research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 4-(3-meth­­oxy­phen­yl)-2,6-di­phenyl­pyridine

crossmark logo

aDepartment of Chemical and Material Engineering, Chaohu College, Chaohu, People's Republic of China
*Correspondence e-mail: 053026@chu.edu.cn

Edited by S. Parkin, University of Kentucky, USA (Received 27 June 2022; accepted 3 August 2022; online 23 August 2022)

The title compound, C24H19NO, was obtained via the reaction of (1E,2E)-3-(3-meth­oxy­phen­yl)-1-phenyl­prop-2-en-1-one with ethyl 2-oxo­propano­ate, using NH4I as a catalyst. The compound crystallizes in the monoclinic space group I2/a. In the mol­ecule, the four rings are not in the same plane, the pyridine ring being inclined to the benzene rings by 17.26 (6), 56.16 (3) and 24.50 (6)°. In the crystal, mol­ecules are linked by C—H⋯π inter­actions into a three-dimensional network. To further analyse the inter­molecular inter­actions, a Hirshfeld surface analysis was performed. Hirshfeld surface analysis indicates that the most abundant contributions to the crystal packing are from H⋯H (50.4%), C⋯H/H⋯C (37.9%) and O⋯H/H⋯O (5.1%) inter­actions.

1. Chemical context

Substituted pyridines are privileged scaffolds in medicinal chemistry and are versatile building blocks for the construction of natural products (Haghighijoo et al., 2020[Haghighijoo, Z., Akrami, S., Saeedi, M., Zonouzi, A., Iraji, A., Larijani, B., Fakherzadeh, H., Sharifi, F., Arzaghi, S. M., Mahdavi, M. & Edraki, N. (2020). Bioorg. Chem. 103, 104146.]; Gujjarappa et al., 2020[Gujjarappa, R., Vodnala, N. & Malakar, C. C. (2020). ChemistrySelect, 5, 8745-8758.]; Nirogi et al., 2015[Nirogi, R., Mohammed, A. R., Shinde, A. K., Bogaraju, N., Gagginapalli, S. R., Ravella, S. R., Kota, L., Bhyrapuneni, G., Muddana, N. R., Benade, V., Palacharla, R. C., Jayarajan, P., Subramanian, R. & Goyal, V. K. (2015). Eur. J. Med. Chem. 103, 289-301.]; De Rycke et al., 2011[De Rycke, N., Couty, F. & David, O. R. (2011). Chem. Eur. J. 17, 12852-12871.]; Chan et al., 2010[Chan, Y. T., Moorefield, C. N., Soler, M. & Newkome, G. R. (2010). Chem. Eur. J. 16, 1768-1771.]; Bora et al., 2010[Bora, D., Deb, B., Fuller, A. L., Slawin, A. M. Z., Derek Woollins, J. & Dutta, D. K. (2010). Inorg. Chim. Acta, 363, 1539-1546.]), Accordingly, great effort has been devoted to developing efficient approaches to these scaffolds (Guin et al., 2020[Guin, S., Gudimella, S. K. & Samanta, S. (2020). Org. Biomol. Chem. 18, 1337-1342.]; Wu et al., 2019[Wu, P., Zhang, X. & Chen, B. (2019). Tetrahedron Lett. 60, 1103-1107.]; Pandolfi et al., 2017[Pandolfi, F., De Vita, D., Bortolami, M., Coluccia, A., Di Santo, R., Costi, R., Andrisano, V., Alabiso, F., Bergamini, C., Fato, R., Bartolini, M. & Scipione, L. (2017). Eur. J. Med. Chem. 141, 197-210.]; Shen et al., 2015[Shen, J., Cai, D., Kuai, C., Liu, Y., Wei, M., Cheng, G. & Cui, X. (2015). J. Org. Chem. 80, 6584-6589.]). Ketoxime acetates have been demonstrated to be exceptionally advantaged and versatile building blocks for the synthesis and derivatization of nitro­gen-containing heterocycles through N—O bond cleavage (Zhang et al., 2020[Zhang, Y., Ai, H.-J. & Wu, X.-F. (2020). Org. Chem. Front. 7, 2986-2990.]; Mao et al., 2019[Mao, P. F., Zhou, L. J., Zheng, A. Q., Miao, C. B. & Yang, H. T. (2019). Org. Lett. 21, 3153-3157.]; Xie et al., 2018[Xie, Y., Li, Y., Chen, X., Liu, Y. & Zhang, W. (2018). Org. Chem. Front. 5, 1698-1701.]). Thus far, many synthetic approaches have been developed to access nitro­gen-containing heterocycles through ketoxime acetates under metal-free conditions. For example, Duan et al. (2020[Duan, J. D., Zhang, L., Xu, G. C., Chen, H. M., Ding, X. J., Mao, Y. Y., Rong, B. S., Zhu, N. & Guo, K. (2020). J. Org. Chem. 85, 8157-8165.]) have successfully developed the NH4I-triggered formal [4 + 2] annulation of α,β-unsaturated ketoxime acetates with N-acetyl enamides, providing efficient access to valuable highly substituted pyridines in moderate to good yields. Gao et al. (2018[Gao, Q., Wang, Y., Wang, Q., Zhu, Y., Liu, Z. & Zhang, J. (2018). Org. Biomol. Chem. 16, 9030-9037.]) have developed a facile and efficient I2-triggered [3 + 2 + 1] annulation of aryl ketoxime acetates and 3-formyl­indoles to produce diverse 3-(4-pyrid­yl)indoles that are challenging to prepare by traditional methods. Given this background, we report herein the synthesis and crystal structure of the title compound, which was synthesized by NH4I-triggered annulation of α,β-unsaturated ketoxime acetates.

2. Structural commentary

The title compound crystallizes in the monoclinic crystal system in space group I2/a. Its mol­ecular structure is shown in Fig. 1[link]. The meth­oxy group lies close to the mean plane of the C12–C17 phenyl ring, as indicated by the C17—C16—O1—C24 torsion angle of −170.59 (10)°, and atom C24 deviating by 0.250 (2) Å from the mean plane through the C12–C17 ring. In the mol­ecule, the four rings are not in the same plane, the pyridine ring being inclined to the C6–C11, C12–C17 and C18–C23 benzene rings by 17.26 (6), 56.16 (3) and 24.50 (6)°, respectively. There is a strong intra­molecular hydrogen bond (C7—H7⋯N1; Table 1[link]), forming an S(5) ring motif.

[Scheme 1]

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C6–C11 and C12–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯N1 0.93 2.49 2.8025 (13) 100
C14—H14⋯Cg2i 0.93 2.74 3.5482 (12) 146
C24—H24ACg3ii 0.93 2.81 3.6787 (13) 150
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+1, z]; (ii) [x, y-1, z].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radii.

3. Supra­molecular features

In the crystal (Fig. 2[link]), the mol­ecules are linked by weak C—H⋯π inter­actions (C14—H14⋯Cg2i and C24—H24⋯Cg3ii, Cg2 and Cg3 are the centroids of the C6–C11 and C12–C17 rings, respectively, symmetry codes as in Table 1[link]). The C24—H24⋯Cg3 inter­actions generate stacks along the b-axis direction. These stacks are linked by the C14—H14⋯Cg2 inter­actions. The packing is strengthened by van der Waals inter­actions between parallel mol­ecular layers.

[Figure 2]
Figure 2
A packing diagram of the title compound. The C—H⋯π inter­actions are shown as dashed lines. Yellow spheres denoted Cg represent the centroids of the 3-meth­oxy­phenyl rings.

In order to investigate the inter­molecular inter­actions in a visual manner, a Hirshfeld surface analysis was performed using Crystal Explorer (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilak, D. & Spackman, M. A. (2017). CrystalExplorer 17. The University of Western Australia.]). Fig. 3[link] shows the dnorm surface together with two adjacent mol­ecules. The bright-red spots on the Hirshfeld surface mapped over dnorm correspond to H24B⋯H20 (x − [{1\over 2}], 2 − y, z) close contacts. Fig. 4[link]a is the fingerprint plot showing all inter­molecular inter­actions while Fig. 4[link]bd show these resolved into C⋯H/H⋯C (37.9%), H⋯H (50.4%) and O⋯H/H⋯O (5.1%) contributions, respectively. As a result, van der Waals inter­actions are dominant in the crystal packing.

[Figure 3]
Figure 3
The Hirshfeld surface mapped over dnorm together with two adjacent mol­ecules.
[Figure 4]
Figure 4
Fingerprint plots for the title mol­ecule: (a) all inter­molecular inter­actions, (b) C⋯H/H⋯C inter­actions, (c) H⋯H inter­actions and (d) O⋯H/H⋯O inter­actions.

4. Database survey

A search of the Cambridge Structural Database (Version 2021.1; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 2,4,6-tri­phenyl­pyridine moiety revealed seven structures closely related to the title compound, viz. 4-(4-fluoro­phen­yl)-2,6-di­phenyl­pyridine [(I) SURGER01; Zhang et al., 2021[Zhang, Q., Wang, S., Zhu, Y., Zhang, C., Cao, H., Ma, W., Tian, X., Wu, J., Zhou, H. & Tian, Y. (2021). Inorg. Chem. 60, 2362-2371.]], 4-[4-(azido­meth­yl)phen­yl]-2,6-di­phenyl­pyridine [(II) DOCLIT; Cheng et al., 2019[Cheng, X., Du, Y., Guo, H., Chen, Z. & Tian, Y. (2019). IUCrData, 4, x190295.]], 4-(4-chloro­phen­yl)-2,6-di­phenyl­pyridine [(III) GISGEV; Lv & Huang, 2008[Lv, L. L. & Huang, X.-Q. (2008). Acta Cryst. E64, o186.]], 2,4,6-tri­phenyl­pyridine [(IV) HEVVAF, Ondráček et al., 1994[Ondráček, J., Novotný, J., Petrů, M., Lhoták, P. & Kuthan, J. (1994). Acta Cryst. C50, 1809-1811.]; HEVVAF01, Ren et al., 2011[Ren, Z. H., Zhang, Z. Y., Yang, B. Q., Wang, Y. Y. & Guan, Z. H. (2011). Org. Lett. 13, 5394-5397.]; HEVVAF02, Mao et al., 2017[Mao, Z. Y., Liao, X. Y., Wang, H. S., Wang, C. G., Huang, K. B. & Pan, Y. M. (2017). RSC Adv. 7, 13123-13129.]], 2-(4-methyl­phen­yl)-4,6-di­phenyl­pyridine [(V) REMHOJ; Stivanin et al., 2017[Stivanin, M. L., Duarte, M., Sartori, C., Capreti, N. M. R., Angolini, C. F. F. & Jurberg, I. D. (2017). J. Org. Chem. 82, 10319-10330.]], 4-(4-bromo­phen­yl)-2,6-di­phenyl­pyridine [(VI) AJEZOF; Cao et al., 2009[Cao, Q., Xie, Y., Jia, J. & Hong, X.-W. (2009). Acta Cryst. E65, o3182.]], 4-(2,6-di­phenyl­pyridin-4-yl) phenol [(VII) KIDBIL; Kannan et al., 2018[Kannan, V., Sreekumar, K. & Ulahannan, R. T. (2018). J. Mol. Struct. 1166, 315-320.]].

As in the title compound, in (I)[link], (II), (III), (IV) and (V), C—H⋯π (ring) inter­actions connect the mol­ecules, forming tri-periodic networks. In (VI), mol­ecules are linked by weak inter­molecular C—H⋯Br hydrogen bonds, and weak inter­molecular C—H⋯π (ring) inter­actions are also observed. In (VII), mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds, and there are also weak inter­molecular C—H⋯π (ring) inter­actions.

5. Synthesis and crystallization

(1E,2E)-3-(3-Meth­oxy­phen­yl)-1-phenyl­prop-2-en-1-one (3.0 mmol), ethyl 2-oxo­propano­ate (0.3 mmol), NH4I (0.22 g, 0.15 mmol) and NaHSO3 (0.31 g, 3.0 mmol) were loaded into a 20 mL tube under an N2 atmosphere. The solvent toluene (15 mL) was added into the tube by syringe. The reaction mixture was stirred at 373 K for 12 h. Upon completion of the reaction, the mixture was then allowed to cool down to room temperature and flushed through a short column of silica gel with EtOAc (15 mL). After rotary evaporation, the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc) to give the product as a white solid. Part of the purified product was redissolved in petroleum ether/ethyl acetate and colourless crystals suitable for X-ray diffraction were formed after slow evaporation for several days. Spectroscopic data: 1H NMR (600 MHz, CDCl3) δ 8.20 (d, J = 7.8 Hz, 4H), 7.87 (s, 2H), 7.53–7.50 (m, 4H), 7.46–7.42 (m, 3H), 7.33–7.32 (m, 1H), 7.26–7.24 (m, 1H), 7.02–7.00 (m, 1H), 3.89 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 160.2, 157.5, 150.2, 140.6, 139.5, 130.2, 129.1, 128.8, 127.2, 119.7, 117.3, 114.3, 113.1, 55.5.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically with C—H = 0.93–0.98 Å and refined as riding atoms. The constraint Uiso(H) = 1.2Ueq (C) or 1.5Ueq(CMe) was applied in all cases.

Table 2
Experimental details

Crystal data
Chemical formula C24H19NO
Mr 337.40
Crystal system, space group Monoclinic, I2/a
Temperature (K) 200
a, b, c (Å) 18.6588 (2), 5.4739 (1), 35.5689 (5)
β (°) 100.729 (1)
V3) 3569.37 (9)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.59
Crystal size (mm) 0.15 × 0.11 × 0.1
 
Data collection
Diffractometer XtaLAB AFC12 (RINC): Kappa single
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.747, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8525, 3417, 3189
Rint 0.016
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.099, 1.00
No. of reflections 3417
No. of parameters 237
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.15
Computer programs: CrysAlis PRO (Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2017); cell refinement: CrysAlis PRO (Rigaku OD, 2017); data reduction: CrysAlis PRO (Rigaku OD, 2017); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

4-(3-Methoxyphenyl)-2,6-diphenylpyridine top
Crystal data top
C24H19NOF(000) = 1424
Mr = 337.40Dx = 1.256 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 18.6588 (2) ÅCell parameters from 6287 reflections
b = 5.4739 (1) Åθ = 2.6–71.4°
c = 35.5689 (5) ŵ = 0.59 mm1
β = 100.729 (1)°T = 200 K
V = 3569.37 (9) Å3Block, clear light colourless
Z = 80.15 × 0.11 × 0.1 mm
Data collection top
XtaLAB AFC12 (RINC): Kappa single
diffractometer
3417 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source3189 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.016
ω scansθmax = 71.5°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2017)
h = 2022
Tmin = 0.747, Tmax = 1.000k = 46
8525 measured reflectionsl = 4243
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0557P)2 + 1.7292P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.099(Δ/σ)max = 0.001
S = 1.00Δρmax = 0.19 e Å3
3417 reflectionsΔρmin = 0.15 e Å3
237 parametersExtinction correction: SHELXL-2017/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00128 (9)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31876 (5)0.10179 (16)0.43410 (2)0.0435 (2)
N10.56039 (4)0.98962 (16)0.36511 (2)0.0280 (2)
C10.52794 (5)1.00634 (19)0.39576 (3)0.0275 (2)
C20.46613 (5)0.87064 (19)0.39895 (3)0.0295 (2)
H20.4453430.8845250.4206760.035*
C30.43587 (5)0.71485 (19)0.36952 (3)0.0282 (2)
C40.46901 (5)0.7006 (2)0.33766 (3)0.0296 (2)
H40.4496470.6000150.3172110.036*
C50.53147 (5)0.83820 (19)0.33658 (3)0.0276 (2)
C60.57027 (5)0.8247 (2)0.30363 (3)0.0283 (2)
C70.62006 (6)1.0059 (2)0.29844 (3)0.0349 (3)
H70.6280231.1371880.3152890.042*
C80.65777 (7)0.9923 (2)0.26844 (3)0.0416 (3)
H80.6907901.1144770.2653190.050*
C90.64673 (6)0.7985 (2)0.24310 (3)0.0409 (3)
H90.6725230.7890830.2231540.049*
C100.59708 (6)0.6193 (2)0.24767 (3)0.0398 (3)
H100.5890290.4893780.2305470.048*
C110.55906 (6)0.6315 (2)0.27768 (3)0.0349 (3)
H110.5257730.5094720.2804880.042*
C120.37016 (5)0.5655 (2)0.37171 (3)0.0288 (2)
C130.30860 (6)0.5772 (2)0.34262 (3)0.0355 (3)
H130.3074680.6842070.3222030.043*
C140.24943 (6)0.4289 (2)0.34437 (3)0.0393 (3)
H140.2082890.4390010.3251320.047*
C150.25003 (6)0.2652 (2)0.37419 (3)0.0361 (3)
H150.2102330.1638350.3747170.043*
C160.31115 (6)0.2552 (2)0.40329 (3)0.0320 (2)
C170.37049 (5)0.4078 (2)0.40215 (3)0.0301 (2)
H170.4106740.4035530.4220210.036*
C180.56109 (5)1.17960 (19)0.42620 (3)0.0289 (2)
C190.60256 (6)1.3753 (2)0.41768 (3)0.0358 (3)
H190.6097611.3977310.3927350.043*
C200.63323 (7)1.5371 (2)0.44594 (4)0.0458 (3)
H200.6610151.6669840.4397530.055*
C210.62333 (7)1.5093 (2)0.48313 (4)0.0467 (3)
H210.6439681.6192740.5019950.056*
C220.58241 (8)1.3160 (3)0.49179 (4)0.0542 (4)
H220.5749721.2958360.5167380.065*
C230.55208 (7)1.1507 (3)0.46386 (3)0.0456 (3)
H230.5253911.0188740.4703630.055*
C240.26481 (7)0.0842 (2)0.43386 (4)0.0459 (3)
H24A0.2619900.1826050.4112880.069*
H24B0.2182820.0096300.4339720.069*
H24C0.2779510.1851380.4561450.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0405 (5)0.0415 (5)0.0487 (5)0.0114 (4)0.0090 (4)0.0073 (4)
N10.0251 (4)0.0288 (4)0.0301 (4)0.0006 (3)0.0050 (3)0.0004 (3)
C10.0244 (5)0.0279 (5)0.0301 (5)0.0010 (4)0.0045 (4)0.0005 (4)
C20.0263 (5)0.0325 (5)0.0305 (5)0.0010 (4)0.0076 (4)0.0012 (4)
C30.0227 (5)0.0294 (5)0.0320 (5)0.0006 (4)0.0041 (4)0.0009 (4)
C40.0261 (5)0.0328 (5)0.0292 (5)0.0019 (4)0.0032 (4)0.0022 (4)
C50.0246 (5)0.0286 (5)0.0287 (5)0.0019 (4)0.0029 (4)0.0024 (4)
C60.0239 (5)0.0326 (5)0.0274 (5)0.0028 (4)0.0025 (4)0.0038 (4)
C70.0360 (6)0.0339 (6)0.0355 (6)0.0019 (5)0.0087 (4)0.0019 (5)
C80.0399 (6)0.0449 (7)0.0431 (6)0.0037 (5)0.0156 (5)0.0089 (5)
C90.0386 (6)0.0546 (7)0.0320 (6)0.0077 (5)0.0134 (5)0.0072 (5)
C100.0369 (6)0.0495 (7)0.0333 (6)0.0034 (5)0.0072 (5)0.0070 (5)
C110.0301 (5)0.0401 (6)0.0347 (6)0.0027 (5)0.0062 (4)0.0032 (5)
C120.0235 (5)0.0309 (5)0.0330 (5)0.0011 (4)0.0080 (4)0.0063 (4)
C130.0294 (5)0.0439 (6)0.0328 (5)0.0032 (5)0.0049 (4)0.0008 (5)
C140.0260 (5)0.0517 (7)0.0383 (6)0.0049 (5)0.0009 (4)0.0056 (5)
C150.0254 (5)0.0401 (6)0.0442 (6)0.0085 (4)0.0101 (4)0.0097 (5)
C160.0300 (5)0.0310 (5)0.0369 (5)0.0016 (4)0.0114 (4)0.0045 (4)
C170.0235 (5)0.0324 (5)0.0340 (5)0.0012 (4)0.0042 (4)0.0045 (4)
C180.0244 (5)0.0291 (5)0.0330 (5)0.0011 (4)0.0051 (4)0.0020 (4)
C190.0394 (6)0.0317 (6)0.0374 (6)0.0038 (5)0.0097 (5)0.0009 (5)
C200.0525 (7)0.0334 (6)0.0522 (7)0.0136 (5)0.0111 (6)0.0051 (5)
C210.0507 (7)0.0425 (7)0.0453 (7)0.0100 (6)0.0047 (5)0.0145 (6)
C220.0642 (9)0.0656 (9)0.0341 (6)0.0236 (7)0.0127 (6)0.0114 (6)
C230.0508 (7)0.0512 (7)0.0363 (6)0.0227 (6)0.0118 (5)0.0058 (5)
C240.0394 (6)0.0326 (6)0.0703 (9)0.0040 (5)0.0224 (6)0.0034 (6)
Geometric parameters (Å, º) top
O1—C161.3668 (14)C12—C131.3970 (14)
O1—C241.4306 (14)C12—C171.3839 (15)
N1—C11.3452 (13)C13—H130.9300
N1—C51.3432 (13)C13—C141.3811 (16)
C1—C21.3940 (14)C14—H140.9300
C1—C181.4849 (14)C14—C151.3868 (17)
C2—H20.9300C15—H150.9300
C2—C31.3864 (14)C15—C161.3913 (16)
C3—C41.3905 (14)C16—C171.3936 (15)
C3—C121.4879 (14)C17—H170.9300
C4—H40.9300C18—C191.3876 (15)
C4—C51.3941 (14)C18—C231.3897 (15)
C5—C61.4897 (14)C19—H190.9300
C6—C71.3946 (15)C19—C201.3812 (17)
C6—C111.3934 (15)C20—H200.9300
C7—H70.9300C20—C211.3778 (19)
C7—C81.3852 (16)C21—H210.9300
C8—H80.9300C21—C221.3730 (19)
C8—C91.3820 (18)C22—H220.9300
C9—H90.9300C22—C231.3845 (18)
C9—C101.3796 (18)C23—H230.9300
C10—H100.9300C24—H24A0.9600
C10—C111.3890 (15)C24—H24B0.9600
C11—H110.9300C24—H24C0.9600
C16—O1—C24117.66 (9)C14—C13—C12119.56 (11)
C5—N1—C1118.45 (9)C14—C13—H13120.2
N1—C1—C2122.25 (9)C13—C14—H14119.3
N1—C1—C18116.44 (9)C13—C14—C15121.44 (10)
C2—C1—C18121.31 (9)C15—C14—H14119.3
C1—C2—H2120.2C14—C15—H15120.5
C3—C2—C1119.54 (9)C14—C15—C16118.90 (10)
C3—C2—H2120.2C16—C15—H15120.5
C2—C3—C4118.00 (9)O1—C16—C15124.70 (10)
C2—C3—C12121.48 (9)O1—C16—C17115.27 (9)
C4—C3—C12120.51 (9)C15—C16—C17120.02 (10)
C3—C4—H4120.2C12—C17—C16120.58 (10)
C3—C4—C5119.54 (9)C12—C17—H17119.7
C5—C4—H4120.2C16—C17—H17119.7
N1—C5—C4122.19 (9)C19—C18—C1120.49 (10)
N1—C5—C6116.07 (9)C19—C18—C23118.09 (10)
C4—C5—C6121.73 (9)C23—C18—C1121.41 (10)
C7—C6—C5120.13 (10)C18—C19—H19119.7
C11—C6—C5121.59 (10)C20—C19—C18120.57 (11)
C11—C6—C7118.28 (10)C20—C19—H19119.7
C6—C7—H7119.7C19—C20—H20119.5
C8—C7—C6120.67 (11)C21—C20—C19121.08 (12)
C8—C7—H7119.7C21—C20—H20119.5
C7—C8—H8119.7C20—C21—H21120.7
C9—C8—C7120.54 (11)C22—C21—C20118.70 (11)
C9—C8—H8119.7C22—C21—H21120.7
C8—C9—H9120.3C21—C22—H22119.6
C10—C9—C8119.40 (10)C21—C22—C23120.85 (12)
C10—C9—H9120.3C23—C22—H22119.6
C9—C10—H10119.8C18—C23—H23119.7
C9—C10—C11120.43 (11)C22—C23—C18120.69 (12)
C11—C10—H10119.8C22—C23—H23119.7
C6—C11—H11119.7O1—C24—H24A109.5
C10—C11—C6120.69 (11)O1—C24—H24B109.5
C10—C11—H11119.7O1—C24—H24C109.5
C13—C12—C3120.52 (10)H24A—C24—H24B109.5
C17—C12—C3120.01 (9)H24A—C24—H24C109.5
C17—C12—C13119.44 (10)H24B—C24—H24C109.5
C12—C13—H13120.2
O1—C16—C17—C12177.88 (9)C5—N1—C1—C18178.87 (9)
N1—C1—C2—C30.90 (15)C5—C6—C7—C8178.44 (10)
N1—C1—C18—C1924.21 (14)C5—C6—C11—C10178.45 (10)
N1—C1—C18—C23155.42 (11)C6—C7—C8—C90.03 (18)
N1—C5—C6—C716.90 (14)C7—C6—C11—C100.57 (16)
N1—C5—C6—C11162.10 (10)C7—C8—C9—C100.69 (18)
C1—N1—C5—C40.54 (15)C8—C9—C10—C110.70 (18)
C1—N1—C5—C6179.20 (9)C9—C10—C11—C60.07 (17)
C1—C2—C3—C40.02 (15)C11—C6—C7—C80.59 (16)
C1—C2—C3—C12179.70 (9)C12—C3—C4—C5178.60 (9)
C1—C18—C19—C20179.78 (11)C12—C13—C14—C150.93 (18)
C1—C18—C23—C22179.00 (12)C13—C12—C17—C162.26 (16)
C2—C1—C18—C19155.29 (10)C13—C14—C15—C161.44 (18)
C2—C1—C18—C2325.08 (16)C14—C15—C16—O1179.69 (10)
C2—C3—C4—C51.09 (15)C14—C15—C16—C170.10 (16)
C2—C3—C12—C13125.72 (11)C15—C16—C17—C121.75 (16)
C2—C3—C12—C1756.26 (14)C17—C12—C13—C140.93 (16)
C3—C4—C5—N11.42 (15)C18—C1—C2—C3178.57 (9)
C3—C4—C5—C6178.32 (9)C18—C19—C20—C210.2 (2)
C3—C12—C13—C14177.10 (10)C19—C18—C23—C221.37 (19)
C3—C12—C17—C16175.78 (9)C19—C20—C21—C220.3 (2)
C4—C3—C12—C1354.60 (14)C20—C21—C22—C230.5 (2)
C4—C3—C12—C17123.41 (11)C21—C22—C23—C181.4 (2)
C4—C5—C6—C7163.35 (10)C23—C18—C19—C200.59 (17)
C4—C5—C6—C1117.65 (15)C24—O1—C16—C159.02 (16)
C5—N1—C1—C20.62 (15)C24—O1—C16—C17170.59 (10)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C6–C11 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7···N10.932.492.8025 (13)100
C14—H14···Cg2i0.932.743.5482 (12)146
C24—H24A···Cg3ii0.932.813.6787 (13)150
Symmetry codes: (i) x1/2, y+1, z; (ii) x, y1, z.
 

Funding information

We acknowledge the Excellent Young Talents Support Program of Anhui Higher Education Institutions (gxgnfx2018035), and the Innovation and Entrepreneurship Project of College Students in Anhui Province (DCJX-S17227577).

References

First citationBora, D., Deb, B., Fuller, A. L., Slawin, A. M. Z., Derek Woollins, J. & Dutta, D. K. (2010). Inorg. Chim. Acta, 363, 1539–1546.  CSD CrossRef CAS Google Scholar
First citationCao, Q., Xie, Y., Jia, J. & Hong, X.-W. (2009). Acta Cryst. E65, o3182.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChan, Y. T., Moorefield, C. N., Soler, M. & Newkome, G. R. (2010). Chem. Eur. J. 16, 1768–1771.  CrossRef CAS PubMed Google Scholar
First citationCheng, X., Du, Y., Guo, H., Chen, Z. & Tian, Y. (2019). IUCrData, 4, x190295.  Google Scholar
First citationDe Rycke, N., Couty, F. & David, O. R. (2011). Chem. Eur. J. 17, 12852–12871.  CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuan, J. D., Zhang, L., Xu, G. C., Chen, H. M., Ding, X. J., Mao, Y. Y., Rong, B. S., Zhu, N. & Guo, K. (2020). J. Org. Chem. 85, 8157–8165.  CrossRef CAS PubMed Google Scholar
First citationGao, Q., Wang, Y., Wang, Q., Zhu, Y., Liu, Z. & Zhang, J. (2018). Org. Biomol. Chem. 16, 9030–9037.  CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuin, S., Gudimella, S. K. & Samanta, S. (2020). Org. Biomol. Chem. 18, 1337–1342.  CrossRef CAS PubMed Google Scholar
First citationGujjarappa, R., Vodnala, N. & Malakar, C. C. (2020). ChemistrySelect, 5, 8745–8758.  CrossRef CAS Google Scholar
First citationHaghighijoo, Z., Akrami, S., Saeedi, M., Zonouzi, A., Iraji, A., Larijani, B., Fakherzadeh, H., Sharifi, F., Arzaghi, S. M., Mahdavi, M. & Edraki, N. (2020). Bioorg. Chem. 103, 104146.  CrossRef PubMed Google Scholar
First citationKannan, V., Sreekumar, K. & Ulahannan, R. T. (2018). J. Mol. Struct. 1166, 315–320.  CSD CrossRef CAS Google Scholar
First citationLv, L. L. & Huang, X.-Q. (2008). Acta Cryst. E64, o186.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMao, P. F., Zhou, L. J., Zheng, A. Q., Miao, C. B. & Yang, H. T. (2019). Org. Lett. 21, 3153–3157.  CSD CrossRef CAS PubMed Google Scholar
First citationMao, Z. Y., Liao, X. Y., Wang, H. S., Wang, C. G., Huang, K. B. & Pan, Y. M. (2017). RSC Adv. 7, 13123–13129.  CSD CrossRef CAS Google Scholar
First citationNirogi, R., Mohammed, A. R., Shinde, A. K., Bogaraju, N., Gagginapalli, S. R., Ravella, S. R., Kota, L., Bhyrapuneni, G., Muddana, N. R., Benade, V., Palacharla, R. C., Jayarajan, P., Subramanian, R. & Goyal, V. K. (2015). Eur. J. Med. Chem. 103, 289–301.  CrossRef CAS PubMed Google Scholar
First citationOndráček, J., Novotný, J., Petrů, M., Lhoták, P. & Kuthan, J. (1994). Acta Cryst. C50, 1809–1811.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationPandolfi, F., De Vita, D., Bortolami, M., Coluccia, A., Di Santo, R., Costi, R., Andrisano, V., Alabiso, F., Bergamini, C., Fato, R., Bartolini, M. & Scipione, L. (2017). Eur. J. Med. Chem. 141, 197–210.  CrossRef CAS PubMed Google Scholar
First citationRen, Z. H., Zhang, Z. Y., Yang, B. Q., Wang, Y. Y. & Guan, Z. H. (2011). Org. Lett. 13, 5394–5397.  CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShen, J., Cai, D., Kuai, C., Liu, Y., Wei, M., Cheng, G. & Cui, X. (2015). J. Org. Chem. 80, 6584–6589.  CrossRef CAS PubMed Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationStivanin, M. L., Duarte, M., Sartori, C., Capreti, N. M. R., Angolini, C. F. F. & Jurberg, I. D. (2017). J. Org. Chem. 82, 10319–10330.  CSD CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilak, D. & Spackman, M. A. (2017). CrystalExplorer 17. The University of Western Australia.  Google Scholar
First citationWu, P., Zhang, X. & Chen, B. (2019). Tetrahedron Lett. 60, 1103–1107.  CSD CrossRef CAS Google Scholar
First citationXie, Y., Li, Y., Chen, X., Liu, Y. & Zhang, W. (2018). Org. Chem. Front. 5, 1698–1701.  CrossRef CAS Google Scholar
First citationZhang, Q., Wang, S., Zhu, Y., Zhang, C., Cao, H., Ma, W., Tian, X., Wu, J., Zhou, H. & Tian, Y. (2021). Inorg. Chem. 60, 2362–2371.  CSD CrossRef CAS PubMed Google Scholar
First citationZhang, Y., Ai, H.-J. & Wu, X.-F. (2020). Org. Chem. Front. 7, 2986–2990.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds