research communications
and Hirshfeld surface analysis of 4-(3-methoxyphenyl)-2,6-diphenylpyridine
aDepartment of Chemical and Material Engineering, Chaohu College, Chaohu, People's Republic of China
*Correspondence e-mail: 053026@chu.edu.cn
The title compound, C24H19NO, was obtained via the reaction of (1E,2E)-3-(3-methoxyphenyl)-1-phenylprop-2-en-1-one with ethyl 2-oxopropanoate, using NH4I as a catalyst. The compound crystallizes in the monoclinic I2/a. In the molecule, the four rings are not in the same plane, the pyridine ring being inclined to the benzene rings by 17.26 (6), 56.16 (3) and 24.50 (6)°. In the crystal, molecules are linked by C—H⋯π interactions into a three-dimensional network. To further analyse the intermolecular interactions, a Hirshfeld surface analysis was performed. Hirshfeld surface analysis indicates that the most abundant contributions to the crystal packing are from H⋯H (50.4%), C⋯H/H⋯C (37.9%) and O⋯H/H⋯O (5.1%) interactions.
CCDC reference: 2194417
1. Chemical context
Substituted pyridines are privileged scaffolds in medicinal chemistry and are versatile building blocks for the construction of natural products (Haghighijoo et al., 2020; Gujjarappa et al., 2020; Nirogi et al., 2015; De Rycke et al., 2011; Chan et al., 2010; Bora et al., 2010), Accordingly, great effort has been devoted to developing efficient approaches to these scaffolds (Guin et al., 2020; Wu et al., 2019; Pandolfi et al., 2017; Shen et al., 2015). Ketoxime acetates have been demonstrated to be exceptionally advantaged and versatile building blocks for the synthesis and derivatization of nitrogen-containing heterocycles through N—O bond cleavage (Zhang et al., 2020; Mao et al., 2019; Xie et al., 2018). Thus far, many synthetic approaches have been developed to access nitrogen-containing heterocycles through ketoxime acetates under metal-free conditions. For example, Duan et al. (2020) have successfully developed the NH4I-triggered formal [4 + 2] of α,β-unsaturated ketoxime acetates with N-acetyl enamides, providing efficient access to valuable highly substituted pyridines in moderate to good yields. Gao et al. (2018) have developed a facile and efficient I2-triggered [3 + 2 + 1] of aryl ketoxime acetates and 3-formylindoles to produce diverse 3-(4-pyridyl)indoles that are challenging to prepare by traditional methods. Given this background, we report herein the synthesis and of the title compound, which was synthesized by NH4I-triggered of α,β-unsaturated ketoxime acetates.
2. Structural commentary
The title compound crystallizes in the monoclinic I2/a. Its molecular structure is shown in Fig. 1. The methoxy group lies close to the mean plane of the C12–C17 phenyl ring, as indicated by the C17—C16—O1—C24 torsion angle of −170.59 (10)°, and atom C24 deviating by 0.250 (2) Å from the mean plane through the C12–C17 ring. In the molecule, the four rings are not in the same plane, the pyridine ring being inclined to the C6–C11, C12–C17 and C18–C23 benzene rings by 17.26 (6), 56.16 (3) and 24.50 (6)°, respectively. There is a strong intramolecular hydrogen bond (C7—H7⋯N1; Table 1), forming an S(5) ring motif.
in3. Supramolecular features
In the crystal (Fig. 2), the molecules are linked by weak C—H⋯π interactions (C14—H14⋯Cg2i and C24—H24⋯Cg3ii, Cg2 and Cg3 are the centroids of the C6–C11 and C12–C17 rings, respectively, symmetry codes as in Table 1). The C24—H24⋯Cg3 interactions generate stacks along the b-axis direction. These stacks are linked by the C14—H14⋯Cg2 interactions. The packing is strengthened by van der Waals interactions between parallel molecular layers.
In order to investigate the intermolecular interactions in a visual manner, a Hirshfeld surface analysis was performed using Crystal Explorer (Spackman & Jayatilaka, 2009; Turner et al., 2017). Fig. 3 shows the dnorm surface together with two adjacent molecules. The bright-red spots on the Hirshfeld surface mapped over dnorm correspond to H24B⋯H20 (x − , 2 − y, z) close contacts. Fig. 4a is the fingerprint plot showing all intermolecular interactions while Fig. 4b–d show these resolved into C⋯H/H⋯C (37.9%), H⋯H (50.4%) and O⋯H/H⋯O (5.1%) contributions, respectively. As a result, van der Waals interactions are dominant in the crystal packing.
4. Database survey
A search of the Cambridge Structural Database (Version 2021.1; Groom et al., 2016) for the 2,4,6-triphenylpyridine moiety revealed seven structures closely related to the title compound, viz. 4-(4-fluorophenyl)-2,6-diphenylpyridine [(I) SURGER01; Zhang et al., 2021], 4-[4-(azidomethyl)phenyl]-2,6-diphenylpyridine [(II) DOCLIT; Cheng et al., 2019], 4-(4-chlorophenyl)-2,6-diphenylpyridine [(III) GISGEV; Lv & Huang, 2008], 2,4,6-triphenylpyridine [(IV) HEVVAF, Ondráček et al., 1994; HEVVAF01, Ren et al., 2011; HEVVAF02, Mao et al., 2017], 2-(4-methylphenyl)-4,6-diphenylpyridine [(V) REMHOJ; Stivanin et al., 2017], 4-(4-bromophenyl)-2,6-diphenylpyridine [(VI) AJEZOF; Cao et al., 2009], 4-(2,6-diphenylpyridin-4-yl) phenol [(VII) KIDBIL; Kannan et al., 2018].
As in the title compound, in (I), (II), (III), (IV) and (V), C—H⋯π (ring) interactions connect the molecules, forming tri-periodic networks. In (VI), molecules are linked by weak intermolecular C—H⋯Br hydrogen bonds, and weak intermolecular C—H⋯π (ring) interactions are also observed. In (VII), molecules are linked by weak intermolecular C—H⋯O hydrogen bonds, and there are also weak intermolecular C—H⋯π (ring) interactions.
5. Synthesis and crystallization
(1E,2E)-3-(3-Methoxyphenyl)-1-phenylprop-2-en-1-one (3.0 mmol), ethyl 2-oxopropanoate (0.3 mmol), NH4I (0.22 g, 0.15 mmol) and NaHSO3 (0.31 g, 3.0 mmol) were loaded into a 20 mL tube under an N2 atmosphere. The solvent toluene (15 mL) was added into the tube by syringe. The reaction mixture was stirred at 373 K for 12 h. Upon completion of the reaction, the mixture was then allowed to cool down to room temperature and flushed through a short column of silica gel with EtOAc (15 mL). After rotary evaporation, the residue was purified by on silica gel (petroleum ether/EtOAc) to give the product as a white solid. Part of the purified product was redissolved in petroleum ether/ethyl acetate and colourless crystals suitable for X-ray diffraction were formed after slow evaporation for several days. Spectroscopic data: 1H NMR (600 MHz, CDCl3) δ 8.20 (d, J = 7.8 Hz, 4H), 7.87 (s, 2H), 7.53–7.50 (m, 4H), 7.46–7.42 (m, 3H), 7.33–7.32 (m, 1H), 7.26–7.24 (m, 1H), 7.02–7.00 (m, 1H), 3.89 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 160.2, 157.5, 150.2, 140.6, 139.5, 130.2, 129.1, 128.8, 127.2, 119.7, 117.3, 114.3, 113.1, 55.5.
6. Refinement
Crystal data, data collection and structure . All H atoms were positioned geometrically with C—H = 0.93–0.98 Å and refined as riding atoms. The constraint Uiso(H) = 1.2Ueq (C) or 1.5Ueq(CMe) was applied in all cases.
details are summarized in Table 2Supporting information
CCDC reference: 2194417
https://doi.org/10.1107/S2056989022007812/pk2666sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022007812/pk2666Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022007812/pk2666Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2017); cell
CrysAlis PRO (Rigaku OD, 2017); data reduction: CrysAlis PRO (Rigaku OD, 2017); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C24H19NO | F(000) = 1424 |
Mr = 337.40 | Dx = 1.256 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 18.6588 (2) Å | Cell parameters from 6287 reflections |
b = 5.4739 (1) Å | θ = 2.6–71.4° |
c = 35.5689 (5) Å | µ = 0.59 mm−1 |
β = 100.729 (1)° | T = 200 K |
V = 3569.37 (9) Å3 | Block, clear light colourless |
Z = 8 | 0.15 × 0.11 × 0.1 mm |
XtaLAB AFC12 (RINC): Kappa single diffractometer | 3417 independent reflections |
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source | 3189 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.016 |
ω scans | θmax = 71.5°, θmin = 2.5° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2017) | h = −20→22 |
Tmin = 0.747, Tmax = 1.000 | k = −4→6 |
8525 measured reflections | l = −42→43 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.034 | w = 1/[σ2(Fo2) + (0.0557P)2 + 1.7292P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.099 | (Δ/σ)max = 0.001 |
S = 1.00 | Δρmax = 0.19 e Å−3 |
3417 reflections | Δρmin = −0.15 e Å−3 |
237 parameters | Extinction correction: SHELXL-2017/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00128 (9) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.31876 (5) | 0.10179 (16) | 0.43410 (2) | 0.0435 (2) | |
N1 | 0.56039 (4) | 0.98962 (16) | 0.36511 (2) | 0.0280 (2) | |
C1 | 0.52794 (5) | 1.00634 (19) | 0.39576 (3) | 0.0275 (2) | |
C2 | 0.46613 (5) | 0.87064 (19) | 0.39895 (3) | 0.0295 (2) | |
H2 | 0.445343 | 0.884525 | 0.420676 | 0.035* | |
C3 | 0.43587 (5) | 0.71485 (19) | 0.36952 (3) | 0.0282 (2) | |
C4 | 0.46901 (5) | 0.7006 (2) | 0.33766 (3) | 0.0296 (2) | |
H4 | 0.449647 | 0.600015 | 0.317211 | 0.036* | |
C5 | 0.53147 (5) | 0.83820 (19) | 0.33658 (3) | 0.0276 (2) | |
C6 | 0.57027 (5) | 0.8247 (2) | 0.30363 (3) | 0.0283 (2) | |
C7 | 0.62006 (6) | 1.0059 (2) | 0.29844 (3) | 0.0349 (3) | |
H7 | 0.628023 | 1.137188 | 0.315289 | 0.042* | |
C8 | 0.65777 (7) | 0.9923 (2) | 0.26844 (3) | 0.0416 (3) | |
H8 | 0.690790 | 1.114477 | 0.265319 | 0.050* | |
C9 | 0.64673 (6) | 0.7985 (2) | 0.24310 (3) | 0.0409 (3) | |
H9 | 0.672523 | 0.789083 | 0.223154 | 0.049* | |
C10 | 0.59708 (6) | 0.6193 (2) | 0.24767 (3) | 0.0398 (3) | |
H10 | 0.589029 | 0.489378 | 0.230547 | 0.048* | |
C11 | 0.55906 (6) | 0.6315 (2) | 0.27768 (3) | 0.0349 (3) | |
H11 | 0.525773 | 0.509472 | 0.280488 | 0.042* | |
C12 | 0.37016 (5) | 0.5655 (2) | 0.37171 (3) | 0.0288 (2) | |
C13 | 0.30860 (6) | 0.5772 (2) | 0.34262 (3) | 0.0355 (3) | |
H13 | 0.307468 | 0.684207 | 0.322203 | 0.043* | |
C14 | 0.24943 (6) | 0.4289 (2) | 0.34437 (3) | 0.0393 (3) | |
H14 | 0.208289 | 0.439001 | 0.325132 | 0.047* | |
C15 | 0.25003 (6) | 0.2652 (2) | 0.37419 (3) | 0.0361 (3) | |
H15 | 0.210233 | 0.163835 | 0.374717 | 0.043* | |
C16 | 0.31115 (6) | 0.2552 (2) | 0.40329 (3) | 0.0320 (2) | |
C17 | 0.37049 (5) | 0.4078 (2) | 0.40215 (3) | 0.0301 (2) | |
H17 | 0.410674 | 0.403553 | 0.422021 | 0.036* | |
C18 | 0.56109 (5) | 1.17960 (19) | 0.42620 (3) | 0.0289 (2) | |
C19 | 0.60256 (6) | 1.3753 (2) | 0.41768 (3) | 0.0358 (3) | |
H19 | 0.609761 | 1.397731 | 0.392735 | 0.043* | |
C20 | 0.63323 (7) | 1.5371 (2) | 0.44594 (4) | 0.0458 (3) | |
H20 | 0.661015 | 1.666984 | 0.439753 | 0.055* | |
C21 | 0.62333 (7) | 1.5093 (2) | 0.48313 (4) | 0.0467 (3) | |
H21 | 0.643968 | 1.619274 | 0.501995 | 0.056* | |
C22 | 0.58241 (8) | 1.3160 (3) | 0.49179 (4) | 0.0542 (4) | |
H22 | 0.574972 | 1.295836 | 0.516738 | 0.065* | |
C23 | 0.55208 (7) | 1.1507 (3) | 0.46386 (3) | 0.0456 (3) | |
H23 | 0.525391 | 1.018874 | 0.470363 | 0.055* | |
C24 | 0.26481 (7) | −0.0842 (2) | 0.43386 (4) | 0.0459 (3) | |
H24A | 0.261990 | −0.182605 | 0.411288 | 0.069* | |
H24B | 0.218282 | −0.009630 | 0.433972 | 0.069* | |
H24C | 0.277951 | −0.185138 | 0.456145 | 0.069* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0405 (5) | 0.0415 (5) | 0.0487 (5) | −0.0114 (4) | 0.0090 (4) | 0.0073 (4) |
N1 | 0.0251 (4) | 0.0288 (4) | 0.0301 (4) | −0.0006 (3) | 0.0050 (3) | 0.0004 (3) |
C1 | 0.0244 (5) | 0.0279 (5) | 0.0301 (5) | 0.0010 (4) | 0.0045 (4) | 0.0005 (4) |
C2 | 0.0263 (5) | 0.0325 (5) | 0.0305 (5) | −0.0010 (4) | 0.0076 (4) | −0.0012 (4) |
C3 | 0.0227 (5) | 0.0294 (5) | 0.0320 (5) | 0.0006 (4) | 0.0041 (4) | 0.0009 (4) |
C4 | 0.0261 (5) | 0.0328 (5) | 0.0292 (5) | −0.0019 (4) | 0.0032 (4) | −0.0022 (4) |
C5 | 0.0246 (5) | 0.0286 (5) | 0.0287 (5) | 0.0019 (4) | 0.0029 (4) | 0.0024 (4) |
C6 | 0.0239 (5) | 0.0326 (5) | 0.0274 (5) | 0.0028 (4) | 0.0025 (4) | 0.0038 (4) |
C7 | 0.0360 (6) | 0.0339 (6) | 0.0355 (6) | −0.0019 (5) | 0.0087 (4) | 0.0019 (5) |
C8 | 0.0399 (6) | 0.0449 (7) | 0.0431 (6) | −0.0037 (5) | 0.0156 (5) | 0.0089 (5) |
C9 | 0.0386 (6) | 0.0546 (7) | 0.0320 (6) | 0.0077 (5) | 0.0134 (5) | 0.0072 (5) |
C10 | 0.0369 (6) | 0.0495 (7) | 0.0333 (6) | 0.0034 (5) | 0.0072 (5) | −0.0070 (5) |
C11 | 0.0301 (5) | 0.0401 (6) | 0.0347 (6) | −0.0027 (5) | 0.0062 (4) | −0.0032 (5) |
C12 | 0.0235 (5) | 0.0309 (5) | 0.0330 (5) | −0.0011 (4) | 0.0080 (4) | −0.0063 (4) |
C13 | 0.0294 (5) | 0.0439 (6) | 0.0328 (5) | −0.0032 (5) | 0.0049 (4) | −0.0008 (5) |
C14 | 0.0260 (5) | 0.0517 (7) | 0.0383 (6) | −0.0049 (5) | 0.0009 (4) | −0.0056 (5) |
C15 | 0.0254 (5) | 0.0401 (6) | 0.0442 (6) | −0.0085 (4) | 0.0101 (4) | −0.0097 (5) |
C16 | 0.0300 (5) | 0.0310 (5) | 0.0369 (5) | −0.0016 (4) | 0.0114 (4) | −0.0045 (4) |
C17 | 0.0235 (5) | 0.0324 (5) | 0.0340 (5) | −0.0012 (4) | 0.0042 (4) | −0.0045 (4) |
C18 | 0.0244 (5) | 0.0291 (5) | 0.0330 (5) | 0.0011 (4) | 0.0051 (4) | −0.0020 (4) |
C19 | 0.0394 (6) | 0.0317 (6) | 0.0374 (6) | −0.0038 (5) | 0.0097 (5) | −0.0009 (5) |
C20 | 0.0525 (7) | 0.0334 (6) | 0.0522 (7) | −0.0136 (5) | 0.0111 (6) | −0.0051 (5) |
C21 | 0.0507 (7) | 0.0425 (7) | 0.0453 (7) | −0.0100 (6) | 0.0047 (5) | −0.0145 (6) |
C22 | 0.0642 (9) | 0.0656 (9) | 0.0341 (6) | −0.0236 (7) | 0.0127 (6) | −0.0114 (6) |
C23 | 0.0508 (7) | 0.0512 (7) | 0.0363 (6) | −0.0227 (6) | 0.0118 (5) | −0.0058 (5) |
C24 | 0.0394 (6) | 0.0326 (6) | 0.0703 (9) | −0.0040 (5) | 0.0224 (6) | 0.0034 (6) |
O1—C16 | 1.3668 (14) | C12—C13 | 1.3970 (14) |
O1—C24 | 1.4306 (14) | C12—C17 | 1.3839 (15) |
N1—C1 | 1.3452 (13) | C13—H13 | 0.9300 |
N1—C5 | 1.3432 (13) | C13—C14 | 1.3811 (16) |
C1—C2 | 1.3940 (14) | C14—H14 | 0.9300 |
C1—C18 | 1.4849 (14) | C14—C15 | 1.3868 (17) |
C2—H2 | 0.9300 | C15—H15 | 0.9300 |
C2—C3 | 1.3864 (14) | C15—C16 | 1.3913 (16) |
C3—C4 | 1.3905 (14) | C16—C17 | 1.3936 (15) |
C3—C12 | 1.4879 (14) | C17—H17 | 0.9300 |
C4—H4 | 0.9300 | C18—C19 | 1.3876 (15) |
C4—C5 | 1.3941 (14) | C18—C23 | 1.3897 (15) |
C5—C6 | 1.4897 (14) | C19—H19 | 0.9300 |
C6—C7 | 1.3946 (15) | C19—C20 | 1.3812 (17) |
C6—C11 | 1.3934 (15) | C20—H20 | 0.9300 |
C7—H7 | 0.9300 | C20—C21 | 1.3778 (19) |
C7—C8 | 1.3852 (16) | C21—H21 | 0.9300 |
C8—H8 | 0.9300 | C21—C22 | 1.3730 (19) |
C8—C9 | 1.3820 (18) | C22—H22 | 0.9300 |
C9—H9 | 0.9300 | C22—C23 | 1.3845 (18) |
C9—C10 | 1.3796 (18) | C23—H23 | 0.9300 |
C10—H10 | 0.9300 | C24—H24A | 0.9600 |
C10—C11 | 1.3890 (15) | C24—H24B | 0.9600 |
C11—H11 | 0.9300 | C24—H24C | 0.9600 |
C16—O1—C24 | 117.66 (9) | C14—C13—C12 | 119.56 (11) |
C5—N1—C1 | 118.45 (9) | C14—C13—H13 | 120.2 |
N1—C1—C2 | 122.25 (9) | C13—C14—H14 | 119.3 |
N1—C1—C18 | 116.44 (9) | C13—C14—C15 | 121.44 (10) |
C2—C1—C18 | 121.31 (9) | C15—C14—H14 | 119.3 |
C1—C2—H2 | 120.2 | C14—C15—H15 | 120.5 |
C3—C2—C1 | 119.54 (9) | C14—C15—C16 | 118.90 (10) |
C3—C2—H2 | 120.2 | C16—C15—H15 | 120.5 |
C2—C3—C4 | 118.00 (9) | O1—C16—C15 | 124.70 (10) |
C2—C3—C12 | 121.48 (9) | O1—C16—C17 | 115.27 (9) |
C4—C3—C12 | 120.51 (9) | C15—C16—C17 | 120.02 (10) |
C3—C4—H4 | 120.2 | C12—C17—C16 | 120.58 (10) |
C3—C4—C5 | 119.54 (9) | C12—C17—H17 | 119.7 |
C5—C4—H4 | 120.2 | C16—C17—H17 | 119.7 |
N1—C5—C4 | 122.19 (9) | C19—C18—C1 | 120.49 (10) |
N1—C5—C6 | 116.07 (9) | C19—C18—C23 | 118.09 (10) |
C4—C5—C6 | 121.73 (9) | C23—C18—C1 | 121.41 (10) |
C7—C6—C5 | 120.13 (10) | C18—C19—H19 | 119.7 |
C11—C6—C5 | 121.59 (10) | C20—C19—C18 | 120.57 (11) |
C11—C6—C7 | 118.28 (10) | C20—C19—H19 | 119.7 |
C6—C7—H7 | 119.7 | C19—C20—H20 | 119.5 |
C8—C7—C6 | 120.67 (11) | C21—C20—C19 | 121.08 (12) |
C8—C7—H7 | 119.7 | C21—C20—H20 | 119.5 |
C7—C8—H8 | 119.7 | C20—C21—H21 | 120.7 |
C9—C8—C7 | 120.54 (11) | C22—C21—C20 | 118.70 (11) |
C9—C8—H8 | 119.7 | C22—C21—H21 | 120.7 |
C8—C9—H9 | 120.3 | C21—C22—H22 | 119.6 |
C10—C9—C8 | 119.40 (10) | C21—C22—C23 | 120.85 (12) |
C10—C9—H9 | 120.3 | C23—C22—H22 | 119.6 |
C9—C10—H10 | 119.8 | C18—C23—H23 | 119.7 |
C9—C10—C11 | 120.43 (11) | C22—C23—C18 | 120.69 (12) |
C11—C10—H10 | 119.8 | C22—C23—H23 | 119.7 |
C6—C11—H11 | 119.7 | O1—C24—H24A | 109.5 |
C10—C11—C6 | 120.69 (11) | O1—C24—H24B | 109.5 |
C10—C11—H11 | 119.7 | O1—C24—H24C | 109.5 |
C13—C12—C3 | 120.52 (10) | H24A—C24—H24B | 109.5 |
C17—C12—C3 | 120.01 (9) | H24A—C24—H24C | 109.5 |
C17—C12—C13 | 119.44 (10) | H24B—C24—H24C | 109.5 |
C12—C13—H13 | 120.2 | ||
O1—C16—C17—C12 | 177.88 (9) | C5—N1—C1—C18 | −178.87 (9) |
N1—C1—C2—C3 | −0.90 (15) | C5—C6—C7—C8 | 178.44 (10) |
N1—C1—C18—C19 | 24.21 (14) | C5—C6—C11—C10 | −178.45 (10) |
N1—C1—C18—C23 | −155.42 (11) | C6—C7—C8—C9 | −0.03 (18) |
N1—C5—C6—C7 | −16.90 (14) | C7—C6—C11—C10 | 0.57 (16) |
N1—C5—C6—C11 | 162.10 (10) | C7—C8—C9—C10 | 0.69 (18) |
C1—N1—C5—C4 | 0.54 (15) | C8—C9—C10—C11 | −0.70 (18) |
C1—N1—C5—C6 | −179.20 (9) | C9—C10—C11—C6 | 0.07 (17) |
C1—C2—C3—C4 | 0.02 (15) | C11—C6—C7—C8 | −0.59 (16) |
C1—C2—C3—C12 | 179.70 (9) | C12—C3—C4—C5 | −178.60 (9) |
C1—C18—C19—C20 | 179.78 (11) | C12—C13—C14—C15 | −0.93 (18) |
C1—C18—C23—C22 | −179.00 (12) | C13—C12—C17—C16 | 2.26 (16) |
C2—C1—C18—C19 | −155.29 (10) | C13—C14—C15—C16 | 1.44 (18) |
C2—C1—C18—C23 | 25.08 (16) | C14—C15—C16—O1 | −179.69 (10) |
C2—C3—C4—C5 | 1.09 (15) | C14—C15—C16—C17 | −0.10 (16) |
C2—C3—C12—C13 | 125.72 (11) | C15—C16—C17—C12 | −1.75 (16) |
C2—C3—C12—C17 | −56.26 (14) | C17—C12—C13—C14 | −0.93 (16) |
C3—C4—C5—N1 | −1.42 (15) | C18—C1—C2—C3 | 178.57 (9) |
C3—C4—C5—C6 | 178.32 (9) | C18—C19—C20—C21 | −0.2 (2) |
C3—C12—C13—C14 | 177.10 (10) | C19—C18—C23—C22 | 1.37 (19) |
C3—C12—C17—C16 | −175.78 (9) | C19—C20—C21—C22 | 0.3 (2) |
C4—C3—C12—C13 | −54.60 (14) | C20—C21—C22—C23 | 0.5 (2) |
C4—C3—C12—C17 | 123.41 (11) | C21—C22—C23—C18 | −1.4 (2) |
C4—C5—C6—C7 | 163.35 (10) | C23—C18—C19—C20 | −0.59 (17) |
C4—C5—C6—C11 | −17.65 (15) | C24—O1—C16—C15 | 9.02 (16) |
C5—N1—C1—C2 | 0.62 (15) | C24—O1—C16—C17 | −170.59 (10) |
Cg2 and Cg3 are the centroids of the C6–C11 and C12–C17 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···N1 | 0.93 | 2.49 | 2.8025 (13) | 100 |
C14—H14···Cg2i | 0.93 | 2.74 | 3.5482 (12) | 146 |
C24—H24A···Cg3ii | 0.93 | 2.81 | 3.6787 (13) | 150 |
Symmetry codes: (i) x−1/2, −y+1, z; (ii) x, y−1, z. |
Funding information
We acknowledge the Excellent Young Talents Support Program of Anhui Higher Education Institutions (gxgnfx2018035), and the Innovation and Entrepreneurship Project of College Students in Anhui Province (DCJX-S17227577).
References
Bora, D., Deb, B., Fuller, A. L., Slawin, A. M. Z., Derek Woollins, J. & Dutta, D. K. (2010). Inorg. Chim. Acta, 363, 1539–1546. CSD CrossRef CAS Google Scholar
Cao, Q., Xie, Y., Jia, J. & Hong, X.-W. (2009). Acta Cryst. E65, o3182. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chan, Y. T., Moorefield, C. N., Soler, M. & Newkome, G. R. (2010). Chem. Eur. J. 16, 1768–1771. CrossRef CAS PubMed Google Scholar
Cheng, X., Du, Y., Guo, H., Chen, Z. & Tian, Y. (2019). IUCrData, 4, x190295. Google Scholar
De Rycke, N., Couty, F. & David, O. R. (2011). Chem. Eur. J. 17, 12852–12871. CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Duan, J. D., Zhang, L., Xu, G. C., Chen, H. M., Ding, X. J., Mao, Y. Y., Rong, B. S., Zhu, N. & Guo, K. (2020). J. Org. Chem. 85, 8157–8165. CrossRef CAS PubMed Google Scholar
Gao, Q., Wang, Y., Wang, Q., Zhu, Y., Liu, Z. & Zhang, J. (2018). Org. Biomol. Chem. 16, 9030–9037. CSD CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guin, S., Gudimella, S. K. & Samanta, S. (2020). Org. Biomol. Chem. 18, 1337–1342. CrossRef CAS PubMed Google Scholar
Gujjarappa, R., Vodnala, N. & Malakar, C. C. (2020). ChemistrySelect, 5, 8745–8758. CrossRef CAS Google Scholar
Haghighijoo, Z., Akrami, S., Saeedi, M., Zonouzi, A., Iraji, A., Larijani, B., Fakherzadeh, H., Sharifi, F., Arzaghi, S. M., Mahdavi, M. & Edraki, N. (2020). Bioorg. Chem. 103, 104146. CrossRef PubMed Google Scholar
Kannan, V., Sreekumar, K. & Ulahannan, R. T. (2018). J. Mol. Struct. 1166, 315–320. CSD CrossRef CAS Google Scholar
Lv, L. L. & Huang, X.-Q. (2008). Acta Cryst. E64, o186. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mao, P. F., Zhou, L. J., Zheng, A. Q., Miao, C. B. & Yang, H. T. (2019). Org. Lett. 21, 3153–3157. CSD CrossRef CAS PubMed Google Scholar
Mao, Z. Y., Liao, X. Y., Wang, H. S., Wang, C. G., Huang, K. B. & Pan, Y. M. (2017). RSC Adv. 7, 13123–13129. CSD CrossRef CAS Google Scholar
Nirogi, R., Mohammed, A. R., Shinde, A. K., Bogaraju, N., Gagginapalli, S. R., Ravella, S. R., Kota, L., Bhyrapuneni, G., Muddana, N. R., Benade, V., Palacharla, R. C., Jayarajan, P., Subramanian, R. & Goyal, V. K. (2015). Eur. J. Med. Chem. 103, 289–301. CrossRef CAS PubMed Google Scholar
Ondráček, J., Novotný, J., Petrů, M., Lhoták, P. & Kuthan, J. (1994). Acta Cryst. C50, 1809–1811. CSD CrossRef Web of Science IUCr Journals Google Scholar
Pandolfi, F., De Vita, D., Bortolami, M., Coluccia, A., Di Santo, R., Costi, R., Andrisano, V., Alabiso, F., Bergamini, C., Fato, R., Bartolini, M. & Scipione, L. (2017). Eur. J. Med. Chem. 141, 197–210. CrossRef CAS PubMed Google Scholar
Ren, Z. H., Zhang, Z. Y., Yang, B. Q., Wang, Y. Y. & Guan, Z. H. (2011). Org. Lett. 13, 5394–5397. CSD CrossRef CAS PubMed Google Scholar
Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shen, J., Cai, D., Kuai, C., Liu, Y., Wei, M., Cheng, G. & Cui, X. (2015). J. Org. Chem. 80, 6584–6589. CrossRef CAS PubMed Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Stivanin, M. L., Duarte, M., Sartori, C., Capreti, N. M. R., Angolini, C. F. F. & Jurberg, I. D. (2017). J. Org. Chem. 82, 10319–10330. CSD CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilak, D. & Spackman, M. A. (2017). CrystalExplorer 17. The University of Western Australia. Google Scholar
Wu, P., Zhang, X. & Chen, B. (2019). Tetrahedron Lett. 60, 1103–1107. CSD CrossRef CAS Google Scholar
Xie, Y., Li, Y., Chen, X., Liu, Y. & Zhang, W. (2018). Org. Chem. Front. 5, 1698–1701. CrossRef CAS Google Scholar
Zhang, Q., Wang, S., Zhu, Y., Zhang, C., Cao, H., Ma, W., Tian, X., Wu, J., Zhou, H. & Tian, Y. (2021). Inorg. Chem. 60, 2362–2371. CSD CrossRef CAS PubMed Google Scholar
Zhang, Y., Ai, H.-J. & Wu, X.-F. (2020). Org. Chem. Front. 7, 2986–2990. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.