research communications
4(H2shi)8(H2O)6](NO3)4·8.57H2O
of an indium–salicylhydroximate complex cation: [InaDepartment of Chemistry and Biochemistry, Shippensburg University, Shippensburg, PA 17257, USA, and bDepartment of Chemistry, Purdue University, West Lafayette, IN 47907, USA
*Correspondence e-mail: cmzaleski@ship.edu
The synthesis and μ-2-hydroxybenzenecarbohydroxamato)bis(2-hydroxybenzenecarbohydroxamato)tetraindium(III) tetranitrate 8.57-hydrate + unknown solvent, [In4(H2shi)8(H2O)6](NO3)4·8.57H2O·solvent, where H2shi− is salicylhydroximate (C7H5NO3), are reported. The complex cation of the structure, [In4(H2shi)8(H2O)6]4+, is a dimer with a step-like topology and possesses an inversion center that relates each [In2(H2shi)4(H2O)3]2+ side of the complex cation. Each InIII ion is seven-coordinate with a pentagonal–bipyramidal geometry, and the salicylhydroximate ligands have a 1− charge as only the oxime oxygen of the ligand is deprotonated. Four interstitial nitrate anions maintain the charge balance of the compound. One of the nitrate anions (and its symmetry equivalent) is disordered over two different orientations with an occupancy ratio of 0.557 (7) to 0.443 (7). The interstitial solvent water molecules show substantial disorder. Approximately 8.57 water molecules per formula unit were refined as disordered and partially occupied, while a suitable model could not be devised for the other extensively disordered solvent molecules (water and possibly methanol as this was the synthesis solvent). Thus, these latter solvent molecules were instead treated with the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18.] as implemented in the program PLATON, and the procedure corrected for 151 electrons within solvent-accessible voids of 367 Å3.
for the title compound, hexaaquahexakis(Keywords: indium; salicylhydroxamic acid; crystal structure.
CCDC reference: 2195615
1. Chemical context
Salicylhydroxamic acid (H3shi) has proven to be a versatile ligand for the class of inorganic macrocyclic coordination compounds known as metallacrowns (MC) (Mezei et al., 2007). Metallacrowns are the inorganic analogue of organic (Pedersen, 1967). As have a carbon–carbon–oxygen ring repeat unit, metallacrowns have a metal–nitrogen–oxygen repeat unit about the ring of the metallamacrocycle. In addition, as metallacrowns are capable of capturing a metal ion in the central cavity of the structure. Salicylhydroxamic acid in its triply deprotonated state (shi3−) was used in the synthesis of the first metallacrown, a vanadium-based 9-MC-3 (Pecoraro, 1989), and since then it has been used to construct numerous MCs including other 9-MC-3 (Lah et al., 1989), 12-MC-4 (Lah & Pecoraro, 1989), and 15-MC-5 (Kessisoglou et al., 1994) compounds. Initially salicylhydroxamic acid was mainly used in conjunction with transition-metal ions in both the ring and central metal positions of the metallacrown structure. However, in 2014 our group demonstrated that 12-MC-4 compounds with a salicylhydroximate (shi3−) framework could incorporate lanthanide ions in the central cavity while using MnIII ions in the ring positions of the MC (Azar et al., 2014). These molecules proved to be molecular magnets with magnetic behavior consistent with single-molecule magnetism (Boron et al., 2016). Since then the manganese(III) ions have been replaced with the main-group metals gallium(III) and aluminum(III), and both the lanthanide-gallium (Chow et al., 2016) and lanthanide-aluminum (Eliseeva et al., 2022) 12-MC-4 structures with the shi3− ligand are highly luminescent materials in the visible and near-infrared regions. To further explore the chemistry of H3shi with other main-group metals, we decided to react the ligand with indium(III), a fellow Group 13 metal.
Indium is an appealing target for metallacrown and metallacrown-like compounds, as indium coordination complexes have applications in both the medicinal and material chemistry fields. The radioisotope indium-111 emits gamma radiation and has a half-life of ∼2.8 days. Numerous coordination complexes of the radiometal have been evaluated as potential imaging agents and radiolabels (Pecoraro et al., 1982; Liu et al., 2003; Nishikawa et al., 2003; Ramogida et al., 2015; Choudhary et al., 2019). In addition, indium coordination complexes have been investigated as precursors for indium oxide thin films (Xu et al., 2000; Chou et al., 2003; Lee et al., 2018; Yoo et al., 2021) and as luminophores (Lee et al., 2017). Herein we report the synthesis and single-crystal X-ray of [In4(H2shi)8(H2O)6](NO3)4·8.57H2O·solvent, 1, where H2shi− is the singly deprotonated version of salicylhydroxamic acid. Future work will focus on the potential use of the compound for radiopharmacological or thin film applications.
2. Structural commentary
Compound 1, [In4(H2shi)8(H2O)6](NO3)4·8.57H2O·solvent, consists of four indium ions with a 3+ charge (total 12+ charge) that is counterbalanced by eight singly deprotonated salicylhydroximate anions (H2shi−) and four interstitial nitrate ions (total 12− charge). Only the oxime oxygen atoms (O1, O4, O7, and O10) of the H2shi− ligands are deprotonated. The complex cation structure of 1, [In4(H2shi)8(H2O)6]4+, is a dimer with a step-like topology (Fig. 1). The dimer features four InIII ions in a chain {In1, In2, In2i, In1i; [symmetry code: (i) −x + 1, −y + 1, −z + 1]} and each half of the dimer is related by an inversion center located between the two central indium ions (In2) (Fig. 1). Each side of the dimer contains two indium(III) ions, four H2shi− anions, and three water molecules: [In2(H2shi)4(H2O)3]2+ (Fig. 2). Each half of the complex cation is connected via the middle In2 centers where two oxime oxygens of symmetry-related H2shi− ligands bind to both In2 ions. Both InIII ions are seven-coordinate with pentagonal–bipyramidal geometry (Table 1; Figs. 1 and 2). The geometry was determined with the program SHAPE 2.1 (Llunell et al., 2013; Pinsky & Avnir, 1998; Casanova et al., 2004). For In1, the pentagonal plane consists of five oxygen atoms from three different H2shi− ligands. Two of the ligands bind in a bidentate fashion using both the oxime and carbonyl oxygen atoms of the ligand to form two five-membered chelate rings about the InIII center. The third H2shi− binds in a monodentate fashion via the oxime oxygen atom. The axial positions of the coordination geometry are occupied by two water molecules. In1 is connected to In2 via two bridging oxime oxygen atoms. For In2, the metal center binds to four H2shi− anions, three from one half of the dimer and one from the symmetry-related portion of the cation. Two of the H2shi− ligands bind in a bidentate fashion with oxime and carbonyl oxygen atoms and form two five-membered chelate rings, while the other two bind in a monodentate fashion via the oxime oxygen atoms. Three of the H2shi− anions (two bidentate and one monodentate) provide the five oxygen atoms of the pentagonal plane. The axial direction consists of one water molecule and one oxime oxygen atom. This axial oxime oxygen atom then binds to the symmetry equivalent In2 ion of the other portion of the cation and thus generates the step-like topology where each half of the dimer consists of two InIII ions (Fig. 1b).
|
The interstitial area contains an ordered nitrate anion and a nitrate anion that is disordered over two positions with an occupancy ratio of 0.557 (7) to 0.443 (7). In addition, several solvent water molecules (ca 8.57 per formula unit) were found to be disordered, and when possible the disorder and hydrogen bonding were refined. All of the interstitial water molecules are only partially occupied (associated with O22–O27) and due to the large amount of disorder, no attempts were made to match occupancies. In addition, some solvent molecules (water and/or methanol) were found to have excessive disorder and a suitable model could not be devised. These solvent molecules were instead augmented with the SQUEEZE routine (Spek, 2015) as implemented in the program PLATON (Spek, 2022). Complete details regarding the SQUEEZE results can be found in the Refinement section.
3. Supramolecular features
For the [In4(H2shi)8(H2O)6]4+ cation of 1, several intramolecular hydrogen bonds exist between the protonated oxime nitrogen atoms (N1, N2, N3, and N4) of the H2shi− ligands and the protonated phenol oxygen atoms (O3, O6, O9, and O12, respectively) of the same ligand with the hydrogen atom of the nitrogen atom bonding to the oxygen atom (Fig. 2; Table 2). In addition, the hydrogen atom of the oxime nitrogen atom (N2 and N4) also forms a hydrogen bond to the carbonyl oxygen atom (O8 and O2, respectively) of a neighboring H2shi− ligand (Fig. 2), and the hydrogen atom of the oxime nitrogen atom (N3) bonds to the oxygen atom (O14) of the water molecule coordinated to In1.
There is one intermolecular hydrogen bond between neighboring complex cations of 1 (Table 2). The hydrogen atom of the water molecule (associated with O13) coordinated to In1 forms a hydrogen bond to an oxime oxygen atom (O1) of a neighboring complex cation. In addition, the reciprocal hydrogen bond is also formed between the two cations. Due to the inversion center of the complex cation, these hydrogen bonds occur on both sides of the [In4(H2shi)8(H2O)6]4+ ion; thus, a one-dimensional chain of the dimers is generated (Fig. 3).
Furthermore, several intermolecular hydrogen bonds exist between the partially occupied interstitial water molecules (O22–O27) themselves and between the interstitial water molecules and the protonated phenol oxygen atoms (O3 and O6) and the carbonyl oxygen atoms (O5 and O11) atoms of the H2shi− ligands, the water molecules (O13–O15) coordinated to the InIII ions, and the oxygen atoms (O18 and O21) of the interstitial nitrate anions (Table 2). Lastly, the protonated phenol oxygen atoms (O6, O9, and O12) of the H2shi− ligands form hydrogen bonds to the oxygen atoms (O16, O17, O18, and O20) of interstitial nitrate ions, and the coordinated water molecules (O14 and O15) form hydrogen bonds with the oxygen atoms (O19, O20, and O21) of interstitial nitrate ions.
4. Database survey
A survey of the Cambridge Structural Database (CSD version 5.43, update March 2022; Groom et al., 2016) lists only two other structures with indium bound to hydroxamic acid ligands, though neither are salicylhydroxamic acid. One structure (JAGWUJ; Matsuba et al., 1988) contains an indium(III) ion bound to three benzohydroximate ligands in an octahedral propeller coordination geometry with Δ configuration. The other structure (VOLNIU; Seitz et al., 2008) is an indium(III) ion in a trigonal prismatic coordination geometry bound to a tripodal ligand based on 1-oxo-2-hydroxy-isoquinoline-3-carboxylic acid, an aromatic hydroxamic acid. In addition, there are five other di-metallic structures [DEYSIM (Lee et al., 2018); UWOFIY, UWOFOE, UWOGAR, UWOGEV (Yoo et al., 2021)] of indium bound to N-alkoxy carboxamide ligands. This class of ligands is closely related to as they also have a O–C–N–O connectivity, but the oxygen atom attached to the nitrogen atom is bound to an alkyl group instead of being an acidic hydrogen atom.
5. Synthesis and crystallization
Synthetic Materials
Salicylhydroxamic acid (H3shi, >98%) was purchased from TCI America. Indium(III) nitrate hydrate (99.999%-In; Puratrem) was purchased from Strem Chemicals. Methanol (ACS grade) was purchased from VWR Chemicals BDH. All reagents were used as received and without further purification.
Synthesis [In4(H2shi)8(H2O)6](NO3)4·8.57H2O·solvent, 1. Salicylhydroxamic acid (1 mmol) was dissolved in 10 mL of methanol resulting in a clear, light-pink solution. In a separate beaker, indium(III) nitrate hydrate (1 mmol; with an assumption of five waters of hydration) was dissolved in 10 mL of methanol resulting in a clear, colorless solution. The two solutions were mixed resulting in a clear, slightly pink solution and then allowed to stir overnight. The solution was then filtered, and no solid was recovered. The filtrate remained clear and slightly pink. X-ray quality clear and colorless crystals were grown in 21 days by slow evaporation of the solvent. The percentage yield was 43% based on salicylhydroxamic acid. FT–IR bands (ATR, cm−1): 1604, 1566, 1519, 1486, 1451, 1336, 1311, 1241, 1152, 1099, 1064, 1035, 927, 858, 821, 813, 770, 746, 665, 588, 560.
6. Refinement
A nitrate ion (associated with N5) was refined as disordered. The two disordered moieties were restrained to have similar geometries as the ordered nitrate ion (SAME command of SHELXL, first and second esds were 0.02 and 0.04 Å). Uij components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar (SIMU command of SHELXL, first and second esds were 0.01 and 0.02 Å2). Subject to these conditions the occupancy ratio refined to 0.443 (7) to 0.557 (7).
Solvate molecules were found to be disordered. For the better defined solvate molecules, distances to potential hydrogen-bond acceptors indicated these molecules to be water (methanol was used as the crystallization solvent and waters of hydration were present in the starting materials used) and these were refined as disordered water molecules. For molecules not directly hydrogen bonded to the main molecule, disorder was found to be excessive (greater than three- to fourfold disorder of water and/or methanol) and no suitable model could be devised. The structure factors associated with the disordered solvate molecules were instead augmented via reverse Fourier transform methods using the SQUEEZE routine (Sluis & Spek, 1990; Spek, 2015) as implemented in the program PLATON (Spek, 2020). The resultant FAB file containing the structure-factor contribution from the electron content of the void space was used together with the original hkl file in the further (The FAB file with details of the SQUEEZE results is appended to the file). The SQUEEZE procedure corrected for 151 electrons within solvent-accessible voids of 367 Å3.
Resolved disordered water molecules were assigned occupancy values. For `outlying' water molecules occupancies did not refine to full occupancy for each site (due to excessive disorder, or part of the site overlapping with squeezed areas) and no attempts were made to match the occupancies of these water molecules with other moieties in the structure to add up to unity for each site. Uij components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar [SIMU command of SHELXL, first and second esds were 0.01 and 0.02 (O22, O22B O24B, O25) or 0.001 (O26, O27, O26B, O27B) Å2]. Water hydrogen-atom positions were initially refined and O—H and H⋯H distances were restrained to 0.84 (2) and 1.36 (2) Å, respectively, while a damping factor was applied. Some water hydrogen-atom positions were further restrained based on hydrogen-bonding considerations. In the final cycles, hydrogen atoms with low occupancies were constrained to ride on their carrier atoms and the damping factor was removed. Subject to these conditions, the occupancy rates refined to the values given in the tables of the Additional crystal data, data collection, and structure details are summarized in Table 3.
|
Supporting information
CCDC reference: 2195615
https://doi.org/10.1107/S2056989022007964/mw2189sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022007964/mw2189Isup2.hkl
Data collection: APEX4 (Bruker, 2022); cell
SAINT (Bruker, 2022); data reduction: SAINT (Bruker, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b), ShelXle (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).[In4(C7H6NO3)8(H2O)6](NO3)4·8.57H2O·[+solvent] | Z = 1 |
Mr = 2186.80 | F(000) = 1099 |
Triclinic, P1 | Dx = 1.603 Mg m−3 |
a = 11.8435 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 14.2195 (6) Å | Cell parameters from 9643 reflections |
c = 14.6918 (5) Å | θ = 2.7–33.1° |
α = 81.905 (2)° | µ = 1.11 mm−1 |
β = 70.768 (2)° | T = 150 K |
γ = 76.516 (2)° | Plate, colourless |
V = 2266.22 (16) Å3 | 0.17 × 0.16 × 0.06 mm |
Bruker D8 Quest diffractometer | 17348 independent reflections |
Radiation source: fine focus sealed tube X-ray source | 12266 reflections with I > 2σ(I) |
Triumph curved graphite crystal monochromator | Rint = 0.049 |
Detector resolution: 7.4074 pixels mm-1 | θmax = 33.2°, θmin = 2.7° |
ω and phi scans | h = −18→18 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −21→21 |
Tmin = 0.680, Tmax = 0.747 | l = −22→22 |
118064 measured reflections |
Refinement on F2 | 215 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.037 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.109 | w = 1/[σ2(Fo2) + (0.0494P)2 + 2.2183P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
17348 reflections | Δρmax = 1.11 e Å−3 |
694 parameters | Δρmin = −1.48 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. A nitrate ion was refined as disordered. The two disordered moieties were restrained to have similar geometries. Uij components of ADPs for disordered atoms closer to each other than 2.0 Angstrom were restrained to be similar. Subject to these conditions the occupancy ratio refined to 0.443 (7) to 0.557 (7). Solvate water molecules were found to be disordered. Where possible, disorder was refined. For molecules not directly hydrogen bound to the main molecule disorder was found to be excessive (> 3-4 fold disorder of water and/or methanol) and no suitable model that could be devised. The structure factors associated with the disordered solvate molecules were instead augmented via reverse Fourier transform methods using the SQUEEZE routine (P. van der Sluis & A.L. Spek (1990). Acta Cryst. A46, 194-201) as implemented in the program Platon. The resultant FAB file containing the structure factor contribution from the electron content of the void space was used in together with the original hkl file in the further refinement. (The FAB file with details of the Squeeze results is appended to this cif file). The Squeeze procedure corrected for 151 electrons within solvent accessible voids of 367 Angstrom cubed. Resolved disordered water molecules were assigned occupancy rates. For "outlying" water molecules occupancies did not refine to full occupancy for each site (due to excessive disorder, or part of the site overlapping with squeezed areas) and no attempts were made to match occupancies. Uij components of ADPs for disordered atoms closer to each other than 2.0 Angstrom were restrained to be similar. Water H atom positions were refined and O-H and H···H distances were restrained to 0.84 (2) and 1.36 (2) Angstrom, respectively, while a damping factor was applied. Some water H atom positions were further restrained based on hydrogen bonding considerations. In the final refinement cycles H atoms with low occupancies were constrained to ride on their carrier atoms and the damping factor was removed. Subject to these conditions the occupancy rates refined to the values given in the tables of the cif file. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
In1 | 0.42730 (2) | 0.51469 (2) | 0.18905 (2) | 0.03389 (5) | |
In2 | 0.56369 (2) | 0.53389 (2) | 0.37738 (2) | 0.03459 (5) | |
O1 | 0.34520 (17) | 0.49088 (14) | 0.08522 (13) | 0.0415 (4) | |
O2 | 0.26988 (17) | 0.63287 (13) | 0.20040 (13) | 0.0397 (4) | |
O3 | 0.0717 (2) | 0.64950 (16) | 0.01075 (15) | 0.0497 (5) | |
H3O | 0.020516 | 0.657664 | −0.019345 | 0.075* | |
O4 | 0.57140 (17) | 0.45100 (14) | 0.25976 (13) | 0.0455 (5) | |
O5 | 0.52816 (17) | 0.37557 (13) | 0.12922 (13) | 0.0411 (4) | |
O6 | 0.8253 (2) | 0.21109 (16) | 0.20886 (15) | 0.0537 (6) | |
H6O | 0.896623 | 0.181703 | 0.205605 | 0.081* | |
O7 | 0.59121 (15) | 0.52804 (14) | 0.52133 (12) | 0.0364 (4) | |
O8 | 0.71809 (16) | 0.41493 (14) | 0.38087 (12) | 0.0388 (4) | |
O9 | 0.90123 (17) | 0.43199 (16) | 0.57286 (15) | 0.0472 (5) | |
H9O | 0.950869 | 0.432237 | 0.602515 | 0.071* | |
O10 | 0.44803 (17) | 0.60840 (13) | 0.28938 (13) | 0.0399 (4) | |
O11 | 0.46380 (17) | 0.67505 (13) | 0.43780 (14) | 0.0414 (4) | |
O12 | 0.2284 (2) | 0.86105 (14) | 0.30704 (15) | 0.0524 (6) | |
H12O | 0.202009 | 0.912161 | 0.277748 | 0.079* | |
O13 | 0.5494 (2) | 0.59144 (16) | 0.07719 (14) | 0.0476 (5) | |
H13B | 0.604 (3) | 0.609 (3) | 0.088 (3) | 0.071* | |
H13A | 0.576 (3) | 0.568 (3) | 0.0229 (18) | 0.071* | |
O14 | 0.30830 (18) | 0.43647 (15) | 0.30866 (14) | 0.0427 (4) | |
H14A | 0.336 (3) | 0.3795 (17) | 0.330 (3) | 0.064* | |
H14B | 0.237 (2) | 0.435 (3) | 0.309 (3) | 0.064* | |
O15 | 0.7033 (2) | 0.6145 (2) | 0.2944 (3) | 0.0810 (10) | |
H15A | 0.680 (4) | 0.641 (4) | 0.247 (3) | 0.122* | |
H15B | 0.7781 (19) | 0.593 (4) | 0.276 (4) | 0.122* | |
N5 | 0.1343 (10) | 1.0732 (13) | 0.1845 (15) | 0.050 (3) | 0.443 (7) |
O16 | 0.2485 (8) | 1.0514 (7) | 0.1561 (7) | 0.087 (3) | 0.443 (7) |
O17 | 0.0762 (6) | 1.0116 (4) | 0.2364 (4) | 0.0621 (18) | 0.443 (7) |
O18 | 0.0769 (9) | 1.1489 (8) | 0.1526 (7) | 0.062 (2) | 0.443 (7) |
N5B | 0.1096 (8) | 1.0702 (11) | 0.1851 (13) | 0.051 (2) | 0.557 (7) |
O16B | 0.2066 (5) | 1.0146 (4) | 0.1890 (4) | 0.0578 (14) | 0.557 (7) |
O17B | 0.0105 (4) | 1.0635 (3) | 0.2483 (3) | 0.0569 (13) | 0.557 (7) |
O18B | 0.1139 (9) | 1.1390 (6) | 0.1223 (5) | 0.0686 (19) | 0.557 (7) |
N6 | 0.9957 (2) | 0.50130 (19) | 0.2633 (2) | 0.0473 (5) | |
O19 | 1.10061 (19) | 0.45204 (17) | 0.25405 (17) | 0.0524 (5) | |
O20 | 0.9447 (2) | 0.55804 (16) | 0.32832 (18) | 0.0528 (5) | |
O21 | 0.9408 (2) | 0.4925 (2) | 0.2063 (2) | 0.0668 (7) | |
O23 | 0.3259 (5) | 0.2728 (4) | 0.1487 (5) | 0.129 (3) | 0.792 (11) |
H23A | 0.317472 | 0.252966 | 0.095333 | 0.194* | 0.792 (11) |
H23B | 0.396276 | 0.292362 | 0.131928 | 0.194* | 0.792 (11) |
O22 | 0.9121 (4) | 0.6555 (3) | −0.0832 (3) | 0.0795 (12) | 0.886 (7) |
H22A | 0.901 (6) | 0.706 (2) | −0.117 (4) | 0.119* | 0.886 (7) |
H22B | 0.942 (6) | 0.608 (3) | −0.115 (4) | 0.119* | 0.886 (7) |
O24 | 0.7903 (5) | 0.5624 (5) | 0.0717 (4) | 0.0820 (19) | 0.590 (7) |
H24A | 0.754 (7) | 0.611 (5) | 0.107 (6) | 0.123* | 0.590 (7) |
H24B | 0.848 (6) | 0.533 (5) | 0.094 (6) | 0.123* | 0.590 (7) |
O25 | 0.616 (2) | 0.7286 (18) | 0.1395 (18) | 0.084 (6) | 0.152 (9) |
H25A | 0.630387 | 0.766202 | 0.171871 | 0.127* | 0.152 (9) |
H25B | 0.591205 | 0.762305 | 0.095684 | 0.127* | 0.152 (9) |
O22B | 0.9010 (14) | 0.5910 (19) | −0.0361 (17) | 0.077 (5) | 0.114 (7) |
H22C | 0.938459 | 0.577782 | −0.093868 | 0.115* | 0.114 (7) |
H22D | 0.878384 | 0.540475 | −0.005618 | 0.115* | 0.114 (7) |
O24B | 0.6901 (10) | 0.6830 (7) | 0.1027 (6) | 0.080 (3) | 0.410 (7) |
H24C | 0.764 (4) | 0.663 (4) | 0.069 (3) | 0.121* | 0.410 (7) |
H24D | 0.684 (6) | 0.737 (5) | 0.123 (10) | 0.121* | 0.410 (7) |
O26 | 0.4029 (5) | 0.2921 (3) | 0.4115 (5) | 0.0826 (13) | 0.652 (5) |
H26A | 0.426 (8) | 0.237 (3) | 0.392 (7) | 0.124* | 0.652 (5) |
H26B | 0.446 (7) | 0.303 (6) | 0.443 (5) | 0.124* | 0.652 (5) |
O27 | 0.4387 (17) | 0.1825 (12) | 0.3027 (13) | 0.0840 (15) | 0.161 (6) |
H27A | 0.512426 | 0.171499 | 0.267040 | 0.126* | 0.161 (6) |
H27B | 0.398262 | 0.213590 | 0.264719 | 0.126* | 0.161 (6) |
O26B | 0.4126 (9) | 0.2528 (6) | 0.3243 (8) | 0.0840 (13) | 0.348 (5) |
H26C | 0.420769 | 0.212829 | 0.370989 | 0.126* | 0.348 (5) |
H26D | 0.368061 | 0.234118 | 0.298873 | 0.126* | 0.348 (5) |
O27B | 0.3779 (17) | 0.2429 (11) | 0.4890 (15) | 0.0829 (14) | 0.179 (7) |
H27C | 0.315208 | 0.282720 | 0.482494 | 0.124* | 0.179 (7) |
H27D | 0.421500 | 0.276216 | 0.501045 | 0.124* | 0.179 (7) |
N1 | 0.2471 (2) | 0.56338 (15) | 0.08175 (14) | 0.0372 (5) | |
H1N | 0.209366 | 0.564206 | 0.039015 | 0.045* | |
N2 | 0.6447 (2) | 0.36642 (16) | 0.22369 (14) | 0.0398 (5) | |
H2N | 0.706562 | 0.337010 | 0.244564 | 0.048* | |
N3 | 0.70532 (17) | 0.47275 (16) | 0.51926 (14) | 0.0365 (4) | |
H3N | 0.736818 | 0.474859 | 0.565283 | 0.044* | |
N4 | 0.37305 (19) | 0.69352 (14) | 0.32306 (15) | 0.0360 (4) | |
H4N | 0.318985 | 0.725950 | 0.295052 | 0.043* | |
C1 | 0.2100 (2) | 0.63161 (17) | 0.14285 (16) | 0.0336 (5) | |
C2 | 0.0970 (2) | 0.70401 (17) | 0.14686 (17) | 0.0334 (5) | |
C3 | 0.0299 (2) | 0.71124 (19) | 0.08285 (19) | 0.0377 (5) | |
C4 | −0.0770 (3) | 0.7813 (2) | 0.0930 (2) | 0.0451 (6) | |
H4 | −0.121786 | 0.786790 | 0.048854 | 0.054* | |
C5 | −0.1177 (3) | 0.8425 (2) | 0.1671 (2) | 0.0491 (7) | |
H5 | −0.191096 | 0.889457 | 0.174141 | 0.059* | |
C6 | −0.0528 (3) | 0.8362 (2) | 0.2313 (2) | 0.0506 (7) | |
H6 | −0.081218 | 0.878680 | 0.282113 | 0.061* | |
C7 | 0.0541 (2) | 0.7674 (2) | 0.2208 (2) | 0.0421 (6) | |
H7 | 0.098971 | 0.763232 | 0.264669 | 0.051* | |
C8 | 0.6192 (2) | 0.33083 (17) | 0.15665 (16) | 0.0344 (5) | |
C9 | 0.6919 (2) | 0.23985 (17) | 0.11285 (16) | 0.0342 (5) | |
C10 | 0.7905 (2) | 0.18173 (18) | 0.13967 (18) | 0.0390 (5) | |
C11 | 0.8506 (3) | 0.09571 (19) | 0.0951 (2) | 0.0462 (6) | |
H11 | 0.916324 | 0.055457 | 0.114215 | 0.055* | |
C12 | 0.8157 (3) | 0.0686 (2) | 0.0237 (2) | 0.0495 (7) | |
H12 | 0.857088 | 0.009470 | −0.005507 | 0.059* | |
C13 | 0.7206 (3) | 0.1266 (2) | −0.0061 (2) | 0.0479 (7) | |
H13 | 0.698139 | 0.108430 | −0.056489 | 0.058* | |
C14 | 0.6591 (3) | 0.21151 (19) | 0.03901 (19) | 0.0402 (5) | |
H14 | 0.593415 | 0.251208 | 0.019449 | 0.048* | |
C15 | 0.7656 (2) | 0.41697 (18) | 0.44685 (16) | 0.0335 (5) | |
C16 | 0.8865 (2) | 0.35688 (17) | 0.44379 (16) | 0.0324 (4) | |
C17 | 0.9511 (2) | 0.36547 (18) | 0.50577 (18) | 0.0350 (5) | |
C18 | 1.0662 (2) | 0.3068 (2) | 0.4972 (2) | 0.0418 (6) | |
H18 | 1.109663 | 0.312668 | 0.539478 | 0.050* | |
C19 | 1.1165 (3) | 0.2406 (2) | 0.4275 (2) | 0.0471 (7) | |
H19 | 1.194922 | 0.201193 | 0.421513 | 0.057* | |
C20 | 1.0535 (3) | 0.2312 (2) | 0.3664 (2) | 0.0489 (7) | |
H20 | 1.088423 | 0.184911 | 0.318902 | 0.059* | |
C21 | 0.9390 (2) | 0.28914 (19) | 0.3739 (2) | 0.0401 (5) | |
H21 | 0.896402 | 0.282595 | 0.331230 | 0.048* | |
C22 | 0.3849 (2) | 0.72507 (17) | 0.39896 (18) | 0.0333 (5) | |
C23 | 0.3071 (2) | 0.81570 (16) | 0.43989 (17) | 0.0323 (4) | |
C24 | 0.2326 (2) | 0.88216 (18) | 0.39293 (18) | 0.0376 (5) | |
C25 | 0.1637 (3) | 0.96712 (19) | 0.4359 (2) | 0.0463 (6) | |
H25 | 0.113587 | 1.012406 | 0.404322 | 0.056* | |
C26 | 0.1680 (3) | 0.9858 (2) | 0.5240 (2) | 0.0483 (7) | |
H26 | 0.121024 | 1.044132 | 0.552495 | 0.058* | |
C27 | 0.2395 (3) | 0.9209 (2) | 0.5714 (2) | 0.0492 (7) | |
H27 | 0.241017 | 0.933940 | 0.632569 | 0.059* | |
C28 | 0.3092 (3) | 0.83638 (19) | 0.5292 (2) | 0.0422 (6) | |
H28 | 0.359128 | 0.791915 | 0.561565 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
In1 | 0.03514 (8) | 0.03784 (9) | 0.02316 (7) | 0.01602 (6) | −0.01382 (6) | −0.01154 (6) |
In2 | 0.03067 (8) | 0.04148 (9) | 0.02773 (8) | 0.01479 (6) | −0.01486 (6) | −0.01243 (6) |
O1 | 0.0444 (9) | 0.0434 (9) | 0.0328 (8) | 0.0214 (8) | −0.0218 (7) | −0.0165 (7) |
O2 | 0.0400 (9) | 0.0417 (9) | 0.0350 (8) | 0.0175 (7) | −0.0206 (7) | −0.0160 (7) |
O3 | 0.0522 (11) | 0.0526 (11) | 0.0476 (11) | 0.0146 (9) | −0.0317 (9) | −0.0163 (9) |
O4 | 0.0448 (10) | 0.0502 (10) | 0.0360 (9) | 0.0284 (8) | −0.0237 (8) | −0.0214 (8) |
O5 | 0.0433 (9) | 0.0399 (9) | 0.0370 (9) | 0.0193 (7) | −0.0213 (7) | −0.0170 (7) |
O6 | 0.0568 (12) | 0.0521 (11) | 0.0475 (11) | 0.0304 (9) | −0.0305 (10) | −0.0225 (9) |
O7 | 0.0269 (7) | 0.0489 (10) | 0.0306 (8) | 0.0118 (7) | −0.0140 (6) | −0.0141 (7) |
O8 | 0.0355 (8) | 0.0481 (10) | 0.0282 (8) | 0.0148 (7) | −0.0158 (7) | −0.0117 (7) |
O9 | 0.0339 (9) | 0.0625 (12) | 0.0457 (10) | 0.0136 (8) | −0.0212 (8) | −0.0225 (9) |
O10 | 0.0412 (9) | 0.0390 (9) | 0.0359 (8) | 0.0202 (7) | −0.0204 (7) | −0.0172 (7) |
O11 | 0.0380 (9) | 0.0399 (9) | 0.0504 (10) | 0.0125 (7) | −0.0267 (8) | −0.0182 (8) |
O12 | 0.0741 (14) | 0.0380 (10) | 0.0460 (11) | 0.0218 (9) | −0.0365 (10) | −0.0166 (8) |
O13 | 0.0570 (12) | 0.0515 (11) | 0.0289 (8) | 0.0010 (9) | −0.0093 (8) | −0.0154 (8) |
O14 | 0.0397 (9) | 0.0436 (10) | 0.0396 (9) | 0.0078 (8) | −0.0152 (8) | −0.0061 (8) |
O15 | 0.0360 (11) | 0.0768 (18) | 0.109 (2) | −0.0005 (12) | −0.0161 (13) | 0.0296 (17) |
N5 | 0.068 (4) | 0.042 (4) | 0.041 (3) | 0.019 (4) | −0.033 (4) | −0.021 (3) |
O16 | 0.074 (5) | 0.080 (5) | 0.092 (5) | 0.030 (4) | −0.035 (4) | −0.012 (4) |
O17 | 0.078 (4) | 0.046 (3) | 0.061 (3) | 0.018 (3) | −0.039 (3) | −0.004 (2) |
O18 | 0.066 (5) | 0.057 (4) | 0.056 (4) | 0.023 (3) | −0.031 (3) | −0.009 (3) |
N5B | 0.071 (4) | 0.041 (3) | 0.047 (3) | 0.013 (3) | −0.038 (3) | −0.017 (2) |
O16B | 0.062 (3) | 0.050 (3) | 0.048 (3) | 0.024 (2) | −0.021 (2) | −0.0088 (19) |
O17B | 0.062 (3) | 0.057 (3) | 0.047 (2) | 0.016 (2) | −0.0244 (19) | −0.0151 (18) |
O18B | 0.099 (6) | 0.044 (3) | 0.060 (4) | 0.008 (3) | −0.040 (3) | 0.006 (3) |
N6 | 0.0432 (12) | 0.0472 (13) | 0.0572 (14) | −0.0131 (10) | −0.0234 (11) | 0.0038 (11) |
O19 | 0.0382 (10) | 0.0595 (13) | 0.0620 (13) | −0.0069 (9) | −0.0186 (9) | −0.0093 (10) |
O20 | 0.0468 (11) | 0.0440 (11) | 0.0691 (14) | −0.0042 (9) | −0.0204 (10) | −0.0104 (10) |
O21 | 0.0627 (15) | 0.0757 (17) | 0.0813 (18) | −0.0166 (13) | −0.0461 (14) | −0.0051 (14) |
O23 | 0.115 (5) | 0.108 (4) | 0.145 (5) | −0.039 (3) | 0.003 (4) | −0.023 (4) |
O22 | 0.116 (3) | 0.067 (2) | 0.080 (2) | −0.005 (2) | −0.070 (2) | −0.0127 (17) |
O24 | 0.064 (3) | 0.103 (4) | 0.090 (4) | −0.007 (3) | −0.043 (3) | −0.012 (3) |
O25 | 0.084 (10) | 0.092 (10) | 0.071 (9) | −0.029 (8) | −0.012 (8) | 0.002 (8) |
O22B | 0.116 (9) | 0.055 (8) | 0.086 (9) | −0.007 (8) | −0.067 (8) | −0.025 (7) |
O24B | 0.099 (6) | 0.090 (6) | 0.068 (5) | −0.055 (5) | −0.029 (4) | 0.008 (4) |
O26 | 0.086 (3) | 0.053 (2) | 0.120 (4) | −0.0028 (19) | −0.060 (3) | 0.010 (2) |
O27 | 0.087 (3) | 0.052 (2) | 0.121 (4) | −0.004 (2) | −0.056 (3) | 0.008 (2) |
O26B | 0.087 (3) | 0.053 (2) | 0.121 (4) | −0.003 (2) | −0.057 (3) | 0.009 (2) |
O27B | 0.086 (3) | 0.053 (2) | 0.120 (4) | −0.004 (2) | −0.059 (3) | 0.011 (2) |
N1 | 0.0410 (10) | 0.0378 (10) | 0.0308 (9) | 0.0148 (8) | −0.0201 (8) | −0.0117 (8) |
N2 | 0.0401 (10) | 0.0412 (11) | 0.0310 (9) | 0.0238 (9) | −0.0176 (8) | −0.0174 (8) |
N3 | 0.0269 (8) | 0.0497 (12) | 0.0298 (9) | 0.0117 (8) | −0.0148 (7) | −0.0108 (8) |
N4 | 0.0386 (10) | 0.0319 (9) | 0.0348 (9) | 0.0152 (8) | −0.0182 (8) | −0.0137 (7) |
C1 | 0.0346 (11) | 0.0348 (11) | 0.0279 (10) | 0.0091 (9) | −0.0142 (8) | −0.0064 (8) |
C2 | 0.0311 (10) | 0.0307 (10) | 0.0344 (11) | 0.0068 (8) | −0.0133 (9) | −0.0035 (8) |
C3 | 0.0365 (12) | 0.0359 (12) | 0.0383 (12) | 0.0048 (9) | −0.0168 (10) | −0.0022 (9) |
C4 | 0.0380 (13) | 0.0443 (14) | 0.0523 (15) | 0.0070 (11) | −0.0236 (12) | −0.0028 (12) |
C5 | 0.0379 (13) | 0.0392 (13) | 0.0653 (18) | 0.0128 (11) | −0.0217 (13) | −0.0082 (12) |
C6 | 0.0438 (14) | 0.0413 (14) | 0.0607 (18) | 0.0141 (11) | −0.0172 (13) | −0.0196 (13) |
C7 | 0.0375 (12) | 0.0405 (13) | 0.0454 (14) | 0.0117 (10) | −0.0176 (11) | −0.0142 (11) |
C8 | 0.0367 (11) | 0.0350 (11) | 0.0243 (9) | 0.0138 (9) | −0.0114 (8) | −0.0096 (8) |
C9 | 0.0362 (11) | 0.0305 (10) | 0.0279 (10) | 0.0116 (8) | −0.0093 (8) | −0.0089 (8) |
C10 | 0.0407 (12) | 0.0351 (11) | 0.0326 (11) | 0.0146 (9) | −0.0119 (9) | −0.0100 (9) |
C11 | 0.0463 (14) | 0.0335 (12) | 0.0506 (15) | 0.0165 (10) | −0.0166 (12) | −0.0139 (11) |
C12 | 0.0520 (16) | 0.0344 (12) | 0.0542 (16) | 0.0121 (11) | −0.0127 (13) | −0.0206 (11) |
C13 | 0.0516 (15) | 0.0416 (14) | 0.0481 (15) | 0.0087 (12) | −0.0170 (12) | −0.0211 (12) |
C14 | 0.0435 (13) | 0.0363 (12) | 0.0370 (12) | 0.0088 (10) | −0.0145 (10) | −0.0135 (9) |
C15 | 0.0279 (10) | 0.0408 (12) | 0.0268 (9) | 0.0070 (8) | −0.0107 (8) | −0.0043 (8) |
C16 | 0.0264 (9) | 0.0357 (11) | 0.0292 (10) | 0.0064 (8) | −0.0099 (8) | −0.0007 (8) |
C17 | 0.0277 (10) | 0.0381 (12) | 0.0354 (11) | 0.0037 (8) | −0.0119 (9) | −0.0019 (9) |
C18 | 0.0328 (11) | 0.0427 (13) | 0.0508 (15) | 0.0060 (10) | −0.0215 (11) | −0.0078 (11) |
C19 | 0.0362 (12) | 0.0377 (13) | 0.0666 (18) | 0.0110 (10) | −0.0236 (12) | −0.0127 (12) |
C20 | 0.0397 (13) | 0.0424 (14) | 0.0622 (18) | 0.0161 (11) | −0.0220 (13) | −0.0212 (13) |
C21 | 0.0351 (11) | 0.0402 (13) | 0.0432 (13) | 0.0086 (10) | −0.0176 (10) | −0.0109 (10) |
C22 | 0.0323 (10) | 0.0311 (10) | 0.0375 (11) | 0.0046 (8) | −0.0165 (9) | −0.0094 (9) |
C23 | 0.0315 (10) | 0.0282 (10) | 0.0367 (11) | 0.0036 (8) | −0.0128 (9) | −0.0112 (8) |
C24 | 0.0429 (13) | 0.0304 (11) | 0.0373 (12) | 0.0075 (9) | −0.0165 (10) | −0.0096 (9) |
C25 | 0.0543 (16) | 0.0322 (12) | 0.0486 (15) | 0.0128 (11) | −0.0211 (12) | −0.0134 (10) |
C26 | 0.0580 (17) | 0.0335 (12) | 0.0475 (15) | 0.0093 (11) | −0.0149 (13) | −0.0179 (11) |
C27 | 0.0656 (18) | 0.0388 (13) | 0.0438 (14) | 0.0059 (12) | −0.0231 (13) | −0.0174 (11) |
C28 | 0.0513 (15) | 0.0362 (12) | 0.0427 (13) | 0.0037 (11) | −0.0239 (12) | −0.0121 (10) |
In1—O13 | 2.156 (2) | O27—H27A | 0.8477 |
In1—O1 | 2.1594 (17) | O27—H27B | 0.8627 |
In1—O2 | 2.1774 (16) | O26B—H26C | 0.8430 |
In1—O5 | 2.1930 (16) | O26B—H26D | 0.8446 |
In1—O14 | 2.205 (2) | O27B—H27C | 0.8468 |
In1—O10 | 2.2254 (18) | O27B—H27D | 0.8479 |
In1—O4 | 2.2348 (17) | N1—C1 | 1.314 (3) |
In2—O15 | 2.167 (3) | N1—H1N | 0.8800 |
In2—O10 | 2.1851 (16) | N2—C8 | 1.314 (3) |
In2—O8 | 2.1915 (16) | N2—H2N | 0.8800 |
In2—O4 | 2.1916 (18) | N3—C15 | 1.320 (3) |
In2—O11 | 2.2179 (17) | N3—H3N | 0.8800 |
In2—O7i | 2.2228 (19) | N4—C22 | 1.318 (3) |
In2—O7 | 2.2312 (16) | N4—H4N | 0.8800 |
O1—N1 | 1.372 (2) | C1—C2 | 1.476 (3) |
O2—C1 | 1.274 (3) | C2—C7 | 1.395 (3) |
O3—C3 | 1.361 (3) | C2—C3 | 1.397 (3) |
O3—H3O | 0.8400 | C3—C4 | 1.395 (3) |
O4—N2 | 1.368 (2) | C4—C5 | 1.378 (4) |
O5—C8 | 1.274 (3) | C4—H4 | 0.9500 |
O6—C10 | 1.361 (3) | C5—C6 | 1.381 (4) |
O6—H6O | 0.8400 | C5—H5 | 0.9500 |
O7—N3 | 1.389 (2) | C6—C7 | 1.386 (3) |
O8—C15 | 1.278 (3) | C6—H6 | 0.9500 |
O9—C17 | 1.354 (3) | C7—H7 | 0.9500 |
O9—H9O | 0.8400 | C8—C9 | 1.476 (3) |
O10—N4 | 1.370 (2) | C9—C10 | 1.401 (3) |
O11—C22 | 1.277 (3) | C9—C14 | 1.402 (4) |
O12—C24 | 1.356 (3) | C10—C11 | 1.394 (3) |
O12—H12O | 0.8400 | C11—C12 | 1.376 (4) |
O13—H13B | 0.817 (18) | C11—H11 | 0.9500 |
O13—H13A | 0.842 (18) | C12—C13 | 1.389 (4) |
O14—H14A | 0.857 (17) | C12—H12 | 0.9500 |
O14—H14B | 0.843 (17) | C13—C14 | 1.387 (3) |
O15—H15A | 0.835 (19) | C13—H13 | 0.9500 |
O15—H15B | 0.829 (19) | C14—H14 | 0.9500 |
N5—O17 | 1.251 (12) | C15—C16 | 1.477 (3) |
N5—O18 | 1.252 (11) | C16—C21 | 1.396 (3) |
N5—O16 | 1.253 (11) | C16—C17 | 1.401 (3) |
N5B—O18B | 1.245 (9) | C17—C18 | 1.398 (3) |
N5B—O16B | 1.247 (9) | C18—C19 | 1.378 (4) |
N5B—O17B | 1.248 (10) | C18—H18 | 0.9500 |
N6—O20 | 1.240 (4) | C19—C20 | 1.380 (4) |
N6—O19 | 1.250 (3) | C19—H19 | 0.9500 |
N6—O21 | 1.252 (3) | C20—C21 | 1.391 (3) |
O23—H23A | 0.9121 | C20—H20 | 0.9500 |
O23—H23B | 0.8870 | C21—H21 | 0.9500 |
O22—H22A | 0.824 (19) | C22—C23 | 1.473 (3) |
O22—H22B | 0.821 (19) | C23—C28 | 1.393 (3) |
O24—H24A | 0.86 (2) | C23—C24 | 1.406 (3) |
O24—H24B | 0.85 (2) | C24—C25 | 1.393 (3) |
O25—H25A | 0.8399 | C25—C26 | 1.376 (4) |
O25—H25B | 0.8397 | C25—H25 | 0.9500 |
O22B—H22C | 0.8432 | C26—C27 | 1.377 (4) |
O22B—H22D | 0.8417 | C26—H26 | 0.9500 |
O24B—H24C | 0.85 (2) | C27—C28 | 1.385 (4) |
O24B—H24D | 0.84 (2) | C27—H27 | 0.9500 |
O26—H26A | 0.83 (2) | C28—H28 | 0.9500 |
O26—H26B | 0.843 (16) | ||
O13—In1—O1 | 89.83 (8) | C8—N2—H2N | 121.3 |
O13—In1—O2 | 93.89 (8) | O4—N2—H2N | 121.3 |
O1—In1—O2 | 74.33 (6) | C15—N3—O7 | 118.69 (18) |
O13—In1—O5 | 91.12 (8) | C15—N3—H3N | 120.7 |
O1—In1—O5 | 73.42 (6) | O7—N3—H3N | 120.7 |
O2—In1—O5 | 147.32 (7) | C22—N4—O10 | 117.54 (18) |
O13—In1—O14 | 176.88 (8) | C22—N4—H4N | 121.2 |
O1—In1—O14 | 93.25 (8) | O10—N4—H4N | 121.2 |
O2—In1—O14 | 87.42 (7) | O2—C1—N1 | 119.66 (19) |
O5—In1—O14 | 89.29 (8) | O2—C1—C2 | 120.4 (2) |
O13—In1—O10 | 85.39 (8) | N1—C1—C2 | 119.9 (2) |
O1—In1—O10 | 151.22 (6) | C7—C2—C3 | 118.6 (2) |
O2—In1—O10 | 77.70 (6) | C7—C2—C1 | 117.3 (2) |
O5—In1—O10 | 134.94 (6) | C3—C2—C1 | 124.1 (2) |
O14—In1—O10 | 92.13 (8) | O3—C3—C4 | 121.3 (2) |
O13—In1—O4 | 91.89 (9) | O3—C3—C2 | 118.7 (2) |
O1—In1—O4 | 144.16 (6) | C4—C3—C2 | 120.0 (2) |
O2—In1—O4 | 141.12 (6) | C5—C4—C3 | 120.1 (3) |
O5—In1—O4 | 70.76 (6) | C5—C4—H4 | 120.0 |
O14—In1—O4 | 85.32 (8) | C3—C4—H4 | 120.0 |
O10—In1—O4 | 64.50 (6) | C4—C5—C6 | 120.7 (2) |
O15—In2—O10 | 89.73 (10) | C4—C5—H5 | 119.7 |
O15—In2—O8 | 84.54 (9) | C6—C5—H5 | 119.7 |
O10—In2—O8 | 143.67 (6) | C5—C6—C7 | 119.4 (3) |
O15—In2—O4 | 96.99 (13) | C5—C6—H6 | 120.3 |
O10—In2—O4 | 65.88 (6) | C7—C6—H6 | 120.3 |
O8—In2—O4 | 79.23 (6) | C6—C7—C2 | 121.2 (3) |
O15—In2—O11 | 84.31 (11) | C6—C7—H7 | 119.4 |
O10—In2—O11 | 71.51 (6) | C2—C7—H7 | 119.4 |
O8—In2—O11 | 142.83 (6) | O5—C8—N2 | 119.10 (19) |
O4—In2—O11 | 137.36 (6) | O5—C8—C9 | 118.9 (2) |
O15—In2—O7i | 170.29 (11) | N2—C8—C9 | 122.0 (2) |
O10—In2—O7i | 90.28 (7) | C10—C9—C14 | 118.8 (2) |
O8—In2—O7i | 101.08 (7) | C10—C9—C8 | 124.5 (2) |
O4—In2—O7i | 91.88 (8) | C14—C9—C8 | 116.7 (2) |
O11—In2—O7i | 86.49 (7) | O6—C10—C11 | 121.6 (2) |
O15—In2—O7 | 98.35 (11) | O6—C10—C9 | 118.8 (2) |
O10—In2—O7 | 143.60 (6) | C11—C10—C9 | 119.5 (2) |
O8—In2—O7 | 72.67 (6) | C12—C11—C10 | 120.6 (2) |
O4—In2—O7 | 146.36 (7) | C12—C11—H11 | 119.7 |
O11—In2—O7 | 74.06 (6) | C10—C11—H11 | 119.7 |
O7i—In2—O7 | 76.08 (7) | C11—C12—C13 | 120.8 (2) |
N1—O1—In1 | 111.75 (13) | C11—C12—H12 | 119.6 |
C1—O2—In1 | 114.73 (14) | C13—C12—H12 | 119.6 |
C3—O3—H3O | 109.5 | C14—C13—C12 | 118.9 (3) |
N2—O4—In2 | 132.33 (13) | C14—C13—H13 | 120.5 |
N2—O4—In1 | 114.14 (13) | C12—C13—H13 | 120.5 |
In2—O4—In1 | 113.49 (7) | C13—C14—C9 | 121.3 (2) |
C8—O5—In1 | 118.44 (15) | C13—C14—H14 | 119.4 |
C10—O6—H6O | 109.5 | C9—C14—H14 | 119.4 |
N3—O7—In2i | 113.96 (15) | O8—C15—N3 | 119.61 (19) |
N3—O7—In2 | 110.00 (12) | O8—C15—C16 | 120.8 (2) |
In2i—O7—In2 | 103.92 (7) | N3—C15—C16 | 119.5 (2) |
C15—O8—In2 | 114.99 (14) | C21—C16—C17 | 118.9 (2) |
C17—O9—H9O | 109.5 | C21—C16—C15 | 117.4 (2) |
N4—O10—In2 | 114.93 (13) | C17—C16—C15 | 123.7 (2) |
N4—O10—In1 | 127.85 (14) | O9—C17—C18 | 120.7 (2) |
In2—O10—In1 | 114.12 (7) | O9—C17—C16 | 119.1 (2) |
C22—O11—In2 | 116.63 (15) | C18—C17—C16 | 120.2 (2) |
C24—O12—H12O | 109.5 | C19—C18—C17 | 120.0 (2) |
In1—O13—H13B | 120 (3) | C19—C18—H18 | 120.0 |
In1—O13—H13A | 115 (3) | C17—C18—H18 | 120.0 |
H13B—O13—H13A | 110 (3) | C18—C19—C20 | 120.4 (2) |
In1—O14—H14A | 120 (2) | C18—C19—H19 | 119.8 |
In1—O14—H14B | 120 (3) | C20—C19—H19 | 119.8 |
H14A—O14—H14B | 105 (2) | C19—C20—C21 | 120.3 (3) |
In2—O15—H15A | 105 (4) | C19—C20—H20 | 119.8 |
In2—O15—H15B | 127 (4) | C21—C20—H20 | 119.8 |
H15A—O15—H15B | 110 (3) | C20—C21—C16 | 120.3 (2) |
O17—N5—O18 | 118.9 (11) | C20—C21—H21 | 119.9 |
O17—N5—O16 | 118.6 (11) | C16—C21—H21 | 119.9 |
O18—N5—O16 | 121.8 (11) | O11—C22—N4 | 119.0 (2) |
O18B—N5B—O16B | 119.0 (9) | O11—C22—C23 | 120.2 (2) |
O18B—N5B—O17B | 119.5 (9) | N4—C22—C23 | 120.8 (2) |
O16B—N5B—O17B | 121.1 (9) | C28—C23—C24 | 118.8 (2) |
O20—N6—O19 | 121.3 (3) | C28—C23—C22 | 117.8 (2) |
O20—N6—O21 | 119.4 (3) | C24—C23—C22 | 123.3 (2) |
O19—N6—O21 | 119.3 (3) | O12—C24—C25 | 121.6 (2) |
H23A—O23—H23B | 108.5 | O12—C24—C23 | 118.9 (2) |
H22A—O22—H22B | 112 (3) | C25—C24—C23 | 119.5 (2) |
H24A—O24—H24B | 105 (3) | C26—C25—C24 | 120.3 (2) |
H25A—O25—H25B | 107.9 | C26—C25—H25 | 119.8 |
H22C—O22B—H22D | 107.4 | C24—C25—H25 | 119.8 |
H24C—O24B—H24D | 109 (3) | C25—C26—C27 | 120.8 (2) |
H26A—O26—H26B | 112 (3) | C25—C26—H26 | 119.6 |
H27A—O27—H27B | 104.7 | C27—C26—H26 | 119.6 |
H26C—O26B—H26D | 107.9 | C26—C27—C28 | 119.5 (3) |
H27C—O27B—H27D | 106.0 | C26—C27—H27 | 120.2 |
C1—N1—O1 | 119.36 (19) | C28—C27—H27 | 120.2 |
C1—N1—H1N | 120.3 | C27—C28—C23 | 120.9 (2) |
O1—N1—H1N | 120.3 | C27—C28—H28 | 119.5 |
C8—N2—O4 | 117.36 (18) | C23—C28—H28 | 119.5 |
In1—O1—N1—C1 | −4.7 (3) | C12—C13—C14—C9 | 0.6 (5) |
In2—O4—N2—C8 | 174.4 (2) | C10—C9—C14—C13 | 1.3 (4) |
In1—O4—N2—C8 | −3.1 (3) | C8—C9—C14—C13 | −179.2 (3) |
In2i—O7—N3—C15 | 101.5 (2) | In2—O8—C15—N3 | 15.6 (3) |
In2—O7—N3—C15 | −14.7 (3) | In2—O8—C15—C16 | −165.05 (18) |
In2—O10—N4—C22 | 5.2 (3) | O7—N3—C15—O8 | −0.1 (4) |
In1—O10—N4—C22 | 163.91 (19) | O7—N3—C15—C16 | −179.4 (2) |
In1—O2—C1—N1 | −1.4 (3) | O8—C15—C16—C21 | −8.2 (4) |
In1—O2—C1—C2 | 176.31 (18) | N3—C15—C16—C21 | 171.1 (3) |
O1—N1—C1—O2 | 4.2 (4) | O8—C15—C16—C17 | 170.8 (2) |
O1—N1—C1—C2 | −173.5 (2) | N3—C15—C16—C17 | −9.9 (4) |
O2—C1—C2—C7 | −5.3 (4) | C21—C16—C17—O9 | 179.1 (3) |
N1—C1—C2—C7 | 172.4 (3) | C15—C16—C17—O9 | 0.2 (4) |
O2—C1—C2—C3 | 176.1 (3) | C21—C16—C17—C18 | 0.0 (4) |
N1—C1—C2—C3 | −6.2 (4) | C15—C16—C17—C18 | −179.0 (3) |
C7—C2—C3—O3 | 180.0 (3) | O9—C17—C18—C19 | −178.9 (3) |
C1—C2—C3—O3 | −1.4 (4) | C16—C17—C18—C19 | 0.2 (4) |
C7—C2—C3—C4 | 0.5 (4) | C17—C18—C19—C20 | −0.5 (5) |
C1—C2—C3—C4 | 179.1 (3) | C18—C19—C20—C21 | 0.6 (5) |
O3—C3—C4—C5 | 179.6 (3) | C19—C20—C21—C16 | −0.4 (5) |
C2—C3—C4—C5 | −1.0 (5) | C17—C16—C21—C20 | 0.1 (4) |
C3—C4—C5—C6 | 0.8 (5) | C15—C16—C21—C20 | 179.2 (3) |
C4—C5—C6—C7 | −0.1 (5) | In2—O11—C22—N4 | −4.1 (3) |
C5—C6—C7—C2 | −0.3 (5) | In2—O11—C22—C23 | 174.78 (18) |
C3—C2—C7—C6 | 0.1 (4) | O10—N4—C22—O11 | −0.7 (4) |
C1—C2—C7—C6 | −178.5 (3) | O10—N4—C22—C23 | −179.6 (2) |
In1—O5—C8—N2 | 4.1 (3) | O11—C22—C23—C28 | −9.8 (4) |
In1—O5—C8—C9 | −176.65 (18) | N4—C22—C23—C28 | 169.1 (3) |
O4—N2—C8—O5 | −0.5 (4) | O11—C22—C23—C24 | 169.5 (3) |
O4—N2—C8—C9 | −179.8 (2) | N4—C22—C23—C24 | −11.6 (4) |
O5—C8—C9—C10 | −177.1 (3) | C28—C23—C24—O12 | −178.5 (3) |
N2—C8—C9—C10 | 2.2 (4) | C22—C23—C24—O12 | 2.2 (4) |
O5—C8—C9—C14 | 3.5 (4) | C28—C23—C24—C25 | 0.6 (4) |
N2—C8—C9—C14 | −177.2 (3) | C22—C23—C24—C25 | −178.7 (3) |
C14—C9—C10—O6 | 177.6 (3) | O12—C24—C25—C26 | 178.7 (3) |
C8—C9—C10—O6 | −1.9 (4) | C23—C24—C25—C26 | −0.3 (5) |
C14—C9—C10—C11 | −2.3 (4) | C24—C25—C26—C27 | −0.4 (5) |
C8—C9—C10—C11 | 178.2 (3) | C25—C26—C27—C28 | 0.9 (5) |
O6—C10—C11—C12 | −178.5 (3) | C26—C27—C28—C23 | −0.6 (5) |
C9—C10—C11—C12 | 1.4 (5) | C24—C23—C28—C27 | −0.1 (4) |
C10—C11—C12—C13 | 0.6 (5) | C22—C23—C28—C27 | 179.2 (3) |
C11—C12—C13—C14 | −1.6 (5) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3O···O22ii | 0.84 | 1.83 | 2.664 (4) | 171 |
O3—H3O···O22Bii | 0.84 | 1.97 | 2.668 (17) | 140 |
O6—H6O···O18iii | 0.84 | 1.98 | 2.775 (10) | 157 |
O6—H6O···O17Biii | 0.84 | 2.06 | 2.810 (5) | 149 |
O9—H9O···O20iv | 0.84 | 1.88 | 2.717 (3) | 176 |
O12—H12O···O17 | 0.84 | 1.99 | 2.778 (5) | 156 |
O12—H12O···O16B | 0.84 | 1.81 | 2.609 (6) | 158 |
O13—H13B···O24 | 0.82 (2) | 2.09 (3) | 2.761 (6) | 140 (4) |
O13—H13B···O25 | 0.82 (2) | 2.01 (4) | 2.64 (3) | 134 (4) |
O13—H13B···O24B | 0.82 (2) | 1.70 (2) | 2.485 (7) | 160 (5) |
O13—H13A···O1v | 0.84 (2) | 1.77 (2) | 2.601 (2) | 170 (4) |
O14—H14A···O26 | 0.86 (2) | 1.83 (2) | 2.631 (5) | 154 (4) |
O14—H14A···O26B | 0.86 (2) | 1.82 (2) | 2.629 (8) | 158 (4) |
O14—H14B···O19ii | 0.84 (2) | 1.99 (2) | 2.782 (3) | 157 (4) |
O15—H15A···O25 | 0.84 (2) | 2.11 (3) | 2.93 (3) | 171 (6) |
O15—H15A···O24B | 0.84 (2) | 2.10 (3) | 2.891 (9) | 158 (5) |
O15—H15B···O20 | 0.83 (2) | 2.27 (3) | 2.970 (4) | 142 (5) |
O15—H15B···O21 | 0.83 (2) | 2.16 (3) | 2.924 (4) | 154 (6) |
O23—H23B···O5 | 0.89 | 2.16 | 3.003 (6) | 160 |
O22—H22A···O18vi | 0.82 (2) | 2.11 (4) | 2.842 (12) | 148 (6) |
O22—H22B···O21vii | 0.82 (2) | 2.03 (3) | 2.832 (5) | 164 (7) |
O24—H24A···O25 | 0.86 (2) | 2.03 (2) | 2.80 (3) | 149 (6) |
O24—H24B···O21 | 0.85 (2) | 2.21 (4) | 3.003 (5) | 155 (6) |
O22B—H22C···O21vii | 0.84 | 2.00 | 2.808 (16) | 159 |
O24B—H24C···O22B | 0.85 (2) | 2.02 (2) | 2.824 (19) | 156 (7) |
O26—H26A···O27 | 0.83 (2) | 1.56 (6) | 2.259 (16) | 140 (9) |
O27—H27B···O23 | 0.86 | 2.14 | 2.987 (19) | 168 |
O26B—H26C···O27B | 0.84 | 1.73 | 2.31 (2) | 124 |
O26B—H26D···O23 | 0.84 | 2.38 | 3.033 (13) | 134 |
O27B—H27D···O11i | 0.85 | 2.13 | 2.955 (18) | 163 |
N1—H1N···O3 | 0.88 | 1.92 | 2.605 (3) | 134 |
N2—H2N···O6 | 0.88 | 2.02 | 2.669 (2) | 130 |
N2—H2N···O8 | 0.88 | 2.48 | 2.935 (3) | 113 |
N3—H3N···O9 | 0.88 | 1.94 | 2.605 (3) | 132 |
N3—H3N···O14i | 0.88 | 2.24 | 2.939 (3) | 137 |
N4—H4N···O2 | 0.88 | 2.33 | 2.804 (3) | 114 |
N4—H4N···O12 | 0.88 | 1.97 | 2.621 (3) | 130 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z; (iii) x+1, y−1, z; (iv) −x+2, −y+1, −z+1; (v) −x+1, −y+1, −z; (vi) −x+1, −y+2, −z; (vii) −x+2, −y+1, −z. |
Shape | In1 | In2 |
Heptagon (D7h) | 33.951 | 33.043 |
Hexagonal pyramid (C6v) | 25.413 | 23.853 |
Pentagonal bipyramid (D5h) | 0.290 | 1.046 |
Capped octahedron (C3v) | 7.067 | 5.351 |
Capped trigonal prism (C2v) | 5.268 | 4.128 |
Johnson pentagonal bipyramid (J13; D5h) | 3.798 | 4.596 |
Johnson elongated triangular pyramid (J7, C3v) | 22.464 | 21.243 |
Acknowledgements
CMZ thanks the Department of Chemistry and Biochemistry at Shippensburg University for continued support.
Funding information
Funding for this research was provided by: National Science Foundation, Major Research Instrumentation Program (grant No. CHE 1625543 to M. Zeller); Shippensburg University Student Faculty Research Engagement (SFRE) Program (grant to O. A. Aziz, C. M. Zaleski).
References
Azar, M. R., Boron, T. T. III, Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729–1742. Web of Science CSD CrossRef CAS PubMed Google Scholar
Boron, T. T. III, Lutter, J. C., Daly, C. I., Chow, C. Y., Davis, A. H., Nimthong-Roldán, R., Zeller, M., Kampf, J. W., Zaleski, C. M. & Pecoraro, V. L. (2016). Inorg. Chem. 55, 10597–10607. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bruker (2022). APEX4 and SAINT V8.40B, Bruker AXS Inc., Madison, Wsconsin, USA. Google Scholar
Casanova, D., Cirera, J., Llunell, M., Alemany, P., Avnir, D. & Alvarez, S. (2004). J. Am. Chem. Soc. 126, 1755–1763. Web of Science CrossRef PubMed CAS Google Scholar
Chou, T.-Y., Chi, Y., Huang, S.-F., Liu, C.-S., Carty, A. J., Scoles, L. & Udachin, K. A. (2003). Inorg. Chem. 42, 6041–6049. CSD CrossRef PubMed CAS Google Scholar
Choudhary, N., Dimmling, A., Wang, X., Southcott, L., Radchenko, V., Patrick, B. O., Comba, P. & Orvig, C. (2019). Inorg. Chem. 58, 8685–8693. CSD CrossRef CAS PubMed Google Scholar
Chow, C. Y., Eliseeva, S. V., Trivedi, E. R., Nguyen, T. N., Kampf, J. W., Petoud, S. & Pecoraro, V. L. (2016). J. Am. Chem. Soc. 138, 5100–5109. Web of Science CSD CrossRef CAS PubMed Google Scholar
Eliseeva, S. V., Travis, J. R., Nagy, S. G., Smihosky, A. M., Foley, C. M., Kauffman, A. C., Zaleski, C. M. & Petoud, S. (2022). Dalton Trans. 51, 5989–5996. CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Kessisoglou, D. P., Kampf, J. & Pecoraro, V. L. (1994). Polyhedron, 13, 1379–1391. CSD CrossRef Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lah, M. S., Kirk, M. L., Hatfield, W. & Pecoraro, V. L. (1989). J. Chem. Soc. Chem. Commun. p. 1606. CSD CrossRef Google Scholar
Lah, M. S. & Pecoraro, V. L. (1989). J. Am. Chem. Soc. 111, 7258–7259. CSD CrossRef CAS Web of Science Google Scholar
Lee, J. H., Jung, E. A., Lee, G. Y., Han, S. H., Park, B. K., Lee, S. W., Son, S. U., Kim, C. G. & Chung, T.-M. (2018). ChemistrySelect, 3, 6691–6695. CSD CrossRef CAS Google Scholar
Lee, S. H., Shin, N., Kwak, S. W., Hyun, K., Woo, W. H., Lee, J. H., Hwang, H., Kim, M., Lee, J., Kim, Y., Lee, K. M. & Park, M. H. (2017). Inorg. Chem. 56, 2621–2626. CSD CrossRef CAS PubMed Google Scholar
Liu, S., He, Z., Hsieh, W.-Y. & Fanwick, P. E. (2003). Inorg. Chem. 42, 8831–8837. CSD CrossRef PubMed CAS Google Scholar
Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE. Shape Software, Barcelona, Spain. Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Matsuba, C., Rettig, S. J. & Orvig, C. (1988). Can. J. Chem. 66, 1809–1813. CSD CrossRef CAS Google Scholar
Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933–5003. Web of Science CrossRef PubMed CAS Google Scholar
Nishikawa, M., Nakano, T., Okabe, T., Hamaguchi, N., Yamasaki, Y., Takakura, Y., Yamashita, F. & Hashida, M. (2003). Bioconjugate Chem. 14, 955–961. CrossRef CAS Google Scholar
Pecoraro, V. L. (1989). Inorg. Chim. Acta, 155, 171–173. CSD CrossRef CAS Web of Science Google Scholar
Pecoraro, V. L., Wong, G. B. & Raymond, K. N. (1982). Inorg. Chem. 21, 2209–2215. CrossRef CAS Google Scholar
Pedersen, C. J. (1967). J. Am. Chem. Soc. 89, 2495–2496. CrossRef CAS Web of Science Google Scholar
Pinsky, M. & Avnir, D. (1998). Inorg. Chem. 37, 5575–5582. Web of Science CrossRef PubMed CAS Google Scholar
Ramogida, C. F., Cawthray, J. F., Boros, E., Ferreira, C. L., Patrick, B. O., Adam, M. J. & Orvig, C. (2015). Inorg. Chem. 54, 2017–2031. CSD CrossRef CAS PubMed Google Scholar
Seitz, M., Moore, E. G. & Raymond, K. N. (2008). Inorg. Chem. 47, 8665–8673. CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201. CrossRef Web of Science IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, C., Baum, T. H., Guzei, I. & Rheingold, A. L. (2000). Inorg. Chem. 39, 2008–2010. CSD CrossRef PubMed CAS Google Scholar
Yoo, D., Han, S. H., Lee, S. H., Eom, T., Park, B. K., Kim, C. G., Son, S. U. & Chung, T.-M. (2021). Eur. J. Inorg. Chem. pp. 2480–2485. CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.