research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, X-ray diffraction study, analysis of inter­molecular inter­actions and mol­ecular docking of ethyl 1-(3-tosyl­quinolin-4-yl)piperidine-4-carboxyl­ate

crossmark logo

aSSI Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave, Kharkov 61001, Ukraine, bThe National University of Pharmacy, 53 Pushkinska St., Kharkiv 61002, Ukraine, and cV. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61077, Ukraine
*Correspondence e-mail: vakslerea@gmail.com

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 23 June 2022; accepted 30 July 2022; online 9 August 2022)

The title compound, C24H26N2O4S, can be obtained via two synthetic routes. According to our investigations, the most suitable way is by the reaction of ethyl 2-bromo­acetate with sodium tosyl­sulfinate in dry DMF. It was crystallized from methanol into the monoclinic P21/n space group with a single mol­ecule in the asymmetric unit. Hirshfeld surface analysis was performed to define the hydrogen bonds and analysis of the two-dimensional fingerprint plots was used to distinguish the different types of inter­actions. Two very weak non-classical C—H⋯O hydrogen bonds were found and the contributions of short contacts to the Hirshfeld surface were determined. Mol­ecules form an isotropic network of inter­molecular inter­actions according to an analysis of the pairwise inter­action energies. A mol­ecular docking study evaluated the inter­actions in the title compound with the active centers of macromolecules of bacterial targets (Staphylococcus aureus DNA Gyrase PDB ID: 2XCR, Mycobacterium tuberculosis topoisomerase II PDB ID: 5BTL, Streptococcus pneumoniae topoisomerase IV PDB ID: 4KPF) and revealed high affinity towards them that exceeded the reference anti­biotics of the fluoro­quinolone group.

1. Chemical context

Quinolone-based compounds have become strikingly conspicuous in recent years. Generally, quinolone derivatives can possess anti­bacterial, anti­parasitic and anti­viral (including malaria, hepatitis, HIV, herpes), anti­cancer and immunosuppressant activities. They can be used in the treatment of obesity, diabetes and neurodegenerative diseases (Horta et al., 2017[Horta, P., Secrieru, A., Coninckx, A. & Cristiano, M. L. S. (2017). OMCIJ, 4, 91-93.]). Thus, in this work, we decided to broaden the scope of the quinolone scaffolds utilized in our previous works (Bylov et al., 1999[Bylov, I. E., Bilokin, Y. V. & Kovalenko, S. M. (1999). Heterocycl. Comm. 5, 3, 281-284.]; Silin et al., 2004[Silin, O. V., Savchenko, T. I., Kovalenko, S. M., Nikitchenko, V. M. & Ivachtchenko, A. V. (2004). Heterocycles, 63, 8, 1883-1890.]; Savchenko et al., 2007[Savchenko, T. I., Silin, O. V., Kovalenko, S. M., Musatov, V. I., Nikitchenko, V. M. & Ivachtchenko, A. V. (2007). Synth. Commun. 37, 8, 1321-1330.]; Hryhoriv et al., 2021[Hryhoriv, H., Mariutsa, I., Kovalenko, S., Sidorenko, L., Perekhoda, L., Filimonova, N., Geyderikh, O. & Georgiyants, V. (2021). ScienceRise Pharm. Sci. 5, 33, 4-11.]) toward a promising new class of aryl­sulfonyl­quinolin derivatives, namely ethyl 1-(3-tosyl­quinolin-4-yl)piperidine-4-carboxyl­ate.

Effective synthetic approaches toward these compounds are versatile. The most notable among them are green chemistry methods and microwave-assisted synthesis (Dhiman et al., 2019[Dhiman, P., Arora, N., Thanikachalam, P. V. & Monga, V. (2019). Bioorg. Chem. 92, 103291.]; Atechian et al. 2007[Atechian, S., Nock, N., Norcross, R. D., Ratni, H., Thomas, A. W., Verron, J. & Masciadri, R. (2007). Tetrahedron, 63, 2811-2823.]). However, to date, very few data are available for aryl­sulfonyl­quinolins. Kang et al. (2016[Kang, S., Yoon, H. & Lee, Y. (2016). Chem. Lett. 45, 1356-1358.]) described a straightforward and mild one-pot method to synthesize 3-(phenyl­sulfon­yl)-2,3-di­hydro-4(1H)quinolino­nes via a Cu-catalyzed aza-Michael addition/base-mediated cycliz­ation reaction. Other researchers (Ivachtchenko et al. 2012a[Ivachtchenko, A. V., Golovina, E. S., Kadieva, M. G., Kysil, V. M., Mitkin, O. D., Vorobiev, A. A. & Okun, I. (2012a). Bioorg. Med. Chem. Lett. 22, 4273-4280.],b[Ivachtchenko, A. V., Mitkin, O. D. & Kadieva, M. G. (2012b). Patent WO/2012/087182.]) have reported new 3-(phenyl­sulfon­yl)quinoline derivatives as serotonin 5-HT receptor antagonists, performed mol­ecular docking studies, and proposed them for preventing and treating central nervous system (CNS) diseases such as psychiatric disorders, schizophrenia, anxiety disorders, and obesity. The preparation method for 3-methane­sulfonyl­quinolines such as GABA-B enhancers was patented by Malherbe et al. (2006[Malherbe, P., Masciadri, R., Norcross, R. D. & Prinssen, E. (2006). Patent WO/2006/128802.]). In vivo investigations of 4-amino-3-aryl­sulfoquinolin derivatives as metabotropic glutamate 5(mGlu) receptor negative allosteric modulators have shown efficacy for treating anxiety and depression (Galambos et al., 2017[Galambos, J., Bielik, A., Wágner, G., Domány, G., Kóti, J., Béni, Z., Szigetvári, Á., Sánta, Z., Orgován, Z., Bobok, A., Kiss, B., Mikó-Bakk, M. L., Vastag, M., Sághy, K., Krasavin, M., Gál, K., Greiner, I., Szombathelyi, Z. & Keserű, G. M. (2017). Eur. J. Med. Chem. 133, 240-254.]).

[Scheme 1]

In the present paper, we study an optimal synthetic route for ethyl 1-(3-tosyl­quinolin-4-yl)piperidine-4-carboxyl­ate and report its mol­ecular and crystal structures as well as potential biological properties.

2. Structural commentary

The asymmetric unit contains one mol­ecule of ethyl 1-(3-tosyl­quinolin-4-yl)piperidine-4-carboxyl­ate (Fig. 1[link]). The presence of two bulky substituents in vicinal positions at the pyridine ring results in a rotation of the piperidine ring with respect to the bicyclic fragment [the dihedral angle between their mean planes is 76.83 (13)°]. The piperidine ring adopts a chair conformation with puckering parameters (Zefirov et al., 1990[Zefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147-158.]) S = 1.16 (1), Θ = 0.6 (1)°, Ψ = 66.2 (12)°. The atoms N2 and C19 deviate from the mean plane of the other ring atoms by −0.640 (2) and 0.675 (3) Å, respectively. The atom N2 has a pyramidal configuration with a bond-angle sum of 345.4°. The ethyl ester group is located in an equatorial position with respect to the piperidine ring [the C17—C18—C19—C22 torsion angle is 179.8 (2)°]. It is disordered over the two positions (A and B) due to rotation around the C19—C22 bond with an occupancy ratio of 0.562 (12):0.438 (12). The ethyl group is almost orthogonal to the carb­oxy­lic fragment in conformer A and is located in the inter­mediate position between +ac and ap in conformer B [the C22—O4—C23—C24 torsion angle is −98.1 (14) and 150 (2)° in conformers A and B, respectively]. The tolyl substituent is located in a -sc position relative to the endocyclic C7—C8 bond [C7—C8—S1—C10 = −71.5 (3)°] and rotated about the C8—S1 bond [C8—S1—C10—C11 = 124.9 (2)°].

[Figure 1]
Figure 1
Mol­ecular structure of the title compound. Displacement ellipsoids are shown at the 50% probability level.

3. Supra­molecular features

Regarding the van der Waals radii proposed in Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 3, 441-451.]) for all atoms except for the hydrogens (Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 18, 7384-7391.]), the analysis of inter­molecular inter­actions revealed two very weak non-classical hydrogen bonds, C4—H4⋯O3A and C5—H5⋯O2 (Table 1[link]). The first is formed by an oxygen atom of the carb­oxy­lic group and a hydrogen atom of the benzene ring (Fig. 2[link]a). An oxygen atom of the sulfonyl group is involved in the second hydrogen bond, similarly with a hydrogen atom of the benzene ring (Fig. 2[link]b). Connected with the initial mol­ecule by the symmetry operations x − [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}] and x + [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}], these hydrogen bonds are affected by both twofold screw axes <010> and glide plane family {010}. On their own, these hydrogen bonds form the chains in the [10[\overline{1}]] and [101] directions, respectively.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O3Ai 0.93 2.52 3.421 (16) 163
C5—H5⋯O2ii 0.93 2.58 3.415 (4) 149
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing of the chains built with the hydrogen bonds C4—H4⋯O3A (a) and C5—H5⋯O2 (b) in cyan. Projection in the [010] direction.

4. Hirshfeld surface analysis

The complementation of the Hirshfeld surface, i.e. the surface splitting the regions of crystal into mol­ecular domains within the ratio of promolecular to procrystal electronic density, with geometric parameters, especially the normalized contact distance (dnorm), implemented in CrystalExplorer17 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) allowed us to distinguish the inter­molecular inter­actions in a more thorough way. The standard `high' surface resolution was used. Two regions with dnorm significantly lower than the van der Waals contact length (in red) emerge on the surface (Fig. 3[link]a). Both of them concern the C4—H4⋯O3A hydrogen bond and show it to be the sole directed inter­action in the crystal. The chains built up by these hydrogen bonds are parallel to the [[\overline{1}]01] direction. However, they cannot be considered as a structural motif because the aforementioned hydrogen bonds are very weak, exist solely for conformer A and one of them was not revealed for conformer B. At the same time, the short contact C24B⋯O1 appears just for conformer B (Fig. 3[link]b). Differences in the distribution of dnorm for the two conformers and so the short contacts and hydrogen bonds can be easily be seen from the two projections (top and bottom) shown in Fig. 3[link].

[Figure 3]
Figure 3
Distribution of the value dnorm onto the Hirshfeld surfaces of the conformers A (a) and B (b).

In addition to the Hirshfeld surface analysis, the 2D fingerprint plots were computed for ethyl 1-(3-tosyl­quinolin-4-yl)piperidine-4-carboxyl­ate. The contributions of the three types of inter­molecular contacts get to areas with the values of the inter­nal and external distances (di and de) below the van der Waals radii of the corresponding atoms (Fig. 4[link]). These contributions belong to the short O⋯H, C⋯H and H⋯H contacts. They are 20.2% and 19.9% of the Hirshfeld surface area for H⋯O/O⋯H for the disorder components A and B, respectively, 16.7% and 17.7%, respectively, for C⋯H/H⋯C and 54.3% for H⋯H. The differences for the disordered positions A and B can be explained by the rearrangement of the inter­actions network described above.

[Figure 4]
Figure 4
Contributions of the O⋯H/H⋯O (a), C⋯H/H⋯C (b) and H⋯H (c) contacts to the fingerprint plots built using the Hirsfeld surfaces of conformer A.

5. Analysis of the pairwise inter­action energies

The strength of the non-classical C—H⋯O hydrogen bonds is often underestimated, as mentioned in Sutor (1962[Sutor, D. J. (1962). Nature, 195, 68-69.]) and Desiraju (1996[Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441-449.], 2005[Desiraju, G. R. (2005). ChemComm, 24, 2995-3001.]). Thus, to extend the knowledge of the supra­molecular structure of the title compound and to prove the small contribution of these inter­actions to the structure, analysis of the pairwise inter­action energies was performed as proposed by Konovalova et al. (2010[Konovalova, I. S., Shishkina, S. V., Paponov, B. V. & Shishkin, O. V. (2010). CrystEngComm, 12, 3, 909-916.]) and Shishkin et al. (2012[Shishkin, O. V., Dyakonenko, V. V. & Maleev, A. V. (2012). CrystEngComm, 14, 5, 1795-1804.]). The procedure was implied in a very similar way to the one described in detail in Vaksler et al. (2021[Vaksler, Ye. A., Idrissi, A., Urzhuntseva, V. V. & Shishkina, S. V. (2021). Cryst. Growth Des. 21, 4, 2176-2186.]). The single mol­ecule was considered as a building unit. The inter­actions in the mol­ecular pairs containing the aforementioned hydrogen bonds are −7.4 and −10.5 kcal mol−1 for conformer A and −3.2 and −11.7 kcal mol−1 for conformer B (data given for the C24B⋯O1 short contact and the C5—H5⋯O2 hydrogen bond). These values are comparable to those for the non-directed inter­actions in other pairs of neighboring mol­ecules. In addition to this, the inter­action energy decomposition was performed using an `accurate' energy model in CrystalExplorer17 for the mol­ecular pairs with C—H⋯O hydrogen bonds. It showed that the sum of electrostatic and polarization components is rather low in comparison with the dispersion and repulsion terms (−1.0 versus −7.5 and 2.6 kcal mol−1 for the C4—H4⋯O3A hydrogen bond, −4.6 versus −9.7 and 4.2 kcal mol−1 for C5—H5⋯O2) implying minimal contributions of hydrogen bonds in general bonding. Despite the apparent layering (Fig. 5[link]a) parallel to the (010) plane, the energetic structure of the title compound can be considered isotropic, which can easily be seen from the energy vector diagrams (Fig. 5[link]b). The total energy of inter­action between a basic mol­ecule and its first coordination sphere is −95.8 and −95.5 kcal mol−1 for conformers A and B, respectively.

[Figure 5]
Figure 5
Crystal packing of the mol­ecules (a) and energy vector diagrams (b). Projection in the [100] direction.

6. Database survey

A search of the Cambridge Structural Database [Version 5.42, update of November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]] shows no similarities between the title compound and 4-(piperidin-1-yl)-3-sulfone-quinoline derivatives.

7. Mol­ecular docking

A mol­ecular docking study was performed in order to estimate the application efficiency of ethyl 1-(3-tosyl­quinolin-4-yl)piperidine-4-carboxyl­ate in terms of medicinal chemistry as anti­microbials. For receptor-oriented flexible docking, the Autodock 4.2 software package (Morris et al., 2009[Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. & Olson, A. J. (2009). J. Comp. Chem. 30, 2785-2791.]) was used. Ligands were prepared using the MGL Tools 1.5.6 (Sanner, 1999[Sanner, M. F. (1999). J. Mol. Graph. Mod. 17, 57-61.]) and optimized within the Avogadro (Hanwell et al., 2012[Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E. & Hutchison, G. R. (2012). J. Cheminform, 4, 17.]) (United Force Field with the steepest descent algorithm). The biotargets were chosen on the basis of structural similarity between the title compound and known anti­bacterial agents from the group of fluoro­quinolones. The active centers of macromolecules of bacterial targets [Staphylococcus aureus DNA Gyrase PDB ID: 2XCR (Bax et al., 2010[Bax, B. D., Chan, P. F., Eggleston, D. S., Fosberry, A., Gentry, D. R., Gorrec, F., Giordano, I., Hann, M. M., Hennessy, A., Hibbs, M., Huang, J., Jones, E., Jones, J., Brown, K. K., Lewis, C. J., May, E. W., Saunders, M. R., Singh, O., Spitzfaden, C. E., Shen, C., Shillings, A., Theobald, A. J., Wohlkonig, A., Pearson, N. D. & Gwynn, M. N. (2010). Nature, 466, 935-940.]); Mycobacterium tuberculosis topoisomerase II PDB ID: 5BTL (Blower et al., 2016[Blower, T. R., Williamson, B. H., Kerns, R. J. & Berger, J. M. (2016). PNAS 113, 7, 1706-1713.]); Streptococcus pneumoniae topoisomerase IV PDB ID: 4KPF (Laponogov et al., 2016[Laponogov, I., Pan, X.-S., Veselkov, D. A., Cirz, R. T., Wagman, A., Moser, H. E., Fisher, L. M. & Sanderson, M. R. (2016). Open Biol. 6, 160157. https://doi.org/10.1098/rsob.160157.])] from the Protein Data Bank (PDB) were used for docking.

The receptor maps were made with MGL Tools and AutoGrid (Sanner, 1999[Sanner, M. F. (1999). J. Mol. Graph. Mod. 17, 57-61.]). The docking parameters were defined closely to the ones mentioned in Syniugin et al. (2016[Syniugin, A. R., Ostrynska, O. V., Chekanov, M. O., Volynets, G. P., Starosyla, S. A., Bdzhola, V. G. & Yarmoluk, S. M. (2016). J. Enzyme Inhib. Med. Chem. 31, 160-169.]; see supporting information). These parameters were chosen to bring the formation of a complex between the tested mol­ecule and the receptor as close as possible to the conditions that exist in biological systems.

Inhibitory activity against bacterial targets can be realized by the formation of their complexes with ligands [as ethyl 1-(3-tosyl­quinolin-4-yl)piperidine-4-carboxyl­ate]. In turn, the stability of complexes can be estimated from the strength of the inter­molecular inter­actions. The scoring function indicating the enthalpy contribution to the value of the free binding energy (affinity DG), the values of the free binding energy and binding constants [EDoc (kcal mol−1) and Ki (μM)] are represented for the most profitable conformation positions (Table 2[link]). All the parameters show that the title compound is superior to the reference medicines of the same type.

Table 2
The values of affinity DG, free binding energy, and binding coefficients for the best conformational positions of the title compound in combination with biotargets (PDB ID: 2XCR, 5BTL, 4KPF). Values are also given for reference compounds

Mol­ecule Affinity DG (kcal mol−1) EDoc (kcal mol−1) Ki (υM)
PDB ID: 2XCR      
Title compound −7.5 −5.62 76.15
Ciprofloxacin −7.2 −5.10 183.79
Norfloxacin −7.2 −4.30 708.28
PDB ID: 5BTL      
Title compound −8.2 −5.64 73.02
Ciprofloxacin −7.5 −5.51 91.69
Norfloxacin −7.8 −5.25 142.92
PDB ID: 4KPF      
Title compound −8.1 −6.13 31.90
Ciprofloxacin −7.4 −5.38 113.52
Norfloxacin −7.4 −4.78 315.73

8. Synthesis and crystallization

The starting compounds were obtained from commercial sources and were used without further purification.

Two ways were proposed for the synthesis of ethyl 1-(3-tosyl­quinolin-4-yl)piperidine-4-carboxyl­ate: the classical one and an alternative one with a lower number of steps and higher yield of the final product:

Classical synthesis. In the first stage, the addition of methyl propiolate 2 to aniline 1 produces labile cis–trans mixtures of enamine 3. Thermal cyclization of enamine provides a synthesis of 4(1H)-quinolone 4 (Gray et al., 1951[Gray, F. W., Mosher, H. S., Whitmole, F. C. & Oakwood, T. S. (1951). J. Am. Chem. Soc. 73, 8, 3577-3578.]).

[Scheme 2]

Conversion of 4-hy­droxy­quinoline 4 to 4-chloro­quinoline 6 can be carried out by a known halogenation method with POCI3 5, or other suitable reagents (e.g. SOCI2, PCI5, POBr3, PBr3). The obtained 4-chloro­quinoline 6 can be converted to 4-amino­quinoline derivative 8 by an aromatic nucleophilic substitution reaction with secondary amine 7. Standard bromination of quinoline 8 gives the product 10. 4-Amino-3-bromo­quinoline 10 can be substituted by the sodium salt of thio­phenol 11 to provide compound 12. Oxidation of 4-amino-3-aryl­sulfanyl­quinoline 12 can be accomplished by known methods, preferably in a suitable acid (e.g. acetic acid) at 273–278 K with potassium permanganate 15 to give 4-amino-3-aryl­sulfinyl­quinolines 14 or with aqueous hydrogen peroxide 13 in a suitable acid (e.g. acetic acid or tri­fluoro­acetic acid). To obtain the title compound 16, further oxidation of compound 14 is required. The reaction can be carried out by known methods, preferably in a suitable acid (e.g. acetic acid) at 273–278 K with potassium permanganate 15 (Keserü et al., 2007[Keserü, G., Wéber, C., Bielik, A., Bobok, A. A., Gál, K., Meszlényiné Sipos, M., Molnár, L. & Vastag, M. (2007). Patent WO/2007/072093.]). The yield of the title compound is 46.0%.

Alternative synthesis. Ethyl 2-tosyl­acetate 19 is obtained by the reaction of ethyl 2-bromo­acetate 18 with sodium tosyl­sulfinate 17 in dry DMF. Compound 21 can be obtained by the condensation reaction of compound 19 with N,N-di­methyl­formamide di­methyl­acetal 20 without using a solvent or in a minimum amount of dioxane. Compound 21, upon reaction with aniline 22 in iso­propanol/AcOH medium, produces an E/Z isomer mixture of enamine 23, which is converted to 3-tosyl­quinoline-4-(1H)-one 24 by thermal cyclization in diphenyl ether. Chlorination of compound 24 is carried out according to a known method with phospho­rus oxychloride 5. The final product 16 is obtained by the reaction of aromatic nucleophilic substitution of 4-chloro-3-tosyl­quinoline 25 with ethyl piperidine-4-carboxyl­ate 7 in a dry DMF medium using a base (tri­ethyl­amine, DBU), or excess of secondary amine (Keserü et al., 2007[Keserü, G., Wéber, C., Bielik, A., Bobok, A. A., Gál, K., Meszlényiné Sipos, M., Molnár, L. & Vastag, M. (2007). Patent WO/2007/072093.]). The yield of the title compound is 73.6%. Recrystallization by slow evaporation of a solution in aceto­nitrile produced block-like colorless crystals suitable for X-ray diffraction analysis. The advantages of this synthesis make it seem preferable to the common one.

[Scheme 3]

9. NMR characterization

The NMR spectra were recorded on a Varian MR-400 spectrometer with standard pulse sequences operating at 400 MHz for 1H NMR, 101 MHz for 13C NMR. For the NMR spectra, DMSO-d6 was used as a solvent. Chemical shift values are referenced to residual protons (δ 2.49 ppm) and carbons (δ 39.6 ppm) of the solvent as an inter­nal standard. LC/MS spectra were recorded on a ELSD Alltech 3300 liquid chromatograph equipped with a UV detector (λmax 254 nm), API-150EX mass-spectrometer using a Zorbax SB-C18 column, Phenomenex (100 × 4 mm) Rapid Resolution HT Cartridge 4.6 × 30mm, 1.8-Micron. Elution started with an 0.1 M solution of HCOOH in water and ended with an 0.1 M solution of HCOOH in aceto­nitrile using a linear gradient at a flow rate of 0.15 ml min−1 and an analysis cycle time of 25 min.

Characteristics of the title mol­ecule:

1H NMR (400 MHz, DMSO-d6) δ 9.37 (s, 1H), 8.28 (d, J = 8.6 Hz, 1H), 8.17 (d, J = 8.4 Hz, 1H), 7.93 (t, J = 7.7 Hz, 1H), 7.72 (t, J = 8.0 Hz, 3H), 7.39 (d, J = 8.0 Hz, 2H), 4.10 (q, J = 7.1 Hz, 2H), 3.37 (d, J = 19.2 Hz, 1H), 3.31–3.27 (m, 1H), 2.92 (d, J = 11.2 Hz, 2H), 2.55 (d, J = 9.2 Hz, 1H), 2.38 (s, 3H), 1.64 (dd, J = 13.2, 3.8 Hz, 2H), 1.41–1.36 (m, 1H), 1.35 (s, 1H), 1.22 (t, J = 7.1 Hz, 3H).

13C NMR (101 MHz, DMSO-d6) δ 174.17, 158.14, 151.56, 149.44, 143.64, 139.23, 132.37, 130.31, 129.66, 127.43, 126.19, 125.86, 59.85, 50.56, 27.26, 21.02, 14.11.

10. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogen atoms were positioned geometrically (C–H= 0.93–0.97 Å) and refined using a riding model with Uiso(H) = nUeq of the carrier atom (n = 1.5 for methyl groups and n = 1.2 for other hydrogen atoms). During the refinement the distances between the atoms of the disordered part were restrained to the following values: 1.497 Å for the bond C19—C22, 1.196 Å for O3—C22, 1.336 Å for O4—C22, 1.452 Å for O4—C23 and 1.513 Å for C23—C24 according to the mean values in Dunitz & Bürgi (1994[Dunitz, J. D. & Bürgi, H.-B. (1994). Structure correlation, pp. 767-784. Weinheim: VCH.]). The estimated standard deviation was set at 0.005 Å for all the bonds.

Table 3
Experimental details

Crystal data
Chemical formula C24H26N2O4S
Mr 438.53
Crystal system, space group Monoclinic, P21/n
Temperature (K) 298
a, b, c (Å) 8.2608 (3), 17.9433 (7), 15.2470 (7)
β (°) 100.626 (4)
V3) 2221.25 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.18
Crystal size (mm) 0.3 × 0.2 × 0.1
 
Data collection
Diffractometer Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.400, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 22680, 6477, 3049
Rint 0.104
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.253, 1.04
No. of reflections 6477
No. of parameters 321
No. of restraints 9
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.52
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Ethyl 1-[3-(4-methylbenzenesulfonyl)quinolin-4-yl]piperidine-4-carboxylate top
Crystal data top
C24H26N2O4SF(000) = 928
Mr = 438.53Dx = 1.311 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.2608 (3) ÅCell parameters from 2249 reflections
b = 17.9433 (7) Åθ = 3.5–22.9°
c = 15.2470 (7) ŵ = 0.18 mm1
β = 100.626 (4)°T = 298 K
V = 2221.25 (16) Å3Block, colourless
Z = 40.3 × 0.2 × 0.1 mm
Data collection top
Xcalibur, Sapphire3
diffractometer
6477 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source3049 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.104
Detector resolution: 16.1827 pixels mm-1θmax = 30.0°, θmin = 3.0°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
k = 2524
Tmin = 0.400, Tmax = 1.000l = 2120
22680 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.077 w = 1/[σ2(Fo2) + (0.106P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.253(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.33 e Å3
6477 reflectionsΔρmin = 0.52 e Å3
321 parametersExtinction correction: SHELXL-2017/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
9 restraintsExtinction coefficient: 0.0057 (16)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.12710 (8)0.79643 (4)0.44018 (5)0.0610 (3)
O10.1623 (3)0.71849 (11)0.44202 (15)0.0728 (6)
O20.0150 (2)0.82165 (14)0.37816 (14)0.0790 (6)
N10.0721 (3)0.90921 (14)0.61830 (19)0.0700 (7)
N20.3448 (3)0.76877 (12)0.62148 (16)0.0557 (6)
C10.0279 (4)0.89220 (16)0.6975 (2)0.0608 (7)
C20.0099 (4)0.92616 (19)0.7745 (2)0.0765 (9)
H20.0958620.9602730.7693110.092*
C30.0792 (5)0.9093 (2)0.8568 (3)0.0852 (10)
H30.0550130.9324020.9074520.102*
C40.2055 (5)0.8577 (2)0.8645 (2)0.0811 (10)
H40.2621810.8444270.9208710.097*
C50.2481 (4)0.82599 (18)0.7907 (2)0.0690 (8)
H50.3356300.7925920.7975600.083*
C60.1626 (3)0.84274 (15)0.70451 (19)0.0571 (6)
C70.2030 (3)0.81265 (14)0.62430 (19)0.0529 (6)
C80.0973 (3)0.82935 (15)0.54556 (19)0.0571 (7)
C90.0392 (3)0.87693 (18)0.5469 (2)0.0669 (8)
H90.1102140.8857820.4930970.080*
C100.2968 (3)0.84632 (15)0.41666 (17)0.0549 (6)
C110.4327 (3)0.80964 (17)0.3971 (2)0.0649 (8)
H110.4388150.7579240.3999940.078*
C120.5601 (4)0.85057 (18)0.3730 (2)0.0699 (8)
H120.6512400.8257800.3594120.084*
C130.5542 (4)0.92746 (17)0.3688 (2)0.0676 (8)
C140.4163 (4)0.96262 (17)0.3886 (2)0.0755 (9)
H140.4106821.0143720.3865210.091*
C150.2875 (4)0.92320 (17)0.4111 (2)0.0708 (8)
H150.1947240.9479910.4226000.085*
C160.6935 (4)0.9711 (2)0.3433 (3)0.0968 (12)
H16A0.7585960.9927090.3958280.145*
H16B0.6500021.0098760.3023990.145*
H16C0.7611510.9384560.3155020.145*
C170.3276 (3)0.68933 (15)0.6411 (2)0.0591 (7)
H17A0.2216190.6712920.6101730.071*
H17B0.3326390.6825360.7046460.071*
C180.4648 (3)0.64532 (16)0.6112 (2)0.0629 (7)
H18A0.4526000.6482350.5468010.076*
H18B0.4563820.5933530.6273120.076*
C190.6334 (3)0.67519 (16)0.65413 (19)0.0610 (7)
H190.6439430.6699210.7189170.073*
C200.6433 (4)0.75735 (18)0.6337 (2)0.0705 (8)
H20A0.6368200.7640200.5700040.085*
H20B0.7484210.7768400.6638310.085*
C210.5054 (4)0.80045 (17)0.6634 (3)0.0726 (9)
H21A0.5174500.7979240.7278610.087*
H21B0.5108420.8523860.6465720.087*
C220.7719 (4)0.63318 (19)0.6266 (2)0.0780 (10)
O3A0.8692 (12)0.6593 (9)0.5867 (10)0.110 (4)0.562 (12)
O4A0.7720 (9)0.5613 (2)0.6503 (6)0.083 (2)0.562 (12)
C23A0.8975 (13)0.5082 (7)0.6336 (6)0.102 (4)0.562 (12)
H23A0.9251380.4737650.6832100.123*0.562 (12)
H23B0.9968050.5341360.6256680.123*0.562 (12)
C24A0.8233 (12)0.4672 (7)0.5499 (7)0.112 (3)0.562 (12)
H24A0.8126990.5004710.4999140.169*0.562 (12)
H24B0.7166300.4486440.5553900.169*0.562 (12)
H24C0.8932770.4262050.5410080.169*0.562 (12)
O3B0.9009 (14)0.6554 (14)0.6125 (15)0.132 (7)0.438 (12)
O4B0.7400 (14)0.5610 (4)0.6108 (11)0.135 (6)0.438 (12)
C23B0.888 (2)0.5271 (7)0.5881 (13)0.122 (6)0.438 (12)
H23C0.9865650.5523190.6181910.147*0.438 (12)
H23D0.8849380.5284340.5242410.147*0.438 (12)
C24B0.8811 (16)0.4482 (5)0.6209 (14)0.124 (6)0.438 (12)
H24D0.7828570.4245170.5899120.187*0.438 (12)
H24E0.8801770.4485900.6837980.187*0.438 (12)
H24F0.9758080.4213420.6099850.187*0.438 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0576 (4)0.0605 (5)0.0624 (5)0.0034 (3)0.0045 (3)0.0067 (3)
O10.0859 (15)0.0524 (12)0.0821 (16)0.0119 (10)0.0206 (12)0.0138 (10)
O20.0629 (13)0.1024 (18)0.0651 (13)0.0003 (11)0.0052 (10)0.0052 (12)
N10.0643 (15)0.0667 (16)0.0800 (18)0.0106 (12)0.0159 (13)0.0014 (13)
N20.0525 (13)0.0452 (12)0.0690 (15)0.0003 (9)0.0105 (11)0.0004 (10)
C10.0627 (16)0.0499 (15)0.0722 (19)0.0008 (12)0.0184 (14)0.0022 (13)
C20.079 (2)0.073 (2)0.083 (2)0.0051 (16)0.0285 (18)0.0110 (17)
C30.100 (3)0.085 (2)0.078 (2)0.007 (2)0.035 (2)0.0181 (19)
C40.106 (3)0.075 (2)0.063 (2)0.003 (2)0.0190 (18)0.0012 (16)
C50.079 (2)0.0652 (18)0.0626 (19)0.0032 (15)0.0113 (15)0.0011 (15)
C60.0622 (16)0.0500 (15)0.0603 (17)0.0040 (12)0.0143 (12)0.0008 (12)
C70.0490 (14)0.0428 (13)0.0662 (17)0.0034 (10)0.0088 (12)0.0001 (12)
C80.0551 (15)0.0489 (15)0.0658 (17)0.0006 (11)0.0071 (12)0.0013 (12)
C90.0555 (16)0.0664 (19)0.076 (2)0.0085 (13)0.0058 (13)0.0055 (15)
C100.0566 (15)0.0512 (15)0.0548 (15)0.0017 (11)0.0049 (11)0.0003 (12)
C110.0641 (18)0.0492 (15)0.081 (2)0.0081 (13)0.0120 (15)0.0012 (14)
C120.0590 (17)0.0669 (19)0.085 (2)0.0080 (14)0.0157 (15)0.0062 (16)
C130.0655 (18)0.0618 (18)0.071 (2)0.0006 (14)0.0020 (14)0.0111 (14)
C140.083 (2)0.0476 (16)0.098 (2)0.0051 (15)0.0211 (18)0.0097 (15)
C150.0688 (19)0.0560 (18)0.090 (2)0.0118 (14)0.0196 (16)0.0005 (15)
C160.077 (2)0.090 (3)0.122 (3)0.0133 (19)0.014 (2)0.031 (2)
C170.0572 (16)0.0496 (15)0.0722 (18)0.0004 (12)0.0166 (13)0.0017 (13)
C180.0643 (17)0.0509 (15)0.0748 (19)0.0046 (12)0.0159 (14)0.0026 (14)
C190.0553 (15)0.0706 (18)0.0576 (16)0.0056 (13)0.0120 (12)0.0058 (14)
C200.0494 (16)0.076 (2)0.085 (2)0.0058 (14)0.0087 (15)0.0061 (16)
C210.0569 (17)0.0540 (17)0.104 (3)0.0059 (13)0.0070 (16)0.0066 (16)
C220.064 (2)0.095 (3)0.078 (2)0.0186 (19)0.0220 (17)0.002 (2)
O3A0.078 (5)0.159 (8)0.101 (5)0.047 (5)0.037 (4)0.034 (5)
O4A0.068 (3)0.064 (3)0.122 (7)0.012 (2)0.031 (3)0.019 (3)
C23A0.091 (5)0.111 (9)0.104 (7)0.014 (6)0.015 (5)0.006 (6)
C24A0.093 (6)0.091 (7)0.153 (9)0.007 (5)0.021 (6)0.010 (7)
O3B0.058 (5)0.167 (11)0.177 (17)0.009 (6)0.039 (8)0.054 (10)
O4B0.129 (9)0.149 (9)0.141 (12)0.072 (7)0.062 (8)0.008 (6)
C23B0.107 (9)0.134 (12)0.144 (14)0.056 (9)0.068 (10)0.002 (11)
C24B0.093 (8)0.059 (6)0.229 (19)0.025 (5)0.050 (10)0.024 (8)
Geometric parameters (Å, º) top
S1—O11.428 (2)C16—H16B0.9600
S1—O21.438 (2)C16—H16C0.9600
S1—C81.771 (3)C17—H17A0.9700
S1—C101.755 (3)C17—H17B0.9700
N1—C11.366 (4)C17—C181.518 (4)
N1—C91.306 (4)C18—H18A0.9700
N2—C71.419 (3)C18—H18B0.9700
N2—C171.469 (3)C18—C191.523 (4)
N2—C211.476 (3)C19—H190.9800
C1—C21.407 (4)C19—C201.512 (4)
C1—C61.412 (4)C19—C221.494 (3)
C2—H20.9300C20—H20A0.9700
C2—C31.367 (5)C20—H20B0.9700
C3—H30.9300C20—C211.514 (4)
C3—C41.384 (5)C21—H21A0.9700
C4—H40.9300C21—H21B0.9700
C4—C51.364 (4)C22—O3A1.191 (5)
C5—H50.9300C22—O4A1.340 (4)
C5—C61.405 (4)C22—O3B1.194 (5)
C6—C71.431 (4)C22—O4B1.334 (5)
C7—C81.381 (4)O4A—C23A1.464 (5)
C8—C91.417 (4)C23A—H23A0.9700
C9—H90.9300C23A—H23B0.9700
C10—C111.381 (4)C23A—C24A1.502 (5)
C10—C151.383 (4)C24A—H24A0.9600
C11—H110.9300C24A—H24B0.9600
C11—C121.387 (4)C24A—H24C0.9600
C12—H120.9300O4B—C23B1.462 (5)
C12—C131.382 (4)C23B—H23C0.9700
C13—C141.383 (4)C23B—H23D0.9700
C13—C161.501 (4)C23B—C24B1.506 (5)
C14—H140.9300C24B—H24D0.9600
C14—C151.373 (4)C24B—H24E0.9600
C15—H150.9300C24B—H24F0.9600
C16—H16A0.9600
O1—S1—O2117.38 (14)N2—C17—H17B109.7
O1—S1—C8111.76 (13)N2—C17—C18109.8 (2)
O1—S1—C10109.63 (13)H17A—C17—H17B108.2
O2—S1—C8104.97 (13)C18—C17—H17A109.7
O2—S1—C10106.93 (13)C18—C17—H17B109.7
C10—S1—C8105.39 (13)C17—C18—H18A109.4
C9—N1—C1116.9 (3)C17—C18—H18B109.4
C7—N2—C17114.9 (2)C17—C18—C19111.2 (2)
C7—N2—C21117.0 (2)H18A—C18—H18B108.0
C17—N2—C21113.5 (2)C19—C18—H18A109.4
N1—C1—C2116.7 (3)C19—C18—H18B109.4
N1—C1—C6123.1 (3)C18—C19—H19107.7
C2—C1—C6120.1 (3)C20—C19—C18109.5 (2)
C1—C2—H2119.8C20—C19—H19107.7
C3—C2—C1120.4 (3)C22—C19—C18112.9 (3)
C3—C2—H2119.8C22—C19—H19107.7
C2—C3—H3120.1C22—C19—C20111.1 (2)
C2—C3—C4119.8 (3)C19—C20—H20A109.4
C4—C3—H3120.1C19—C20—H20B109.4
C3—C4—H4119.5C19—C20—C21111.3 (2)
C5—C4—C3120.9 (3)H20A—C20—H20B108.0
C5—C4—H4119.5C21—C20—H20A109.4
C4—C5—H5119.3C21—C20—H20B109.4
C4—C5—C6121.4 (3)N2—C21—C20109.8 (2)
C6—C5—H5119.3N2—C21—H21A109.7
C1—C6—C7118.5 (3)N2—C21—H21B109.7
C5—C6—C1117.3 (3)C20—C21—H21A109.7
C5—C6—C7124.2 (3)C20—C21—H21B109.7
N2—C7—C6124.0 (2)H21A—C21—H21B108.2
C8—C7—N2119.2 (2)O3A—C22—C19124.7 (8)
C8—C7—C6116.8 (2)O3A—C22—O4A123.3 (9)
C7—C8—S1123.0 (2)O4A—C22—C19111.9 (4)
C7—C8—C9119.7 (3)O3B—C22—C19129.6 (13)
C9—C8—S1117.3 (2)O3B—C22—O4B116.4 (14)
N1—C9—C8124.6 (3)O4B—C22—C19113.9 (5)
N1—C9—H9117.7C22—O4A—C23A123.1 (7)
C8—C9—H9117.7O4A—C23A—H23A110.5
C11—C10—S1120.9 (2)O4A—C23A—H23B110.5
C11—C10—C15120.0 (3)O4A—C23A—C24A106.0 (8)
C15—C10—S1118.9 (2)H23A—C23A—H23B108.7
C10—C11—H11120.3C24A—C23A—H23A110.5
C10—C11—C12119.5 (3)C24A—C23A—H23B110.5
C12—C11—H11120.3C23A—C24A—H24A109.5
C11—C12—H12119.4C23A—C24A—H24B109.5
C13—C12—C11121.3 (3)C23A—C24A—H24C109.5
C13—C12—H12119.4H24A—C24A—H24B109.5
C12—C13—C14118.0 (3)H24A—C24A—H24C109.5
C12—C13—C16120.7 (3)H24B—C24A—H24C109.5
C14—C13—C16121.4 (3)C22—O4B—C23B107.5 (9)
C13—C14—H14119.1O4B—C23B—H23C111.1
C15—C14—C13121.8 (3)O4B—C23B—H23D111.1
C15—C14—H14119.1O4B—C23B—C24B103.2 (8)
C10—C15—H15120.3H23C—C23B—H23D109.1
C14—C15—C10119.4 (3)C24B—C23B—H23C111.1
C14—C15—H15120.3C24B—C23B—H23D111.1
C13—C16—H16A109.5C23B—C24B—H24D109.5
C13—C16—H16B109.5C23B—C24B—H24E109.5
C13—C16—H16C109.5C23B—C24B—H24F109.5
H16A—C16—H16B109.5H24D—C24B—H24E109.5
H16A—C16—H16C109.5H24D—C24B—H24F109.5
H16B—C16—H16C109.5H24E—C24B—H24F109.5
N2—C17—H17A109.7
S1—C8—C9—N1175.8 (2)C9—N1—C1—C2179.0 (3)
S1—C10—C11—C12175.7 (2)C9—N1—C1—C60.5 (4)
S1—C10—C15—C14176.9 (3)C10—S1—C8—C771.5 (3)
O1—S1—C8—C747.6 (3)C10—S1—C8—C9106.4 (2)
O1—S1—C8—C9134.6 (2)C10—C11—C12—C130.5 (5)
O1—S1—C10—C114.5 (3)C11—C10—C15—C141.9 (5)
O1—S1—C10—C15179.5 (2)C11—C12—C13—C140.6 (5)
O2—S1—C8—C7175.8 (2)C11—C12—C13—C16179.5 (3)
O2—S1—C8—C96.4 (3)C12—C13—C14—C150.5 (5)
O2—S1—C10—C11123.7 (2)C13—C14—C15—C101.7 (5)
O2—S1—C10—C1551.3 (3)C15—C10—C11—C120.8 (4)
N1—C1—C2—C3176.8 (3)C16—C13—C14—C15179.4 (3)
N1—C1—C6—C5175.5 (3)C17—N2—C7—C683.1 (3)
N1—C1—C6—C74.2 (4)C17—N2—C7—C898.2 (3)
N2—C7—C8—S11.7 (4)C17—N2—C21—C2057.5 (3)
N2—C7—C8—C9176.1 (2)C17—C18—C19—C2055.7 (3)
N2—C17—C18—C1955.9 (3)C17—C18—C19—C22179.8 (2)
C1—N1—C9—C83.7 (5)C18—C19—C20—C2155.9 (3)
C1—C2—C3—C41.0 (5)C18—C19—C22—O3A117.3 (10)
C1—C6—C7—N2173.2 (2)C18—C19—C22—O4A61.1 (6)
C1—C6—C7—C85.5 (4)C18—C19—C22—O3B143.1 (14)
C2—C1—C6—C53.9 (4)C18—C19—C22—O4B32.5 (9)
C2—C1—C6—C7176.4 (3)C19—C20—C21—N256.2 (4)
C2—C3—C4—C53.3 (5)C19—C22—O4A—C23A178.2 (7)
C3—C4—C5—C61.9 (5)C19—C22—O4B—C23B177.9 (9)
C4—C5—C6—C11.7 (5)C20—C19—C22—O3A6.2 (11)
C4—C5—C6—C7178.7 (3)C20—C19—C22—O4A175.4 (5)
C5—C6—C7—N27.1 (4)C20—C19—C22—O3B19.6 (15)
C5—C6—C7—C8174.1 (3)C20—C19—C22—O4B156.0 (9)
C6—C1—C2—C32.6 (5)C21—N2—C7—C653.7 (4)
C6—C7—C8—S1179.56 (19)C21—N2—C7—C8124.9 (3)
C6—C7—C8—C92.7 (4)C21—N2—C17—C1857.4 (3)
C7—N2—C17—C18164.2 (2)C22—C19—C20—C21178.7 (3)
C7—N2—C21—C20165.0 (2)C22—O4A—C23A—C24A98.1 (14)
C7—C8—C9—N12.1 (5)C22—O4B—C23B—C24B150 (2)
C8—S1—C10—C11124.9 (2)O3A—C22—O4A—C23A3.4 (14)
C8—S1—C10—C1560.1 (3)O3B—C22—O4B—C23B5.9 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O3Ai0.932.523.421 (16)163
C5—H5···O2ii0.932.583.415 (4)149
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1/2, y+3/2, z+1/2.
The values of affinity DG, free binding energy, and binding coefficients for the best conformational positions of the title compound in combination with biotargets (PDB ID: 2XCR, 5BTL, 4KPF) top
MoleculeAffinity DG (kcal mol-1)EDoc (kcal mol-1)Ki (υM)
PDB ID: 2XCR
Title compound-7.5-5.6276.15
Ciprofloxacin-7.2-5.10183.79
Norfloxacin-7.2-4.30708.28
PDB ID: 5BTL
Title compound-8.2-5.6473.02
Ciprofloxacin-7.5-5.5191.69
Norfloxacin-7.8-5.25142.92
PDB ID: 4KPF
Title compound-8.1-6.1331.90
Ciprofloxacin-7.4-5.38113.52
Norfloxacin-7.4-4.78315.73
 

Funding information

Funding for this research was provided by: Ministry of Health of Ukraine (grant No. 0121U109239).

References

First citationAtechian, S., Nock, N., Norcross, R. D., Ratni, H., Thomas, A. W., Verron, J. & Masciadri, R. (2007). Tetrahedron, 63, 2811–2823.  Web of Science CrossRef CAS Google Scholar
First citationBax, B. D., Chan, P. F., Eggleston, D. S., Fosberry, A., Gentry, D. R., Gorrec, F., Giordano, I., Hann, M. M., Hennessy, A., Hibbs, M., Huang, J., Jones, E., Jones, J., Brown, K. K., Lewis, C. J., May, E. W., Saunders, M. R., Singh, O., Spitzfaden, C. E., Shen, C., Shillings, A., Theobald, A. J., Wohlkonig, A., Pearson, N. D. & Gwynn, M. N. (2010). Nature, 466, 935–940.  Web of Science CrossRef PubMed Google Scholar
First citationBlower, T. R., Williamson, B. H., Kerns, R. J. & Berger, J. M. (2016). PNAS 113, 7, 1706-1713.  Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 3, 441–451.  Google Scholar
First citationBylov, I. E., Bilokin, Y. V. & Kovalenko, S. M. (1999). Heterocycl. Comm. 5, 3, 281–284.  Google Scholar
First citationDesiraju, G. R. (1996). Acc. Chem. Res. 29, 441–449.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDesiraju, G. R. (2005). ChemComm, 24, 2995–3001.  Google Scholar
First citationDhiman, P., Arora, N., Thanikachalam, P. V. & Monga, V. (2019). Bioorg. Chem. 92, 103291.  Web of Science CrossRef PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDunitz, J. D. & Bürgi, H.-B. (1994). Structure correlation, pp. 767–784. Weinheim: VCH.  Google Scholar
First citationGalambos, J., Bielik, A., Wágner, G., Domány, G., Kóti, J., Béni, Z., Szigetvári, Á., Sánta, Z., Orgován, Z., Bobok, A., Kiss, B., Mikó-Bakk, M. L., Vastag, M., Sághy, K., Krasavin, M., Gál, K., Greiner, I., Szombathelyi, Z. & Keserű, G. M. (2017). Eur. J. Med. Chem. 133, 240–254.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGray, F. W., Mosher, H. S., Whitmole, F. C. & Oakwood, T. S. (1951). J. Am. Chem. Soc. 73, 8, 3577–3578.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E. & Hutchison, G. R. (2012). J. Cheminform, 4, 17.  Web of Science CrossRef PubMed Google Scholar
First citationHorta, P., Secrieru, A., Coninckx, A. & Cristiano, M. L. S. (2017). OMCIJ, 4, 91–93.  Google Scholar
First citationHryhoriv, H., Mariutsa, I., Kovalenko, S., Sidorenko, L., Perekhoda, L., Filimonova, N., Geyderikh, O. & Georgiyants, V. (2021). ScienceRise Pharm. Sci. 5, 33, 4-11.  Google Scholar
First citationIvachtchenko, A. V., Golovina, E. S., Kadieva, M. G., Kysil, V. M., Mitkin, O. D., Vorobiev, A. A. & Okun, I. (2012a). Bioorg. Med. Chem. Lett. 22, 4273–4280.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationIvachtchenko, A. V., Mitkin, O. D. & Kadieva, M. G. (2012b). Patent WO/2012/087182.  Google Scholar
First citationKang, S., Yoon, H. & Lee, Y. (2016). Chem. Lett. 45, 1356–1358.  Web of Science CrossRef CAS Google Scholar
First citationKeserü, G., Wéber, C., Bielik, A., Bobok, A. A., Gál, K., Meszlényiné Sipos, M., Molnár, L. & Vastag, M. (2007). Patent WO/2007/072093.  Google Scholar
First citationKonovalova, I. S., Shishkina, S. V., Paponov, B. V. & Shishkin, O. V. (2010). CrystEngComm, 12, 3, 909–916.  Google Scholar
First citationLaponogov, I., Pan, X.-S., Veselkov, D. A., Cirz, R. T., Wagman, A., Moser, H. E., Fisher, L. M. & Sanderson, M. R. (2016). Open Biol. 6, 160157. https://doi.org/10.1098/rsob.160157.  Google Scholar
First citationMalherbe, P., Masciadri, R., Norcross, R. D. & Prinssen, E. (2006). Patent WO/2006/128802.  Google Scholar
First citationMorris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. & Olson, A. J. (2009). J. Comp. Chem. 30, 2785–2791.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 18, 7384–7391.  Google Scholar
First citationSanner, M. F. (1999). J. Mol. Graph. Mod. 17, 57–61.  CAS Google Scholar
First citationSavchenko, T. I., Silin, O. V., Kovalenko, S. M., Musatov, V. I., Nikitchenko, V. M. & Ivachtchenko, A. V. (2007). Synth. Commun. 37, 8, 1321–1330.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShishkin, O. V., Dyakonenko, V. V. & Maleev, A. V. (2012). CrystEngComm, 14, 5, 1795–1804.  Google Scholar
First citationSilin, O. V., Savchenko, T. I., Kovalenko, S. M., Nikitchenko, V. M. & Ivachtchenko, A. V. (2004). Heterocycles, 63, 8, 1883–1890.  Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSutor, D. J. (1962). Nature, 195, 68–69.  CAS Google Scholar
First citationSyniugin, A. R., Ostrynska, O. V., Chekanov, M. O., Volynets, G. P., Starosyla, S. A., Bdzhola, V. G. & Yarmoluk, S. M. (2016). J. Enzyme Inhib. Med. Chem. 31, 160–169.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVaksler, Ye. A., Idrissi, A., Urzhuntseva, V. V. & Shishkina, S. V. (2021). Cryst. Growth Des. 21, 4, 2176–2186.  Google Scholar
First citationZefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147–158.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds