research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of ebastinium hydrogen fumarate

crossmark logo

aDepartment of Chemistry, B. N. M. Institute of Technology, Bengaluru-560 070, India, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, cT. John Institute of Technology, Bengaluru-560 083, India, and dDepartment of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA
*Correspondence e-mail: yathirajan@hotmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 12 August 2022; accepted 14 August 2022; online 18 August 2022)

The structure of ebastinium hydrogen fumarate {systematic name: 1-[4-(4-tert-butyl­phen­yl)-4-oxobut­yl]-4-(di­phenyl­meth­oxy)piperidin-1-ium (E)-3-carb­oxy-1-hy­droxy­prop-2-en-1-olate}, C32H40NO2+·C4H3O4, a 1:1 salt formed in the reaction between ebastine and fumaric acid is presented. All examined crystals were found to be twinned by pseudo-merohedry. The structure is extensively disordered, with over half (20 out of 35) its non-hydrogen atoms modelled as lying over two sets of sites. In the crystal, cation–anion pairs are linked by a strong N—H⋯O hydrogen bond [N⋯O = 2.697 (11) Å]. These units inter­act via weaker C—H⋯O and C—H⋯π contacts to form layers lying parallel to the bc plane. The hydrogen fumarate anions are linked by a very short O—H⋯O hydrogen bond [O⋯O = 2.5402 (17) Å], augmented by weak C—H⋯O contacts into pairs of R22(6) ring motifs to form chains that extend parallel to the b-axis direction. Comparisons to similar crystal structures are presented.

1. Chemical context

The second-generation anti­histamine ebastine, C32H39NO2, systematic name 4-(benzyl­hydroxy)-1-{4-[4-(tert-but­yl)phen­yl]-4-oxobut­yl}piperidine, is an H1 receptor antagonist that acts by blocking H1 receptors via its carb­oxy­lic acid metabolite, carebastine (Yamaguchi et al., 1994[Yamaguchi, T., Hashizume, T., Matsuda, M., Sakashita, M., Fujii, T., Sekine, Y., Nakashima, M. & Uematsu, T. (1994). Arzneim.-Forsch. 44, 59-64.]). It is prescribed mainly for allergic rhinitis and chronic idiopathic urticaria (hives) (Van Cauwenberge et al., 2004[Van Cauwenberge, P., De Belder, T. & Sys, L. (2004). Expert Opin. Pharmacother. 5, 1807-1813.]). A review of its pharmacological properties and clinical efficacy in the treatment of allergic disorders has been reported by Wiseman & Faulds (1996[Wiseman, L. R. & Faulds, D. (1996). Drugs, 51, 260-277.]). Formulations of ebastine and its salts with various counter-anions have been the subject of numerous patents (see, for example, Bobee et al., 1995[Bobee, J.-M., Conrath, G., Gousset, G., Ponsot, M. & Veillard, M. (1995). US Patent number US-5460829.]; Roma-Millan et al., 2011[Roma-Millan, J., Mestre-Castell, J. & Suñé-Negre, J. M. (2011). European Patent number EP-1944028.]; Bilgic, 2013[Bilgic, M. (2013). World Patent number WO-2013/081562.]). In spite of this, only the crystal structures of the neutral free-base mol­ecule (Cheng et al., 2005[Cheng, J., Zhou, Z. & Yang, G. (2005). Acta Cryst. E61, o2932-o2933.]; Sharma et al., 2015[Sharma, R., Prasher, D. & Tiwari, R. K. (2015). J. Appl. Cryst. 48, 1299-1301.]) and the salt ebastinium 3,5-di­nitro­benzoate (Shaibah et al., 2017[Shaibah, M. A. E., Sagar, B. K., Yathirajan, H. S., Kumar, S. M. & Glidewell, C. (2017). Acta Cryst. E73, 1513-1516.]) have been reported to date. By contrast, fumarates (di-anion fumarate and mono-anion hydrogen fumarate) are common counter-anions in compounds of pharmacological importance; examples include opipramolium fumarate (Siddegowda et al., 2011[Siddegowda, M. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Swamy, M. T. (2011). Acta Cryst. E67, o2296.]), cinnarizinium fumarate (Kavitha et al., 2013[Kavitha, C. N., Yildirim, S. O., Jasinski, J. P., Yathirajan, H. S. & Butcher, R. J. (2013). Acta Cryst. E69, o142-o143.]) (technically, both hydrogen fumarates), and the recently reported structure of bis­(4-acet­oxy-N,N-di­methyl­tryptammonium)­fumarate, a new crystalline form of psilacetin (Chadeayne et al., 2019[Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019). Acta Cryst. E75, 900-902.]). As part of our studies in this area, we now report the synthesis and crystal structure of the title 1:1 salt ebastinium hydrogen fumarate, C32H40NO2+·C4H3O4, (I), formed in the reaction between ebastine and fumaric acid.

[Scheme 1]

2. Structural commentary

All examined samples of I were twinned by pseudo-merohedry, as is common for monoclinic crystals with β close to 90° (see, for example, Parkin, 2021[Parkin, S. R. (2021). Acta Cryst. E77, 452-465.]). Further details on how this was handled are given in section 6 (Crystal handling, data collection and structure refinement). The asymmetric unit of I (Fig. 1[link]) consists of a single ebastinium cation–hydrogen fumarate anion pair. The cation is extensively disordered, with over half (20 out of 35) its non-H atoms modelled as occupying two sets of sites, with refined occupancy factors of 0.729 (4) and 0.271 (4), as shown in Fig. 2[link]. Unless stated otherwise, the numerical details in the following description apply to the major conformation.

[Figure 1]
Figure 1
An ellipsoid plot (50% probability) of I. The N—H⋯O hydrogen bond is shown as a dashed line. The minor component of disorder is omitted to enhance clarity.
[Figure 2]
Figure 2
A ball-and-stick plot showing the superposition of major (solid bonds) and minor (open bonds) in ebastinium hydrogen fumarate, I. Hydrogen atoms (except for piperidinium NH) are omitted to enhance clarity.

The ebastinium cation is protonated at N1 (Fig. 1[link]), which in turn forms a strong N—H⋯O hydrogen bond to the carboxyl­ate O4 atom of the hydrogen fumarate anion [N1⋯O4 = 2.697 (11) Å, Table 1[link]]. The piperidinium ring of the cation is in the expected chair conformation, with the 4-t-butyl­phenyl-4-oxobutyl substituent equatorial at N1 and the di­phenyl­meth­oxy substituent axial at C4, similar to the salt described by Shaibah et al. (2017[Shaibah, M. A. E., Sagar, B. K., Yathirajan, H. S., Kumar, S. M. & Glidewell, C. (2017). Acta Cryst. E73, 1513-1516.]), who also noted that this axial substitution is in contrast to the equatorial placement in free-base ebastine (Cheng et al., 2005[Cheng, J., Zhou, Z. & Yang, G. (2005). Acta Cryst. E61, o2932-o2933.]; Sharma et al., 2015[Sharma, R., Prasher, D. & Tiwari, R. K. (2015). J. Appl. Cryst. 48, 1299-1301.]). The phenyl-4-oxobutyl fragment is largely planar (r.m.s. deviation = 0.0814 Å for atoms C7–C16 and O2): the main deviation [0.1879 (13) Å] is at atom C7, as seen in the C7—C8—C9—C10 torsion angle of −168.02 (14)°. The major and minor disorder conformations arise as a result of superposition of components that differ primarily by rotation of the di­phenyl­meth­oxy group about the C4—O1 and C1—O1 bonds (Fig. 2[link]), the torsion angles C1—O1—C4—C5 and C4—O1—C1—C27 being 177.4 (3) and 175.6 (3)°, respectively, for the major disorder component compared to 85.8 (11) and 68.67 (11)°, respectively, for the minor component. The dihedral angle between the phenyl rings is 73.41 (18)° in the major component [c.f. 73.3 (6)°, minor]. Additional details concerning the disorder are given in section 6 (Crystal handling, data collection and structure refinement).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 represent the centroids of phenyl rings C21–C26 and C27–C32, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4 0.95 1.75 2.697 (11) 175
N1′—H1N′⋯O4 1.00 1.78 2.77 (3) 169
O5—H5O⋯O3i 1.04 (2) 1.50 (2) 2.5402 (17) 171 (2)
C7—H7A⋯O2ii 0.99 2.37 3.330 (2) 164
C8—H8B⋯O6iii 0.99 2.53 3.325 (2) 137
C34—H34⋯O5ii 0.95 2.62 3.208 (2) 121
C35—H35⋯O3i 0.95 2.49 3.1450 (19) 127
C31—H31⋯Cg1iv 0.95 2.72 3.534 (6) 145
C25—H25⋯Cg1v 0.95 2.70 3.532 (4) 146
C23—H23⋯Cg2vi 0.95 2.75 3.624 (4) 154
Symmetry codes: (i) x, y+1, z; (ii) [x, y-1, z]; (iii) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+1, -y, -z]; (v) [-x+1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (vi) [-x+1, -y+1, -z].

The hydrogen fumarate anion deviates substanti­ally from planarity, as indicated by the dihedral angle between its carboxyl­ate and carb­oxy­lic acid groups of 23.51 (14)°. As expected, the C—O bond lengths in the deprotonated carboxyl­ate group [1.2638 (18) and 1.2503 (18) Å for C33—O3 and C33—O4, respectively] are the same within the accuracy limitations of the spherical-atom scattering-factor approximation (see, for example, Dawson, 1964[Dawson, B. (1964). Acta Cryst. 17, 990-996.]), while those of the carb­oxy­lic acid group [1.3197 (19) and 1.211 (2) Å for C36—O5 and C36—O6, respectively] are significantly different. Indeed, throughout the whole structure there are no unusual bond lengths or angles in either species.

3. Supra­molecular features

For the sake of clarity, the following description is restricted to the major component of disorder except where stated otherwise. The packing in I features only two types of conventional hydrogen bonds; the strong N1—H1N⋯O4 [N⋯O = 2.697 (11) Å, Table 1[link]] link and a very short [2.5402 (17) Å] O5—H5O⋯O3iii hydrogen bond between hydrogen fumarate anions (vide infra). Much weaker C—H⋯O hydrogen bonds connect the ebastinium cations along the b-axis direction (C7—H7A⋯O2i), ebastinium and hydrogen fumarate ions via the c-glide (C8—H8B⋯O6ii) and hydrogen fumarate anions into chains parallel to the b-axis direction (C34—H34⋯O5i and C35—H35⋯O3iii). The symmetry operations are those defined in the footnote to Table 1[link]. Since these weaker inter­actions do not involve disordered atoms, the above description applies equally well to both major and minor components. There are no aromatic ππ stacking inter­actions, but there are C—H⋯π close contacts between the phenyl rings of the disordered di­phenyl­meth­oxy group, which are also summarized in Table 1[link].

The main structural motif in the extended structure of I is the cation–anion pair (Fig. 1[link]). In the crystal, chemically distinct groups are segregated such that the 4-t-butyl­phenyl groups inter­digitate with c-glide-related copies of themselves (Fig. 3[link]) and the di­phenyl­meth­oxy groups inter­act via the aforementioned C—H⋯π contacts (Fig. 4[link]), forming layers that extend parallel to the bc plane and stack along the a-axis direction. The hydrogen fumarate anions form chains that propagate along the b-axis direction by virtue of the O5—H5O⋯O3iii, C34—H34⋯O5i and C35—H35⋯O3iii hydrogen bonds (Fig. 5[link]), which form pairs of R22(6) ring motifs (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Figure 3]
Figure 3
A packing plot of I viewed down the b-axis direction showing how the 4-t-butyl phenyl groups inter­digitate with c-glide related copies of themselves, leading to layers that extend parallel to the bc-plane centered on a = 0 (and 1), and stack along the a-axis direction. The strong hydrogen bonds between cation and anion (i.e., N1—H1N⋯O4) are shown as thick dashed lines.
[Figure 4]
Figure 4
A partial packing plot of I viewed down the b-axis direction showing C—H⋯π contacts (thin dashed lines) between the di­phenyl­meth­oxy groups, thereby forming the inter­face, centered on a = 1/2, between layers parallel to the bc plane. In the inter­ests of clarity, the minor component of disorder is suppressed.
[Figure 5]
Figure 5
A partial packing plot showing three hydrogen fumarate anions connected into a chain running horizontally (parallel to b) and the contacts of the central anion with ebastinium cations. Strong hydrogen bonds (O—H⋯O, N—H⋯O) are shown as thick dashed lines whereas weak C—H⋯O hydrogen bonds are shown as thin dashed lines. Pairs of R22(6) ring motifs illustrate how the weak C—H⋯O inter­actions augment the strong O—H⋯O hydrogen bond.

A rigorous Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) is complicated by the extensive disorder in I, but fingerprint plots generated for the major disorder component using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) (Fig. 6[link]) provide a reasonable summary of atom–atom contacts (Fig. 6[link]). The most prevalent are H⋯H contacts (55%), followed by C⋯H/H⋯C (23.5%) and O⋯H/H⋯O (21.3%), with all other contacts being negligible.

[Figure 6]
Figure 6
Fingerprint plots of inter­atomic contacts for I (major disorder component only) obtained from a Hirshfeld surface analysis. (a) All contacts, (b) H⋯H contacts (55% coverage), (c) C⋯H/H⋯C contacts (23.5%), (d) O⋯H/H⋯O contacts (21.3%).

4. Database survey

A search of the Cambridge Structure Database (version 5.43 with updates as of June 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the keywords `ebastine' or `ebastinium' revealed only two hits, CSD refcode QATJIF (Cheng et al., 2005[Cheng, J., Zhou, Z. & Yang, G. (2005). Acta Cryst. E61, o2932-o2933.]) and the duplicate QATJIF01 (Sharma et al., 2015[Sharma, R., Prasher, D. & Tiwari, R. K. (2015). J. Appl. Cryst. 48, 1299-1301.]); both are structures of the free base, ebastine. An ebastinium salt with 3,5-di­nitro­benzoate was not returned in this search, but is present as entry HECMIO (Shaibah et al., 2017[Shaibah, M. A. E., Sagar, B. K., Yathirajan, H. S., Kumar, S. M. & Glidewell, C. (2017). Acta Cryst. E73, 1513-1516.]). A search using the mol­ecular fragment that extends from the ether oxygen atom through to and including the benzene ring (atoms O1/O2/N1/C2–C16 in this report) but including no other atoms, gave 38 unique structures (46 hits, eight of which were duplicates). Many of these were originally published in the pharmaceutical chemistry literature, highlighting the medicinal importance of the central core of the ebastine mol­ecule. In contrast, a search for the keyword `fumarate' gave 434 hits, covering a wide variety of structures with both the mono-anion and di-anion.

A detailed comparison of the ebastine structure (coord­inates taken from QATJIF01) with the 3,5-di­nitro­benzoate salt (HECMIO) was made by Shaibah et al. (2017[Shaibah, M. A. E., Sagar, B. K., Yathirajan, H. S., Kumar, S. M. & Glidewell, C. (2017). Acta Cryst. E73, 1513-1516.]). The free base (i.e., QATJIF and QATJIF01) is not disordered, but HECMIO has a relatively simple two-component disorder of the benzene ring of its 4-t-butyl­phenyl substituent. Of partic­ular note (Shaibah et al., 2017[Shaibah, M. A. E., Sagar, B. K., Yathirajan, H. S., Kumar, S. M. & Glidewell, C. (2017). Acta Cryst. E73, 1513-1516.]) was the placement of the (C6H5)2CHO group relative to the piperidine/piperidinium ring, which is equatorial in ebastine, but axial in the ebastinium salt. The (C6H5)2CHO substituent in both disorder components of the hydrogen fumarate salt presented here is axial, as in HECMIO. The conformation of the C4H6O-4-t-butyl­phenyl fragment in I, however, is more similar to that in the neutral mol­ecule (QATJIF and QATJIF01). An overlay of the major and minor disorder components of I with QATJIF01 and HECMIO highlights these conformational differences (Fig. 7[link]).

[Figure 7]
Figure 7
An overlay of the major and minor conformations of the ebastinium cation in I (this work) with ebastine (CSD: QATJIF01) and ebastinium cation from the 3,5-di­nitro­benzoate salt (CSD: HECMIO, major conformation only), from a least-squares fit of non-H atoms in the piperidine/piperidinium rings. The axial placement of the di­phenyl­meth­oxy group (at left) in the salts is clearly different from the equatorial placement of the free base (blue). For the sake of clarity, only the major disorder component of HECMIO is shown. Diagram generated using Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

5. Synthesis, crystallization and spectroscopic details

A sample of ebastine was obtained as a gift from R. L. Fine Chemicals, Bengaluru, India. Ebastine (100 mg, 0.21 mmol) and fumaric acid (25 mg, 0.21 mmol) were dissolved in hot ethyl acetate and DMF and stirred over a heating magnetic stirrer for 30 minutes at 333 K. The resulting solution was allowed to cool slowly to room temperature with slow evaporation. Crystallization was carried out using several solvents (ethyl acetate/DMF, acetone, aceto­nitrile, and methyl­ethyl ketone) via slow evaporation to give plate-shaped crystals in about a week (m.p. 468–470 K). All crystals observed were twinned by pseudo-merohedry, but those grown from aceto­nitrile were the largest and gave the best diffraction patterns [see section 6 (Crystal handling, data collection and structure refinement) for further details].

NMR spectra were recorded on an SA-AGILENT 400MHz NMR spectrometer: 1H NMR: DMSO-d6 (400 MHz, δ ppm): 1.294 [s, 9H, C—(CH3)3]; 1.615–1.592 (d, 2H, J = 9.2 Hz, CH2); 1.871–1.818 (q, 4H, J = 6.8 Hz, piperidine); 2.400 (b, 2H, O=C—CH2); 2.576–2.541 (t, 2H, J = 7.2 Hz, piperidine); 2.870 (s, 2H, piperidine); 3.024–2.989 (t, 2H, J = 6.8 Hz, CH2); 3.423–3.406 (b, 1H, –CH), 5.63 (s, 1H, –CH); 6.557 (s, 2H, HC=CH); 7.250–7.207 (m, 2H, phen­yl); 7.372–7.297 (m, 8H, phen­yl); 7.533–7.512 (d, 2H, J = 8.4 Hz, phen­yl); 7.891–7.870 (d, 2H, J = 8.4 Hz, phen­yl); 11.6–14.2 (b, 1H, OH). 13C NMR: DMSO-d6 (100 MHz, δ ppm): 20.04, 29.53, 30.78, 34.76, 35.25, 49.52, 55.93, 79.06, 125.39, 126.57, 127.13, 127.80, 128.25, 134.15, 134.57, 142.96, 156.03, 167.03, 198.80.

6. Crystal handling, data collection and structure refinement

Crystals from each of the aforementioned solvents [see section 5 (Synthesis, crystallization and spectroscopic details)] were thin plates that indexed to give essentially the same unit-cell dimensions. All specimens were pseudo-merohedral twins by virtue of the β angle being close to 90° and had roughly equal component volume fractions, as determined by the refined BASF parameter in SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) for the twin operation corresponding to 180° rotation about the c-axis. A small number of the crystals grown from aceto­nitrile were somewhat thicker than most specimens, such that it was possible to cut along the twin plane, thereby separating individuals. Data collected from such a separated thin slice gave better refinement statistics than any of the uncut crystals. Nevertheless, the twin model was retained for the final refinement because, in spite of the very low occupancy minor component fraction of 0.19 (2)%, its standard uncertainty is only about one tenth as large, and is therefore of statistical significance. Even with such a tiny residual minor individual fraction, refinement statistics were marginally better with TWIN/BASF (in SHELXL) included. For a concise description of the various types of twinning that commonly affect mol­ecular crystals, particularly twinning by pseudo-merohedry and the attendant twin operations that constitute the twin law, see Parkin (2021[Parkin, S. R. (2021). Acta Cryst. E77, 452-465.]).

In addition to the twinning, the structure is extensively disordered. This disorder consists of a rotation of the (C6H5)2CHO group of the cation followed by a relaxation into the available space, which in turn places the whole of the (C6H5)2CHO group in two distinct orientations [see section 2 (Structural commentary)]. This of necessity must also cause minor site splitting of the piperidinium ring, albeit not discernible in electron-density maps calculated to 0.77 Å resolution. The two largest difference map peaks are only about 0.5 and 0.4 electrons, but are in positions that suggest a third, much smaller, disorder component. Such an additional disorder component, however, was not modelled due to its necessarily minuscule occupancy fraction. To ensure satisfactory refinement for disordered atom sequences in the structure, a combination of restraints were employed. The SHELXL commands SAME and SADI were used to maintain the chemical integrity and similarity of the disordered groups, while RIGU and SIMU were used to ensure physically reasonable displacement parameters for closely proximate disordered atom pairs.

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All non-disordered and major-component H atoms were found in difference-Fourier maps. Carbon-bound hydrogen atoms were subsequently included in the refinement using riding models, with constrained distances set to 0.95 Å (R2Csp2H), 0.98 Å (RCH3), 0.99 Å (R2CH2) and 1.00 Å (R3CH). The N—H hydrogen atom was included using a riding model that allowed the N—H distance to refine, while that of the minor component was constrained. The O—H hydrogen atom coordinates of the hydrogen fumarate anion were refined freely. Uiso(H) parameters were set to values of either 1.2Ueq (R2CarH, R2CH2, R3CH, NH) or 1.5Ueq (RCH3, OH) of the attached atom. The final structure was checked using validation tools in PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and checkCIF.

Table 2
Experimental details

Crystal data
Chemical formula C32H40NO2+·C4H3O4
Mr 585.71
Crystal system, space group Monoclinic, P21/c
Temperature (K) 90
a, b, c (Å) 27.091 (3), 6.2408 (5), 18.685 (2)
β (°) 90.975 (3)
V3) 3158.6 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.24 × 0.14 × 0.03
 
Data collection
Diffractometer Bruker D8 Venture dual source
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.857, 0.959
No. of measured, independent and observed [I > 2σ(I)] reflections 55813, 7224, 5164
Rint 0.047
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.114, 1.03
No. of reflections 7224
No. of parameters 578
No. of restraints 445
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.52, −0.19
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: APEX3 (Bruker, 2016); data reduction: APEX3 (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

1-[4-(4-tert-Butylphenyl)-4-oxobutyl]-4-(diphenylmethoxy)piperidin-1-ium (E)-3-carboxy-1-hydroxyprop-2-en-1-olate top
Crystal data top
C32H40NO2+·C4H3O4F(000) = 1256
Mr = 585.71Dx = 1.232 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 27.091 (3) ÅCell parameters from 9606 reflections
b = 6.2408 (5) Åθ = 2.3–27.3°
c = 18.685 (2) ŵ = 0.08 mm1
β = 90.975 (3)°T = 90 K
V = 3158.6 (6) Å3Plate, colourless
Z = 40.24 × 0.14 × 0.03 mm
Data collection top
Bruker D8 Venture dual source
diffractometer
7224 independent reflections
Radiation source: microsource5164 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.047
φ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 3535
Tmin = 0.857, Tmax = 0.959k = 78
55813 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0333P)2 + 1.537P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
7224 reflectionsΔρmax = 0.52 e Å3
578 parametersΔρmin = 0.19 e Å3
445 restraintsExtinction correction: SHELXL2019/2 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0017 (4)
Special details top

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 90K, which is standard practice in this laboratory for the majority of flash-cooled crystals.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C70.20849 (6)0.7170 (3)0.16752 (10)0.0296 (4)
H7A0.1853620.6150420.1909910.036*
H7B0.2080160.6897030.1153360.036*
C80.19117 (6)0.9435 (3)0.18209 (9)0.0274 (4)
H8A0.1908540.9697600.2343480.033*
H8B0.2146801.0456160.1595460.033*
C90.14002 (6)0.9833 (3)0.15337 (9)0.0276 (4)
H9A0.1182200.8626570.1675700.033*
H9B0.1419050.9868530.1004270.033*
C100.11752 (6)1.1900 (3)0.18015 (9)0.0271 (4)
C110.06723 (6)1.2518 (3)0.15588 (9)0.0261 (4)
C120.04494 (7)1.4361 (3)0.18329 (10)0.0337 (4)
H120.0619691.5208830.2171240.040*
C130.00150 (7)1.4973 (3)0.16206 (10)0.0347 (4)
H130.0158491.6233050.1819510.042*
C140.02801 (6)1.3794 (3)0.11218 (9)0.0279 (4)
C150.00537 (6)1.1957 (3)0.08535 (11)0.0347 (4)
H150.0222821.1110010.0513610.042*
C160.04111 (6)1.1326 (3)0.1067 (1)0.0339 (4)
H160.0553261.0056240.0873360.041*
C170.08065 (6)1.4408 (3)0.09209 (10)0.0296 (4)
C180.08751 (8)1.6832 (3)0.09150 (13)0.0486 (5)
H18A0.0823491.7400470.1396840.073*
H18B0.0635531.7477850.0580640.073*
H18C0.1210551.7175760.0763680.073*
C190.11537 (7)1.3419 (3)0.14877 (11)0.0415 (5)
H19A0.1070291.3972340.1961350.062*
H19B0.1495801.3795460.1380610.062*
H19C0.1116961.1856560.1483340.062*
C200.09453 (7)1.3543 (3)0.01864 (10)0.0426 (5)
H20A0.1275371.4054220.0064430.064*
H20B0.0705201.4046890.0174020.064*
H20C0.0944251.1972980.0197450.064*
O20.13952 (4)1.30433 (19)0.22189 (7)0.0338 (3)
N10.2608 (3)0.6772 (14)0.1950 (5)0.0207 (10)0.729 (4)
H1N0.2646 (3)0.758 (3)0.2376 (12)0.025*0.729 (4)
O10.36765 (7)0.3639 (4)0.14095 (11)0.0329 (5)0.729 (4)
C10.40693 (8)0.4053 (5)0.08943 (14)0.0318 (6)0.729 (4)
H10.4010140.5484610.0671240.038*0.729 (4)
C20.2990 (2)0.7535 (8)0.1414 (4)0.0299 (10)0.729 (4)
H2A0.2975650.6648730.0975700.036*0.729 (4)
H2B0.2921410.9040140.1281300.036*0.729 (4)
C30.34996 (19)0.7376 (6)0.1732 (3)0.0337 (9)0.729 (4)
H3A0.3748280.7825400.1367730.040*0.729 (4)
H3B0.3520400.8376380.2141530.040*0.729 (4)
C40.3623 (2)0.5110 (6)0.1987 (2)0.0319 (10)0.729 (4)
H40.3935000.5145440.2265160.038*0.729 (4)
C50.3207 (2)0.4260 (11)0.2459 (3)0.0288 (9)0.729 (4)
H5A0.3271020.2731680.2565410.035*0.729 (4)
H5B0.3205390.5049630.2918750.035*0.729 (4)
C60.2701 (3)0.4459 (13)0.2127 (4)0.0251 (10)0.729 (4)
H6A0.2444330.3933660.2466610.030*0.729 (4)
H6B0.2688020.3580400.1686590.030*0.729 (4)
C210.45774 (19)0.4068 (10)0.1223 (3)0.0292 (10)0.729 (4)
C220.49210 (17)0.5609 (7)0.1025 (2)0.0336 (9)0.729 (4)
H220.4833260.6659140.0681790.040*0.729 (4)
C230.53888 (16)0.5668 (6)0.1312 (2)0.0350 (9)0.729 (4)
H230.5619540.6738580.1169280.042*0.729 (4)
C240.55123 (14)0.4129 (7)0.18122 (19)0.0336 (9)0.729 (4)
H240.5831340.4138800.2015460.040*0.729 (4)
C250.51727 (14)0.2575 (6)0.20178 (19)0.0327 (8)0.729 (4)
H250.5260490.1527630.2362040.039*0.729 (4)
C260.47069 (15)0.2537 (8)0.1725 (3)0.0306 (9)0.729 (4)
H260.4476250.1465950.1868090.037*0.729 (4)
C270.40034 (17)0.2352 (7)0.0330 (2)0.0351 (10)0.729 (4)
C280.3544 (2)0.2194 (9)0.0017 (3)0.0645 (16)0.729 (4)
H280.3287380.3168130.0109890.077*0.729 (4)
C290.3459 (2)0.0678 (7)0.0528 (3)0.0559 (15)0.729 (4)
H290.3152660.0651450.0767550.067*0.729 (4)
C300.3820 (3)0.0819 (13)0.0699 (5)0.0431 (11)0.729 (4)
H300.3765300.1843820.1065130.052*0.729 (4)
C310.4256 (2)0.0818 (12)0.0338 (4)0.0336 (12)0.729 (4)
H310.4503090.1854060.0448000.040*0.729 (4)
C320.4336 (2)0.0710 (8)0.0191 (3)0.0347 (12)0.729 (4)
H320.4628010.0624600.0464500.042*0.729 (4)
N1'0.2574 (7)0.701 (4)0.1860 (14)0.022 (2)0.271 (4)
H1N'0.2594550.7727290.2337400.026*0.271 (4)
O1'0.3683 (2)0.4743 (11)0.1213 (3)0.0396 (15)0.271 (4)
C1'0.4022 (2)0.2951 (12)0.1234 (4)0.0342 (15)0.271 (4)
H1'0.3919240.1958310.1628700.041*0.271 (4)
C2'0.2961 (6)0.808 (2)0.1404 (12)0.030 (2)0.271 (4)
H2'10.2986220.7345980.0935130.036*0.271 (4)
H2'20.2864710.9588110.1316780.036*0.271 (4)
C3'0.3462 (5)0.8030 (17)0.1763 (9)0.0317 (19)0.271 (4)
H3'10.3441180.8822810.2221560.038*0.271 (4)
H3'20.3710530.8748780.1451810.038*0.271 (4)
C4'0.3621 (5)0.5761 (19)0.1902 (7)0.031 (2)0.271 (4)
H4'0.3937150.5732930.2171420.037*0.271 (4)
C5'0.3218 (6)0.452 (3)0.2305 (9)0.032 (2)0.271 (4)
H5'10.3205130.5017500.2807180.039*0.271 (4)
H5'20.3309490.2980780.2309400.039*0.271 (4)
C6'0.2710 (7)0.473 (4)0.1995 (12)0.024 (2)0.271 (4)
H6'10.2464550.4085760.2331130.029*0.271 (4)
H6'20.2697470.3919020.1540000.029*0.271 (4)
C21'0.3942 (5)0.182 (2)0.0496 (6)0.035 (2)0.271 (4)
C22'0.3642 (7)0.278 (3)0.0050 (9)0.067 (3)0.271 (4)
H22'0.3528400.4220120.0009610.080*0.271 (4)
C23'0.3527 (6)0.152 (2)0.0638 (9)0.057 (3)0.271 (4)
H23'0.3290010.1982590.0973430.068*0.271 (4)
C24'0.3762 (9)0.040 (4)0.0722 (14)0.044 (2)0.271 (4)
H24'0.3664920.1360320.1088730.053*0.271 (4)
C25'0.4143 (6)0.096 (4)0.0273 (11)0.033 (3)0.271 (4)
H25'0.4325880.2225900.0370980.040*0.271 (4)
C26'0.4264 (6)0.026 (2)0.0308 (9)0.037 (3)0.271 (4)
H26'0.4558240.0019510.0565250.044*0.271 (4)
C27'0.4542 (5)0.368 (3)0.1355 (9)0.028 (2)0.271 (4)
C28'0.4738 (4)0.546 (2)0.0998 (8)0.037 (3)0.271 (4)
H28'0.4539330.6222400.0671470.045*0.271 (4)
C29'0.5210 (4)0.6117 (17)0.1108 (6)0.038 (2)0.271 (4)
H29'0.5336590.7332070.0859750.046*0.271 (4)
C30'0.5502 (4)0.5038 (19)0.1574 (7)0.040 (3)0.271 (4)
H30'0.5826730.5560290.1643710.048*0.271 (4)
C31'0.5355 (4)0.3231 (19)0.1952 (6)0.041 (3)0.271 (4)
H31'0.5562340.2461700.2266750.049*0.271 (4)
C32'0.4869 (4)0.268 (2)0.1814 (7)0.033 (3)0.271 (4)
H32'0.4743490.1466020.2065310.040*0.271 (4)
C330.25492 (5)0.8367 (2)0.36524 (8)0.0206 (3)
C340.24432 (6)0.9666 (2)0.43083 (8)0.0223 (3)
H340.2447240.8968180.4760100.027*
C350.23444 (5)1.1729 (2)0.42912 (9)0.0214 (3)
H350.2357901.2470940.3847360.026*
C360.22119 (6)1.2914 (3)0.49577 (9)0.0261 (4)
O30.24297 (4)0.64104 (17)0.36785 (6)0.0304 (3)
O40.27305 (4)0.92704 (17)0.31116 (6)0.0265 (3)
O50.21455 (5)1.49991 (18)0.48923 (7)0.0369 (3)
H5O0.2245 (8)1.545 (3)0.4372 (13)0.055*
O60.21637 (5)1.20367 (19)0.55327 (7)0.0395 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C70.0280 (8)0.0308 (9)0.0302 (10)0.0044 (7)0.0025 (7)0.0052 (8)
C80.0312 (8)0.0279 (9)0.0230 (9)0.0066 (7)0.0002 (7)0.0013 (7)
C90.0299 (8)0.0301 (9)0.0229 (9)0.0060 (7)0.0007 (7)0.0008 (7)
C100.0329 (8)0.0271 (9)0.0212 (9)0.0090 (7)0.0032 (7)0.0015 (7)
C110.0303 (8)0.0265 (9)0.0215 (9)0.0061 (7)0.0029 (7)0.0008 (7)
C120.0403 (10)0.0300 (9)0.0308 (10)0.0033 (8)0.0016 (8)0.0061 (8)
C130.0404 (10)0.0324 (10)0.0313 (11)0.0038 (8)0.0028 (8)0.0095 (8)
C140.0298 (8)0.0295 (9)0.0241 (9)0.0034 (7)0.0063 (7)0.0004 (7)
C150.0318 (9)0.0326 (10)0.0399 (12)0.0005 (7)0.0027 (8)0.0135 (8)
C160.0323 (9)0.031 (1)0.0384 (11)0.0021 (7)0.0007 (8)0.0112 (8)
C170.0307 (8)0.0285 (9)0.0296 (10)0.0017 (7)0.0040 (7)0.0015 (7)
C180.0464 (11)0.0335 (11)0.0659 (16)0.0049 (9)0.0049 (10)0.0018 (10)
C190.0307 (9)0.0531 (13)0.0405 (12)0.0018 (9)0.0076 (8)0.0038 (10)
C200.0396 (10)0.0557 (13)0.0325 (12)0.0125 (9)0.0025 (8)0.0068 (9)
O20.0381 (7)0.0319 (7)0.0315 (7)0.0075 (5)0.0038 (5)0.0050 (6)
N10.0245 (14)0.025 (2)0.013 (2)0.0017 (12)0.0006 (14)0.0005 (14)
O10.0351 (10)0.0387 (13)0.0246 (11)0.0098 (10)0.0080 (8)0.0074 (9)
C10.0331 (12)0.0414 (15)0.0206 (13)0.0147 (11)0.007 (1)0.0027 (11)
C20.0399 (15)0.026 (3)0.0240 (14)0.0039 (17)0.0106 (12)0.0003 (19)
C30.0280 (14)0.029 (2)0.0435 (17)0.0007 (17)0.0142 (12)0.010 (2)
C40.0319 (13)0.035 (2)0.0285 (17)0.0042 (17)0.0026 (12)0.0098 (16)
C50.0330 (13)0.033 (2)0.020 (2)0.0066 (13)0.0064 (14)0.0012 (15)
C60.0378 (14)0.021 (2)0.016 (3)0.0012 (13)0.0046 (15)0.0018 (15)
C210.0361 (15)0.035 (2)0.016 (2)0.0113 (14)0.0043 (14)0.0032 (15)
C220.040 (3)0.0371 (18)0.0242 (16)0.0061 (19)0.002 (2)0.0003 (13)
C230.041 (2)0.037 (2)0.027 (2)0.0045 (18)0.0052 (16)0.0052 (16)
C240.0412 (17)0.037 (3)0.023 (2)0.0087 (17)0.0037 (14)0.0009 (17)
C250.0326 (19)0.041 (2)0.0247 (15)0.0082 (15)0.0017 (15)0.0042 (14)
C260.0297 (19)0.0383 (18)0.0238 (19)0.0035 (16)0.0013 (15)0.0022 (14)
C270.0293 (16)0.053 (2)0.0228 (18)0.0100 (16)0.0067 (14)0.0046 (15)
C280.032 (2)0.092 (4)0.070 (2)0.028 (2)0.0181 (18)0.054 (3)
C290.0366 (19)0.079 (3)0.053 (3)0.022 (2)0.0138 (18)0.037 (3)
C300.037 (3)0.058 (3)0.0338 (17)0.0190 (17)0.0023 (15)0.017 (2)
C310.030 (3)0.0417 (18)0.0287 (18)0.011 (2)0.0021 (19)0.0040 (15)
C320.032 (2)0.042 (2)0.029 (2)0.0086 (17)0.0010 (16)0.0007 (17)
N1'0.032 (3)0.022 (4)0.011 (5)0.001 (3)0.004 (3)0.005 (3)
O1'0.049 (3)0.040 (3)0.030 (3)0.015 (3)0.003 (2)0.006 (2)
C1'0.034 (3)0.041 (3)0.028 (3)0.011 (2)0.008 (2)0.005 (2)
C2'0.038 (3)0.027 (5)0.025 (3)0.001 (3)0.013 (3)0.001 (4)
C3'0.029 (3)0.026 (4)0.040 (3)0.002 (3)0.009 (3)0.013 (4)
C4'0.029 (3)0.037 (4)0.026 (3)0.002 (3)0.007 (3)0.011 (3)
C5'0.037 (3)0.035 (4)0.025 (5)0.010 (3)0.011 (3)0.002 (3)
C6'0.033 (3)0.024 (4)0.016 (5)0.001 (3)0.009 (3)0.001 (3)
C21'0.025 (3)0.053 (4)0.027 (4)0.004 (3)0.009 (3)0.015 (3)
C22'0.048 (5)0.093 (5)0.060 (4)0.037 (4)0.017 (4)0.047 (4)
C23'0.041 (4)0.077 (5)0.054 (4)0.030 (4)0.013 (4)0.030 (4)
C24'0.030 (4)0.066 (5)0.036 (3)0.017 (3)0.006 (3)0.017 (4)
C25'0.022 (5)0.044 (4)0.032 (4)0.005 (4)0.003 (4)0.006 (3)
C26'0.034 (4)0.047 (5)0.030 (4)0.007 (4)0.003 (3)0.004 (4)
C27'0.032 (3)0.033 (4)0.019 (4)0.006 (3)0.007 (3)0.004 (3)
C28'0.030 (5)0.047 (5)0.035 (5)0.003 (4)0.004 (4)0.000 (4)
C29'0.027 (5)0.044 (5)0.044 (6)0.001 (4)0.003 (4)0.013 (4)
C30'0.037 (4)0.039 (7)0.043 (8)0.005 (4)0.001 (4)0.003 (4)
C31'0.047 (6)0.042 (7)0.034 (6)0.004 (4)0.006 (5)0.002 (4)
C32'0.039 (6)0.035 (4)0.026 (5)0.005 (4)0.004 (4)0.002 (3)
C330.0261 (7)0.0185 (8)0.0173 (8)0.0033 (6)0.0003 (6)0.0002 (6)
C340.0317 (8)0.0215 (8)0.0139 (8)0.0015 (6)0.0011 (6)0.0002 (6)
C350.0277 (8)0.0193 (8)0.0171 (8)0.0023 (6)0.0025 (6)0.0001 (6)
C360.0379 (9)0.0186 (8)0.0215 (9)0.0014 (7)0.0060 (7)0.0023 (7)
O30.0533 (7)0.0144 (6)0.0231 (7)0.0002 (5)0.0098 (5)0.0028 (5)
O40.0385 (6)0.0231 (6)0.0179 (6)0.0037 (5)0.0042 (5)0.0009 (5)
O50.0676 (9)0.0156 (6)0.0268 (7)0.0021 (6)0.0186 (6)0.0010 (5)
O60.0769 (9)0.0233 (6)0.0179 (7)0.0010 (6)0.0113 (6)0.0000 (5)
Geometric parameters (Å, º) top
C7—N1'1.38 (2)C25—H250.9500
C7—C81.513 (2)C26—H260.9500
C7—N11.537 (8)C27—C321.387 (6)
C7—H7A0.9900C27—C281.417 (6)
C7—H7B0.9900C28—C291.367 (6)
C8—C91.515 (2)C28—H280.9500
C8—H8A0.9900C29—C301.385 (6)
C8—H8B0.9900C29—H290.9500
C9—C101.509 (2)C30—C311.371 (7)
C9—H9A0.9900C30—H300.9500
C9—H9B0.9900C31—C321.392 (6)
C10—O21.220 (2)C31—H310.9500
C10—C111.494 (2)C32—H320.9500
C11—C161.386 (2)N1'—C6'1.494 (14)
C11—C121.392 (2)N1'—C2'1.498 (14)
C12—C131.380 (2)N1'—H1N'1.0000
C12—H120.9500O1'—C4'1.443 (11)
C13—C141.396 (2)O1'—C1'1.448 (9)
C13—H130.9500C1'—C27'1.500 (13)
C14—C151.389 (2)C1'—C21'1.568 (12)
C14—C171.530 (2)C1'—H1'1.0000
C15—C161.385 (2)C2'—C3'1.523 (13)
C15—H150.9500C2'—H2'10.9900
C16—H160.9500C2'—H2'20.9900
C17—C181.524 (3)C3'—C4'1.504 (10)
C17—C201.528 (3)C3'—H3'10.9900
C17—C191.534 (2)C3'—H3'20.9900
C18—H18A0.9800C4'—C5'1.529 (12)
C18—H18B0.9800C4'—H4'1.0000
C18—H18C0.9800C5'—C6'1.508 (14)
C19—H19A0.9800C5'—H5'10.9900
C19—H19B0.9800C5'—H5'20.9900
C19—H19C0.9800C6'—H6'10.9900
C20—H20A0.9800C6'—H6'20.9900
C20—H20B0.9800C21'—C26'1.350 (15)
C20—H20C0.9800C21'—C22'1.445 (16)
N1—C61.503 (5)C22'—C23'1.392 (15)
N1—C21.505 (6)C22'—H22'0.9500
N1—H1N0.95 (2)C23'—C24'1.367 (15)
O1—C41.422 (4)C23'—H23'0.9500
O1—C11.446 (3)C24'—C25'1.383 (16)
C1—C271.509 (5)C24'—H24'0.9500
C1—C211.517 (5)C25'—C26'1.370 (16)
C1—H11.0000C25'—H25'0.9500
C2—C31.515 (5)C26'—H26'0.9500
C2—H2A0.9900C27'—C28'1.393 (14)
C2—H2B0.9900C27'—C32'1.394 (14)
C3—C41.531 (4)C28'—C29'1.362 (10)
C3—H3A0.9900C28'—H28'0.9500
C3—H3B0.9900C29'—C30'1.362 (11)
C4—C51.515 (5)C29'—H29'0.9500
C4—H41.0000C30'—C31'1.385 (12)
C5—C61.519 (5)C30'—H30'0.9500
C5—H5A0.9900C31'—C32'1.391 (11)
C5—H5B0.9900C31'—H31'0.9500
C6—H6A0.9900C32'—H32'0.9500
C6—H6B0.9900C33—O41.2503 (18)
C21—C221.384 (6)C33—O31.2638 (18)
C21—C261.390 (6)C33—C341.493 (2)
C22—C231.385 (5)C34—C351.316 (2)
C22—H220.9500C34—H340.9500
C23—C241.385 (4)C35—C361.487 (2)
C23—H230.9500C35—H350.9500
C24—C251.387 (5)C36—O61.211 (2)
C24—H240.9500C36—O51.3197 (19)
C25—C261.384 (4)O5—H5O1.04 (2)
N1'—C7—C8108.6 (11)C25—C24—H24119.8
C8—C7—N1112.1 (4)C26—C25—C24120.5 (4)
C8—C7—H7A109.2C26—C25—H25119.7
N1—C7—H7A109.2C24—C25—H25119.7
C8—C7—H7B109.2C25—C26—C21119.8 (4)
N1—C7—H7B109.2C25—C26—H26120.1
H7A—C7—H7B107.9C21—C26—H26120.1
C7—C8—C9111.84 (13)C32—C27—C28115.9 (5)
C7—C8—H8A109.2C32—C27—C1124.5 (4)
C9—C8—H8A109.2C28—C27—C1118.9 (4)
C7—C8—H8B109.2C29—C28—C27121.8 (5)
C9—C8—H8B109.2C29—C28—H28119.1
H8A—C8—H8B107.9C27—C28—H28119.1
C10—C9—C8112.92 (14)C28—C29—C30120.1 (5)
C10—C9—H9A109.0C28—C29—H29119.9
C8—C9—H9A109.0C30—C29—H29119.9
C10—C9—H9B109.0C31—C30—C29119.8 (6)
C8—C9—H9B109.0C31—C30—H30120.1
H9A—C9—H9B107.8C29—C30—H30120.1
O2—C10—C11120.08 (16)C30—C31—C32119.7 (6)
O2—C10—C9120.87 (15)C30—C31—H31120.2
C11—C10—C9119.04 (14)C32—C31—H31120.2
C16—C11—C12117.66 (16)C27—C32—C31122.0 (5)
C16—C11—C10122.76 (15)C27—C32—H32119.0
C12—C11—C10119.57 (15)C31—C32—H32119.0
C13—C12—C11120.99 (17)C7—N1'—C6'110.6 (17)
C13—C12—H12119.5C7—N1'—C2'119.4 (16)
C11—C12—H12119.5C6'—N1'—C2'110.5 (13)
C12—C13—C14121.86 (17)C7—N1'—H1N'105.0
C12—C13—H13119.1C6'—N1'—H1N'105.0
C14—C13—H13119.1C2'—N1'—H1N'105.0
C15—C14—C13116.55 (16)C4'—O1'—C1'112.3 (7)
C15—C14—C17121.72 (16)O1'—C1'—C27'111.5 (9)
C13—C14—C17121.60 (15)O1'—C1'—C21'103.0 (7)
C16—C15—C14121.91 (17)C27'—C1'—C21'114.5 (9)
C16—C15—H15119.0O1'—C1'—H1'109.2
C14—C15—H15119.0C27'—C1'—H1'109.2
C15—C16—C11121.02 (16)C21'—C1'—H1'109.2
C15—C16—H16119.5N1'—C2'—C3'111.1 (14)
C11—C16—H16119.5N1'—C2'—H2'1109.4
C18—C17—C20108.19 (17)C3'—C2'—H2'1109.4
C18—C17—C14111.40 (15)N1'—C2'—H2'2109.4
C20—C17—C14112.13 (14)C3'—C2'—H2'2109.4
C18—C17—C19109.32 (16)H2'1—C2'—H2'2108.0
C20—C17—C19108.70 (16)C4'—C3'—C2'110.9 (10)
C14—C17—C19107.04 (15)C4'—C3'—H3'1109.5
C17—C18—H18A109.5C2'—C3'—H3'1109.5
C17—C18—H18B109.5C4'—C3'—H3'2109.5
H18A—C18—H18B109.5C2'—C3'—H3'2109.5
C17—C18—H18C109.5H3'1—C3'—H3'2108.0
H18A—C18—H18C109.5O1'—C4'—C3'106.8 (9)
H18B—C18—H18C109.5O1'—C4'—C5'106.6 (11)
C17—C19—H19A109.5C3'—C4'—C5'111.0 (11)
C17—C19—H19B109.5O1'—C4'—H4'110.8
H19A—C19—H19B109.5C3'—C4'—H4'110.8
C17—C19—H19C109.5C5'—C4'—H4'110.8
H19A—C19—H19C109.5C6'—C5'—C4'114.7 (11)
H19B—C19—H19C109.5C6'—C5'—H5'1108.6
C17—C20—H20A109.5C4'—C5'—H5'1108.6
C17—C20—H20B109.5C6'—C5'—H5'2108.6
H20A—C20—H20B109.5C4'—C5'—H5'2108.6
C17—C20—H20C109.5H5'1—C5'—H5'2107.6
H20A—C20—H20C109.5N1'—C6'—C5'112.1 (15)
H20B—C20—H20C109.5N1'—C6'—H6'1109.2
C6—N1—C2109.6 (5)C5'—C6'—H6'1109.2
C6—N1—C7112.8 (6)N1'—C6'—H6'2109.2
C2—N1—C7110.8 (5)C5'—C6'—H6'2109.2
C6—N1—H1N107.8H6'1—C6'—H6'2107.9
C2—N1—H1N107.8C26'—C21'—C22'119.0 (13)
C7—N1—H1N107.8C26'—C21'—C1'117.0 (11)
C4—O1—C1117.0 (3)C22'—C21'—C1'121.5 (11)
O1—C1—C27104.2 (2)C23'—C22'—C21'117.2 (14)
O1—C1—C21113.2 (3)C23'—C22'—H22'121.4
C27—C1—C21114.0 (3)C21'—C22'—H22'121.4
O1—C1—H1108.4C24'—C23'—C22'118.6 (14)
C27—C1—H1108.4C24'—C23'—H23'120.7
C21—C1—H1108.4C22'—C23'—H23'120.7
N1—C2—C3109.8 (5)C23'—C24'—C25'120.1 (17)
N1—C2—H2A109.7C23'—C24'—H24'120.0
C3—C2—H2A109.7C25'—C24'—H24'120.0
N1—C2—H2B109.7C26'—C25'—C24'122.2 (17)
C3—C2—H2B109.7C26'—C25'—H25'118.9
H2A—C2—H2B108.2C24'—C25'—H25'118.9
C2—C3—C4112.8 (3)C21'—C26'—C25'116.3 (15)
C2—C3—H3A109.0C21'—C26'—H26'121.8
C4—C3—H3A109.0C25'—C26'—H26'121.8
C2—C3—H3B109.0C28'—C27'—C32'114.2 (11)
C4—C3—H3B109.0C28'—C27'—C1'121.5 (11)
H3A—C3—H3B107.8C32'—C27'—C1'124.3 (11)
O1—C4—C5106.3 (4)C29'—C28'—C27'121.4 (13)
O1—C4—C3112.3 (3)C29'—C28'—H28'119.3
C5—C4—C3109.9 (4)C27'—C28'—H28'119.3
O1—C4—H4109.4C28'—C29'—C30'120.2 (12)
C5—C4—H4109.4C28'—C29'—H29'119.9
C3—C4—H4109.4C30'—C29'—H29'119.9
C4—C5—C6113.6 (4)C29'—C30'—C31'124.3 (10)
C4—C5—H5A108.8C29'—C30'—H30'117.8
C6—C5—H5A108.8C31'—C30'—H30'117.8
C4—C5—H5B108.8C30'—C31'—C32'111.8 (10)
C6—C5—H5B108.8C30'—C31'—H31'124.1
H5A—C5—H5B107.7C32'—C31'—H31'124.1
N1—C6—C5108.9 (5)C31'—C32'—C27'128.1 (11)
N1—C6—H6A109.9C31'—C32'—H32'116.0
C5—C6—H6A109.9C27'—C32'—H32'116.0
N1—C6—H6B109.9O4—C33—O3124.32 (14)
C5—C6—H6B109.9O4—C33—C34119.06 (14)
H6A—C6—H6B108.3O3—C33—C34116.56 (14)
C22—C21—C26118.8 (4)C35—C34—C33123.21 (15)
C22—C21—C1120.5 (4)C35—C34—H34118.4
C26—C21—C1120.7 (4)C33—C34—H34118.4
C21—C22—C23122.1 (4)C34—C35—C36120.84 (15)
C21—C22—H22119.0C34—C35—H35119.6
C23—C22—H22119.0C36—C35—H35119.6
C24—C23—C22118.4 (3)O6—C36—O5121.01 (15)
C24—C23—H23120.8O6—C36—C35122.62 (15)
C22—C23—H23120.8O5—C36—C35116.37 (14)
C23—C24—C25120.4 (4)C36—O5—H5O108.7 (12)
C23—C24—H24119.8
N1'—C7—C8—C9171.8 (10)O1—C1—C27—C2856.4 (4)
N1—C7—C8—C9178.7 (3)C21—C1—C27—C28179.7 (4)
C7—C8—C9—C10168.02 (14)C32—C27—C28—C298.4 (7)
C8—C9—C10—O21.6 (2)C1—C27—C28—C29179.5 (5)
C8—C9—C10—C11179.52 (14)C27—C28—C29—C302.9 (9)
O2—C10—C11—C16177.72 (17)C28—C29—C30—C312.0 (12)
C9—C10—C11—C163.4 (2)C29—C30—C31—C320.9 (13)
O2—C10—C11—C122.4 (2)C28—C27—C32—C319.5 (8)
C9—C10—C11—C12176.43 (16)C1—C27—C32—C31180.0 (5)
C16—C11—C12—C130.0 (3)C30—C31—C32—C275.1 (10)
C10—C11—C12—C13179.89 (16)C8—C7—N1'—C6'158.4 (14)
C11—C12—C13—C140.4 (3)C8—C7—N1'—C2'72 (2)
C12—C13—C14—C150.5 (3)C4'—O1'—C1'—C27'68.7 (11)
C12—C13—C14—C17176.41 (16)C4'—O1'—C1'—C21'168.0 (8)
C13—C14—C15—C160.1 (3)C7—N1'—C2'—C3'170.6 (18)
C17—C14—C15—C16176.04 (17)C6'—N1'—C2'—C3'60 (2)
C14—C15—C16—C110.3 (3)N1'—C2'—C3'—C4'59.2 (19)
C12—C11—C16—C150.4 (3)C1'—O1'—C4'—C3'155.5 (9)
C10—C11—C16—C15179.75 (16)C1'—O1'—C4'—C5'85.8 (11)
C15—C14—C17—C18148.79 (18)C2'—C3'—C4'—O1'63.7 (15)
C13—C14—C17—C1835.5 (2)C2'—C3'—C4'—C5'52.2 (16)
C15—C14—C17—C2027.4 (2)O1'—C4'—C5'—C6'67.7 (18)
C13—C14—C17—C20156.94 (17)C3'—C4'—C5'—C6'48 (2)
C15—C14—C17—C1991.8 (2)C7—N1'—C6'—C5'171.5 (18)
C13—C14—C17—C1983.9 (2)C2'—N1'—C6'—C5'54 (2)
C8—C7—N1—C6153.5 (5)C4'—C5'—C6'—N1'49 (2)
C8—C7—N1—C283.3 (7)O1'—C1'—C21'—C26'170.1 (11)
C4—O1—C1—C27175.6 (3)C27'—C1'—C21'—C26'48.9 (15)
C4—O1—C1—C2160.0 (4)O1'—C1'—C21'—C22'8.3 (15)
C6—N1—C2—C361.7 (8)C27'—C1'—C21'—C22'112.9 (15)
C7—N1—C2—C3173.2 (5)C26'—C21'—C22'—C23'29 (2)
N1—C2—C3—C456.4 (7)C1'—C21'—C22'—C23'170.0 (13)
C1—O1—C4—C5177.4 (3)C21'—C22'—C23'—C24'10 (3)
C1—O1—C4—C362.3 (4)C22'—C23'—C24'—C25'7 (4)
C2—C3—C4—O167.9 (6)C23'—C24'—C25'—C26'7 (4)
C2—C3—C4—C550.2 (6)C22'—C21'—C26'—C25'28 (2)
O1—C4—C5—C670.8 (6)C1'—C21'—C26'—C25'169.2 (14)
C3—C4—C5—C651.0 (7)C24'—C25'—C26'—C21'11 (3)
C2—N1—C6—C561.5 (8)O1'—C1'—C27'—C28'43.1 (15)
C7—N1—C6—C5174.6 (6)C21'—C1'—C27'—C28'73.4 (15)
C4—C5—C6—N157.3 (8)O1'—C1'—C27'—C32'137.7 (14)
O1—C1—C21—C22137.7 (4)C21'—C1'—C27'—C32'105.9 (16)
C27—C1—C21—C22103.5 (5)C32'—C27'—C28'—C29'0.6 (15)
O1—C1—C21—C2642.5 (6)C1'—C27'—C28'—C29'179.9 (15)
C27—C1—C21—C2676.4 (6)C27'—C28'—C29'—C30'0.1 (14)
C26—C21—C22—C230.1 (7)C28'—C29'—C30'—C31'1.2 (17)
C1—C21—C22—C23179.8 (5)C29'—C30'—C31'—C32'1.7 (17)
C21—C22—C23—C240.0 (6)C30'—C31'—C32'—C27'1 (2)
C22—C23—C24—C250.1 (5)C28'—C27'—C32'—C31'0 (2)
C23—C24—C25—C260.1 (5)C1'—C27'—C32'—C31'179.2 (14)
C24—C25—C26—C210.1 (6)O4—C33—C34—C3527.3 (2)
C22—C21—C26—C250.0 (7)O3—C33—C34—C35150.19 (16)
C1—C21—C26—C25179.9 (5)C33—C34—C35—C36176.29 (14)
O1—C1—C27—C32113.8 (4)C34—C35—C36—O63.9 (3)
C21—C1—C27—C3210.1 (5)C34—C35—C36—O5176.43 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 represent the centroids of phenyl rings C21–C26 and C27–C32, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.951.752.697 (11)175
N1—H1N···O41.001.782.77 (3)169
O5—H5O···O3i1.04 (2)1.50 (2)2.5402 (17)171 (2)
C7—H7A···O2ii0.992.373.330 (2)164
C8—H8B···O6iii0.992.533.325 (2)137
C34—H34···O5ii0.952.623.208 (2)121
C35—H35···O3i0.952.493.1450 (19)127
C31—H31···Cg1iv0.952.723.534 (6)145
C25—H25···Cg1v0.952.703.532 (4)146
C23—H23···Cg2vi0.952.753.624 (4)154
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x, y+5/2, z+1/2; (iv) x+1, y, z; (v) x+1, y1/2, z1/2; (vi) x+1, y+1, z.
 

Acknowledgements

PP thanks the B. N. M. Institute of Technology, Bangalore, India for research facilities. The D8 Venture diffractometer was funded by the NSF (MRI CHE1625732), and by the University of Kentucky.

Funding information

HSY thanks the UGC, New Delhi, for a faculty fellowship.

References

First citationBilgic, M. (2013). World Patent number WO-2013/081562.  Google Scholar
First citationBobee, J.-M., Conrath, G., Gousset, G., Ponsot, M. & Veillard, M. (1995). US Patent number US-5460829.  Google Scholar
First citationBruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChadeayne, A. R., Golen, J. A. & Manke, D. R. (2019). Acta Cryst. E75, 900–902.  CSD CrossRef IUCr Journals Google Scholar
First citationCheng, J., Zhou, Z. & Yang, G. (2005). Acta Cryst. E61, o2932–o2933.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDawson, B. (1964). Acta Cryst. 17, 990–996.  CrossRef IUCr Journals Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKavitha, C. N., Yildirim, S. O., Jasinski, J. P., Yathirajan, H. S. & Butcher, R. J. (2013). Acta Cryst. E69, o142–o143.  CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParkin, S. R. (2021). Acta Cryst. E77, 452–465.  CrossRef IUCr Journals Google Scholar
First citationRoma-Millan, J., Mestre-Castell, J. & Suñé-Negre, J. M. (2011). European Patent number EP-1944028.  Google Scholar
First citationShaibah, M. A. E., Sagar, B. K., Yathirajan, H. S., Kumar, S. M. & Glidewell, C. (2017). Acta Cryst. E73, 1513–1516.  CSD CrossRef IUCr Journals Google Scholar
First citationSharma, R., Prasher, D. & Tiwari, R. K. (2015). J. Appl. Cryst. 48, 1299–1301.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiddegowda, M. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Swamy, M. T. (2011). Acta Cryst. E67, o2296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVan Cauwenberge, P., De Belder, T. & Sys, L. (2004). Expert Opin. Pharmacother. 5, 1807–1813.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiseman, L. R. & Faulds, D. (1996). Drugs, 51, 260–277.  CrossRef CAS PubMed Web of Science Google Scholar
First citationYamaguchi, T., Hashizume, T., Matsuda, M., Sakashita, M., Fujii, T., Sekine, Y., Nakashima, M. & Uematsu, T. (1994). Arzneim.-Forsch. 44, 59–64.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds