5—C6119.8 (2)O7—C27—O8113.2 (2)
C4—C5—H5120.1O7—C27—C23128.6 (2)
C6—C5—H5120.1O8—C27—C23118.2 (2)
O1—C6—C5123.7 (2)C26—C28—H28A109.5
O1—C6—C1117.0 (2)C26—C28—H28B109.5
C5—C6—C1119.3 (2)H28A—C28—H28B109.5
N1—C7—C9117.5 (2)C26—C28—H28C109.5
N1—C7—C8119.1 (2)H28A—C28—H28C109.5
C9—C7—C8123.4 (2)H28B—C28—H28C109.5
C7—C8—H8A109.5C34—O9—H9B107.2
C7—C8—H8B109.5C40—O12—C41121.86 (19)
H8A—C8—H8B109.5C35—N3—C29127.1 (2)
C7—C8—H8C109.5C35—N3—H3A111.5
H8A—C8—H8C109.5C29—N3—H3A121.4
H8B—C8—H8C109.5C30—C29—C34120.2 (2)
C7—C9—C13120.0 (2)C30—C29—N3121.2 (2)
C7—C9—C10120.6 (2)C34—C29—N3118.5 (2)
C13—C9—C10119.3 (2)C31—C30—C29120.3 (2)
O2—C10—C11118.8 (2)C31—C30—H30119.9
O2—C10—C9123.7 (2)C29—C30—H30119.9
C11—C10—C9117.5 (2)C30—C31—C32119.4 (2)
C12—C11—C10121.5 (2)C30—C31—H31120.3
C12—C11—H11119.2C32—C31—H31120.3
C10—C11—H11119.2C33—C32—C31120.8 (2)
C11—C12—O4121.4 (2)C33—C32—H32119.6
C11—C12—C14126.1 (3)C31—C32—H32119.6
O4—C12—C14112.5 (2)C32—C33—C34120.1 (2)
O3—C13—O4114.2 (2)C32—C33—H33120.0
O3—C13—C9127.4 (2)C34—C33—H33120.0
O4—C13—C9118.3 (2)O9—C34—C33123.0 (2)
C12—C14—H14A109.5O9—C34—C29117.8 (2)
C12—C14—H14B109.5C33—C34—C29119.2 (2)
H14A—C14—H14B109.5N3—C35—C37117.7 (2)
C12—C14—H14C109.5N3—C35—C36119.1 (2)
H14A—C14—H14C109.5C37—C35—C36123.2 (2)
H14B—C14—H14C109.5C35—C36—H36A109.5
C20—O5—H5B111.0C35—C36—H36B109.5
C26—O8—C27121.8 (2)H36A—C36—H36B109.5
C21—N2—C15128.2 (2)C35—C36—H36C109.5
C21—N2—H2A110.0H36A—C36—H36C109.5
C15—N2—H2A121.7H36B—C36—H36C109.5
C16—C15—C20120.8 (2)C35—C37—C41120.0 (2)
C16—C15—N2121.3 (2)C35—C37—C38120.2 (2)
C20—C15—N2117.7 (2)C41—C37—C38119.7 (2)
C17—C16—C15120.0 (2)O10—C38—C39118.8 (2)
C17—C16—H16120.0O10—C38—C37123.8 (2)
C15—C16—H16120.0C39—C38—C37117.4 (2)
C16—C17—C18119.1 (2)C40—C39—C38121.9 (2)
C16—C17—H17120.5C40—C39—H39119.1
C18—C17—H17120.5C38—C39—H39119.1
C17—C18—C19121.3 (2)C39—C40—O12121.3 (2)
C17—C18—H18119.3C39—C40—C42127.3 (3)
C19—C18—H18119.3O12—C40—C42111.4 (2)
C20—C19—C18119.5 (2)O11—C41—O12114.2 (2)
C20—C19—H19120.3O11—C41—C37128.0 (2)
C18—C19—H19120.3O12—C41—C37117.8 (2)
O5—C20—C19123.6 (2)C40—C42—H42A109.5
O5—C20—C15117.2 (2)C40—C42—H42B109.5
C19—C20—C15119.2 (2)H42A—C42—H42B109.5
N2—C21—C23117.4 (2)C40—C42—H42C109.5
N2—C21—C22119.3 (2)H42A—C42—H42C109.5
C23—C21—C22123.2 (2)H42B—C42—H42C109.5
C21—C22—H22A109.5
C7—N1—C1—C252.8 (3)C22—C21—C23—C24177.1 (2)
C7—N1—C1—C6131.6 (2)C27—C23—C24—O6177.6 (2)
C6—C1—C2—C33.1 (4)C21—C23—C24—O60.2 (4)
N1—C1—C2—C3178.6 (2)C27—C23—C24—C250.3 (3)
C1—C2—C3—C41.1 (4)C21—C23—C24—C25177.6 (2)
C2—C3—C4—C51.3 (4)O6—C24—C25—C26176.5 (2)
C3—C4—C5—C61.6 (4)C23—C24—C25—C261.5 (4)
C4—C5—C6—O1179.0 (2)C24—C25—C26—O82.0 (4)
C4—C5—C6—C10.3 (4)C24—C25—C26—C28178.8 (3)
C2—C1—C6—O1176.7 (2)C27—O8—C26—C251.4 (4)
N1—C1—C6—O11.1 (3)C27—O8—C26—C28179.3 (2)
C2—C1—C6—C52.7 (3)C26—O8—C27—O7180.0 (2)
N1—C1—C6—C5178.3 (2)C26—O8—C27—C230.2 (3)
C1—N1—C7—C9171.8 (2)C21—C23—C27—O73.3 (4)
C1—N1—C7—C810.5 (3)C24—C23—C27—O7179.4 (2)
N1—C7—C9—C13177.6 (2)C21—C23—C27—O8177.0 (2)
C8—C7—C9—C134.8 (3)C24—C23—C27—O80.3 (3)
N1—C7—C9—C103.0 (3)C35—N3—C29—C3053.3 (3)
C8—C7—C9—C10174.5 (2)C35—N3—C29—C34130.3 (2)
C7—C9—C10—O21.9 (4)C34—C29—C30—C313.0 (4)
C13—C9—C10—O2177.5 (2)N3—C29—C30—C31179.4 (2)
C7—C9—C10—C11178.8 (2)C29—C30—C31—C320.9 (4)
C13—C9—C10—C111.9 (3)C30—C31—C32—C331.4 (4)
O2—C10—C11—C12177.4 (2)C31—C32—C33—C341.5 (4)
C9—C10—C11—C122.0 (4)C32—C33—C34—O9178.8 (2)
C10—C11—C12—O41.9 (4)C32—C33—C34—C290.7 (4)
C10—C11—C12—C14177.7 (3)C30—C29—C34—O9176.6 (2)
C13—O4—C12—C111.5 (4)N3—C29—C34—O90.2 (3)
C13—O4—C12—C14178.1 (2)C30—C29—C34—C332.9 (3)
C12—O4—C13—O3179.1 (2)N3—C29—C34—C33179.3 (2)
C12—O4—C13—C91.3 (3)C29—N3—C35—C37175.2 (2)
C7—C9—C13—O30.4 (4)C29—N3—C35—C366.7 (3)
C10—C9—C13—O3178.9 (2)N3—C35—C37—C41177.8 (2)
C7—C9—C13—O4179.1 (2)C36—C35—C37—C410.3 (3)
C10—C9—C13—O41.6 (3)N3—C35—C37—C380.9 (3)
C21—N2—C15—C1654.1 (3)C36—C35—C37—C38177.2 (2)
C21—N2—C15—C20129.8 (2)C35—C37—C38—O100.6 (3)
C20—C15—C16—C172.8 (3)C41—C37—C38—O10177.4 (2)
N2—C15—C16—C17178.7 (2)C35—C37—C38—C39178.2 (2)
C15—C16—C17—C180.1 (3)C41—C37—C38—C391.3 (3)
C16—C17—C18—C192.4 (4)O10—C38—C39—C40176.6 (2)
C17—C18—C19—C201.9 (4)C37—C38—C39—C402.2 (3)
C18—C19—C20—O5178.1 (2)C38—C39—C40—O122.3 (4)
C18—C19—C20—C150.9 (3)C38—C39—C40—C42177.1 (2)
C16—C15—C20—O5175.9 (2)C41—O12—C40—C391.3 (3)
N2—C15—C20—O50.2 (3)C41—O12—C40—C42178.2 (2)
C16—C15—C20—C193.2 (3)C40—O12—C41—O11179.9 (2)
N2—C15—C20—C19179.3 (2)C40—O12—C41—C370.4 (3)
C15—N2—C21—C23177.3 (2)C35—C37—C41—O113.1 (4)
C15—N2—C21—C225.3 (4)C38—C37—C41—O11179.9 (2)
N2—C21—C23—C27177.5 (2)C35—C37—C41—O12177.30 (19)
C22—C21—C23—C270.2 (3)C38—C37—C41—O120.4 (3)
N2—C21—C23—C240.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O7i0.871.792.662 (2)177
N1—H1A···O20.911.722.538 (3)148
C8—H8C···O8ii0.982.483.441 (3)167
C11—H11···O60.952.573.253 (3)129
O5—H5B···O11iii0.871.832.689 (2)170
N2—H2A···O60.911.712.539 (3)151
O9—H9B···O3iv0.871.822.691 (2)179
N3—H3A···O100.911.712.532 (3)148
C33—H33···O3iv0.952.533.225 (3)130
C36—H36B···O12v0.982.563.531 (3)173
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x+1, y, z+1.
Comparison of selected (X-ray and DFT) geometric data (Å, °) top
Bonds/anglesX-rayB3LYP/6-311G(d,p)
O1—C61.361 (3)1.38765
O2—C101.253 (3)1.255
O3—C131.228 (3)1.265
O4—C121.381 (3)1.395
N1—C71.326 (3)1.349
O4—C131.389 (3)1.409
N1—C11.420 (3)1.427
C1—C21.392 (3)1.401
C1—C61.397 (3)1.399
C2—C31.373 (4)1.388
C3—C41.393 (4)1.399
C4—C51.384 (4)1.398
C5—C61.390 (3)1.399
C9—C131.435 (3)1.445
C12—O4—C13121.9 (2)122.02
C7—N1—C1126.7 (2)127.03
C7—N1—H1A111.6114.24
C1—N1—H1A121.7122.06
C2—C1—C6120.4 (2)120.94
C2—C1—N1121.4 (2)121.36
C6—C1—N1118.1 (2)119.02
C3—C2—C1120.1 (2)120.60
C5—C4—C3120.8 (2)120.14
C4—C5—C6119.8 (2)120.18
N1—C7—C9117.5 (2)119.48
N1—C7—C8119.1 (2)122.41
O4—C12—C14112.5 (2)112.80
O3—C13—O4114.2 (2)114.26
Calculated energies. top
Molecular energyCompound (I)
Total energy, TE (eV)-24399.73
EHOMO (eV)-6.12
ELUMO (eV)-1.58
Gap, ΔE/i> (eV)4.53
Dipole moment, µ (Debye)4.1895
Ionisation potential, I (eV)6.12
Electron affinity, A1.58
Electronegativity, χ3.85
Hardness, η2.27
Electrophilicity index, ω3.27
Softness, σ0.44
Fraction of electron transferred, ΔN0.69
 

Funding information

JTM acknowledged the NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationAltomare, C., Perrone, G., Zonno, M. C., Polonelli, L. & Evidente, A. (1997). Cereal Res. Commun. 25, 349–351.  CrossRef CAS Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBeckert, C., Horn, C., Schnitzler, J. P., Lehning, A., Heller, W. & Veit, M. (1997). Phytochemistry, 44, 275–283.  CrossRef CAS Google Scholar
First citationBilia, A. R., Gallori, S. & Vincieri, F. F. (2002). Life Sci. 70, 2581–2597.  CrossRef PubMed CAS Google Scholar
First citationBoulemche, H., Anak, B., Djedouani, A., Touzani, R., François, M., Fleutot, S. & Rabilloud, F. (2019). J. Mol. Struct. 1178, 606–616.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalderón-Montaño, J. M., Burgos-Morón, E., Orta, M. L., Pastor, N., Austin, C. A., Mateos, S. & López-Lázaro, M. (2013). Toxicol. Lett. 222, 64–71.  PubMed Google Scholar
First citationDjedouani, A., Anak, B., Tabti, S., Cleymand, F., François, M. & Fleutot, S. (2018). Acta Cryst. E74, 172–175.  CrossRef IUCr Journals Google Scholar
First citationEl Ghayati, L., Sert, Y., Sebbar, N. K., Ramli, Y., Ahabchane, N. H., Talbaoui, A., Mague, J. T., El Ibrahimi, B., Taha, M. L., Essassi, E. M., Al–Zaqri, N. & Alsalme, A. (2021). J. Heterocycl. Chem. 58, 270–289.  Web of Science CSD CrossRef CAS Google Scholar
First citationErnst, E. (2007). Br. J. Clin. Pharmacol. 64, 415–417.  CrossRef PubMed CAS Google Scholar
First citationFairlamb, I. J. S., Marrison, L. R., Dickinson, J. M., Lu, F.-J. & Schmidt, J. P. (2004). Bioorg. Med. Chem. 12, 4285–4299.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (2000). J. Am. Chem. Soc. 122, 10405–10417.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationKondoh, M., Usui, T., Kobayashi, S., Tsuchiya, K., Nishikawa, K., Nishikiori, T., Mayumi, T. & Osada, H. (1998). Cancer Lett. 126, 29–32.  CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKwocz, A., Kochel, A., Chudoba, D. & Filarowski, A. (2015). J. Mol. Struct. 1080, 52–56.  CrossRef CAS Google Scholar
First citationLiaw, C.-C., Yang, Y.-L., Lin, C.-K., Lee, J.-C., Liao, W.-Y., Shen, C.-N., Sheu, J.-H. & Wu, S.-H. (2015). Org. Lett. 17, 2330–2333.  CrossRef CAS PubMed Google Scholar
First citationMcGlacken, G. P. & Fairlamb, I. J. S. (2005). Nat. Prod. Rep. 22, 369–385.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationPatra, A. K. & Saxena, J. (2010). Phytochemistry, 71, 1198–1222.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSaber, A., Sebbar, N. K., Sert, Y., Alzaqri, N. L., Hökelek, T., El Ghayati, L., Talbaoui, A., Mague, J. T., Baba, Y. F., Urrutigoîty, M. & Essassi, E. M. (2020). J. Mol. Struct. 1200, 127174.  CrossRef Google Scholar
First citationScherer, J. (1998). Adv. Ther. 15, 261–269.  PubMed CAS Google Scholar
First citationSeijas, J. A., Crecente-Campo, J., Feás, X. & Vázquez-Tato, M. P. (2014). RSC Adv. 4, 17054–17059.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuzuki, K., Kuwahara, A., Yoshida, H., Fujita, S. I., Nishikiori, T. & Nakagawa, T. (1997). J. Antibiot. 50, 314–317.  CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationUžarević, K., Rubčić, M., Stilinović, V., Kaitner, B. & Cindrić, M. (2010). J. Mol. Struct. 984, 232–239.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWang, T.-Y., Su, Y.-C., Ko, B.-T., Hsu, Y., Zeng, Y.-F., Hu, C.-H., Datta, A. & Huang, J.-H. (2022). Molecules, 22, 164. https://doi.org/10.3390/molecules27010164  Google Scholar
First citationXiao, G., van der Helm, D., Hider, R. C. & Dobbin, P. S. (1993). Acta Cryst. C49, 980–982.  CrossRef CAS IUCr Journals Google Scholar
First citationYeh, P.-P., Daniels, D. S. B., Cordes, D. B., Slawin, A. M. Z. & Smith, A. D. (2014). Org. Lett. 16, 964–967.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds