research communications
N-[1-(pyrazin-2-yl)ethylidene]propanohydrazide
Hirshfeld surface analysis and geometry optimization of 2-hydroxyimino-aDepartment of Chemistry, National Taras Shevchenko University, Volodymyrska Street 64, 01601 Kyiv, Ukraine, b"Institute for Single Crystals" NAS of Ukraine, 60 Nauky ave., Kharkiv, 61001, Ukraine, cV. N. Karazin Kharkiv National University, 4 Svobody sq., Kharkiv 61022, Ukraine, dDepartment of General and Inorganic Chemistry, National Technical University of Ukraine, `Kyiv Polytechnic Institute', 37 Prospect Peremogy, 03056 Kiev, Ukraine, and eDepartment of Analytical, Physical and Colloid Chemistry, O. O. Bohomolets National Medical University, Shevchenko Blvd. 13, 01601 Kiev, Ukraine
*Correspondence e-mail: plutenkom@gmail.com
In the molecule of the title compound, C9H11N5O2, the oxime and hydrazide groups are situated in a cis-position in relation to the C—C bond linking the two functional groups. The CH3C(=NOH)C(O)NH fragment deviates from planarity because of a twist between the oxime and amide groups. In the crystal, molecules are linked by O—H⋯O hydrogen bonds, forming zigzag chains in the [013] and [03] directions.
Keywords: crystal structure; hydrazide; hydrazone; oxime; Schiff base; polynucleative ligand.
CCDC reference: 2195126
1. Chemical context
The combination in one molecule of two donor sets of a different nature, such as oxime and hydrazide, might be the key to creating new asymmetric polynucleative ligands suitable for the formation of polynuclear complexes. In recent decades, a number of ligands based on 2-hydroxyiminopropanehydrazide have been obtained. It was shown that such a type of ligand reveals a strong tendency for the formation of polynuclear complexes (Anwar et al., 2011, 2012; Fritsky et al., 2006; Jin et al., 2022).
The title compound, 2-hydroxyimino-N-[1-(pyrazin-2-yl)ethylidene]propanohydrazide (1), was first described in the work of Feng and co-workers (Feng et al., 2018). It acts as a ligand in three new polynuclear heterometal porous coordination polymers, which have displayed high CO2 adsorption uptake and high adsorption selectivity of CO2 over N2 and CH4. The present work is devoted to the synthesis, spectroscopic characterization, Hirshfeld surface analysis and quantum mechanical geometry optimization of 1.
2. Structural commentary
The title compound, 1, crystallizes in Pca21 (Fig. 1). The N—O and C—N bond lengths of the oxime group are 1.382 (3) and 1.278 (4) Å, respectively, which is typical for neutral moieties of this type (Fritsky et al., 1998, 2004). The N—N, N—C and C—O bond lengths of the hydrazide group [1.370 (3), 1.332 (4) and 1.229 (4) Å, respectively] are typical for 2-(hydroxyimino)propanehydrazide derivatives (Hegde et al., 2017; Malinkin et al., 2012; Moroz et al., 2009a,b; Plutenko et al., 2011). The oxime and the hydrazide groups are situated in a cis-position about the C7—C8 bond, which is also typical for 2-(hydroxyimino)propanehydrazide derivatives. Such a conformation is stabilized additionally by an H4⋯N5 attractive interaction (2.33 Å). Despite the distance being shorter than the sum of the van der Waals radii (2.67 Å; Zefirov, 1997) the interaction cannot be classified as an intramolecular hydrogen bond because of the acute N4—H⋯N5 angle (101°).
The CH3C(=NOH)C(O)NH fragment deviates from planarity (r.m.s. deviation of 0.362 Å) because of a twist between the oxime and the amide groups about the C7—C8 bond. The maximum deviations are 0.8763 (9) and 0.3355 (18) Å, respectively, for hydrogen (H9C) and non-hydrogen (O1) atoms. The O1—C7—C8—N5 torsion angle is 165.1 (3)°, significantly less than the average value in 2-(hydroxyimino)propanehydrazide derivatives published previously [172.1 (4)°]. Thus, such a twist distortion of the molecule seems to be a result of the crystal packing.
3. Supramolecular features
In the crystal, molecules are linked by O2—H2⋯O1i and C2—H2A⋯O2ii intermolecular hydrogen bonds [symmetry codes: (i) −x + , y + 1, z + ; (ii) −x + , y − 1, z − ], forming zigzag chains in the [013] and [03] crystallographic directions (Fig. 2). These chains alternate in the [100] direction and are linked by C4—H4A⋯N2iii intermolecular hydrogen bonds [symmetry code: (iii) −x + 1, −y − 1, z + ]. Details of the hydrogen-bond geometry are given in Table 1.
4. Hirshfeld surface analysis
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017). The Hirshfeld surfaces of the complex anions are colour-mapped with the normalized contact distance (dnorm) from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The Hirshfeld surface of the title compound mapped over dnorm, in the colour range −0.6441 to 1.3084 a.u. is shown in Fig. 3. According to the Hirshfeld surface, O2—H2⋯O1 and C4—H4A⋯N2 are the most noticeable intermolecular interactions. In addition, a C2—H2A⋯O2 weak intermolecular interaction is observed.
A fingerprint plot delineated into specific interatomic contacts contains information related to specific intermolecular interactions. The blue colour refers to the frequency of occurrence of the (di, de) pair with the full fingerprint plot outlined in grey. Fig. 4 shows the two-dimensional fingerprint plots of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. The most significant contribution to the Hirshfeld surface is from H⋯H (41.9%) contacts. In addition, N⋯H/H⋯N (20.5%) and O⋯H/H⋯O (15.4%) are highly significant contributions to the total Hirshfeld surface. The O⋯H/H⋯O fingerprint plot (Fig. 4d) reveals two sharp spikes along 1.9 Å < di + de < 2.4 Å, which are associated with the O2—H2⋯O1 hydrogen bond.
5. Geometry optimization
The DFT quantum-chemical calculations were performed at the B3LYP/6-311 G(d,p) level (Becke, 1993) as implemented in PSI4 software package (Parrish et al., 2017). The GFN2-xTB (Bannwarth et al., 2019) calculations were applied with xtb 6.4 package (Grimme, 2019). The structure optimization of the title compound was performed starting from the X-ray geometry and the resulting geometric values were compared with experimental values (Table 2, Fig. 5). The r.m.s. deviations are 0.380 and 0.362 Å for DFT and GFN2-xTB, respectively.
|
The calculated geometric parameters are in good agreement with experimental values. It is important to note that the accuracy of the semi-empirical GFN2-xTB method is close to that of the DFT calculations, even though GFN2-xTB calculations are significantly computationally `cheaper' (∼2·103 times faster for the calculations described here).
The most significant difference between the calculated and X-ray geometries is the absence of a twist deformation between the oxime and the amide groups in the case of QM calculated geometries. This might be additional evidence that the twist distortion of the molecule is due to effects of the crystal packing. The largest differences between the X-ray and calculated bond lengths are observed for the hydrazide moiety: N3—N4 is slightly longer (0.019 and 0.034 Å for DFT and GFN2-xTB, respectively) and C7—N4 is shorter (0.050 and 0.036 Å for DFT and GFN2-xTB, respectively) than calculated. Such calculation errors are probably typical for hydrazide derivatives at this level of theory (Anitha et al., 2019; Malla et al., 2022). The HOMO–LUMO gap calculated by DFT method is 0.159 a.u. and the frontier molecular orbital energies, EHOMO and ELUMO are −0.23063 and −0.07178 a.u., respectively.
6. Database survey
A search in the Cambridge Structural Database (CSD version 5.43, update of March 2022; Groom et al., 2016) resulted in seven hits for 2-(hydroxyimino)propanehydrazide derivatives: CUDBEJ, DUDHOA, OBUXIU, PUVPED, PUVPED01, WARCEZ and WARCID (Hegde et al., 2017; Malinkin et al., 2012; Moroz et al., 2009a,b; Plutenko et al., 2011). Most of them deviate slightly from planarity: r.m.s. deviations are in the range 0.247-0.390 Å with maximum deviations of non-hydrogen atoms from the best plane in the range 0.098–0.340 Å. At the same time PUVPED and PUVPED01 are not planar, mainly because of a twist of the dicarbonylhydrazine group [the C—N—N—C torsion angle is 96.54 (15)°].
157 hits relate to organometallic substances based on 2-(hydroxyimino)propanehydrazide derivatives. Most of them are polynuclear 3d and 4f metal complexes (discrete molecules and MOFs). The maximum number of metal centres per molecule for the discrete complexes of this type is 12 (Anwar et al., 2011, 2012; Moroz et al., 2012).
7. Synthesis and crystallization
The title compound was prepared according to a slightly modified procedure (Feng et al., 2018). A solution of 2-(hydroxyimino)propanehydrazide (0.702 g, 5 mmol) in methanol (50 ml) was treated with 2-acetylpyrazine (0.732 g, 5 mmol) and the mixture was heated under reflux for 1.5 h. After that, the solvent was evaporated under vacuum and the product was recrystallized from methanol. Yield 1.141 g (86%). 1H NMR, 400.13 MHz, (DMSO-d6): 11.97 (s, 1H, OH), 10.21 (s, 1H, NH), 9.31 (s, 1H, pyrazine-3), 8.56 (s, 1H, pyrazine-5), 8.55 (s, 1H, pyrazine-6), 2.37 (s, 3H, hydrazonic CH3), 2.02 (s, 3H, CH3). IR (KBr, cm−1): 1658 (CO amid I), 1034 (NO oxime). Analysis calculated for C9H11N5O2: C 48.86, H 5.01, N 31.66%; found: C 48.49, H 5.22, N 31.42%.
8. Refinement
Crystal data, data collection and structure . All the hydrogen atoms were positioned geometrically (N—H = 0.85, C—H = 0.93–0.96 Å) and refined using a riding model with Uiso = nUeq of the (n = 1.5 for methyl groups and n = 1.2 for other hydrogen atoms).
details are summarized in Table 3Supporting information
CCDC reference: 2195126
https://doi.org/10.1107/S2056989022007927/vm2270sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022007927/vm2270Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022007927/vm2270Isup3.cdx
Data collection: CrysAlis PRO (Rigaku OD, 2019); cell
CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C9H11N5O2 | Dx = 1.352 Mg m−3 |
Mr = 221.23 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pca21 | Cell parameters from 1825 reflections |
a = 24.367 (2) Å | θ = 2.4–25.3° |
b = 4.3979 (5) Å | µ = 0.10 mm−1 |
c = 10.1424 (9) Å | T = 293 K |
V = 1086.89 (18) Å3 | Plate, colourless |
Z = 4 | 0.8 × 0.4 × 0.1 mm |
F(000) = 464 |
Xcallibur3 diffractometer | 1254 reflections with I > 2σ(I) |
area detector scans | Rint = 0.023 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) | θmax = 25.0°, θmin = 3.3° |
Tmin = 0.646, Tmax = 1.000 | h = −13→28 |
2381 measured reflections | k = −5→4 |
1540 independent reflections | l = −12→10 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.037 | w = 1/[σ2(Fo2) + (0.0439P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.088 | (Δ/σ)max = 0.001 |
S = 1.01 | Δρmax = 0.11 e Å−3 |
1540 reflections | Δρmin = −0.13 e Å−3 |
148 parameters | Absolute structure: Flack x determined using 351 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: −1.7 (10) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.76287 (9) | 0.3026 (5) | 0.3893 (2) | 0.0552 (6) | |
N1 | 0.54406 (13) | −0.2364 (8) | 0.5790 (3) | 0.0652 (9) | |
C1 | 0.58360 (13) | −0.1186 (7) | 0.5054 (3) | 0.0481 (9) | |
O2 | 0.80114 (8) | 0.9769 (6) | 0.7178 (3) | 0.0571 (6) | |
H2 | 0.785835 | 1.067394 | 0.778171 | 0.086* | |
C2 | 0.58576 (16) | −0.1796 (10) | 0.3721 (4) | 0.0696 (12) | |
H2A | 0.613875 | −0.093141 | 0.322655 | 0.084* | |
N2 | 0.54979 (15) | −0.3547 (9) | 0.3114 (3) | 0.0802 (11) | |
N3 | 0.66429 (11) | 0.1682 (6) | 0.4996 (3) | 0.0446 (6) | |
C3 | 0.51042 (17) | −0.4693 (10) | 0.3865 (5) | 0.0718 (13) | |
H3 | 0.483903 | −0.592846 | 0.348009 | 0.086* | |
N4 | 0.70225 (10) | 0.3562 (6) | 0.5568 (3) | 0.0457 (7) | |
H4 | 0.696761 | 0.411873 | 0.635489 | 0.055* | |
C4 | 0.50756 (17) | −0.4124 (11) | 0.5171 (4) | 0.0766 (13) | |
H4A | 0.479179 | −0.498671 | 0.565696 | 0.092* | |
N5 | 0.76423 (10) | 0.7824 (5) | 0.6578 (3) | 0.0447 (7) | |
C5 | 0.62427 (13) | 0.0788 (7) | 0.5713 (3) | 0.0467 (8) | |
C6 | 0.61725 (16) | 0.1548 (10) | 0.7154 (4) | 0.0674 (10) | |
H6A | 0.648915 | 0.087367 | 0.763582 | 0.101* | |
H6B | 0.585142 | 0.054609 | 0.748914 | 0.101* | |
H6C | 0.613240 | 0.370690 | 0.725479 | 0.101* | |
C7 | 0.74946 (14) | 0.4146 (6) | 0.4956 (3) | 0.0406 (7) | |
C8 | 0.78699 (12) | 0.6303 (7) | 0.5654 (3) | 0.0421 (7) | |
C9 | 0.84549 (13) | 0.6475 (9) | 0.5264 (4) | 0.0657 (11) | |
H9A | 0.853496 | 0.847820 | 0.494094 | 0.099* | |
H9B | 0.852677 | 0.501055 | 0.458348 | 0.099* | |
H9C | 0.868223 | 0.604687 | 0.601444 | 0.099* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0616 (13) | 0.0633 (14) | 0.0408 (14) | −0.0086 (12) | 0.0065 (12) | −0.0188 (13) |
N1 | 0.0593 (18) | 0.086 (2) | 0.0508 (18) | −0.0195 (17) | −0.0002 (17) | 0.0000 (18) |
C1 | 0.0450 (18) | 0.0568 (19) | 0.043 (2) | −0.0026 (16) | −0.0017 (17) | −0.0026 (18) |
O2 | 0.0580 (13) | 0.0618 (14) | 0.0516 (14) | −0.0040 (12) | −0.0033 (13) | −0.0277 (12) |
C2 | 0.065 (2) | 0.094 (3) | 0.050 (3) | −0.031 (2) | 0.004 (2) | −0.011 (2) |
N2 | 0.077 (2) | 0.107 (3) | 0.056 (2) | −0.033 (2) | −0.003 (2) | −0.016 (2) |
N3 | 0.0455 (14) | 0.0463 (14) | 0.0422 (14) | −0.0036 (13) | −0.0015 (14) | −0.0097 (13) |
C3 | 0.061 (2) | 0.084 (3) | 0.071 (3) | −0.022 (2) | −0.017 (2) | −0.002 (3) |
N4 | 0.0499 (15) | 0.0495 (15) | 0.0377 (14) | −0.0044 (13) | 0.0022 (15) | −0.0159 (13) |
C4 | 0.063 (2) | 0.103 (3) | 0.064 (3) | −0.032 (2) | −0.006 (2) | 0.011 (3) |
N5 | 0.0538 (17) | 0.0427 (13) | 0.0375 (16) | 0.0001 (13) | −0.0038 (14) | −0.0112 (13) |
C5 | 0.0482 (18) | 0.0527 (18) | 0.0392 (18) | 0.0012 (16) | −0.0016 (18) | −0.0059 (16) |
C6 | 0.069 (2) | 0.091 (3) | 0.042 (2) | −0.012 (2) | 0.005 (2) | −0.011 (2) |
C7 | 0.0492 (17) | 0.0382 (15) | 0.0342 (19) | 0.0017 (14) | 0.0011 (16) | −0.0074 (16) |
C8 | 0.0481 (16) | 0.0432 (15) | 0.0350 (17) | −0.0003 (14) | 0.0021 (16) | −0.0053 (16) |
C9 | 0.0555 (19) | 0.080 (2) | 0.062 (3) | −0.0123 (19) | 0.014 (2) | −0.030 (2) |
O1—C7 | 1.229 (4) | N4—H4 | 0.8452 |
N1—C1 | 1.325 (4) | N4—C7 | 1.332 (4) |
N1—C4 | 1.336 (5) | C4—H4A | 0.9300 |
C1—C2 | 1.379 (5) | N5—C8 | 1.278 (4) |
C1—C5 | 1.477 (4) | C5—C6 | 1.509 (5) |
O2—H2 | 0.8200 | C6—H6A | 0.9600 |
O2—N5 | 1.382 (3) | C6—H6B | 0.9600 |
C2—H2A | 0.9300 | C6—H6C | 0.9600 |
C2—N2 | 1.319 (5) | C7—C8 | 1.496 (4) |
N2—C3 | 1.325 (5) | C8—C9 | 1.482 (5) |
N3—N4 | 1.370 (3) | C9—H9A | 0.9600 |
N3—C5 | 1.279 (4) | C9—H9B | 0.9600 |
C3—H3 | 0.9300 | C9—H9C | 0.9600 |
C3—C4 | 1.350 (6) | ||
C1—N1—C4 | 116.5 (3) | N3—C5—C1 | 115.8 (3) |
N1—C1—C2 | 120.3 (3) | N3—C5—C6 | 124.7 (3) |
N1—C1—C5 | 117.6 (3) | C5—C6—H6A | 109.5 |
C2—C1—C5 | 122.2 (3) | C5—C6—H6B | 109.5 |
N5—O2—H2 | 109.5 | C5—C6—H6C | 109.5 |
C1—C2—H2A | 118.5 | H6A—C6—H6B | 109.5 |
N2—C2—C1 | 123.1 (4) | H6A—C6—H6C | 109.5 |
N2—C2—H2A | 118.5 | H6B—C6—H6C | 109.5 |
C2—N2—C3 | 115.8 (4) | O1—C7—N4 | 124.1 (3) |
C5—N3—N4 | 117.4 (3) | O1—C7—C8 | 120.5 (3) |
N2—C3—H3 | 119.0 | N4—C7—C8 | 115.4 (3) |
N2—C3—C4 | 122.1 (4) | N5—C8—C7 | 114.4 (3) |
C4—C3—H3 | 119.0 | N5—C8—C9 | 125.9 (3) |
N3—N4—H4 | 117.9 | C9—C8—C7 | 119.6 (3) |
C7—N4—N3 | 120.1 (3) | C8—C9—H9A | 109.5 |
C7—N4—H4 | 121.4 | C8—C9—H9B | 109.5 |
N1—C4—C3 | 122.3 (4) | C8—C9—H9C | 109.5 |
N1—C4—H4A | 118.9 | H9A—C9—H9B | 109.5 |
C3—C4—H4A | 118.9 | H9A—C9—H9C | 109.5 |
C8—N5—O2 | 111.4 (2) | H9B—C9—H9C | 109.5 |
C1—C5—C6 | 119.5 (3) | ||
O1—C7—C8—N5 | 165.1 (3) | N2—C3—C4—N1 | 0.2 (8) |
O1—C7—C8—C9 | −16.1 (5) | N3—N4—C7—O1 | −2.1 (5) |
N1—C1—C2—N2 | −0.3 (7) | N3—N4—C7—C8 | 178.2 (2) |
N1—C1—C5—N3 | 174.5 (3) | N4—N3—C5—C1 | 178.8 (2) |
N1—C1—C5—C6 | −4.0 (5) | N4—N3—C5—C6 | −2.7 (5) |
C1—N1—C4—C3 | 0.1 (6) | N4—C7—C8—N5 | −15.2 (4) |
C1—C2—N2—C3 | 0.6 (6) | N4—C7—C8—C9 | 163.6 (3) |
O2—N5—C8—C7 | −179.9 (3) | C4—N1—C1—C2 | −0.1 (6) |
O2—N5—C8—C9 | 1.4 (5) | C4—N1—C1—C5 | 179.5 (3) |
C2—C1—C5—N3 | −5.8 (5) | C5—C1—C2—N2 | −179.9 (3) |
C2—C1—C5—C6 | 175.6 (4) | C5—N3—N4—C7 | 168.4 (3) |
C2—N2—C3—C4 | −0.5 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1i | 0.82 | 1.94 | 2.741 (3) | 167 |
C2—H2A···O2ii | 0.93 | 2.35 | 3.243 (5) | 161 |
C4—H4A···N2iii | 0.93 | 2.67 | 3.451 (6) | 142 |
Symmetry codes: (i) −x+3/2, y+1, z+1/2; (ii) −x+3/2, y−1, z−1/2; (iii) −x+1, −y−1, z+1/2. |
X-ray | DFT | GFN2-xTB | |
Oxime moiety | |||
C8═N5 | 1.278 (4) | 1.285 | 1.273 |
N5—O2 | 1.382 (3) | 1.394 | 1.389 |
C8—N5—O2 | 111.4 (2) | 112.1 | 116.0 |
Hydrazide moiety | |||
C7═O1 | 1.229 (4) | 1.218 | 1.208 |
C7—N4 | 1.332 (4) | 1.382 | 1.368 |
N3—N4 | 1.370 (3) | 1.351 | 1.336 |
O1—C7—N4 | 124.1 (3) | 124.6 | 124.7 |
Other | |||
C5═N3 | 1.278 (4) | 1.292 | 1.279 |
O1—C7—C8—N5 | 165.1 (3) | 179.9 | 179.0 |
Funding information
This work was supported by the Ministry of Education and Science of Ukraine: Grant of the Ministry of Education and Science of Ukraine for perspective development of the scientific direction `Mathematical sciences and natural sciences' at Taras Shevchenko National University of Kyiv.
References
Anitha, A. G., Arunagiri, C. & Subashini, A. (2019). Acta Cryst. E75, 109–114. Web of Science CSD CrossRef IUCr Journals Google Scholar
Anwar, M. U., Dawe, L. N., Alam, M. S. & Thompson, L. K. (2012). Inorg. Chem. 51, 11241–11250. Web of Science CSD CrossRef CAS PubMed Google Scholar
Anwar, M. U., Dawe, L. N. & Thompson, L. K. (2011). Dalton Trans. 40, 8079–8082. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bannwarth, C., Ehlert, S. & Grimme, S. (2019). J. Chem. Theory Comput. 15, 1652–1671. Web of Science CrossRef CAS PubMed Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Feng, D.-D., Dong, H.-M., Liu, Z.-Y., Zhao, X.-J. & Yang, E.-C. (2018). Dalton Trans. 47, 15344–15352. Web of Science CSD CrossRef CAS PubMed Google Scholar
Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127. Web of Science CSD CrossRef Google Scholar
Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Śwątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274. Web of Science CSD CrossRef Google Scholar
Fritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Y. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746–3752. Web of Science CSD CrossRef CAS Google Scholar
Grimme, S. (2019). xtb 6.4. Mulliken Center for Theoretical Chemistry, University of Bonn, Germany. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hegde, D., Naik, G. N., Vadavi, R. S., Barretto, D. A. & Gudasi, K. B. (2017). Inorg. Chim. Acta, 461, 301–315. Web of Science CSD CrossRef CAS Google Scholar
Jin, Y.-S., Wang, X., Zhang, N., Liu, C.-M. & Kou, H.-Z. (2022). Cryst. Growth Des. 22, 1263–1269. Web of Science CSD CrossRef CAS Google Scholar
Malinkin, S. O., Penkova, L., Moroz, Y. S., Haukka, M., Maciag, A., Gumienna–Kontecka, E., Pavlenko, V. A., Pavlova, S., Nordlander, E. & Fritsky, I. O. (2012). Eur. J. Inorg. Chem. pp. 1639–1649. Web of Science CSD CrossRef Google Scholar
Malla, M. A., Bansal, R., Butcher, R. J. & Gupta, S. K. (2022). Acta Cryst. E78, 1–7. Web of Science CSD CrossRef IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447. Web of Science CSD CrossRef CAS PubMed Google Scholar
Moroz, Y. S., Kalibabchuk, V. A., Gumienna-Kontecka, E., Skopenko, V. V. & Pavlova, S. V. (2009a). Acta Cryst. E65, o2413. Web of Science CSD CrossRef IUCr Journals Google Scholar
Moroz, Y. S., Konovalova, I. S., Iskenderov, T. S., Pavlova, S. V. & Shishkin, O. V. (2009b). Acta Cryst. E65, o2242. Web of Science CSD CrossRef IUCr Journals Google Scholar
Parrish, R. M., Burns, L. A., Smith, D. G. A., Simmonett, A. C., DePrince, A. E. III, Hohenstein, E. G., Bozkaya, U., Sokolov, A. Yu., Di Remigio, R., Richard, R. M., Gonthier, J. F., James, A. M., McAlexander, H. R., Kumar, A., Saitow, M., Wang, X., Pritchard, B. P., Verma, P., Schaefer, H. F. III, Patkowski, K., King, R. A., Valeev, E. F., Evangelista, F. A., Turney, J. M., Crawford, T. D. & Sherrill, C. D. (2017). J. Chem. Theory Comput. 13, 3185–3197. Web of Science CrossRef CAS PubMed Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Plutenko, M. O., Lampeka, R. D., Moroz, Y. S., Haukka, M. & Pavlova, S. V. (2011). Acta Cryst. E67, o3282–o3283. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
Zefirov, Yu. V. (1997). Kristallografiya, 42, 936–958. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.