research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and geometry optimization of 2-hy­dr­oxy­imino-N-[1-(pyrazin-2-yl)ethyl­­idene]propano­hydrazide

crossmark logo

aDepartment of Chemistry, National Taras Shevchenko University, Volodymyrska Street 64, 01601 Kyiv, Ukraine, b"Institute for Single Crystals" NAS of Ukraine, 60 Nauky ave., Kharkiv, 61001, Ukraine, cV. N. Karazin Kharkiv National University, 4 Svobody sq., Kharkiv 61022, Ukraine, dDepartment of General and Inorganic Chemistry, National Technical University of Ukraine, `Kyiv Polytechnic Institute', 37 Prospect Peremogy, 03056 Kiev, Ukraine, and eDepartment of Analytical, Physical and Colloid Chemistry, O. O. Bohomolets National Medical University, Shevchenko Blvd. 13, 01601 Kiev, Ukraine
*Correspondence e-mail: plutenkom@gmail.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 22 July 2022; accepted 5 August 2022; online 12 August 2022)

In the mol­ecule of the title compound, C9H11N5O2, the oxime and hydrazide groups are situated in a cis-position in relation to the C—C bond linking the two functional groups. The CH3C(=NOH)C(O)NH fragment deviates from planarity because of a twist between the oxime and amide groups. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming zigzag chains in the [013] and [0[\overline{1}]3] directions.

1. Chemical context

The combination in one mol­ecule of two donor sets of a different nature, such as oxime and hydrazide, might be the key to creating new asymmetric polynucleative ligands suitable for the formation of polynuclear complexes. In recent decades, a number of ligands based on 2-hy­droxy­imino­propane­hydrazide have been obtained. It was shown that such a type of ligand reveals a strong tendency for the formation of polynuclear complexes (Anwar et al., 2011[Anwar, M. U., Dawe, L. N. & Thompson, L. K. (2011). Dalton Trans. 40, 8079-8082.], 2012[Anwar, M. U., Dawe, L. N., Alam, M. S. & Thompson, L. K. (2012). Inorg. Chem. 51, 11241-11250.]; Fritsky et al., 2006[Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125-4127.]; Jin et al., 2022[Jin, Y.-S., Wang, X., Zhang, N., Liu, C.-M. & Kou, H.-Z. (2022). Cryst. Growth Des. 22, 1263-1269.]).

[Scheme 1]

The title compound, 2-hy­droxy­imino-N-[1-(pyrazin-2-yl)ethyl­idene]propano­hydrazide (1), was first described in the work of Feng and co-workers (Feng et al., 2018[Feng, D.-D., Dong, H.-M., Liu, Z.-Y., Zhao, X.-J. & Yang, E.-C. (2018). Dalton Trans. 47, 15344-15352.]). It acts as a ligand in three new polynuclear heterometal porous coordination polymers, which have displayed high CO2 adsorption uptake and high adsorption selectivity of CO2 over N2 and CH4. The present work is devoted to the synthesis, crystal structure, spectroscopic characterization, Hirshfeld surface analysis and quantum mechanical geometry optimization of 1.

2. Structural commentary

The title compound, 1, crystallizes in space group Pca21 (Fig. 1[link]). The N—O and C—N bond lengths of the oxime group are 1.382 (3) and 1.278 (4) Å, respectively, which is typical for neutral moieties of this type (Fritsky et al., 1998[Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Śwątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269-3274.], 2004[Fritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Y. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746-3752.]). The N—N, N—C and C—O bond lengths of the hydrazide group [1.370 (3), 1.332 (4) and 1.229 (4) Å, respectively] are typical for 2-(hy­droxy­imino)­propane­hydrazide derivatives (Hegde et al., 2017[Hegde, D., Naik, G. N., Vadavi, R. S., Barretto, D. A. & Gudasi, K. B. (2017). Inorg. Chim. Acta, 461, 301-315.]; Malinkin et al., 2012[Malinkin, S. O., Penkova, L., Moroz, Y. S., Haukka, M., Maciag, A., Gumienna-Kontecka, E., Pavlenko, V. A., Pavlova, S., Nordlander, E. & Fritsky, I. O. (2012). Eur. J. Inorg. Chem. pp. 1639-1649.]; Moroz et al., 2009a[Moroz, Y. S., Kalibabchuk, V. A., Gumienna-Kontecka, E., Skopenko, V. V. & Pavlova, S. V. (2009a). Acta Cryst. E65, o2413.],b[Moroz, Y. S., Konovalova, I. S., Iskenderov, T. S., Pavlova, S. V. & Shishkin, O. V. (2009b). Acta Cryst. E65, o2242.]; Plutenko et al., 2011[Plutenko, M. O., Lampeka, R. D., Moroz, Y. S., Haukka, M. & Pavlova, S. V. (2011). Acta Cryst. E67, o3282-o3283.]). The oxime and the hydrazide groups are situated in a cis-position about the C7—C8 bond, which is also typical for 2-(hy­droxy­imino)­propane­hydrazide derivatives. Such a conformation is stabilized additionally by an H4⋯N5 attractive inter­action (2.33 Å). Despite the distance being shorter than the sum of the van der Waals radii (2.67 Å; Zefirov, 1997[Zefirov, Yu. V. (1997). Kristallografiya, 42, 936-958.]) the inter­action cannot be classified as an intra­molecular hydrogen bond because of the acute N4—H⋯N5 angle (101°).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound 1 with displacement ellipsoids shown at the 50% probability level.

The CH3C(=NOH)C(O)NH fragment deviates from planarity (r.m.s. deviation of 0.362 Å) because of a twist between the oxime and the amide groups about the C7—C8 bond. The maximum deviations are 0.8763 (9) and 0.3355 (18) Å, respectively, for hydrogen (H9C) and non-hydrogen (O1) atoms. The O1—C7—C8—N5 torsion angle is 165.1 (3)°, significantly less than the average value in 2-(hy­droxy­imino)­propane­hydrazide derivatives published previ­ously [172.1 (4)°]. Thus, such a twist distortion of the mol­ecule seems to be a result of the crystal packing.

3. Supra­molecular features

In the crystal, mol­ecules are linked by O2—H2⋯O1i and C2—H2A⋯O2ii inter­molecular hydrogen bonds [symmetry codes: (i) −x + [{3\over 2}], y + 1, z + [{1\over 2}]; (ii) −x + [{3\over 2}], y − 1, z − [{1\over 2}]], forming zigzag chains in the [013] and [0[\overline{1}]3] crystallographic directions (Fig. 2[link]). These chains alternate in the [100] direction and are linked by C4—H4A⋯N2iii inter­molecular hydrogen bonds [symmetry code: (iii) −x + 1, −y − 1, z + [{1\over 2}]]. Details of the hydrogen-bond geometry are given in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.94 2.741 (3) 167
C2—H2A⋯O2ii 0.93 2.35 3.243 (5) 161
C4—H4A⋯N2iii 0.93 2.67 3.451 (6) 142
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-1, z-{\script{1\over 2}}]; (iii) [-x+1, -y-1, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing of the title compound 1. Hydrogen bonds are indicated by dashed lines.

4. Hirshfeld surface analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]). The Hirshfeld surfaces of the complex anions are colour-mapped with the normalized contact distance (dnorm) from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The Hirshfeld surface of the title compound mapped over dnorm, in the colour range −0.6441 to 1.3084 a.u. is shown in Fig. 3[link]. According to the Hirshfeld surface, O2—H2⋯O1 and C4—H4A⋯N2 are the most noticeable inter­molecular inter­actions. In addition, a C2—H2A⋯O2 weak inter­molecular inter­action is observed.

[Figure 3]
Figure 3
The Hirshfeld surface of the title mol­ecule 1 mapped over dnorm, showing the close contacts.

A fingerprint plot delineated into specific inter­atomic contacts contains information related to specific inter­molecular inter­actions. The blue colour refers to the frequency of occurrence of the (di, de) pair with the full fingerprint plot outlined in grey. Fig. 4[link] shows the two-dimensional fingerprint plots of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. The most significant contribution to the Hirshfeld surface is from H⋯H (41.9%) contacts. In addition, N⋯H/H⋯N (20.5%) and O⋯H/H⋯O (15.4%) are highly significant contributions to the total Hirshfeld surface. The O⋯H/H⋯O fingerprint plot (Fig. 4[link]d) reveals two sharp spikes along 1.9 Å < di + de < 2.4 Å, which are associated with the O2—H2⋯O1 hydrogen bond.

[Figure 4]
Figure 4
A view of the two-dimensional fingerprint plots for the title compound 1 showing (a) all inter­actions, and delineated into (b) H⋯H (41.9%), (c) N⋯H/H⋯N (20.5%) and (d) O⋯H/H⋯O (15.4%) contacts.

5. Geometry optimization

The DFT quantum-chemical calculations were performed at the B3LYP/6-311 G(d,p) level (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in PSI4 software package (Parrish et al., 2017[Parrish, R. M., Burns, L. A., Smith, D. G. A., Simmonett, A. C., DePrince, A. E. III, Hohenstein, E. G., Bozkaya, U., Sokolov, A. Yu., Di Remigio, R., Richard, R. M., Gonthier, J. F., James, A. M., McAlexander, H. R., Kumar, A., Saitow, M., Wang, X., Pritchard, B. P., Verma, P., Schaefer, H. F. III, Patkowski, K., King, R. A., Valeev, E. F., Evangelista, F. A., Turney, J. M., Crawford, T. D. & Sherrill, C. D. (2017). J. Chem. Theory Comput. 13, 3185-3197.]). The GFN2-xTB (Bannwarth et al., 2019[Bannwarth, C., Ehlert, S. & Grimme, S. (2019). J. Chem. Theory Comput. 15, 1652-1671.]) calculations were applied with xtb 6.4 package (Grimme, 2019[Grimme, S. (2019). xtb 6.4. Mulliken Center for Theoretical Chemistry, University of Bonn, Germany.]). The structure optimization of the title compound was performed starting from the X-ray geometry and the resulting geometric values were compared with experimental values (Table 2[link], Fig. 5[link]). The r.m.s. deviations are 0.380 and 0.362 Å for DFT and GFN2-xTB, respectively.

Table 2
Comparison of selected geometric data (A,°) from calculated and X-ray data

  X-ray DFT GFN2-xTB
Oxime moiety      
C8=N5 1.278 (4) 1.285 1.273
N5—O2 1.382 (3) 1.394 1.389
C8—N5—O2 111.4 (2) 112.1 116.0
Hydrazide moiety      
C7=O1 1.229 (4) 1.218 1.208
C7—N4 1.332 (4) 1.382 1.368
N3—N4 1.370 (3) 1.351 1.336
O1—C7—N4 124.1 (3) 124.6 124.7
Other      
C5=N3 1.278 (4) 1.292 1.279
O1—C7—C8—N5 165.1 (3) 179.9 179.0
[Figure 5]
Figure 5
Overlay between the mol­ecule obtained from experimental (orange) and DFT optimization (blue).

The calculated geometric parameters are in good agreement with experimental values. It is important to note that the accuracy of the semi-empirical GFN2-xTB method is close to that of the DFT calculations, even though GFN2-xTB calculations are significantly computationally `cheaper' (∼2·103 times faster for the calculations described here).

The most significant difference between the calculated and X-ray geometries is the absence of a twist deformation between the oxime and the amide groups in the case of QM calculated geometries. This might be additional evidence that the twist distortion of the mol­ecule is due to effects of the crystal packing. The largest differences between the X-ray and calculated bond lengths are observed for the hydrazide moiety: N3—N4 is slightly longer (0.019 and 0.034 Å for DFT and GFN2-xTB, respectively) and C7—N4 is shorter (0.050 and 0.036 Å for DFT and GFN2-xTB, respectively) than calculated. Such calculation errors are probably typical for hydrazide derivatives at this level of theory (Anitha et al., 2019[Anitha, A. G., Arunagiri, C. & Subashini, A. (2019). Acta Cryst. E75, 109-114.]; Malla et al., 2022[Malla, M. A., Bansal, R., Butcher, R. J. & Gupta, S. K. (2022). Acta Cryst. E78, 1-7.]). The HOMO–LUMO gap calculated by DFT method is 0.159 a.u. and the frontier mol­ecular orbital energies, EHOMO and ELUMO are −0.23063 and −0.07178 a.u., respectively.

6. Database survey

A search in the Cambridge Structural Database (CSD version 5.43, update of March 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) resulted in seven hits for 2-(hy­droxy­imino)­propane­hydrazide derivatives: CUDBEJ, DUDHOA, OBUXIU, PUVPED, PUVPED01, WARCEZ and WARCID (Hegde et al., 2017[Hegde, D., Naik, G. N., Vadavi, R. S., Barretto, D. A. & Gudasi, K. B. (2017). Inorg. Chim. Acta, 461, 301-315.]; Malinkin et al., 2012[Malinkin, S. O., Penkova, L., Moroz, Y. S., Haukka, M., Maciag, A., Gumienna-Kontecka, E., Pavlenko, V. A., Pavlova, S., Nordlander, E. & Fritsky, I. O. (2012). Eur. J. Inorg. Chem. pp. 1639-1649.]; Moroz et al., 2009a[Moroz, Y. S., Kalibabchuk, V. A., Gumienna-Kontecka, E., Skopenko, V. V. & Pavlova, S. V. (2009a). Acta Cryst. E65, o2413.],b[Moroz, Y. S., Konovalova, I. S., Iskenderov, T. S., Pavlova, S. V. & Shishkin, O. V. (2009b). Acta Cryst. E65, o2242.]; Plutenko et al., 2011[Plutenko, M. O., Lampeka, R. D., Moroz, Y. S., Haukka, M. & Pavlova, S. V. (2011). Acta Cryst. E67, o3282-o3283.]). Most of them deviate slightly from planarity: r.m.s. deviations are in the range 0.247-0.390 Å with maximum deviations of non-hydrogen atoms from the best plane in the range 0.098–0.340 Å. At the same time PUVPED and PUVPED01 are not planar, mainly because of a twist of the di­carbonyl­hydrazine group [the C—N—N—C torsion angle is 96.54 (15)°].

157 hits relate to organometallic substances based on 2-(hy­droxy­imino)­propane­hydrazide derivatives. Most of them are polynuclear 3d and 4f metal complexes (discrete mol­ecules and MOFs). The maximum number of metal centres per mol­ecule for the discrete complexes of this type is 12 (Anwar et al., 2011[Anwar, M. U., Dawe, L. N. & Thompson, L. K. (2011). Dalton Trans. 40, 8079-8082.], 2012[Anwar, M. U., Dawe, L. N., Alam, M. S. & Thompson, L. K. (2012). Inorg. Chem. 51, 11241-11250.]; Moroz et al., 2012[Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445-7447.]).

7. Synthesis and crystallization

The title compound was prepared according to a slightly modified procedure (Feng et al., 2018[Feng, D.-D., Dong, H.-M., Liu, Z.-Y., Zhao, X.-J. & Yang, E.-C. (2018). Dalton Trans. 47, 15344-15352.]). A solution of 2-(hy­droxy­imino)­propane­hydrazide (0.702 g, 5 mmol) in methanol (50 ml) was treated with 2-acetyl­pyrazine (0.732 g, 5 mmol) and the mixture was heated under reflux for 1.5 h. After that, the solvent was evaporated under vacuum and the product was recrystallized from methanol. Yield 1.141 g (86%). 1H NMR, 400.13 MHz, (DMSO-d6): 11.97 (s, 1H, OH), 10.21 (s, 1H, NH), 9.31 (s, 1H, pyrazine-3), 8.56 (s, 1H, pyrazine-5), 8.55 (s, 1H, pyrazine-6), 2.37 (s, 3H, hydrazonic CH3), 2.02 (s, 3H, CH3). IR (KBr, cm−1): 1658 (CO amid I), 1034 (NO oxime). Analysis calculated for C9H11N5O2: C 48.86, H 5.01, N 31.66%; found: C 48.49, H 5.22, N 31.42%.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All the hydrogen atoms were positioned geometrically (N—H = 0.85, C—H = 0.93–0.96 Å) and refined using a riding model with Uiso = nUeq of the carrier atom (n = 1.5 for methyl groups and n = 1.2 for other hydrogen atoms).

Table 3
Experimental details

Crystal data
Chemical formula C9H11N5O2
Mr 221.23
Crystal system, space group Orthorhombic, Pca21
Temperature (K) 293
a, b, c (Å) 24.367 (2), 4.3979 (5), 10.1424 (9)
V3) 1086.89 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.8 × 0.4 × 0.1
 
Data collection
Diffractometer Xcallibur3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Tokyo, Japan.])
Tmin, Tmax 0.646, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 2381, 1540, 1254
Rint 0.023
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.088, 1.01
No. of reflections 1540
No. of parameters 148
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.11, −0.13
Absolute structure Flack x determined using 351 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −1.7 (10)
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2-hydroxyimino-N-[1-(pyrazin-2-yl)ethylidene]propanohydrazide top
Crystal data top
C9H11N5O2Dx = 1.352 Mg m3
Mr = 221.23Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 1825 reflections
a = 24.367 (2) Åθ = 2.4–25.3°
b = 4.3979 (5) ŵ = 0.10 mm1
c = 10.1424 (9) ÅT = 293 K
V = 1086.89 (18) Å3Plate, colourless
Z = 40.8 × 0.4 × 0.1 mm
F(000) = 464
Data collection top
Xcallibur3
diffractometer
1254 reflections with I > 2σ(I)
area detector scansRint = 0.023
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
θmax = 25.0°, θmin = 3.3°
Tmin = 0.646, Tmax = 1.000h = 1328
2381 measured reflectionsk = 54
1540 independent reflectionsl = 1210
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0439P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.11 e Å3
1540 reflectionsΔρmin = 0.13 e Å3
148 parametersAbsolute structure: Flack x determined using 351 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 1.7 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.76287 (9)0.3026 (5)0.3893 (2)0.0552 (6)
N10.54406 (13)0.2364 (8)0.5790 (3)0.0652 (9)
C10.58360 (13)0.1186 (7)0.5054 (3)0.0481 (9)
O20.80114 (8)0.9769 (6)0.7178 (3)0.0571 (6)
H20.7858351.0673940.7781710.086*
C20.58576 (16)0.1796 (10)0.3721 (4)0.0696 (12)
H2A0.6138750.0931410.3226550.084*
N20.54979 (15)0.3547 (9)0.3114 (3)0.0802 (11)
N30.66429 (11)0.1682 (6)0.4996 (3)0.0446 (6)
C30.51042 (17)0.4693 (10)0.3865 (5)0.0718 (13)
H30.4839030.5928460.3480090.086*
N40.70225 (10)0.3562 (6)0.5568 (3)0.0457 (7)
H40.6967610.4118730.6354890.055*
C40.50756 (17)0.4124 (11)0.5171 (4)0.0766 (13)
H4A0.4791790.4986710.5656960.092*
N50.76423 (10)0.7824 (5)0.6578 (3)0.0447 (7)
C50.62427 (13)0.0788 (7)0.5713 (3)0.0467 (8)
C60.61725 (16)0.1548 (10)0.7154 (4)0.0674 (10)
H6A0.6489150.0873670.7635820.101*
H6B0.5851420.0546090.7489140.101*
H6C0.6132400.3706900.7254790.101*
C70.74946 (14)0.4146 (6)0.4956 (3)0.0406 (7)
C80.78699 (12)0.6303 (7)0.5654 (3)0.0421 (7)
C90.84549 (13)0.6475 (9)0.5264 (4)0.0657 (11)
H9A0.8534960.8478200.4940940.099*
H9B0.8526770.5010550.4583480.099*
H9C0.8682230.6046870.6014440.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0616 (13)0.0633 (14)0.0408 (14)0.0086 (12)0.0065 (12)0.0188 (13)
N10.0593 (18)0.086 (2)0.0508 (18)0.0195 (17)0.0002 (17)0.0000 (18)
C10.0450 (18)0.0568 (19)0.043 (2)0.0026 (16)0.0017 (17)0.0026 (18)
O20.0580 (13)0.0618 (14)0.0516 (14)0.0040 (12)0.0033 (13)0.0277 (12)
C20.065 (2)0.094 (3)0.050 (3)0.031 (2)0.004 (2)0.011 (2)
N20.077 (2)0.107 (3)0.056 (2)0.033 (2)0.003 (2)0.016 (2)
N30.0455 (14)0.0463 (14)0.0422 (14)0.0036 (13)0.0015 (14)0.0097 (13)
C30.061 (2)0.084 (3)0.071 (3)0.022 (2)0.017 (2)0.002 (3)
N40.0499 (15)0.0495 (15)0.0377 (14)0.0044 (13)0.0022 (15)0.0159 (13)
C40.063 (2)0.103 (3)0.064 (3)0.032 (2)0.006 (2)0.011 (3)
N50.0538 (17)0.0427 (13)0.0375 (16)0.0001 (13)0.0038 (14)0.0112 (13)
C50.0482 (18)0.0527 (18)0.0392 (18)0.0012 (16)0.0016 (18)0.0059 (16)
C60.069 (2)0.091 (3)0.042 (2)0.012 (2)0.005 (2)0.011 (2)
C70.0492 (17)0.0382 (15)0.0342 (19)0.0017 (14)0.0011 (16)0.0074 (16)
C80.0481 (16)0.0432 (15)0.0350 (17)0.0003 (14)0.0021 (16)0.0053 (16)
C90.0555 (19)0.080 (2)0.062 (3)0.0123 (19)0.014 (2)0.030 (2)
Geometric parameters (Å, º) top
O1—C71.229 (4)N4—H40.8452
N1—C11.325 (4)N4—C71.332 (4)
N1—C41.336 (5)C4—H4A0.9300
C1—C21.379 (5)N5—C81.278 (4)
C1—C51.477 (4)C5—C61.509 (5)
O2—H20.8200C6—H6A0.9600
O2—N51.382 (3)C6—H6B0.9600
C2—H2A0.9300C6—H6C0.9600
C2—N21.319 (5)C7—C81.496 (4)
N2—C31.325 (5)C8—C91.482 (5)
N3—N41.370 (3)C9—H9A0.9600
N3—C51.279 (4)C9—H9B0.9600
C3—H30.9300C9—H9C0.9600
C3—C41.350 (6)
C1—N1—C4116.5 (3)N3—C5—C1115.8 (3)
N1—C1—C2120.3 (3)N3—C5—C6124.7 (3)
N1—C1—C5117.6 (3)C5—C6—H6A109.5
C2—C1—C5122.2 (3)C5—C6—H6B109.5
N5—O2—H2109.5C5—C6—H6C109.5
C1—C2—H2A118.5H6A—C6—H6B109.5
N2—C2—C1123.1 (4)H6A—C6—H6C109.5
N2—C2—H2A118.5H6B—C6—H6C109.5
C2—N2—C3115.8 (4)O1—C7—N4124.1 (3)
C5—N3—N4117.4 (3)O1—C7—C8120.5 (3)
N2—C3—H3119.0N4—C7—C8115.4 (3)
N2—C3—C4122.1 (4)N5—C8—C7114.4 (3)
C4—C3—H3119.0N5—C8—C9125.9 (3)
N3—N4—H4117.9C9—C8—C7119.6 (3)
C7—N4—N3120.1 (3)C8—C9—H9A109.5
C7—N4—H4121.4C8—C9—H9B109.5
N1—C4—C3122.3 (4)C8—C9—H9C109.5
N1—C4—H4A118.9H9A—C9—H9B109.5
C3—C4—H4A118.9H9A—C9—H9C109.5
C8—N5—O2111.4 (2)H9B—C9—H9C109.5
C1—C5—C6119.5 (3)
O1—C7—C8—N5165.1 (3)N2—C3—C4—N10.2 (8)
O1—C7—C8—C916.1 (5)N3—N4—C7—O12.1 (5)
N1—C1—C2—N20.3 (7)N3—N4—C7—C8178.2 (2)
N1—C1—C5—N3174.5 (3)N4—N3—C5—C1178.8 (2)
N1—C1—C5—C64.0 (5)N4—N3—C5—C62.7 (5)
C1—N1—C4—C30.1 (6)N4—C7—C8—N515.2 (4)
C1—C2—N2—C30.6 (6)N4—C7—C8—C9163.6 (3)
O2—N5—C8—C7179.9 (3)C4—N1—C1—C20.1 (6)
O2—N5—C8—C91.4 (5)C4—N1—C1—C5179.5 (3)
C2—C1—C5—N35.8 (5)C5—C1—C2—N2179.9 (3)
C2—C1—C5—C6175.6 (4)C5—N3—N4—C7168.4 (3)
C2—N2—C3—C40.5 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.942.741 (3)167
C2—H2A···O2ii0.932.353.243 (5)161
C4—H4A···N2iii0.932.673.451 (6)142
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x+3/2, y1, z1/2; (iii) x+1, y1, z+1/2.
Comparison of selected geometric data (A,°) from calculated and X-ray data top
X-rayDFTGFN2-xTB
Oxime moiety
C8N51.278 (4)1.2851.273
N5—O21.382 (3)1.3941.389
C8—N5—O2111.4 (2)112.1116.0
Hydrazide moiety
C7O11.229 (4)1.2181.208
C7—N41.332 (4)1.3821.368
N3—N41.370 (3)1.3511.336
O1—C7—N4124.1 (3)124.6124.7
Other
C5N31.278 (4)1.2921.279
O1—C7—C8—N5165.1 (3)179.9179.0
 

Funding information

This work was supported by the Ministry of Education and Science of Ukraine: Grant of the Ministry of Education and Science of Ukraine for perspective development of the scientific direction `Mathematical sciences and natural sciences' at Taras Shevchenko National University of Kyiv.

References

First citationAnitha, A. G., Arunagiri, C. & Subashini, A. (2019). Acta Cryst. E75, 109–114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAnwar, M. U., Dawe, L. N., Alam, M. S. & Thompson, L. K. (2012). Inorg. Chem. 51, 11241–11250.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAnwar, M. U., Dawe, L. N. & Thompson, L. K. (2011). Dalton Trans. 40, 8079–8082.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBannwarth, C., Ehlert, S. & Grimme, S. (2019). J. Chem. Theory Comput. 15, 1652–1671.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeng, D.-D., Dong, H.-M., Liu, Z.-Y., Zhao, X.-J. & Yang, E.-C. (2018). Dalton Trans. 47, 15344–15352.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127.  Web of Science CSD CrossRef Google Scholar
First citationFritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Śwątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274.  Web of Science CSD CrossRef Google Scholar
First citationFritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Y. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746–3752.  Web of Science CSD CrossRef CAS Google Scholar
First citationGrimme, S. (2019). xtb 6.4. Mulliken Center for Theoretical Chemistry, University of Bonn, Germany.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHegde, D., Naik, G. N., Vadavi, R. S., Barretto, D. A. & Gudasi, K. B. (2017). Inorg. Chim. Acta, 461, 301–315.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, Y.-S., Wang, X., Zhang, N., Liu, C.-M. & Kou, H.-Z. (2022). Cryst. Growth Des. 22, 1263–1269.  Web of Science CSD CrossRef CAS Google Scholar
First citationMalinkin, S. O., Penkova, L., Moroz, Y. S., Haukka, M., Maciag, A., Gumienna–Kontecka, E., Pavlenko, V. A., Pavlova, S., Nordlander, E. & Fritsky, I. O. (2012). Eur. J. Inorg. Chem. pp. 1639–1649.  Web of Science CSD CrossRef Google Scholar
First citationMalla, M. A., Bansal, R., Butcher, R. J. & Gupta, S. K. (2022). Acta Cryst. E78, 1–7.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMoroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMoroz, Y. S., Kalibabchuk, V. A., Gumienna-Kontecka, E., Skopenko, V. V. & Pavlova, S. V. (2009a). Acta Cryst. E65, o2413.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoroz, Y. S., Konovalova, I. S., Iskenderov, T. S., Pavlova, S. V. & Shishkin, O. V. (2009b). Acta Cryst. E65, o2242.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParrish, R. M., Burns, L. A., Smith, D. G. A., Simmonett, A. C., DePrince, A. E. III, Hohenstein, E. G., Bozkaya, U., Sokolov, A. Yu., Di Remigio, R., Richard, R. M., Gonthier, J. F., James, A. M., McAlexander, H. R., Kumar, A., Saitow, M., Wang, X., Pritchard, B. P., Verma, P., Schaefer, H. F. III, Patkowski, K., King, R. A., Valeev, E. F., Evangelista, F. A., Turney, J. M., Crawford, T. D. & Sherrill, C. D. (2017). J. Chem. Theory Comput. 13, 3185–3197.  Web of Science CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPlutenko, M. O., Lampeka, R. D., Moroz, Y. S., Haukka, M. & Pavlova, S. V. (2011). Acta Cryst. E67, o3282–o3283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationZefirov, Yu. V. (1997). Kristallografiya, 42, 936–958.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds