research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of an indium–salicyl­hydroximate complex cation: [In4(H2shi)8(H2O)6](NO3)4·8.57H2O

crossmark logo

aDepartment of Chemistry and Biochemistry, Shippensburg University, Shippensburg, PA 17257, USA, and bDepartment of Chemistry, Purdue University, West Lafayette, IN 47907, USA
*Correspondence e-mail: cmzaleski@ship.edu

Edited by J. T. Mague, Tulane University, USA (Received 20 July 2022; accepted 8 August 2022; online 18 August 2022)

The synthesis and crystal structure for the title compound, hexa­aqua­hexa­kis(μ-2-hy­droxy­benzene­carbo­hydrox­a­mato)bis­(2-hy­droxy­benzene­carbo­hydrox­a­m­ato)tetra­indium(III) tetra­nitrate 8.57-hydrate + unknown solvent, [In4(H2shi)8(H2O)6](NO3)4·8.57H2O·solvent, where H2shi is salicylhydrox­imate (C7H5NO3), are reported. The complex cation of the structure, [In4(H2shi)8(H2O)6]4+, is a dimer with a step-like topology and possesses an inversion center that relates each [In2(H2shi)4(H2O)3]2+ side of the complex cation. Each InIII ion is seven-coordinate with a penta­gonal–bipyramidal geometry, and the salicyl­hydroximate ligands have a 1− charge as only the oxime oxygen of the ligand is deprotonated. Four inter­stitial nitrate anions maintain the charge balance of the compound. One of the nitrate anions (and its symmetry equivalent) is disordered over two different orientations with an occupancy ratio of 0.557 (7) to 0.443 (7). The inter­stitial solvent water mol­ecules show substantial disorder. Approximately 8.57 water mol­ecules per formula unit were refined as disordered and partially occupied, while a suitable model could not be devised for the other extensively disordered solvent mol­ecules (water and possibly methanol as this was the synthesis solvent). Thus, these latter solvent mol­ecules were instead treated with the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18.] as implemented in the program PLATON, and the procedure corrected for 151 electrons within solvent-accessible voids of 367 Å3.

1. Chemical context

Salicyl­hydroxamic acid (H3shi) has proven to be a versatile ligand for the class of inorganic macrocyclic coordination compounds known as metallacrowns (MC) (Mezei et al., 2007[Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933-5003.]). Metallacrowns are the inorganic analogue of organic crown ethers (Pedersen, 1967[Pedersen, C. J. (1967). J. Am. Chem. Soc. 89, 2495-2496.]). As crown ethers have a carbon–carbon–oxygen ring repeat unit, metallacrowns have a metal–nitro­gen–oxygen repeat unit about the ring of the metallamacrocycle. In addition, as crown ethers, metallacrowns are capable of capturing a metal ion in the central cavity of the structure. Salicyl­hydroxamic acid in its triply deprotonated state (shi3−) was used in the synthesis of the first metallacrown, a vanadium-based 9-MC-3 (Pecoraro, 1989[Pecoraro, V. L. (1989). Inorg. Chim. Acta, 155, 171-173.]), and since then it has been used to construct numerous MCs including other 9-MC-3 (Lah et al., 1989[Lah, M. S., Kirk, M. L., Hatfield, W. & Pecoraro, V. L. (1989). J. Chem. Soc. Chem. Commun. p. 1606.]), 12-MC-4 (Lah & Pecoraro, 1989[Lah, M. S. & Pecoraro, V. L. (1989). J. Am. Chem. Soc. 111, 7258-7259.]), and 15-MC-5 (Kessisoglou et al., 1994[Kessisoglou, D. P., Kampf, J. & Pecoraro, V. L. (1994). Polyhedron, 13, 1379-1391.]) compounds. Initially salicyl­hydroxamic acid was mainly used in conjunction with transition-metal ions in both the ring and central metal positions of the metallacrown structure. However, in 2014 our group demonstrated that 12-MC-4 compounds with a salicyl­hydroximate (shi3−) framework could incorporate lanthanide ions in the central cavity while using MnIII ions in the ring positions of the MC (Azar et al., 2014[Azar, M. R., Boron, T. T. III, Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729-1742.]). These mol­ecules proved to be mol­ecular magnets with magnetic behavior consistent with single-mol­ecule magnetism (Boron et al., 2016[Boron, T. T. III, Lutter, J. C., Daly, C. I., Chow, C. Y., Davis, A. H., Nimthong-Roldán, R., Zeller, M., Kampf, J. W., Zaleski, C. M. & Pecoraro, V. L. (2016). Inorg. Chem. 55, 10597-10607.]). Since then the manganese(III) ions have been replaced with the main-group metals gallium(III) and aluminum(III), and both the lanthanide-gallium (Chow et al., 2016[Chow, C. Y., Eliseeva, S. V., Trivedi, E. R., Nguyen, T. N., Kampf, J. W., Petoud, S. & Pecoraro, V. L. (2016). J. Am. Chem. Soc. 138, 5100-5109.]) and lanthanide-aluminum (Eliseeva et al., 2022[Eliseeva, S. V., Travis, J. R., Nagy, S. G., Smihosky, A. M., Foley, C. M., Kauffman, A. C., Zaleski, C. M. & Petoud, S. (2022). Dalton Trans. 51, 5989-5996.]) 12-MC-4 structures with the shi3− ligand are highly luminescent materials in the visible and near-infrared regions. To further explore the chemistry of H3shi with other main-group metals, we decided to react the ligand with indium(III), a fellow Group 13 metal.

[Scheme 1]

Indium is an appealing target for metallacrown and metallacrown-like compounds, as indium coordination complexes have applications in both the medicinal and material chemistry fields. The radioisotope indium-111 emits gamma radiation and has a half-life of ∼2.8 days. Numerous coordination complexes of the radiometal have been evaluated as potential imaging agents and radiolabels (Pecoraro et al., 1982[Pecoraro, V. L., Wong, G. B. & Raymond, K. N. (1982). Inorg. Chem. 21, 2209-2215.]; Liu et al., 2003[Liu, S., He, Z., Hsieh, W.-Y. & Fanwick, P. E. (2003). Inorg. Chem. 42, 8831-8837.]; Nishikawa et al., 2003[Nishikawa, M., Nakano, T., Okabe, T., Hamaguchi, N., Yamasaki, Y., Takakura, Y., Yamashita, F. & Hashida, M. (2003). Bioconjugate Chem. 14, 955-961.]; Ramogida et al., 2015[Ramogida, C. F., Cawthray, J. F., Boros, E., Ferreira, C. L., Patrick, B. O., Adam, M. J. & Orvig, C. (2015). Inorg. Chem. 54, 2017-2031.]; Choudhary et al., 2019[Choudhary, N., Dimmling, A., Wang, X., Southcott, L., Radchenko, V., Patrick, B. O., Comba, P. & Orvig, C. (2019). Inorg. Chem. 58, 8685-8693.]). In addition, indium coordination complexes have been investigated as precursors for indium oxide thin films (Xu et al., 2000[Xu, C., Baum, T. H., Guzei, I. & Rheingold, A. L. (2000). Inorg. Chem. 39, 2008-2010.]; Chou et al., 2003[Chou, T.-Y., Chi, Y., Huang, S.-F., Liu, C.-S., Carty, A. J., Scoles, L. & Udachin, K. A. (2003). Inorg. Chem. 42, 6041-6049.]; Lee et al., 2018[Lee, J. H., Jung, E. A., Lee, G. Y., Han, S. H., Park, B. K., Lee, S. W., Son, S. U., Kim, C. G. & Chung, T.-M. (2018). ChemistrySelect, 3, 6691-6695.]; Yoo et al., 2021[Yoo, D., Han, S. H., Lee, S. H., Eom, T., Park, B. K., Kim, C. G., Son, S. U. & Chung, T.-M. (2021). Eur. J. Inorg. Chem. pp. 2480-2485.]) and as luminophores (Lee et al., 2017[Lee, S. H., Shin, N., Kwak, S. W., Hyun, K., Woo, W. H., Lee, J. H., Hwang, H., Kim, M., Lee, J., Kim, Y., Lee, K. M. & Park, M. H. (2017). Inorg. Chem. 56, 2621-2626.]). Herein we report the synthesis and single-crystal X-ray crystal structure of [In4(H2shi)8(H2O)6](NO3)4·8.57H2O·solvent, 1, where H2shi is the singly deprotonated version of salicyl­hydroxamic acid. Future work will focus on the potential use of the compound for radiopharmacological or thin film applications.

2. Structural commentary

Compound 1, [In4(H2shi)8(H2O)6](NO3)4·8.57H2O·solvent, consists of four indium ions with a 3+ charge (total 12+ charge) that is counterbalanced by eight singly deprotonated salicyl­hydroximate anions (H2shi) and four inter­stitial nitrate ions (total 12− charge). Only the oxime oxygen atoms (O1, O4, O7, and O10) of the H2shi ligands are deprotonated. The complex cation structure of 1, [In4(H2shi)8(H2O)6]4+, is a dimer with a step-like topology (Fig. 1[link]). The dimer features four InIII ions in a chain {In1, In2, In2i, In1i; [symmetry code: (i) −x + 1, −y + 1, −z + 1]} and each half of the dimer is related by an inversion center located between the two central indium ions (In2) (Fig. 1[link]). Each side of the dimer contains two indium(III) ions, four H2shi anions, and three water mol­ecules: [In2(H2shi)4(H2O)3]2+ (Fig. 2[link]). Each half of the complex cation is connected via the middle In2 centers where two oxime oxygens of symmetry-related H2shi ligands bind to both In2 ions. Both InIII ions are seven-coordinate with penta­gonal–bipyramidal geometry (Table 1[link]; Figs. 1[link] and 2[link]). The geometry was determined with the program SHAPE 2.1 (Llunell et al., 2013[Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE. Shape Software, Barcelona, Spain.]; Pinsky & Avnir, 1998[Pinsky, M. & Avnir, D. (1998). Inorg. Chem. 37, 5575-5582.]; Casanova et al., 2004[Casanova, D., Cirera, J., Llunell, M., Alemany, P., Avnir, D. & Alvarez, S. (2004). J. Am. Chem. Soc. 126, 1755-1763.]). For In1, the penta­gonal plane consists of five oxygen atoms from three different H2shi ligands. Two of the ligands bind in a bidentate fashion using both the oxime and carbonyl oxygen atoms of the ligand to form two five-membered chelate rings about the InIII center. The third H2shi binds in a monodentate fashion via the oxime oxygen atom. The axial positions of the coordination geometry are occupied by two water mol­ecules. In1 is connected to In2 via two bridging oxime oxygen atoms. For In2, the metal center binds to four H2shi anions, three from one half of the dimer and one from the symmetry-related portion of the cation. Two of the H2shi ligands bind in a bidentate fashion with oxime and carbonyl oxygen atoms and form two five-membered chelate rings, while the other two bind in a monodentate fashion via the oxime oxygen atoms. Three of the H2shi anions (two bidentate and one monodentate) provide the five oxygen atoms of the penta­gonal plane. The axial direction consists of one water mol­ecule and one oxime oxygen atom. This axial oxime oxygen atom then binds to the symmetry equivalent In2 ion of the other portion of the cation and thus generates the step-like topology where each half of the dimer consists of two InIII ions (Fig. 1[link]b).

Table 1
Continuous Shapes Measures (CShM) values for the geometry about the seven-coordinate InIII ions of 1.

Shape In1 In2
Heptagon (D7h) 33.951 33.043
Hexagonal pyramid (C6v) 25.413 23.853
Penta­gonal bipyramid (D5h) 0.290 1.046
Capped octa­hedron (C3v) 7.067 5.351
Capped trigonal prism (C2v) 5.268 4.128
Johnson penta­gonal bipyramid (J13; D5h) 3.798 4.596
Johnson elongated triangular pyramid (J7, C3v) 22.464 21.243
[Figure 1]
Figure 1
The single-crystal X-ray structure of [In4(H2shi)8(H2O)6](NO3)4·8.57H2O·solvent, 1, with displacement ellipsoids at the 50% probability level [symmetry code: (i) −x + 1, −y + 1, −z + 1]. (a) top view with only the metal ions and heteroatoms labeled for clarity and (b) side view with only the metal ions and axial heteroatoms labeled. In addition, hydrogen atoms, inter­stitial nitrate anions, inter­stitial water mol­ecules, and disorder have been omitted for clarity. Color scheme: green – In, red – oxygen, dark blue – nitro­gen, and gray – carbon. All figures were generated with the program Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).
[Figure 2]
Figure 2
Top view of a [In2(H2shi)4(H2O)3]2+ unit of 1 with displacement ellipsoids at the 50% probability level [symmetry code: (i) −x + 1, −y + 1, −z + 1]. In addition, the intra­molecular hydrogen bonding in 1 between the hydrogen atoms (white) of the oxime nitro­gen atoms and the phenol oxygen atoms and between the hydrogen atoms of the oxime nitro­gen atoms and the carbonyl oxygen atoms are displayed. See Fig. 1[link] for additional display details.

The inter­stitial area contains an ordered nitrate anion and a nitrate anion that is disordered over two positions with an occupancy ratio of 0.557 (7) to 0.443 (7). In addition, several solvent water mol­ecules (ca 8.57 per formula unit) were found to be disordered, and when possible the disorder and hydrogen bonding were refined. All of the inter­stitial water mol­ecules are only partially occupied (associated with O22–O27) and due to the large amount of disorder, no attempts were made to match occupancies. In addition, some solvent mol­ecules (water and/or methanol) were found to have excessive disorder and a suitable model could not be devised. These solvent mol­ecules were instead augmented with the SQUEEZE routine (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) as implemented in the program PLATON (Spek, 2022[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). Complete details regarding the SQUEEZE results can be found in the Refinement section.

3. Supra­molecular features

For the [In4(H2shi)8(H2O)6]4+ cation of 1, several intra­molecular hydrogen bonds exist between the protonated oxime nitro­gen atoms (N1, N2, N3, and N4) of the H2shi ligands and the protonated phenol oxygen atoms (O3, O6, O9, and O12, respectively) of the same ligand with the hydrogen atom of the nitro­gen atom bonding to the oxygen atom (Fig. 2[link]; Table 2[link]). In addition, the hydrogen atom of the oxime nitro­gen atom (N2 and N4) also forms a hydrogen bond to the carbonyl oxygen atom (O8 and O2, respectively) of a neighboring H2shi ligand (Fig. 2[link]), and the hydrogen atom of the oxime nitro­gen atom (N3) bonds to the oxygen atom (O14) of the water mol­ecule coordinated to In1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O22i 0.84 1.83 2.664 (4) 171
O3—H3O⋯O22Bi 0.84 1.97 2.668 (17) 140
O6—H6O⋯O18ii 0.84 1.98 2.775 (10) 157
O6—H6O⋯O17Bii 0.84 2.06 2.810 (5) 149
O9—H9O⋯O20iii 0.84 1.88 2.717 (3) 176
O12—H12O⋯O17 0.84 1.99 2.778 (5) 156
O12—H12O⋯O16B 0.84 1.81 2.609 (6) 158
O13—H13B⋯O24 0.82 (2) 2.09 (3) 2.761 (6) 140 (4)
O13—H13B⋯O25 0.82 (2) 2.01 (4) 2.64 (3) 134 (4)
O13—H13B⋯O24B 0.82 (2) 1.70 (2) 2.485 (7) 160 (5)
O13—H13A⋯O1iv 0.84 (2) 1.77 (2) 2.601 (2) 170 (4)
O14—H14A⋯O26 0.86 (2) 1.83 (2) 2.631 (5) 154 (4)
O14—H14A⋯O26B 0.86 (2) 1.82 (2) 2.629 (8) 158 (4)
O14—H14B⋯O19i 0.84 (2) 1.99 (2) 2.782 (3) 157 (4)
O15—H15A⋯O25 0.84 (2) 2.11 (3) 2.93 (3) 171 (6)
O15—H15A⋯O24B 0.84 (2) 2.10 (3) 2.891 (9) 158 (5)
O15—H15B⋯O20 0.83 (2) 2.27 (3) 2.970 (4) 142 (5)
O15—H15B⋯O21 0.83 (2) 2.16 (3) 2.924 (4) 154 (6)
O23—H23B⋯O5 0.89 2.16 3.003 (6) 160
O22—H22A⋯O18v 0.82 (2) 2.11 (4) 2.842 (12) 148 (6)
O22—H22B⋯O21vi 0.82 (2) 2.03 (3) 2.832 (5) 164 (7)
O24—H24A⋯O25 0.86 (2) 2.03 (2) 2.80 (3) 149 (6)
O24—H24B⋯O21 0.85 (2) 2.21 (4) 3.003 (5) 155 (6)
O22B—H22C⋯O21vi 0.84 2.00 2.808 (16) 159
O24B—H24C⋯O22B 0.85 (2) 2.02 (2) 2.824 (19) 156 (7)
O26—H26A⋯O27 0.83 (2) 1.56 (6) 2.259 (16) 140 (9)
O27—H27B⋯O23 0.86 2.14 2.987 (19) 168
O26B—H26C⋯O27B 0.84 1.73 2.31 (2) 124
O26B—H26D⋯O23 0.84 2.38 3.033 (13) 134
O27B—H27D⋯O11vii 0.85 2.13 2.955 (18) 163
N1—H1N⋯O3 0.88 1.92 2.605 (3) 134
N2—H2N⋯O6 0.88 2.02 2.669 (2) 130
N2—H2N⋯O8 0.88 2.48 2.935 (3) 113
N3—H3N⋯O9 0.88 1.94 2.605 (3) 132
N3—H3N⋯O14vii 0.88 2.24 2.939 (3) 137
N4—H4N⋯O2 0.88 2.33 2.804 (3) 114
N4—H4N⋯O12 0.88 1.97 2.621 (3) 130
Symmetry codes: (i) [x-1, y, z]; (ii) [x+1, y-1, z]; (iii) [-x+2, -y+1, -z+1]; (iv) [-x+1, -y+1, -z]; (v) [-x+1, -y+2, -z]; (vi) [-x+2, -y+1, -z]; (vii) [-x+1, -y+1, -z+1].

There is one inter­molecular hydrogen bond between neighboring complex cations of 1 (Table 2[link]). The hydrogen atom of the water mol­ecule (associated with O13) coordinated to In1 forms a hydrogen bond to an oxime oxygen atom (O1) of a neighboring complex cation. In addition, the reciprocal hydrogen bond is also formed between the two cations. Due to the inversion center of the complex cation, these hydrogen bonds occur on both sides of the [In4(H2shi)8(H2O)6]4+ ion; thus, a one-dimensional chain of the dimers is generated (Fig. 3[link]).

[Figure 3]
Figure 3
Inter­molecular hydrogen bonding in 1 between the hydrogen atom (white) of the water mol­ecule associated with O13 (coordinated to In1) and the oxime oxygen atom (O1) of a neighboring complex cation of 1 [symmetry code: (iv) −x + 1, −y + 1, −z]. The hydrogen bonding results in a one-dimensional chain. For clarity only the oxygen atoms involved in the hydrogen bonding have been labeled. See Fig. 1[link] for additional display details.

Furthermore, several inter­molecular hydrogen bonds exist between the partially occupied inter­stitial water mol­ecules (O22–O27) themselves and between the inter­stitial water mol­ecules and the protonated phenol oxygen atoms (O3 and O6) and the carbonyl oxygen atoms (O5 and O11) atoms of the H2shi ligands, the water mol­ecules (O13–O15) coord­inated to the InIII ions, and the oxygen atoms (O18 and O21) of the inter­stitial nitrate anions (Table 2[link]). Lastly, the protonated phenol oxygen atoms (O6, O9, and O12) of the H2shi ligands form hydrogen bonds to the oxygen atoms (O16, O17, O18, and O20) of inter­stitial nitrate ions, and the coordinated water mol­ecules (O14 and O15) form hydrogen bonds with the oxygen atoms (O19, O20, and O21) of inter­stitial nitrate ions.

4. Database survey

A survey of the Cambridge Structural Database (CSD version 5.43, update March 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) lists only two other structures with indium bound to hydroxamic acid ligands, though neither are salicyl­hydroxamic acid. One structure (JAGWUJ; Matsuba et al., 1988[Matsuba, C., Rettig, S. J. & Orvig, C. (1988). Can. J. Chem. 66, 1809-1813.]) contains an indium(III) ion bound to three benzo­hydroximate ligands in an octa­hedral propeller coordination geometry with Δ configuration. The other structure (VOLNIU; Seitz et al., 2008[Seitz, M., Moore, E. G. & Raymond, K. N. (2008). Inorg. Chem. 47, 8665-8673.]) is an indium(III) ion in a trigonal prismatic coordination geometry bound to a tripodal ligand based on 1-oxo-2-hy­droxy-iso­quinoline-3-carb­oxy­lic acid, an aromatic hydroxamic acid. In addition, there are five other di-metallic structures [DEYSIM (Lee et al., 2018[Lee, J. H., Jung, E. A., Lee, G. Y., Han, S. H., Park, B. K., Lee, S. W., Son, S. U., Kim, C. G. & Chung, T.-M. (2018). ChemistrySelect, 3, 6691-6695.]); UWOFIY, UWOFOE, UWOGAR, UWOGEV (Yoo et al., 2021[Yoo, D., Han, S. H., Lee, S. H., Eom, T., Park, B. K., Kim, C. G., Son, S. U. & Chung, T.-M. (2021). Eur. J. Inorg. Chem. pp. 2480-2485.])] of indium bound to N-alk­oxy carboxamide ligands. This class of ligands is closely related to hydroxamic acids as they also have a O–C–N–O connectivity, but the oxygen atom attached to the nitro­gen atom is bound to an alkyl group instead of being an acidic hydrogen atom.

5. Synthesis and crystallization

Synthetic Materials

Salicyl­hydroxamic acid (H3shi, >98%) was purchased from TCI America. Indium(III) nitrate hydrate (99.999%-In; Puratrem) was purchased from Strem Chemicals. Methanol (ACS grade) was purchased from VWR Chemicals BDH. All reagents were used as received and without further purification.

Synthesis [In4(H2shi)8(H2O)6](NO3)4·8.57H2O·solvent, 1. Salicyl­hydroxamic acid (1 mmol) was dissolved in 10 mL of methanol resulting in a clear, light-pink solution. In a separate beaker, indium(III) nitrate hydrate (1 mmol; with an assumption of five waters of hydration) was dissolved in 10 mL of methanol resulting in a clear, colorless solution. The two solutions were mixed resulting in a clear, slightly pink solution and then allowed to stir overnight. The solution was then filtered, and no solid was recovered. The filtrate remained clear and slightly pink. X-ray quality clear and colorless crystals were grown in 21 days by slow evaporation of the solvent. The percentage yield was 43% based on salicyl­hydroxamic acid. FT–IR bands (ATR, cm−1): 1604, 1566, 1519, 1486, 1451, 1336, 1311, 1241, 1152, 1099, 1064, 1035, 927, 858, 821, 813, 770, 746, 665, 588, 560.

6. Refinement

A nitrate ion (associated with N5) was refined as disordered. The two disordered moieties were restrained to have similar geometries as the ordered nitrate ion (SAME command of SHELXL, first and second esds were 0.02 and 0.04 Å). Uij components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar (SIMU command of SHELXL, first and second esds were 0.01 and 0.02 Å2). Subject to these conditions the occupancy ratio refined to 0.443 (7) to 0.557 (7).

Solvate mol­ecules were found to be disordered. For the better defined solvate mol­ecules, distances to potential hydrogen-bond acceptors indicated these mol­ecules to be water (methanol was used as the crystallization solvent and waters of hydration were present in the starting materials used) and these were refined as disordered water mol­ecules. For mol­ecules not directly hydrogen bonded to the main mol­ecule, disorder was found to be excessive (greater than three- to fourfold disorder of water and/or methanol) and no suitable model could be devised. The structure factors associated with the disordered solvate mol­ecules were instead augmented via reverse Fourier transform methods using the SQUEEZE routine (Sluis & Spek, 1990[Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194-201.]; Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) as implemented in the program PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). The resultant FAB file containing the structure-factor contribution from the electron content of the void space was used together with the original hkl file in the further refinement. (The FAB file with details of the SQUEEZE results is appended to the CIF file). The SQUEEZE procedure corrected for 151 electrons within solvent-accessible voids of 367 Å3.

Resolved disordered water mol­ecules were assigned occupancy values. For `outlying' water mol­ecules occupancies did not refine to full occupancy for each site (due to excessive disorder, or part of the site overlapping with squeezed areas) and no attempts were made to match the occupancies of these water mol­ecules with other moieties in the structure to add up to unity for each site. Uij components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar [SIMU command of SHELXL, first and second esds were 0.01 and 0.02 (O22, O22B O24B, O25) or 0.001 (O26, O27, O26B, O27B) Å2]. Water hydrogen-atom positions were initially refined and O—H and H⋯H distances were restrained to 0.84 (2) and 1.36 (2) Å, respectively, while a damping factor was applied. Some water hydrogen-atom positions were further restrained based on hydrogen-bonding considerations. In the final refinement cycles, hydrogen atoms with low occupancies were constrained to ride on their carrier atoms and the damping factor was removed. Subject to these conditions, the occupancy rates refined to the values given in the tables of the CIF. Additional crystal data, data collection, and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [In4(C7H6NO3)8(H2O)6](NO3)4·8.57H2O·[+solvent]
Mr 2186.80
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 11.8435 (5), 14.2195 (6), 14.6918 (5)
α, β, γ (°) 81.905 (2), 70.768 (2), 76.516 (2)
V3) 2266.22 (16)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.11
Crystal size (mm) 0.17 × 0.16 × 0.06
 
Data collection
Diffractometer Bruker D8 Quest
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.680, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 118064, 17348, 12266
Rint 0.049
(sin θ/λ)max−1) 0.771
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.109, 1.02
No. of reflections 17348
No. of parameters 694
No. of restraints 215
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.11, −1.49
Computer programs: APEX4 and SAINT (Bruker, 2022[Bruker (2022). APEX4 and SAINT V8.40B, Bruker AXS Inc., Madison, Wsconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX4 (Bruker, 2022); cell refinement: SAINT (Bruker, 2022); data reduction: SAINT (Bruker, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b), ShelXle (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Hexaaquahexakis(µ2-2-hydroxybenzenecarbohydroxamato)bis(2-hydroxybenzenecarbohydroxamato)tetraindium(III) tetranitrate 8.57-hydrate top
Crystal data top
[In4(C7H6NO3)8(H2O)6](NO3)4·8.57H2O·[+solvent]Z = 1
Mr = 2186.80F(000) = 1099
Triclinic, P1Dx = 1.603 Mg m3
a = 11.8435 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.2195 (6) ÅCell parameters from 9643 reflections
c = 14.6918 (5) Åθ = 2.7–33.1°
α = 81.905 (2)°µ = 1.11 mm1
β = 70.768 (2)°T = 150 K
γ = 76.516 (2)°Plate, colourless
V = 2266.22 (16) Å30.17 × 0.16 × 0.06 mm
Data collection top
Bruker D8 Quest
diffractometer
17348 independent reflections
Radiation source: fine focus sealed tube X-ray source12266 reflections with I > 2σ(I)
Triumph curved graphite crystal monochromatorRint = 0.049
Detector resolution: 7.4074 pixels mm-1θmax = 33.2°, θmin = 2.7°
ω and phi scansh = 1818
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2121
Tmin = 0.680, Tmax = 0.747l = 2222
118064 measured reflections
Refinement top
Refinement on F2215 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0494P)2 + 2.2183P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
17348 reflectionsΔρmax = 1.11 e Å3
694 parametersΔρmin = 1.48 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. A nitrate ion was refined as disordered. The two disordered moieties were restrained to have similar geometries. Uij components of ADPs for disordered atoms closer to each other than 2.0 Angstrom were restrained to be similar. Subject to these conditions the occupancy ratio refined to 0.443 (7) to 0.557 (7).

Solvate water molecules were found to be disordered. Where possible, disorder was refined. For molecules not directly hydrogen bound to the main molecule disorder was found to be excessive (> 3-4 fold disorder of water and/or methanol) and no suitable model that could be devised. The structure factors associated with the disordered solvate molecules were instead augmented via reverse Fourier transform methods using the SQUEEZE routine (P. van der Sluis & A.L. Spek (1990). Acta Cryst. A46, 194-201) as implemented in the program Platon. The resultant FAB file containing the structure factor contribution from the electron content of the void space was used in together with the original hkl file in the further refinement. (The FAB file with details of the Squeeze results is appended to this cif file). The Squeeze procedure corrected for 151 electrons within solvent accessible voids of 367 Angstrom cubed.

Resolved disordered water molecules were assigned occupancy rates. For "outlying" water molecules occupancies did not refine to full occupancy for each site (due to excessive disorder, or part of the site overlapping with squeezed areas) and no attempts were made to match occupancies. Uij components of ADPs for disordered atoms closer to each other than 2.0 Angstrom were restrained to be similar. Water H atom positions were refined and O-H and H···H distances were restrained to 0.84 (2) and 1.36 (2) Angstrom, respectively, while a damping factor was applied. Some water H atom positions were further restrained based on hydrogen bonding considerations. In the final refinement cycles H atoms with low occupancies were constrained to ride on their carrier atoms and the damping factor was removed. Subject to these conditions the occupancy rates refined to the values given in the tables of the cif file.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
In10.42730 (2)0.51469 (2)0.18905 (2)0.03389 (5)
In20.56369 (2)0.53389 (2)0.37738 (2)0.03459 (5)
O10.34520 (17)0.49088 (14)0.08522 (13)0.0415 (4)
O20.26988 (17)0.63287 (13)0.20040 (13)0.0397 (4)
O30.0717 (2)0.64950 (16)0.01075 (15)0.0497 (5)
H3O0.0205160.6576640.0193450.075*
O40.57140 (17)0.45100 (14)0.25976 (13)0.0455 (5)
O50.52816 (17)0.37557 (13)0.12922 (13)0.0411 (4)
O60.8253 (2)0.21109 (16)0.20886 (15)0.0537 (6)
H6O0.8966230.1817030.2056050.081*
O70.59121 (15)0.52804 (14)0.52133 (12)0.0364 (4)
O80.71809 (16)0.41493 (14)0.38087 (12)0.0388 (4)
O90.90123 (17)0.43199 (16)0.57286 (15)0.0472 (5)
H9O0.9508690.4322370.6025150.071*
O100.44803 (17)0.60840 (13)0.28938 (13)0.0399 (4)
O110.46380 (17)0.67505 (13)0.43780 (14)0.0414 (4)
O120.2284 (2)0.86105 (14)0.30704 (15)0.0524 (6)
H12O0.2020090.9121610.2777480.079*
O130.5494 (2)0.59144 (16)0.07719 (14)0.0476 (5)
H13B0.604 (3)0.609 (3)0.088 (3)0.071*
H13A0.576 (3)0.568 (3)0.0229 (18)0.071*
O140.30830 (18)0.43647 (15)0.30866 (14)0.0427 (4)
H14A0.336 (3)0.3795 (17)0.330 (3)0.064*
H14B0.237 (2)0.435 (3)0.309 (3)0.064*
O150.7033 (2)0.6145 (2)0.2944 (3)0.0810 (10)
H15A0.680 (4)0.641 (4)0.247 (3)0.122*
H15B0.7781 (19)0.593 (4)0.276 (4)0.122*
N50.1343 (10)1.0732 (13)0.1845 (15)0.050 (3)0.443 (7)
O160.2485 (8)1.0514 (7)0.1561 (7)0.087 (3)0.443 (7)
O170.0762 (6)1.0116 (4)0.2364 (4)0.0621 (18)0.443 (7)
O180.0769 (9)1.1489 (8)0.1526 (7)0.062 (2)0.443 (7)
N5B0.1096 (8)1.0702 (11)0.1851 (13)0.051 (2)0.557 (7)
O16B0.2066 (5)1.0146 (4)0.1890 (4)0.0578 (14)0.557 (7)
O17B0.0105 (4)1.0635 (3)0.2483 (3)0.0569 (13)0.557 (7)
O18B0.1139 (9)1.1390 (6)0.1223 (5)0.0686 (19)0.557 (7)
N60.9957 (2)0.50130 (19)0.2633 (2)0.0473 (5)
O191.10061 (19)0.45204 (17)0.25405 (17)0.0524 (5)
O200.9447 (2)0.55804 (16)0.32832 (18)0.0528 (5)
O210.9408 (2)0.4925 (2)0.2063 (2)0.0668 (7)
O230.3259 (5)0.2728 (4)0.1487 (5)0.129 (3)0.792 (11)
H23A0.3174720.2529660.0953330.194*0.792 (11)
H23B0.3962760.2923620.1319280.194*0.792 (11)
O220.9121 (4)0.6555 (3)0.0832 (3)0.0795 (12)0.886 (7)
H22A0.901 (6)0.706 (2)0.117 (4)0.119*0.886 (7)
H22B0.942 (6)0.608 (3)0.115 (4)0.119*0.886 (7)
O240.7903 (5)0.5624 (5)0.0717 (4)0.0820 (19)0.590 (7)
H24A0.754 (7)0.611 (5)0.107 (6)0.123*0.590 (7)
H24B0.848 (6)0.533 (5)0.094 (6)0.123*0.590 (7)
O250.616 (2)0.7286 (18)0.1395 (18)0.084 (6)0.152 (9)
H25A0.6303870.7662020.1718710.127*0.152 (9)
H25B0.5912050.7623050.0956840.127*0.152 (9)
O22B0.9010 (14)0.5910 (19)0.0361 (17)0.077 (5)0.114 (7)
H22C0.9384590.5777820.0938680.115*0.114 (7)
H22D0.8783840.5404750.0056180.115*0.114 (7)
O24B0.6901 (10)0.6830 (7)0.1027 (6)0.080 (3)0.410 (7)
H24C0.764 (4)0.663 (4)0.069 (3)0.121*0.410 (7)
H24D0.684 (6)0.737 (5)0.123 (10)0.121*0.410 (7)
O260.4029 (5)0.2921 (3)0.4115 (5)0.0826 (13)0.652 (5)
H26A0.426 (8)0.237 (3)0.392 (7)0.124*0.652 (5)
H26B0.446 (7)0.303 (6)0.443 (5)0.124*0.652 (5)
O270.4387 (17)0.1825 (12)0.3027 (13)0.0840 (15)0.161 (6)
H27A0.5124260.1714990.2670400.126*0.161 (6)
H27B0.3982620.2135900.2647190.126*0.161 (6)
O26B0.4126 (9)0.2528 (6)0.3243 (8)0.0840 (13)0.348 (5)
H26C0.4207690.2128290.3709890.126*0.348 (5)
H26D0.3680610.2341180.2988730.126*0.348 (5)
O27B0.3779 (17)0.2429 (11)0.4890 (15)0.0829 (14)0.179 (7)
H27C0.3152080.2827200.4824940.124*0.179 (7)
H27D0.4215000.2762160.5010450.124*0.179 (7)
N10.2471 (2)0.56338 (15)0.08175 (14)0.0372 (5)
H1N0.2093660.5642060.0390150.045*
N20.6447 (2)0.36642 (16)0.22369 (14)0.0398 (5)
H2N0.7065620.3370100.2445640.048*
N30.70532 (17)0.47275 (16)0.51926 (14)0.0365 (4)
H3N0.7368180.4748590.5652830.044*
N40.37305 (19)0.69352 (14)0.32306 (15)0.0360 (4)
H4N0.3189850.7259500.2950520.043*
C10.2100 (2)0.63161 (17)0.14285 (16)0.0336 (5)
C20.0970 (2)0.70401 (17)0.14686 (17)0.0334 (5)
C30.0299 (2)0.71124 (19)0.08285 (19)0.0377 (5)
C40.0770 (3)0.7813 (2)0.0930 (2)0.0451 (6)
H40.1217860.7867900.0488540.054*
C50.1177 (3)0.8425 (2)0.1671 (2)0.0491 (7)
H50.1910960.8894570.1741410.059*
C60.0528 (3)0.8362 (2)0.2313 (2)0.0506 (7)
H60.0812180.8786800.2821130.061*
C70.0541 (2)0.7674 (2)0.2208 (2)0.0421 (6)
H70.0989710.7632320.2646690.051*
C80.6192 (2)0.33083 (17)0.15665 (16)0.0344 (5)
C90.6919 (2)0.23985 (17)0.11285 (16)0.0342 (5)
C100.7905 (2)0.18173 (18)0.13967 (18)0.0390 (5)
C110.8506 (3)0.09571 (19)0.0951 (2)0.0462 (6)
H110.9163240.0554570.1142150.055*
C120.8157 (3)0.0686 (2)0.0237 (2)0.0495 (7)
H120.8570880.0094700.0055070.059*
C130.7206 (3)0.1266 (2)0.0061 (2)0.0479 (7)
H130.6981390.1084300.0564890.058*
C140.6591 (3)0.21151 (19)0.03901 (19)0.0402 (5)
H140.5934150.2512080.0194490.048*
C150.7656 (2)0.41697 (18)0.44685 (16)0.0335 (5)
C160.8865 (2)0.35688 (17)0.44379 (16)0.0324 (4)
C170.9511 (2)0.36547 (18)0.50577 (18)0.0350 (5)
C181.0662 (2)0.3068 (2)0.4972 (2)0.0418 (6)
H181.1096630.3126680.5394780.050*
C191.1165 (3)0.2406 (2)0.4275 (2)0.0471 (7)
H191.1949220.2011930.4215130.057*
C201.0535 (3)0.2312 (2)0.3664 (2)0.0489 (7)
H201.0884230.1849110.3189020.059*
C210.9390 (2)0.28914 (19)0.3739 (2)0.0401 (5)
H210.8964020.2825950.3312300.048*
C220.3849 (2)0.72507 (17)0.39896 (18)0.0333 (5)
C230.3071 (2)0.81570 (16)0.43989 (17)0.0323 (4)
C240.2326 (2)0.88216 (18)0.39293 (18)0.0376 (5)
C250.1637 (3)0.96712 (19)0.4359 (2)0.0463 (6)
H250.1135871.0124060.4043220.056*
C260.1680 (3)0.9858 (2)0.5240 (2)0.0483 (7)
H260.1210241.0441320.5524950.058*
C270.2395 (3)0.9209 (2)0.5714 (2)0.0492 (7)
H270.2410170.9339400.6325690.059*
C280.3092 (3)0.83638 (19)0.5292 (2)0.0422 (6)
H280.3591280.7919150.5615650.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
In10.03514 (8)0.03784 (9)0.02316 (7)0.01602 (6)0.01382 (6)0.01154 (6)
In20.03067 (8)0.04148 (9)0.02773 (8)0.01479 (6)0.01486 (6)0.01243 (6)
O10.0444 (9)0.0434 (9)0.0328 (8)0.0214 (8)0.0218 (7)0.0165 (7)
O20.0400 (9)0.0417 (9)0.0350 (8)0.0175 (7)0.0206 (7)0.0160 (7)
O30.0522 (11)0.0526 (11)0.0476 (11)0.0146 (9)0.0317 (9)0.0163 (9)
O40.0448 (10)0.0502 (10)0.0360 (9)0.0284 (8)0.0237 (8)0.0214 (8)
O50.0433 (9)0.0399 (9)0.0370 (9)0.0193 (7)0.0213 (7)0.0170 (7)
O60.0568 (12)0.0521 (11)0.0475 (11)0.0304 (9)0.0305 (10)0.0225 (9)
O70.0269 (7)0.0489 (10)0.0306 (8)0.0118 (7)0.0140 (6)0.0141 (7)
O80.0355 (8)0.0481 (10)0.0282 (8)0.0148 (7)0.0158 (7)0.0117 (7)
O90.0339 (9)0.0625 (12)0.0457 (10)0.0136 (8)0.0212 (8)0.0225 (9)
O100.0412 (9)0.0390 (9)0.0359 (8)0.0202 (7)0.0204 (7)0.0172 (7)
O110.0380 (9)0.0399 (9)0.0504 (10)0.0125 (7)0.0267 (8)0.0182 (8)
O120.0741 (14)0.0380 (10)0.0460 (11)0.0218 (9)0.0365 (10)0.0166 (8)
O130.0570 (12)0.0515 (11)0.0289 (8)0.0010 (9)0.0093 (8)0.0154 (8)
O140.0397 (9)0.0436 (10)0.0396 (9)0.0078 (8)0.0152 (8)0.0061 (8)
O150.0360 (11)0.0768 (18)0.109 (2)0.0005 (12)0.0161 (13)0.0296 (17)
N50.068 (4)0.042 (4)0.041 (3)0.019 (4)0.033 (4)0.021 (3)
O160.074 (5)0.080 (5)0.092 (5)0.030 (4)0.035 (4)0.012 (4)
O170.078 (4)0.046 (3)0.061 (3)0.018 (3)0.039 (3)0.004 (2)
O180.066 (5)0.057 (4)0.056 (4)0.023 (3)0.031 (3)0.009 (3)
N5B0.071 (4)0.041 (3)0.047 (3)0.013 (3)0.038 (3)0.017 (2)
O16B0.062 (3)0.050 (3)0.048 (3)0.024 (2)0.021 (2)0.0088 (19)
O17B0.062 (3)0.057 (3)0.047 (2)0.016 (2)0.0244 (19)0.0151 (18)
O18B0.099 (6)0.044 (3)0.060 (4)0.008 (3)0.040 (3)0.006 (3)
N60.0432 (12)0.0472 (13)0.0572 (14)0.0131 (10)0.0234 (11)0.0038 (11)
O190.0382 (10)0.0595 (13)0.0620 (13)0.0069 (9)0.0186 (9)0.0093 (10)
O200.0468 (11)0.0440 (11)0.0691 (14)0.0042 (9)0.0204 (10)0.0104 (10)
O210.0627 (15)0.0757 (17)0.0813 (18)0.0166 (13)0.0461 (14)0.0051 (14)
O230.115 (5)0.108 (4)0.145 (5)0.039 (3)0.003 (4)0.023 (4)
O220.116 (3)0.067 (2)0.080 (2)0.005 (2)0.070 (2)0.0127 (17)
O240.064 (3)0.103 (4)0.090 (4)0.007 (3)0.043 (3)0.012 (3)
O250.084 (10)0.092 (10)0.071 (9)0.029 (8)0.012 (8)0.002 (8)
O22B0.116 (9)0.055 (8)0.086 (9)0.007 (8)0.067 (8)0.025 (7)
O24B0.099 (6)0.090 (6)0.068 (5)0.055 (5)0.029 (4)0.008 (4)
O260.086 (3)0.053 (2)0.120 (4)0.0028 (19)0.060 (3)0.010 (2)
O270.087 (3)0.052 (2)0.121 (4)0.004 (2)0.056 (3)0.008 (2)
O26B0.087 (3)0.053 (2)0.121 (4)0.003 (2)0.057 (3)0.009 (2)
O27B0.086 (3)0.053 (2)0.120 (4)0.004 (2)0.059 (3)0.011 (2)
N10.0410 (10)0.0378 (10)0.0308 (9)0.0148 (8)0.0201 (8)0.0117 (8)
N20.0401 (10)0.0412 (11)0.0310 (9)0.0238 (9)0.0176 (8)0.0174 (8)
N30.0269 (8)0.0497 (12)0.0298 (9)0.0117 (8)0.0148 (7)0.0108 (8)
N40.0386 (10)0.0319 (9)0.0348 (9)0.0152 (8)0.0182 (8)0.0137 (7)
C10.0346 (11)0.0348 (11)0.0279 (10)0.0091 (9)0.0142 (8)0.0064 (8)
C20.0311 (10)0.0307 (10)0.0344 (11)0.0068 (8)0.0133 (9)0.0035 (8)
C30.0365 (12)0.0359 (12)0.0383 (12)0.0048 (9)0.0168 (10)0.0022 (9)
C40.0380 (13)0.0443 (14)0.0523 (15)0.0070 (11)0.0236 (12)0.0028 (12)
C50.0379 (13)0.0392 (13)0.0653 (18)0.0128 (11)0.0217 (13)0.0082 (12)
C60.0438 (14)0.0413 (14)0.0607 (18)0.0141 (11)0.0172 (13)0.0196 (13)
C70.0375 (12)0.0405 (13)0.0454 (14)0.0117 (10)0.0176 (11)0.0142 (11)
C80.0367 (11)0.0350 (11)0.0243 (9)0.0138 (9)0.0114 (8)0.0096 (8)
C90.0362 (11)0.0305 (10)0.0279 (10)0.0116 (8)0.0093 (8)0.0089 (8)
C100.0407 (12)0.0351 (11)0.0326 (11)0.0146 (9)0.0119 (9)0.0100 (9)
C110.0463 (14)0.0335 (12)0.0506 (15)0.0165 (10)0.0166 (12)0.0139 (11)
C120.0520 (16)0.0344 (12)0.0542 (16)0.0121 (11)0.0127 (13)0.0206 (11)
C130.0516 (15)0.0416 (14)0.0481 (15)0.0087 (12)0.0170 (12)0.0211 (12)
C140.0435 (13)0.0363 (12)0.0370 (12)0.0088 (10)0.0145 (10)0.0135 (9)
C150.0279 (10)0.0408 (12)0.0268 (9)0.0070 (8)0.0107 (8)0.0043 (8)
C160.0264 (9)0.0357 (11)0.0292 (10)0.0064 (8)0.0099 (8)0.0007 (8)
C170.0277 (10)0.0381 (12)0.0354 (11)0.0037 (8)0.0119 (9)0.0019 (9)
C180.0328 (11)0.0427 (13)0.0508 (15)0.0060 (10)0.0215 (11)0.0078 (11)
C190.0362 (12)0.0377 (13)0.0666 (18)0.0110 (10)0.0236 (12)0.0127 (12)
C200.0397 (13)0.0424 (14)0.0622 (18)0.0161 (11)0.0220 (13)0.0212 (13)
C210.0351 (11)0.0402 (13)0.0432 (13)0.0086 (10)0.0176 (10)0.0109 (10)
C220.0323 (10)0.0311 (10)0.0375 (11)0.0046 (8)0.0165 (9)0.0094 (9)
C230.0315 (10)0.0282 (10)0.0367 (11)0.0036 (8)0.0128 (9)0.0112 (8)
C240.0429 (13)0.0304 (11)0.0373 (12)0.0075 (9)0.0165 (10)0.0096 (9)
C250.0543 (16)0.0322 (12)0.0486 (15)0.0128 (11)0.0211 (12)0.0134 (10)
C260.0580 (17)0.0335 (12)0.0475 (15)0.0093 (11)0.0149 (13)0.0179 (11)
C270.0656 (18)0.0388 (13)0.0438 (14)0.0059 (12)0.0231 (13)0.0174 (11)
C280.0513 (15)0.0362 (12)0.0427 (13)0.0037 (11)0.0239 (12)0.0121 (10)
Geometric parameters (Å, º) top
In1—O132.156 (2)O27—H27A0.8477
In1—O12.1594 (17)O27—H27B0.8627
In1—O22.1774 (16)O26B—H26C0.8430
In1—O52.1930 (16)O26B—H26D0.8446
In1—O142.205 (2)O27B—H27C0.8468
In1—O102.2254 (18)O27B—H27D0.8479
In1—O42.2348 (17)N1—C11.314 (3)
In2—O152.167 (3)N1—H1N0.8800
In2—O102.1851 (16)N2—C81.314 (3)
In2—O82.1915 (16)N2—H2N0.8800
In2—O42.1916 (18)N3—C151.320 (3)
In2—O112.2179 (17)N3—H3N0.8800
In2—O7i2.2228 (19)N4—C221.318 (3)
In2—O72.2312 (16)N4—H4N0.8800
O1—N11.372 (2)C1—C21.476 (3)
O2—C11.274 (3)C2—C71.395 (3)
O3—C31.361 (3)C2—C31.397 (3)
O3—H3O0.8400C3—C41.395 (3)
O4—N21.368 (2)C4—C51.378 (4)
O5—C81.274 (3)C4—H40.9500
O6—C101.361 (3)C5—C61.381 (4)
O6—H6O0.8400C5—H50.9500
O7—N31.389 (2)C6—C71.386 (3)
O8—C151.278 (3)C6—H60.9500
O9—C171.354 (3)C7—H70.9500
O9—H9O0.8400C8—C91.476 (3)
O10—N41.370 (2)C9—C101.401 (3)
O11—C221.277 (3)C9—C141.402 (4)
O12—C241.356 (3)C10—C111.394 (3)
O12—H12O0.8400C11—C121.376 (4)
O13—H13B0.817 (18)C11—H110.9500
O13—H13A0.842 (18)C12—C131.389 (4)
O14—H14A0.857 (17)C12—H120.9500
O14—H14B0.843 (17)C13—C141.387 (3)
O15—H15A0.835 (19)C13—H130.9500
O15—H15B0.829 (19)C14—H140.9500
N5—O171.251 (12)C15—C161.477 (3)
N5—O181.252 (11)C16—C211.396 (3)
N5—O161.253 (11)C16—C171.401 (3)
N5B—O18B1.245 (9)C17—C181.398 (3)
N5B—O16B1.247 (9)C18—C191.378 (4)
N5B—O17B1.248 (10)C18—H180.9500
N6—O201.240 (4)C19—C201.380 (4)
N6—O191.250 (3)C19—H190.9500
N6—O211.252 (3)C20—C211.391 (3)
O23—H23A0.9121C20—H200.9500
O23—H23B0.8870C21—H210.9500
O22—H22A0.824 (19)C22—C231.473 (3)
O22—H22B0.821 (19)C23—C281.393 (3)
O24—H24A0.86 (2)C23—C241.406 (3)
O24—H24B0.85 (2)C24—C251.393 (3)
O25—H25A0.8399C25—C261.376 (4)
O25—H25B0.8397C25—H250.9500
O22B—H22C0.8432C26—C271.377 (4)
O22B—H22D0.8417C26—H260.9500
O24B—H24C0.85 (2)C27—C281.385 (4)
O24B—H24D0.84 (2)C27—H270.9500
O26—H26A0.83 (2)C28—H280.9500
O26—H26B0.843 (16)
O13—In1—O189.83 (8)C8—N2—H2N121.3
O13—In1—O293.89 (8)O4—N2—H2N121.3
O1—In1—O274.33 (6)C15—N3—O7118.69 (18)
O13—In1—O591.12 (8)C15—N3—H3N120.7
O1—In1—O573.42 (6)O7—N3—H3N120.7
O2—In1—O5147.32 (7)C22—N4—O10117.54 (18)
O13—In1—O14176.88 (8)C22—N4—H4N121.2
O1—In1—O1493.25 (8)O10—N4—H4N121.2
O2—In1—O1487.42 (7)O2—C1—N1119.66 (19)
O5—In1—O1489.29 (8)O2—C1—C2120.4 (2)
O13—In1—O1085.39 (8)N1—C1—C2119.9 (2)
O1—In1—O10151.22 (6)C7—C2—C3118.6 (2)
O2—In1—O1077.70 (6)C7—C2—C1117.3 (2)
O5—In1—O10134.94 (6)C3—C2—C1124.1 (2)
O14—In1—O1092.13 (8)O3—C3—C4121.3 (2)
O13—In1—O491.89 (9)O3—C3—C2118.7 (2)
O1—In1—O4144.16 (6)C4—C3—C2120.0 (2)
O2—In1—O4141.12 (6)C5—C4—C3120.1 (3)
O5—In1—O470.76 (6)C5—C4—H4120.0
O14—In1—O485.32 (8)C3—C4—H4120.0
O10—In1—O464.50 (6)C4—C5—C6120.7 (2)
O15—In2—O1089.73 (10)C4—C5—H5119.7
O15—In2—O884.54 (9)C6—C5—H5119.7
O10—In2—O8143.67 (6)C5—C6—C7119.4 (3)
O15—In2—O496.99 (13)C5—C6—H6120.3
O10—In2—O465.88 (6)C7—C6—H6120.3
O8—In2—O479.23 (6)C6—C7—C2121.2 (3)
O15—In2—O1184.31 (11)C6—C7—H7119.4
O10—In2—O1171.51 (6)C2—C7—H7119.4
O8—In2—O11142.83 (6)O5—C8—N2119.10 (19)
O4—In2—O11137.36 (6)O5—C8—C9118.9 (2)
O15—In2—O7i170.29 (11)N2—C8—C9122.0 (2)
O10—In2—O7i90.28 (7)C10—C9—C14118.8 (2)
O8—In2—O7i101.08 (7)C10—C9—C8124.5 (2)
O4—In2—O7i91.88 (8)C14—C9—C8116.7 (2)
O11—In2—O7i86.49 (7)O6—C10—C11121.6 (2)
O15—In2—O798.35 (11)O6—C10—C9118.8 (2)
O10—In2—O7143.60 (6)C11—C10—C9119.5 (2)
O8—In2—O772.67 (6)C12—C11—C10120.6 (2)
O4—In2—O7146.36 (7)C12—C11—H11119.7
O11—In2—O774.06 (6)C10—C11—H11119.7
O7i—In2—O776.08 (7)C11—C12—C13120.8 (2)
N1—O1—In1111.75 (13)C11—C12—H12119.6
C1—O2—In1114.73 (14)C13—C12—H12119.6
C3—O3—H3O109.5C14—C13—C12118.9 (3)
N2—O4—In2132.33 (13)C14—C13—H13120.5
N2—O4—In1114.14 (13)C12—C13—H13120.5
In2—O4—In1113.49 (7)C13—C14—C9121.3 (2)
C8—O5—In1118.44 (15)C13—C14—H14119.4
C10—O6—H6O109.5C9—C14—H14119.4
N3—O7—In2i113.96 (15)O8—C15—N3119.61 (19)
N3—O7—In2110.00 (12)O8—C15—C16120.8 (2)
In2i—O7—In2103.92 (7)N3—C15—C16119.5 (2)
C15—O8—In2114.99 (14)C21—C16—C17118.9 (2)
C17—O9—H9O109.5C21—C16—C15117.4 (2)
N4—O10—In2114.93 (13)C17—C16—C15123.7 (2)
N4—O10—In1127.85 (14)O9—C17—C18120.7 (2)
In2—O10—In1114.12 (7)O9—C17—C16119.1 (2)
C22—O11—In2116.63 (15)C18—C17—C16120.2 (2)
C24—O12—H12O109.5C19—C18—C17120.0 (2)
In1—O13—H13B120 (3)C19—C18—H18120.0
In1—O13—H13A115 (3)C17—C18—H18120.0
H13B—O13—H13A110 (3)C18—C19—C20120.4 (2)
In1—O14—H14A120 (2)C18—C19—H19119.8
In1—O14—H14B120 (3)C20—C19—H19119.8
H14A—O14—H14B105 (2)C19—C20—C21120.3 (3)
In2—O15—H15A105 (4)C19—C20—H20119.8
In2—O15—H15B127 (4)C21—C20—H20119.8
H15A—O15—H15B110 (3)C20—C21—C16120.3 (2)
O17—N5—O18118.9 (11)C20—C21—H21119.9
O17—N5—O16118.6 (11)C16—C21—H21119.9
O18—N5—O16121.8 (11)O11—C22—N4119.0 (2)
O18B—N5B—O16B119.0 (9)O11—C22—C23120.2 (2)
O18B—N5B—O17B119.5 (9)N4—C22—C23120.8 (2)
O16B—N5B—O17B121.1 (9)C28—C23—C24118.8 (2)
O20—N6—O19121.3 (3)C28—C23—C22117.8 (2)
O20—N6—O21119.4 (3)C24—C23—C22123.3 (2)
O19—N6—O21119.3 (3)O12—C24—C25121.6 (2)
H23A—O23—H23B108.5O12—C24—C23118.9 (2)
H22A—O22—H22B112 (3)C25—C24—C23119.5 (2)
H24A—O24—H24B105 (3)C26—C25—C24120.3 (2)
H25A—O25—H25B107.9C26—C25—H25119.8
H22C—O22B—H22D107.4C24—C25—H25119.8
H24C—O24B—H24D109 (3)C25—C26—C27120.8 (2)
H26A—O26—H26B112 (3)C25—C26—H26119.6
H27A—O27—H27B104.7C27—C26—H26119.6
H26C—O26B—H26D107.9C26—C27—C28119.5 (3)
H27C—O27B—H27D106.0C26—C27—H27120.2
C1—N1—O1119.36 (19)C28—C27—H27120.2
C1—N1—H1N120.3C27—C28—C23120.9 (2)
O1—N1—H1N120.3C27—C28—H28119.5
C8—N2—O4117.36 (18)C23—C28—H28119.5
In1—O1—N1—C14.7 (3)C12—C13—C14—C90.6 (5)
In2—O4—N2—C8174.4 (2)C10—C9—C14—C131.3 (4)
In1—O4—N2—C83.1 (3)C8—C9—C14—C13179.2 (3)
In2i—O7—N3—C15101.5 (2)In2—O8—C15—N315.6 (3)
In2—O7—N3—C1514.7 (3)In2—O8—C15—C16165.05 (18)
In2—O10—N4—C225.2 (3)O7—N3—C15—O80.1 (4)
In1—O10—N4—C22163.91 (19)O7—N3—C15—C16179.4 (2)
In1—O2—C1—N11.4 (3)O8—C15—C16—C218.2 (4)
In1—O2—C1—C2176.31 (18)N3—C15—C16—C21171.1 (3)
O1—N1—C1—O24.2 (4)O8—C15—C16—C17170.8 (2)
O1—N1—C1—C2173.5 (2)N3—C15—C16—C179.9 (4)
O2—C1—C2—C75.3 (4)C21—C16—C17—O9179.1 (3)
N1—C1—C2—C7172.4 (3)C15—C16—C17—O90.2 (4)
O2—C1—C2—C3176.1 (3)C21—C16—C17—C180.0 (4)
N1—C1—C2—C36.2 (4)C15—C16—C17—C18179.0 (3)
C7—C2—C3—O3180.0 (3)O9—C17—C18—C19178.9 (3)
C1—C2—C3—O31.4 (4)C16—C17—C18—C190.2 (4)
C7—C2—C3—C40.5 (4)C17—C18—C19—C200.5 (5)
C1—C2—C3—C4179.1 (3)C18—C19—C20—C210.6 (5)
O3—C3—C4—C5179.6 (3)C19—C20—C21—C160.4 (5)
C2—C3—C4—C51.0 (5)C17—C16—C21—C200.1 (4)
C3—C4—C5—C60.8 (5)C15—C16—C21—C20179.2 (3)
C4—C5—C6—C70.1 (5)In2—O11—C22—N44.1 (3)
C5—C6—C7—C20.3 (5)In2—O11—C22—C23174.78 (18)
C3—C2—C7—C60.1 (4)O10—N4—C22—O110.7 (4)
C1—C2—C7—C6178.5 (3)O10—N4—C22—C23179.6 (2)
In1—O5—C8—N24.1 (3)O11—C22—C23—C289.8 (4)
In1—O5—C8—C9176.65 (18)N4—C22—C23—C28169.1 (3)
O4—N2—C8—O50.5 (4)O11—C22—C23—C24169.5 (3)
O4—N2—C8—C9179.8 (2)N4—C22—C23—C2411.6 (4)
O5—C8—C9—C10177.1 (3)C28—C23—C24—O12178.5 (3)
N2—C8—C9—C102.2 (4)C22—C23—C24—O122.2 (4)
O5—C8—C9—C143.5 (4)C28—C23—C24—C250.6 (4)
N2—C8—C9—C14177.2 (3)C22—C23—C24—C25178.7 (3)
C14—C9—C10—O6177.6 (3)O12—C24—C25—C26178.7 (3)
C8—C9—C10—O61.9 (4)C23—C24—C25—C260.3 (5)
C14—C9—C10—C112.3 (4)C24—C25—C26—C270.4 (5)
C8—C9—C10—C11178.2 (3)C25—C26—C27—C280.9 (5)
O6—C10—C11—C12178.5 (3)C26—C27—C28—C230.6 (5)
C9—C10—C11—C121.4 (5)C24—C23—C28—C270.1 (4)
C10—C11—C12—C130.6 (5)C22—C23—C28—C27179.2 (3)
C11—C12—C13—C141.6 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O22ii0.841.832.664 (4)171
O3—H3O···O22Bii0.841.972.668 (17)140
O6—H6O···O18iii0.841.982.775 (10)157
O6—H6O···O17Biii0.842.062.810 (5)149
O9—H9O···O20iv0.841.882.717 (3)176
O12—H12O···O170.841.992.778 (5)156
O12—H12O···O16B0.841.812.609 (6)158
O13—H13B···O240.82 (2)2.09 (3)2.761 (6)140 (4)
O13—H13B···O250.82 (2)2.01 (4)2.64 (3)134 (4)
O13—H13B···O24B0.82 (2)1.70 (2)2.485 (7)160 (5)
O13—H13A···O1v0.84 (2)1.77 (2)2.601 (2)170 (4)
O14—H14A···O260.86 (2)1.83 (2)2.631 (5)154 (4)
O14—H14A···O26B0.86 (2)1.82 (2)2.629 (8)158 (4)
O14—H14B···O19ii0.84 (2)1.99 (2)2.782 (3)157 (4)
O15—H15A···O250.84 (2)2.11 (3)2.93 (3)171 (6)
O15—H15A···O24B0.84 (2)2.10 (3)2.891 (9)158 (5)
O15—H15B···O200.83 (2)2.27 (3)2.970 (4)142 (5)
O15—H15B···O210.83 (2)2.16 (3)2.924 (4)154 (6)
O23—H23B···O50.892.163.003 (6)160
O22—H22A···O18vi0.82 (2)2.11 (4)2.842 (12)148 (6)
O22—H22B···O21vii0.82 (2)2.03 (3)2.832 (5)164 (7)
O24—H24A···O250.86 (2)2.03 (2)2.80 (3)149 (6)
O24—H24B···O210.85 (2)2.21 (4)3.003 (5)155 (6)
O22B—H22C···O21vii0.842.002.808 (16)159
O24B—H24C···O22B0.85 (2)2.02 (2)2.824 (19)156 (7)
O26—H26A···O270.83 (2)1.56 (6)2.259 (16)140 (9)
O27—H27B···O230.862.142.987 (19)168
O26B—H26C···O27B0.841.732.31 (2)124
O26B—H26D···O230.842.383.033 (13)134
O27B—H27D···O11i0.852.132.955 (18)163
N1—H1N···O30.881.922.605 (3)134
N2—H2N···O60.882.022.669 (2)130
N2—H2N···O80.882.482.935 (3)113
N3—H3N···O90.881.942.605 (3)132
N3—H3N···O14i0.882.242.939 (3)137
N4—H4N···O20.882.332.804 (3)114
N4—H4N···O120.881.972.621 (3)130
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y1, z; (iv) x+2, y+1, z+1; (v) x+1, y+1, z; (vi) x+1, y+2, z; (vii) x+2, y+1, z.
Continuous Shapes Measures (CShM) values for the geometry about the seven-coordinate InIII ions of 1. top
ShapeIn1In2
Heptagon (D7h)33.95133.043
Hexagonal pyramid (C6v)25.41323.853
Pentagonal bipyramid (D5h)0.2901.046
Capped octahedron (C3v)7.0675.351
Capped trigonal prism (C2v)5.2684.128
Johnson pentagonal bipyramid (J13; D5h)3.7984.596
Johnson elongated triangular pyramid (J7, C3v)22.46421.243
 

Acknowledgements

CMZ thanks the Department of Chemistry and Biochemistry at Shippensburg University for continued support.

Funding information

Funding for this research was provided by: National Science Foundation, Major Research Instrumentation Program (grant No. CHE 1625543 to M. Zeller); Shippensburg University Student Faculty Research Engagement (SFRE) Program (grant to O. A. Aziz, C. M. Zaleski).

References

First citationAzar, M. R., Boron, T. T. III, Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729–1742.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBoron, T. T. III, Lutter, J. C., Daly, C. I., Chow, C. Y., Davis, A. H., Nimthong-Roldán, R., Zeller, M., Kampf, J. W., Zaleski, C. M. & Pecoraro, V. L. (2016). Inorg. Chem. 55, 10597–10607.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2022). APEX4 and SAINT V8.40B, Bruker AXS Inc., Madison, Wsconsin, USA.  Google Scholar
First citationCasanova, D., Cirera, J., Llunell, M., Alemany, P., Avnir, D. & Alvarez, S. (2004). J. Am. Chem. Soc. 126, 1755–1763.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChou, T.-Y., Chi, Y., Huang, S.-F., Liu, C.-S., Carty, A. J., Scoles, L. & Udachin, K. A. (2003). Inorg. Chem. 42, 6041–6049.  CSD CrossRef PubMed CAS Google Scholar
First citationChoudhary, N., Dimmling, A., Wang, X., Southcott, L., Radchenko, V., Patrick, B. O., Comba, P. & Orvig, C. (2019). Inorg. Chem. 58, 8685–8693.  CSD CrossRef CAS PubMed Google Scholar
First citationChow, C. Y., Eliseeva, S. V., Trivedi, E. R., Nguyen, T. N., Kampf, J. W., Petoud, S. & Pecoraro, V. L. (2016). J. Am. Chem. Soc. 138, 5100–5109.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationEliseeva, S. V., Travis, J. R., Nagy, S. G., Smihosky, A. M., Foley, C. M., Kauffman, A. C., Zaleski, C. M. & Petoud, S. (2022). Dalton Trans. 51, 5989–5996.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKessisoglou, D. P., Kampf, J. & Pecoraro, V. L. (1994). Polyhedron, 13, 1379–1391.  CSD CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLah, M. S., Kirk, M. L., Hatfield, W. & Pecoraro, V. L. (1989). J. Chem. Soc. Chem. Commun. p. 1606.  CSD CrossRef Google Scholar
First citationLah, M. S. & Pecoraro, V. L. (1989). J. Am. Chem. Soc. 111, 7258–7259.  CSD CrossRef CAS Web of Science Google Scholar
First citationLee, J. H., Jung, E. A., Lee, G. Y., Han, S. H., Park, B. K., Lee, S. W., Son, S. U., Kim, C. G. & Chung, T.-M. (2018). ChemistrySelect, 3, 6691–6695.  CSD CrossRef CAS Google Scholar
First citationLee, S. H., Shin, N., Kwak, S. W., Hyun, K., Woo, W. H., Lee, J. H., Hwang, H., Kim, M., Lee, J., Kim, Y., Lee, K. M. & Park, M. H. (2017). Inorg. Chem. 56, 2621–2626.  CSD CrossRef CAS PubMed Google Scholar
First citationLiu, S., He, Z., Hsieh, W.-Y. & Fanwick, P. E. (2003). Inorg. Chem. 42, 8831–8837.  CSD CrossRef PubMed CAS Google Scholar
First citationLlunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE. Shape Software, Barcelona, Spain.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMatsuba, C., Rettig, S. J. & Orvig, C. (1988). Can. J. Chem. 66, 1809–1813.  CSD CrossRef CAS Google Scholar
First citationMezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933–5003.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNishikawa, M., Nakano, T., Okabe, T., Hamaguchi, N., Yamasaki, Y., Takakura, Y., Yamashita, F. & Hashida, M. (2003). Bioconjugate Chem. 14, 955–961.  CrossRef CAS Google Scholar
First citationPecoraro, V. L. (1989). Inorg. Chim. Acta, 155, 171–173.  CSD CrossRef CAS Web of Science Google Scholar
First citationPecoraro, V. L., Wong, G. B. & Raymond, K. N. (1982). Inorg. Chem. 21, 2209–2215.  CrossRef CAS Google Scholar
First citationPedersen, C. J. (1967). J. Am. Chem. Soc. 89, 2495–2496.  CrossRef CAS Web of Science Google Scholar
First citationPinsky, M. & Avnir, D. (1998). Inorg. Chem. 37, 5575–5582.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRamogida, C. F., Cawthray, J. F., Boros, E., Ferreira, C. L., Patrick, B. O., Adam, M. J. & Orvig, C. (2015). Inorg. Chem. 54, 2017–2031.  CSD CrossRef CAS PubMed Google Scholar
First citationSeitz, M., Moore, E. G. & Raymond, K. N. (2008). Inorg. Chem. 47, 8665–8673.  CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201.  CrossRef Web of Science IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, C., Baum, T. H., Guzei, I. & Rheingold, A. L. (2000). Inorg. Chem. 39, 2008–2010.  CSD CrossRef PubMed CAS Google Scholar
First citationYoo, D., Han, S. H., Lee, S. H., Eom, T., Park, B. K., Kim, C. G., Son, S. U. & Chung, T.-M. (2021). Eur. J. Inorg. Chem. pp. 2480–2485.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds