research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 8-hex­yl­oxy-2-[(Z)-2-(naph­thal­en-2-yl)ethen­yl]quinoline

crossmark logo

aState Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong Province, People's Republic of China
*Correspondence e-mail: lz@sdu.edu.cn

Edited by A. S. Batsanov, University of Durham, England (Received 9 June 2022; accepted 30 June 2022; online 5 July 2022)

In the title mol­ecule, C27H27NO, the naphthalene and quinoline groups are both planar and subtend a dihedral angle of 15.47 (7)°. They are nearly coplanar with the cis-vinyl bridge and the hex­yloxy chain, which adopts an all-trans conformation, resulting in transannular bifurcated intra­molecular C—H⋯N,O contact. The crystal structure features γ-packing of the aromatic moieties, while the parallel packing of alkyl chains resembles that of alkanes.

1. Chemical context

In recent decades, π-conjugated organic mol­ecules with donor–acceptor architectures have received considerable attention regarding their diverse applications in organic optoelectronics and electronics, for example in non-linear optics and as organic semiconductors (Rao et al., 2010[Rao, M., Ponce Ortiz, R., Facchetti, A., Marks, T. J. & Narayan, K. S. (2010). J. Phys. Chem. C, 114, 20609-20613.]; Siram et al., 2011[Siram, R. B. K., Tandy, K., Horecha, M., Formanek, P., Stamm, M., Gevorgyan, S., Krebs, F. C., Kiriy, A., Meredith, P., Burn, P. L., Namdas, E. B. & Patil, S. (2011). J. Phys. Chem. C, 115, 14369-14376.]; Wang et al., 2015[Wang, L., Wang, W.-Y., Qiu, Y.-Q. & Lu, H.-Z. (2015). J. Phys. Chem. C, 119, 24965-24975.]; Zhang et al., 2015[Zhang, L., Cai, C., Li, K. F., Tam, H. L., Chan, K. L. & Cheah, K. W. (2015). Appl. Mater. Interfaces, 7, 24983-24986.]). As for vinyl-bridged donor–acceptor mol­ecules incorporating naphthalene as a donor and quinoline as an acceptor, the poor solubility (which hinders purification and processibility) is due to the good mol­ecular coplanarity (Ishikawa & Hashimoto, 2011[Ishikawa, M. & Hashimoto, Y. (2011). J. Med. Chem. 54, 1539-1554.]). The introduction of long substituents into quinoline or naphthalene cores is an effective method of solving this problem. Hex­yloxy-substituted donor–acceptor mol­ecules based on naphthalene and quinoline are a promising class owing to their satisfactory solubility. Moreover, the introduction of alkyl substituents of suitable length can not only increase the capacity for self-assembly, but also improve carrier mobility (Garnier et al., 1993[Garnier, F., Yassar, A., Hajlaoui, R., Horowitz, G., Deloffre, F., Servet, B., Ries, S. & Alnot, P. (1993). J. Am. Chem. Soc. 115, 8716-8721.]; Halik et al., 2003[Halik, M., Klauk, H., Zschieschang, U., Schmid, G., Ponomarenko, S., Kirchmeyer, S. & Weber, W. (2003). Adv. Mater. 15, 917-922.]). The title compound (1) was synthesized by a Wittig reaction and has been shown by single-crystal X-ray diffraction analysis to be a rare example of a stilbene-like donor–π–acceptor (DπA) type mol­ecule with a cis configuration, and the first structurally characterized cis-naphthalene-C=C-quinoline derivative. The DπA structure is known to favour high-intensity two-photon absorption (Lv, Xu, Cui, et al., 2021[Lv, X., Xu, L., Cui, W., Yu, Y., Zhou, H., Cang, M., Sun, Q., Pan, Y., Xu, Y., Hu, D., Xue, S. & Yang, W. (2021). Appl. Mater. Interfaces, 13, 970-980.]; Lv, Xu, Yu, et al., 2021[Lv, X., Xu, L., Yu, Y., Cui, W., Zhou, H., Cang, M., Sun, Q., Pan, Y., Xue, S. & Yang, W. (2021). Chem. Eng. J. 408, 127333.]).

[Scheme 1]

2. Structural commentary

Compound (1) crystallizes in the monoclinic centrosymmetric space group P21/n with one mol­ecule per asymmetric unit (Fig. 1[link]). The mol­ecule contains four fragments, which are planar within experimental error, viz. the quinoline (Cg1) and naphthalene (Cg2) systems, the C9—C16=C17—C18 bridge and the hex­yloxy chain, which adopts an all-trans conformation. Planes Cg1 and Cg2 subtend a dihedral angle of 15.46 (5)°, and angles of 8.34 (8) and 13.28 (10)°, respectively, with the bridge plane. The Cg1 and the hex­yloxy planes form an angle of 5.05 (4)°. Thus, all non-hydrogen atoms in the mol­ecule are roughly coplanar, with an r.m.s. deviation of 0.23 Å. The intra­molecular (transannular) contact C27—H27⋯N1 [C⋯N = 3.068 (3), C—H = 0.955 (16), H⋯N = 2.195 (16) Å, C—H⋯N = 151.4 (13)°; Table 1[link]], is much shorter than the standard van der Waals contacts C⋯N (3.31 Å) and H⋯N (2.59 Å) (Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]) and has a deceptive appearance of a rather strong intra­molecular hydrogen bond (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen bond in Structural Chemistry and Biology. Oxford University Press.]). However, the bond angles in the vinyl bridge, C9—C16=C17 of 136.9 (2)° and C16=C17—C18 of 137.4 (2)°, are much wider than in non-planar pyridyl-vinyl-benzene moieties without C—H⋯N inter­actions (see Database survey), indicating that the C27—H27⋯N1 contact may in fact be a repulsive, `collateral damage' type contact (Gavezzotti, 2010[Gavezzotti, A. (2010). Acta Cryst. B66, 396-406.]) and the bridge absorbs the resulting strain. On the contrary, the geometry of the longer transannular contact C27—H27⋯O1 [C⋯O = 3.633 (2), H⋯O = 2.809 (17) Å, C—H⋯O = 145.0 (12)°] corresponds to that of a weakly stabilizing hydrogen bond (Steiner, 1996[Steiner, T. (1996). Crystallogr. Rev. 6, 1-51.]; Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen bond in Structural Chemistry and Biology. Oxford University Press.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯N1i 0.97 2.68 3.600 (2) 159
C27—H27⋯O1 0.955 (16) 2.809 (17) 3.633 (2) 145.0 (12)
C27—H27⋯N1 0.955 (16) 2.195 (16) 3.068 (3) 151.4 (13)
Symmetry code: (i) [x, y-1, z].
[Figure 1]
Figure 1
Mol­ecular structure of compound (1) with atom labelling. Atomic displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, mol­ecules related by b translation pack face-to-face, forming strongly slanted stacks running along the b-axis direction (see Fig. 2[link]). However, ππ stacking between aromatic moieties (Hunter & Sanders, 1990[Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525-5534.]) is practically absent. Thus, although the quinoline (Cg1) π-systems are parallel, their overlap is marginal, involving only one carbon atom on either side, with a C10⋯C15(x, y + 1, z) contact distance of 3.540 (3) Å, while the naphthalene moiety overlaps with the alkyl chain of the next mol­ecule. Mol­ecules belonging to different stacks and related by a screw axis form a typical γ-motif (Loots & Barbour, 2012[Loots, L. & Barbour, L. J. (2012). CrystEngComm, 14, 300-304.]), their quinoline and naphthalene moieties contact at an inter­planar angle of 68.60 (5)°. The packing of the n-hexyl chains resembles that of pure alkanes, with a parallel arrangement of the chains, which adopt an all-trans conformation.

[Figure 2]
Figure 2
Crystal packing of compound (1). Hydrogen atoms are omitted for clarity.

4. Database survey

The Cambridge Crystallographic Database (CSD Version 5.42, November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains only two structures with a 2-[2-(naphthalen-2-yl)ethen­yl]quinoline moiety, viz. bis­{μ-2-[2-(2-naphth­yl)vin­yl]quinolin-8-olato}bis­(di­meth­yl sulfoxide)­bis­(iodo)­dicadmium(II) (GAQFIQ; Yuan et al., 2017[Yuan, G., Zhang, Q., Wang, Z., Song, K., Yuan, X., Wang, Y. & Zhang, L. (2017). Inorg. Chem. Front. 4, 764-772.]) and 2-[2-(6-meth­oxy­naphthalen-2-yl)vin­yl]-1-methyl­quinolin-1-ium iodide (LEWXAP; Tian et al., 2018[Tian, M., Sun, J., Dong, B. & Lin, W. (2018). Angew. Chem. Int. Ed. 57, 16506-16510.]). Both have a trans-configuration about the vinyl C=C bond, in contrast with the cis-configuration of mol­ecule (1), and adopt more planar conformation than the latter. In cis-2,5-bis­(2-methyl­but­oxy)- and cis-2,5-dibut­oxy-1,4-bis­[2-(pyrid-2-yl)vin­yl]benzene (SIXQOH and SIXQUN; Liu et al., 2014[Liu, Z., Zhang, R., Zhang, Q., Ding, H., Wang, C., Li, S., Zhou, H., Zhang, S., Wu, J. & Tian, Y. (2014). RSC Adv. 4, 2620-2623.]), the (pyrid-2-yl)vinyl­benzene fragments have a cis-configuration about the C=C bond, but in both structures the pyridyl N atom is oriented outward, not intra­annularly. Thus the pyridyl and benzene rings cannot be coplanar with the ethenyl bridge, due to the steric repulsion between ortho-H atoms, and are inclined to this bridge by 28–47° in a propeller-like fashion. The C—C=C bond angles in the vinyl bridge (129–131°) are narrower than in (1).

5. Synthesis and crystallization

All reactants and solvents were purchased and used without further purification. THF was dried by using Na in the presence of benzo­phenone. Bromo­(naphthalen-2-ylmeth­yl)tri­phenyl­phospho­rane (2) was synthesized according to the literature method of our research group (Luo et al., 2018[Luo, X. Y., Liu, Z., Zhang, B. J., Hua, W. M., Feng, Y., Li, L., Zhang, D. C. & Cui, D. L. (2018). ChemistrySelect, 3, 3426-3432.]). 1H NMR and 13C NMR spectra were obtained in CDCl3 with tetra­methyl­silane as inter­nal standard on a Bruker Advance spectrometer. HRMS spectra were obtained on a 650Q-TOF spectrograph (Agilent). The synthesis procedures for compounds (1)–(4) are shown in Fig. 3[link].

[Figure 3]
Figure 3
Synthetic procedures for (Z)-8-(hex­yloxy)-2-[2-(naphthalen-2-yl)ethen­yl]quinoline (1).

8-(Hex­yloxy)-2-methyl­quinoline (4): 8-hy­droxy-2-methyl-quinoline (477 mg, 3.0 mmol), 1-bromo­hexane (495 mg, 3.0 mmol), K2CO3 (207 mg, 1.5 mmol) and DMF (10 ml) were mixed in a flask and stirred for 16 h at room temperature. Then the organic phase was extracted with di­chloro­methane and water. After the solvent had been removed under reduced pressure, the residue was purified by flash chromatography on silica gel using ethyl acetate–petroleum ether (3:50) as the eluent to obtain a white grease (495 mg). Yield: 67.8%. 1H NMR (300 MHz, CDCl3, δ) 7.99 (d, J = 8.4 Hz, 1H), 7.40–7.26 (m, 3H), 7.03 (dd, J = 7.2 Hz, 1H), 4.23 (t, J = 7.2 Hz, 2H), 2.78 (s, 3H), 2.08–1.98 (m, 2H), 1.54–1.47 (m, 2H), 1.43–1.33 (m, 4H), 0.98–0.89 (m, 3H). 13C NMR (400 MHz, CDCl3, δ) 157.97, 154.37, 139.97, 135.99, 127.69, 125.64, 122.37, 119.23, 109.01, 69.13, 31.66, 28.82, 25.72, 25.68, 22.60, 14.02.

8-(Hex­yloxy)quinoline-2-carbaldehyde (3): Compound (4) (3 g, 12.3 mmol), SeO2 (1.74 g, 15.7 mmol) and 1,4-dioxane (300 ml) were mixed in a three-necked flask, heated to 368 K and stirred at this temperature for 24 h. The reaction solution was extracted with di­chloro­methane and water. After the solvent had been removed under reduced pressure, the residue was purified by flash chromatography on silica gel using ethyl acetate–petroleum ether (2:25) as the eluent, to obtain a yellow solid (1.63 g). Yield: 51.5%. 1H NMR (300 MHz, CDCl3, δ) 10.29 (d, J = 0.9 Hz, 1H), 8.26 (d, J = 8.4 Hz, 1H), 8.05 (d, J = 8.4 Hz, 1H), 7.60 (t, J = 8.1 Hz, 1H), 7.45–7.42 (m, 1H), 7.16–7.13 (m, 1H), 4.29 (t, J = 6.9 Hz, 2H), 2.11–2.01 (m, 2H), 1.62–1.53 (m, 2H), 1.47–1.35 (m, 4H), 0.95–0.90 (m, 3H). 13C NMR (400 MHz, CDCl3, d) 193.87, 155.68, 151.40, 140.15, 137.20, 131.39, 129.80, 119.33, 117.74, 109.69, 69.44, 31.61, 28.85, 25.69, 22.59, 14.03.

(Z)-8-(Hex­yloxy)-2-[2-(naphthalen-2-yl)ethen­yl]quinoline (1): bromo­(naphthalen-2-ylmeth­yl)tri­phenyl­phospho­rane (2) (2250 mg, 4.6 mmol) was dissolved in anhydrous tetra­hydro­furan (10 mL) under Ar and the solution was cooled to 273 K. KOtBu (1000 mg, 8.9 mmol) was added and stirred for 15 min. A solution of compound (3) (1290 mg, 5.0 mmol) in dry THF (10 mL) was added dropwise into the reaction mixture. After the addition, the mixture was stirred for 15 min. A few drops of water were added to quench the reaction. The mixture was extracted with CH2Cl2. The organic layer was washed with water three times and dried over anhydrous Na2SO4. The solvent was removed in vacuo and the residue was purified by flash chromatography on silica gel using di­chloro­methane–petroleum ether (1:10) as the eluent to afford a white solid (1500mg). Yield: 84.6%. Slow evaporation of compound (1) from di­chloro­methane/ethanol mixed solutions yielded light-yellow block-shaped crystals of (1). 1H NMR (300 MHz, CDCl3, δ) 8.08 (d, J = 8Hz, 1H), 7.97 (s, 1H), 7.85–7.80 (m, 5H), 7.73 (d, J = 8 Hz, 1H), 7.62–7.58 (m, 1H), 7.49–7.46 (m, 2H), 7.41–7.33 (m, 2H), 7.06 (d, J = 8 Hz, 1H), 4.26 (t, J = 8 Hz, 2H), 2.10–2.07 (m, 2H), 1.60–1.58 (m, 2H), 1.45–1.42 (m, 4H), 0.97–0.93 (m, 3H). 13C NMR (400 MHz, CDCl3, δ) 154.88, 140.44, 136.25, 134.33, 133.80, 133.65, 133.47, 130.11, 128.56, 128.45, 128.25, 127.92, 127.75, 126.40, 126.38, 126.29, 123.79, 119.47, 119.29, 109.41, 69.30, 31.75, 28.99, 25.81, 22.70, 14.12. HRMS (m/z): 382.2169 [M + H]+ (calculated for C27H27NO: 382.2126).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were refined using a riding model with C—H = 0.93–0.97 Å and Uiso(H) = 1.2–1.5Ueq(C), except for H27, which was refined in an isotropic approximation.

Table 2
Experimental details

Crystal data
Chemical formula C27H27NO
Mr 381.49
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 14.416 (3), 5.8569 (10), 25.354 (5)
β (°) 96.116 (3)
V3) 2128.6 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.20 × 0.19 × 0.13
 
Data collection
Diffractometer Bruker APEXIII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2017[Bruker (2017). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.667, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 23828, 4844, 2314
Rint 0.041
(sin θ/λ)max−1) 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.140, 1.00
No. of reflections 4844
No. of parameters 268
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.12, −0.11
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/4 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2014/4 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

8-Hexyloxy-2-[(Z)-2-(naphthalen-2-yl)ethenyl]quinoline top
Crystal data top
C27H27NOF(000) = 816
Mr = 381.49Dx = 1.190 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.416 (3) ÅCell parameters from 2641 reflections
b = 5.8569 (10) Åθ = 2.7–19.7°
c = 25.354 (5) ŵ = 0.07 mm1
β = 96.116 (3)°T = 293 K
V = 2128.6 (7) Å3Block, light yellow
Z = 40.20 × 0.19 × 0.13 mm
Data collection top
Bruker APEXIII CCD
diffractometer
4844 independent reflections
Radiation source: fine-focus sealed tube2314 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 27.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
h = 1818
Tmin = 0.667, Tmax = 0.746k = 77
23828 measured reflectionsl = 3232
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0588P)2 + 0.0643P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
4844 reflectionsΔρmax = 0.12 e Å3
268 parametersΔρmin = 0.11 e Å3
0 restraintsExtinction correction: SHELXL-2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.0047 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.66156 (7)0.62694 (18)0.57990 (4)0.0757 (3)
N10.75177 (10)0.9822 (2)0.62699 (6)0.0781 (4)
C10.22807 (16)0.0537 (4)0.58497 (10)0.1328 (8)
H1A0.2378450.0666130.6228960.199*
H1B0.1969350.1880670.5704090.199*
H1C0.1903300.0780590.5754700.199*
C20.31962 (13)0.0297 (3)0.56346 (8)0.0949 (6)
H2A0.3087340.0168940.5251570.114*
H2B0.3555940.1676150.5715480.114*
C30.37715 (11)0.1737 (3)0.58472 (7)0.0776 (5)
H3A0.3411480.3118440.5769510.093*
H3B0.3889160.1602650.6229820.093*
C40.46867 (11)0.1963 (2)0.56210 (6)0.0700 (4)
H4A0.4571150.2043720.5237520.084*
H4B0.5056720.0606130.5709840.084*
C50.52431 (10)0.4048 (3)0.58210 (6)0.0672 (4)
H5A0.4871900.5406740.5736570.081*
H5B0.5369890.3957930.6203870.081*
C60.61429 (10)0.4259 (3)0.55851 (6)0.0700 (4)
H6A0.6525770.2920100.5670380.084*
H6B0.6026560.4379270.5202200.084*
C70.74858 (12)0.6676 (3)0.56615 (7)0.0764 (5)
C80.79621 (12)0.8568 (3)0.59206 (7)0.0771 (5)
C90.79590 (14)1.1602 (3)0.65059 (8)0.0875 (6)
C160.75188 (17)1.3102 (3)0.68707 (9)0.0982 (7)
H160.7857231.4440590.6938530.118*
C170.67630 (17)1.3052 (3)0.71303 (8)0.0955 (6)
H170.6712671.4375420.7328060.115*
C180.59923 (13)1.1490 (3)0.71893 (7)0.0795 (5)
C190.53998 (16)1.2047 (3)0.75602 (8)0.0898 (6)
H190.5499771.3407650.7746550.108*
C200.46487 (15)1.0652 (3)0.76708 (7)0.0852 (5)
C250.44875 (13)0.8617 (3)0.73757 (7)0.0781 (5)
C240.37471 (15)0.7199 (3)0.74859 (8)0.0943 (6)
H240.3629380.5867090.7290630.113*
C230.32015 (16)0.7732 (4)0.78701 (9)0.1080 (7)
H230.2712080.6774190.7935510.130*
C100.88783 (17)1.2183 (4)0.64027 (10)0.1111 (8)
H100.9175811.3433700.6571550.133*
C110.93200 (16)1.0934 (5)0.60626 (12)0.1162 (8)
H110.9926191.1312670.6002050.139*
C120.88748 (14)0.9054 (4)0.57959 (9)0.0966 (6)
C130.92800 (16)0.7724 (5)0.54240 (12)0.1219 (8)
H130.9878300.8059540.5341410.146*
C140.88038 (17)0.5945 (5)0.51830 (10)0.1216 (8)
H140.9079090.5066820.4936770.146*
C150.79016 (13)0.5420 (3)0.53017 (8)0.0948 (6)
H150.7583160.4197850.5132600.114*
C210.40711 (18)1.1152 (4)0.80704 (9)0.1059 (7)
H210.4170291.2482230.8268830.127*
C220.33727 (18)0.9717 (5)0.81684 (9)0.1175 (7)
H220.3003821.0059010.8437230.141*
C260.50926 (13)0.8091 (3)0.69930 (7)0.0820 (5)
H260.4987610.6759170.6795900.098*
C270.58201 (15)0.9433 (3)0.68985 (8)0.0783 (5)
H270.6259 (11)0.906 (3)0.6655 (6)0.078 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0716 (7)0.0719 (7)0.0811 (7)0.0082 (6)0.0033 (6)0.0069 (6)
N10.0824 (10)0.0672 (9)0.0775 (9)0.0120 (8)0.0253 (8)0.0134 (8)
C10.1192 (17)0.1313 (19)0.153 (2)0.0422 (15)0.0367 (15)0.0115 (16)
C20.0978 (14)0.0809 (12)0.1056 (15)0.0184 (11)0.0093 (11)0.0081 (11)
C30.0849 (12)0.0691 (11)0.0775 (11)0.0055 (9)0.0029 (9)0.0039 (9)
C40.0801 (11)0.0598 (10)0.0680 (10)0.0002 (8)0.0028 (8)0.0060 (8)
C50.0724 (10)0.0637 (10)0.0628 (9)0.0000 (8)0.0062 (8)0.0066 (8)
C60.0739 (11)0.0623 (10)0.0699 (10)0.0014 (8)0.0101 (8)0.0044 (8)
C70.0658 (11)0.0789 (12)0.0820 (12)0.0020 (10)0.0041 (9)0.0127 (10)
C80.0677 (11)0.0755 (12)0.0823 (12)0.0057 (10)0.0185 (9)0.0214 (10)
C90.0927 (14)0.0760 (13)0.0842 (13)0.0220 (11)0.0344 (10)0.0202 (11)
C160.1201 (17)0.0702 (13)0.0933 (15)0.0284 (13)0.0399 (13)0.0032 (12)
C170.1251 (17)0.0646 (12)0.0876 (14)0.0103 (12)0.0314 (13)0.0030 (10)
C180.1019 (13)0.0532 (10)0.0750 (12)0.0031 (10)0.0297 (10)0.0013 (9)
C190.1233 (16)0.0561 (11)0.0825 (13)0.0169 (12)0.0246 (12)0.0110 (10)
C200.1076 (15)0.0621 (11)0.0804 (12)0.0226 (11)0.0151 (11)0.0041 (10)
C250.0958 (13)0.0607 (11)0.0734 (11)0.0165 (10)0.0107 (10)0.0039 (9)
C240.1070 (15)0.0751 (13)0.0999 (15)0.0079 (12)0.0072 (12)0.0066 (11)
C230.1192 (17)0.0947 (15)0.1114 (17)0.0172 (13)0.0181 (14)0.0045 (13)
C100.1001 (17)0.1007 (17)0.1222 (19)0.0364 (14)0.0362 (14)0.0227 (14)
C110.0784 (14)0.119 (2)0.144 (2)0.0257 (14)0.0191 (14)0.0392 (17)
C120.0756 (13)0.0937 (15)0.1155 (16)0.0120 (12)0.0124 (12)0.0281 (13)
C130.0795 (15)0.130 (2)0.158 (2)0.0036 (15)0.0198 (15)0.0251 (18)
C140.0943 (16)0.125 (2)0.149 (2)0.0034 (15)0.0317 (15)0.0036 (17)
C150.0820 (14)0.0948 (14)0.1071 (15)0.0011 (11)0.0069 (11)0.0023 (12)
C210.1363 (19)0.0830 (14)0.0953 (15)0.0325 (14)0.0017 (14)0.0196 (12)
C220.136 (2)0.1138 (19)0.1052 (17)0.0295 (16)0.0217 (14)0.0059 (15)
C260.1007 (13)0.0613 (11)0.0811 (12)0.0008 (10)0.0045 (10)0.0134 (9)
C270.0940 (14)0.0608 (11)0.0761 (12)0.0013 (10)0.0101 (10)0.0066 (9)
Geometric parameters (Å, º) top
O1—C61.4374 (17)C17—C181.459 (3)
O1—C71.3582 (19)C18—C191.375 (2)
N1—C81.362 (2)C18—C271.420 (2)
N1—C91.330 (2)C19—H190.9300
C1—H1A0.9600C19—C201.408 (3)
C1—H1B0.9600C20—C251.413 (2)
C1—H1C0.9600C20—C211.409 (3)
C1—C21.487 (3)C25—C241.404 (2)
C2—H2A0.9700C25—C261.406 (2)
C2—H2B0.9700C24—H240.9300
C2—C31.517 (2)C24—C231.352 (3)
C3—H3A0.9700C23—H230.9300
C3—H3B0.9700C23—C221.395 (3)
C3—C41.500 (2)C10—H100.9300
C4—H4A0.9700C10—C111.342 (3)
C4—H4B0.9700C11—H110.9300
C4—C51.518 (2)C11—C121.411 (3)
C5—H5A0.9700C12—C131.398 (3)
C5—H5B0.9700C13—H130.9300
C5—C61.490 (2)C13—C141.357 (3)
C6—H6A0.9700C14—H140.9300
C6—H6B0.9700C14—C151.400 (3)
C7—C81.427 (2)C15—H150.9300
C7—C151.360 (2)C21—H210.9300
C8—C121.415 (3)C21—C221.355 (3)
C9—C161.468 (3)C22—H220.9300
C9—C101.419 (3)C26—H260.9300
C16—H160.9300C26—C271.352 (2)
C16—C171.332 (3)C27—H270.955 (16)
C17—H170.9300
C7—O1—C6117.42 (13)C16—C17—C18137.4 (2)
C9—N1—C8118.67 (17)C18—C17—H17111.3
H1A—C1—H1B109.5C19—C18—C17117.15 (18)
H1A—C1—H1C109.5C19—C18—C27117.99 (19)
H1B—C1—H1C109.5C27—C18—C17124.9 (2)
C2—C1—H1A109.5C18—C19—H19118.5
C2—C1—H1B109.5C18—C19—C20123.04 (17)
C2—C1—H1C109.5C20—C19—H19118.5
C1—C2—H2A108.6C19—C20—C25118.06 (19)
C1—C2—H2B108.6C19—C20—C21123.2 (2)
C1—C2—C3114.63 (16)C21—C20—C25118.7 (2)
H2A—C2—H2B107.6C24—C25—C20118.62 (19)
C3—C2—H2A108.6C24—C25—C26123.26 (17)
C3—C2—H2B108.6C26—C25—C20118.10 (19)
C2—C3—H3A108.8C25—C24—H24119.3
C2—C3—H3B108.8C23—C24—C25121.3 (2)
H3A—C3—H3B107.7C23—C24—H24119.3
C4—C3—C2113.78 (14)C24—C23—H23120.0
C4—C3—H3A108.8C24—C23—C22120.0 (2)
C4—C3—H3B108.8C22—C23—H23120.0
C3—C4—H4A108.9C9—C10—H10119.9
C3—C4—H4B108.9C11—C10—C9120.3 (2)
C3—C4—C5113.47 (13)C11—C10—H10119.9
H4A—C4—H4B107.7C10—C11—H11119.6
C5—C4—H4A108.9C10—C11—C12120.7 (2)
C5—C4—H4B108.9C12—C11—H11119.6
C4—C5—H5A109.1C11—C12—C8115.9 (2)
C4—C5—H5B109.1C13—C12—C8120.3 (2)
H5A—C5—H5B107.8C13—C12—C11123.8 (2)
C6—C5—C4112.59 (13)C12—C13—H13119.9
C6—C5—H5A109.1C14—C13—C12120.2 (2)
C6—C5—H5B109.1C14—C13—H13119.9
O1—C6—C5108.33 (12)C13—C14—H14119.7
O1—C6—H6A110.0C13—C14—C15120.6 (2)
O1—C6—H6B110.0C15—C14—H14119.7
C5—C6—H6A110.0C7—C15—C14120.8 (2)
C5—C6—H6B110.0C7—C15—H15119.6
H6A—C6—H6B108.4C14—C15—H15119.6
O1—C7—C8115.49 (17)C20—C21—H21119.7
O1—C7—C15124.23 (17)C22—C21—C20120.7 (2)
C15—C7—C8120.28 (18)C22—C21—H21119.7
N1—C8—C7118.79 (16)C23—C22—H22119.7
N1—C8—C12123.38 (19)C21—C22—C23120.7 (2)
C12—C8—C7117.8 (2)C21—C22—H22119.7
N1—C9—C16122.30 (18)C25—C26—H26118.5
N1—C9—C10121.1 (2)C27—C26—C25123.01 (17)
C10—C9—C16116.6 (2)C27—C26—H26118.5
C9—C16—H16111.6C18—C27—H27115.8 (10)
C17—C16—C9136.87 (19)C26—C27—C18119.8 (2)
C17—C16—H16111.6C26—C27—H27124.3 (10)
C16—C17—H17111.3
O1—C7—C8—N11.1 (2)C17—C18—C27—C26178.78 (16)
O1—C7—C8—C12179.39 (14)C18—C19—C20—C251.6 (2)
O1—C7—C15—C14179.77 (16)C18—C19—C20—C21176.41 (16)
N1—C8—C12—C110.8 (2)C19—C18—C27—C260.2 (2)
N1—C8—C12—C13178.52 (17)C19—C20—C25—C24179.35 (15)
N1—C9—C16—C1713.5 (3)C19—C20—C25—C260.7 (2)
N1—C9—C10—C110.0 (3)C19—C20—C21—C22178.30 (18)
C1—C2—C3—C4179.36 (17)C20—C25—C24—C230.9 (3)
C2—C3—C4—C5177.97 (13)C20—C25—C26—C270.4 (2)
C3—C4—C5—C6179.12 (13)C20—C21—C22—C231.0 (3)
C4—C5—C6—O1179.87 (11)C25—C20—C21—C220.3 (3)
C6—O1—C7—C8174.45 (12)C25—C24—C23—C220.4 (3)
C6—O1—C7—C155.9 (2)C25—C26—C27—C180.7 (3)
C7—O1—C6—C5175.35 (12)C24—C25—C26—C27178.17 (16)
C7—C8—C12—C11179.80 (15)C24—C23—C22—C211.4 (3)
C7—C8—C12—C130.9 (3)C10—C9—C16—C17168.3 (2)
C8—N1—C9—C16177.45 (15)C10—C11—C12—C81.4 (3)
C8—N1—C9—C100.7 (2)C10—C11—C12—C13177.8 (2)
C8—C7—C15—C140.6 (3)C11—C12—C13—C14179.8 (2)
C8—C12—C13—C140.5 (3)C12—C13—C14—C150.2 (4)
C9—N1—C8—C7179.17 (13)C13—C14—C15—C70.2 (3)
C9—N1—C8—C120.3 (2)C15—C7—C8—N1178.53 (15)
C9—C16—C17—C180.6 (4)C15—C7—C8—C120.9 (2)
C9—C10—C11—C121.1 (3)C21—C20—C25—C241.2 (2)
C16—C9—C10—C11178.2 (2)C21—C20—C25—C26177.45 (15)
C16—C17—C18—C19172.5 (2)C26—C25—C24—C23177.68 (17)
C16—C17—C18—C276.5 (3)C27—C18—C19—C201.4 (2)
C17—C18—C19—C20177.69 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···N1i0.972.683.600 (2)159
C27—H27···O10.955 (16)2.809 (17)3.633 (2)145.0 (12)
C27—H27···N10.955 (16)2.195 (16)3.068 (3)151.4 (13)
Symmetry code: (i) x, y1, z.
 

Funding information

The research was supported by the Natural Science Foundation of Shandong Province (No. ZR2020ME071).

References

First citationBruker (2017). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen bond in Structural Chemistry and Biology. Oxford University Press.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarnier, F., Yassar, A., Hajlaoui, R., Horowitz, G., Deloffre, F., Servet, B., Ries, S. & Alnot, P. (1993). J. Am. Chem. Soc. 115, 8716–8721.  CSD CrossRef CAS Web of Science Google Scholar
First citationGavezzotti, A. (2010). Acta Cryst. B66, 396–406.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHalik, M., Klauk, H., Zschieschang, U., Schmid, G., Ponomarenko, S., Kirchmeyer, S. & Weber, W. (2003). Adv. Mater. 15, 917–922.  Web of Science CrossRef CAS Google Scholar
First citationHunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525–5534.  CrossRef CAS Web of Science Google Scholar
First citationIshikawa, M. & Hashimoto, Y. (2011). J. Med. Chem. 54, 1539–1554.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLiu, Z., Zhang, R., Zhang, Q., Ding, H., Wang, C., Li, S., Zhou, H., Zhang, S., Wu, J. & Tian, Y. (2014). RSC Adv. 4, 2620–2623.  Web of Science CSD CrossRef CAS Google Scholar
First citationLoots, L. & Barbour, L. J. (2012). CrystEngComm, 14, 300–304.  Web of Science CrossRef CAS Google Scholar
First citationLuo, X. Y., Liu, Z., Zhang, B. J., Hua, W. M., Feng, Y., Li, L., Zhang, D. C. & Cui, D. L. (2018). ChemistrySelect, 3, 3426–3432.  Web of Science CSD CrossRef CAS Google Scholar
First citationLv, X., Xu, L., Cui, W., Yu, Y., Zhou, H., Cang, M., Sun, Q., Pan, Y., Xu, Y., Hu, D., Xue, S. & Yang, W. (2021). Appl. Mater. Interfaces, 13, 970–980.  Web of Science CrossRef CAS Google Scholar
First citationLv, X., Xu, L., Yu, Y., Cui, W., Zhou, H., Cang, M., Sun, Q., Pan, Y., Xue, S. & Yang, W. (2021). Chem. Eng. J. 408, 127333.  Web of Science CrossRef Google Scholar
First citationRao, M., Ponce Ortiz, R., Facchetti, A., Marks, T. J. & Narayan, K. S. (2010). J. Phys. Chem. C, 114, 20609–20613.  Web of Science CrossRef CAS Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiram, R. B. K., Tandy, K., Horecha, M., Formanek, P., Stamm, M., Gevorgyan, S., Krebs, F. C., Kiriy, A., Meredith, P., Burn, P. L., Namdas, E. B. & Patil, S. (2011). J. Phys. Chem. C, 115, 14369–14376.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteiner, T. (1996). Crystallogr. Rev. 6, 1–51.  CrossRef CAS Google Scholar
First citationTian, M., Sun, J., Dong, B. & Lin, W. (2018). Angew. Chem. Int. Ed. 57, 16506–16510.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, L., Wang, W.-Y., Qiu, Y.-Q. & Lu, H.-Z. (2015). J. Phys. Chem. C, 119, 24965–24975.  Web of Science CrossRef CAS Google Scholar
First citationYuan, G., Zhang, Q., Wang, Z., Song, K., Yuan, X., Wang, Y. & Zhang, L. (2017). Inorg. Chem. Front. 4, 764–772.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, L., Cai, C., Li, K. F., Tam, H. L., Chan, K. L. & Cheah, K. W. (2015). Appl. Mater. Interfaces, 7, 24983–24986.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds