research communications
E)-5-(4-fluorophenyl)3-{[(4-methoxyphenyl)formamido]imino}-7-methyl-2H,3H,5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carboxylate 0.25-hydrate
and Hirshfeld surface analysis of ethyl (3aChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt, fDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, PO Box, 11562, Egypt, and gChemistry Department, Faculty of Applied Science, Taiz University, Taiz, Yemen
*Correspondence e-mail: mokh.amin@taiz.edu.ye
In the title compound, C24H23FN4O4S·0.25H2O, the dihydropyrimidine ring is distinctly non-planar, with the flap C atom deviating by 0.297 (2) Å from the least-squares plane. In the crystal, zigzag chains are formed by N—H⋯N hydrogen bonds parallel to [010] and are connected into layers parallel to (100) by O—H⋯O, O—H⋯F, C—H⋯O, C—H⋯F and C—H⋯N hydrogen bonds. Additional C—H⋯O hydrogen bonds connect the layers into a three-dimensional network. A Hirshfeld surface analysis indicates that the most significant contributions to the crystal packing are from H⋯H (42.6%), O⋯H/H⋯O (16.8%) and C⋯H/H⋯C (15.5%) contacts.
Keywords: crystal structure; pyrimidine; thiazole; hydrogen bond; Hirshfeld surface analysis.
CCDC reference: 2177565
1. Chemical context
Interest in the anticancer activities of dihydropyrimidines (DHPMs) has been increasing since 1999, when monastrol was discovered (Mayer et al., 1999; Leizerman et al., 2004). In addition, 1,3,4-oxadiazole has been reported to exhibit a significant anticancer activity (Yadagiri et al., 2015; Valente et al., 2014; El-Din et al., 2015). Since the combination of two or more pharmacophoric structural moieties can possibly augment the bioactivity, it was of interest to hybridize the DHPM moiety with 1,3,4-oxadiazole, hoping to discover potent anticancer agents.
In this context, a target compound was designed through the condensation of 6-methyl-4-aryl-1,2,3,4-tetrahydropyrimidine-2(1H)-thione derivatives and 2-(chloromethyl)-5-aryl-1,3,4-oxadiazole derivatives (Ragab et al., 2017). Unexpectedly, an intramolecular and ring opening of 1,3,4-oxadiazole occurred. The resulting product was chosen as an example of this series for further structural elucidation through X-ray crystallography. Herein we report the and Hirshfeld analysis of the title compound, C24H23FN4O4S·0.25H2O.
2. Structural commentary
In the title compound (Fig. 1), the dihydropyrimidine portion (N1/C3/C2/C1/N2/C4) of the central ring is planar to within 0.0286 (9) Å (r.m.s. deviation of the fitted atoms = 0.0211 Å), with the flap C1 atom being 0.297 (2) Å out of this plane towards the bonded 4-fluorophenyl group. A puckering analysis (Cremer & Pople, 1975) of this ring yielded the parameters Q = 0.2074 (15) Å, θ = 112.1 (4)° and φ = 3.5 (4)°. The dihedral angle between the C5–C10 phenyl ring and the least-squares plane of the dihydropyrimidine plane is 88.76 (5)°. The C4/N2/C15/C16/S1 ring is planar to within 0.0191 (8) Å (r.m.s. deviation of the fitted atoms = 0.0140 Å) and is inclined to the N1/C3/C2/C1/N2/C4 plane by 3.99 (9)°. The dihedral angle between the C4/N2/C15/C16/S1 ring and the C18–C23 phenyl ring is 9.28 (8)°.
3. Supramolecular features
In the crystal, molecules are connected into zigzag chains running parallel to [010] by N4—H4⋯N1 hydrogen bonds (Table 1). The chains are connected into (100) layers by O5—H5B⋯O3 and O5—H5A⋯F1 hydrogen bonds involving the water molecule, as well as by C13—H13B⋯F1, C16—H16A⋯N1 and all of the C—H⋯O hydrogen bonds listed in Table 1, except for the C24—H24C⋯O1 hydrogen bond (Figs. 2, 3 and 4) that serves to link the layers into a three-dimensional network.
4. Hirshfeld surface analysis
A Hirshfeld surface analysis was performed, and two-dimensional fingerprint plots were constructed using Crystal Explorer17.5 to quantify the intermolecular interactions in the title molecule (Turner et al., 2017). Fig. 5 depicts the Hirshfeld surface plotted over dnorm in the range −0.7253 to +1.4745 arbitrary units, with red patches indicating putative hydrogen bonding in the crystal structure.
The intensity of the red patches is more pronounced for N4—H4⋯N1, C1—H1⋯O5, C16—H16B⋯O5, C24—H24A⋯O1, C24—H24C⋯O1 and O5—H5B⋯O3, thus revealing the strongest interactions when compared to other red spots on the Hirshfeld surface. Table 2 gives numerical data for close intermolecular contacts. The two-dimensional fingerprint plots (Fig. 6) shows that the largest contributions are from H⋯H (42.6%; Fig. 6b), O⋯H/H⋯O (16.8%; Fig. 6c) and C⋯H/H⋯C (15.5%; Fig. 6d) interactions. Other interactions contributing less to the crystal packing are from F⋯H/H⋯F (6.7%), N⋯H/H⋯N (4.5%), S⋯H/H⋯S (3.4%), S⋯C/C⋯S (3.4%), C⋯C (2.8%), S⋯N/N⋯S (1.4%),N⋯C/C⋯N (1.4%), O⋯C/C⋯O (0.7%), N⋯N (0.5%), O⋯N/N⋯O (0.2%) and S⋯O/O⋯S (0.1%) interactions.
|
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) for compounds most closely related to the 2,3-dihydro-5H-[1,3]thiazolo[3,2-a]pyrimidine unit of the title compound gave the following hits: refcodes ZOWXAM (I) (Krishnamurthy et al., 2014); PONVOF (II) (Krishnamurthy & Begum, 2014); AFIZUM (III) (Fathima et al., 2013); YAYHAJ (IV) (Nagarajaiah et al., 2012); KUSQUL (V) (Jotani et al., 2010a); PUJRIW (VI) (Jotani et al., 2010b); DIWSIM (VII) (Jotani & Baldaniya, 2008); TICHAP (VIII) (Jotani & Baldaniya, 2007); AWUPAK (IX) (Fun et al., 2011); XETKOX (X) (Sridhar et al., 2006) and XETKOX01 (XI) (Sridhar et al., 2006).
In the crystal of (I), pairs of weak C—H⋯O hydrogen bonds link molecules related by twofold rotation axes, forming R22(10) rings, which in turn are linked by weak C—H⋯N interactions to form chains parallel to [010]. In addition, weak C—H⋯π(arene) interactions link the chains into layers parallel to (001), and π–π interactions connect these layers into a three-dimensional network.
In (II), weak C—H⋯F and C— H⋯O hydrogen bonds connect molecules, forming zigzag chains parallel to [010]. In addition, π–π stacking interactions connect these chains into ladders via inversion-related 4-fluorophenyl groups.
In (III), pairs of weak C—H⋯O hydrogen bonds lead to the formation of inversion dimers. A weak C—H⋯π interaction and π–π stacking interactions are observed.
In (IV), O—H⋯N and C— H⋯S interactions result in (001) layers. The supramolecular assembly is stabilized by π–π stacking interactions between the 2-bromobenzylidene and thiazolopyrimidine rings. In addition, C—H⋯π interactions are also observed.
In (V), co-operative C—H⋯O and C—H⋯π interactions lead to supramolecular chains parallel [100]. These chains are connected via π–π interactions.
The crystal packing of (VI) is influenced by weak intermolecular C—H⋯π interactions and π–π stacking between the thiazole and phenyl rings, which stack the molecules parallel to [001].
In (VII), in addition to intermolecular C— H⋯O hydrogen bonding, short intramolecular C—H⋯S contacts and π–π stacking interactions contribute to the crystal packing.
In (VIII), short intermolecular C—H⋯O, C—H⋯π and π–π stacking interactions contribute to the stability of the crystal packing.
In (IX), molecules are linked into a three-dimensional network by intermolecular C— H⋯O and C—H⋯F hydrogen bonds. The is further stabilized by a C—H⋯π interaction.
Compounds (X) and (XI) crystallize in two polymorphic forms having the same space-group type, viz. P1, with Z′ = 2 and Z′ = 1. In both polymorphs, the molecules are linked by N—H⋯O and C—H⋯O hydrogen bonds.
6. Synthesis and crystallization
A mixture of ethyl 4-(4-fluorophenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (2 mmol), 2-(chloromethyl)-5-(4-methoxyphenyl)-1,3,4-oxadiazole (2 mmol), potassium iodide (2 mmol) and triethyl amine (2.5 mmol), was refluxed for 4 h in absolute ethanol (20 ml). The reaction mixture was poured onto crushed ice (40 g) and acidified with acetic acid (2 ml). The deposited precipitate was filtered off, washed with cold water, dried and recrystallized from a methanol/DMF mixture.
Yield: 95%; melting point: 493–495 K; IR (KBr) νmax/cm−1 3390, 3178, 1693, 1654. 1H NMR (400 MHz, DMSO-d6) δ 10.60 (s, 1H, NH), 7.81 (d, J = 8.7 Hz, 2H, Ar—H), 7.44 (t, J = 7.7 Hz, 2H, Ar—H), 7.15 (t, J = 7.7 Hz, 2H, Ar—H), 7.03 (d, J = 8.7 Hz, 2H, Ar—H), 6.13 (s, 1H, C4—H), 4.45 (d, J = 17.4 Hz, 1H, S—CH2), 4.35 (d, J = 17.3 Hz, 1H, S—CH2), 4.03 (q, J = 7.1 Hz, 2H, CH2—CH3), 3.82 (s, 3H, OCH3), 2.34 (s, 3H, C6-CH3), 1.11 (t, J = 7.1 Hz, 3H, CH2—CH3). 13C NMR (125 MHz, DMSO-d6) δ 165.59, 163.23, 163.20, 162.65, 153.92, 153.58, 130.57, 130.50, 130.03, 125.90, 115.64, 115.47, 114.05, 105.95, 60.28, 55.87, 54.89, 28.56, 23.06, 14.45. Analysis calculated for C24H23FN4O4S (482.53): C 59.74, H 4.80, N 11.61. Found: C 60.02, H 4.89, N 11.87.
7. Refinement
Crystal data, data collection and structure . The H atoms were found in difference-Fourier maps; all C and N-bound H atoms were refined freely. The water molecule was found to be occupationally disordered and was refined with a fixed site occupation factor of 1/4. The H atoms of the water molecules were located in a difference-Fourier map, their bond lengths set to an ideal value of 0.87 Å, and were refined with Uiso(H) = 1.5 Ueq(O) using a riding model.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2177565
https://doi.org/10.1107/S2056989022006041/wm5648sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022006041/wm5648Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022006041/wm5648Isup3.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).C24H23FN4O4S·0.25H2O | F(000) = 1018 |
Mr = 487.03 | Dx = 1.409 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 14.4316 (3) Å | Cell parameters from 9970 reflections |
b = 10.8518 (2) Å | θ = 3.3–74.4° |
c = 15.5940 (3) Å | µ = 1.68 mm−1 |
β = 109.941 (1)° | T = 150 K |
V = 2295.74 (8) Å3 | Block, colourless |
Z = 4 | 0.15 × 0.14 × 0.11 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 4576 independent reflections |
Radiation source: INCOATEC IµS micro–focus source | 4142 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.029 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 74.4°, θmin = 3.3° |
ω scans | h = −17→18 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −13→12 |
Tmin = 0.75, Tmax = 0.84 | l = −19→18 |
17597 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.088 | w = 1/[σ2(Fo2) + (0.0389P)2 + 1.1637P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
4576 reflections | Δρmax = 0.34 e Å−3 |
409 parameters | Δρmin = −0.56 e Å−3 |
0 restraints | Extinction correction: SHELXL-2018/1 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00229 (19) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Refinement of the site occupancy factor for the lattice water (O5) converged at ca. 0.25. This was fixed at this value for the remainder of the refinement, the attached hydrogen atoms were located in a difference map and included as riding contributions in idealized positions. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.45709 (2) | 0.29846 (3) | 0.22568 (2) | 0.02637 (11) | |
F1 | 0.81951 (11) | 0.85095 (10) | 0.24433 (11) | 0.0709 (4) | |
O1 | 0.93592 (8) | 0.24379 (11) | 0.47803 (8) | 0.0365 (3) | |
O2 | 0.88439 (7) | 0.41670 (10) | 0.52684 (7) | 0.0294 (2) | |
O3 | 0.55706 (8) | 0.71812 (10) | 0.54550 (7) | 0.0307 (2) | |
O4 | 0.17420 (9) | 1.04606 (11) | 0.46165 (8) | 0.0390 (3) | |
N1 | 0.64445 (8) | 0.22708 (11) | 0.27415 (8) | 0.0220 (2) | |
N2 | 0.60560 (8) | 0.39869 (10) | 0.34918 (8) | 0.0200 (2) | |
N3 | 0.54560 (8) | 0.55654 (10) | 0.41266 (8) | 0.0206 (2) | |
N4 | 0.46512 (8) | 0.62737 (11) | 0.41154 (8) | 0.0209 (2) | |
H4 | 0.4182 (14) | 0.6419 (17) | 0.3587 (13) | 0.032 (5)* | |
C1 | 0.70873 (9) | 0.43284 (13) | 0.40035 (10) | 0.0213 (3) | |
H1 | 0.7122 (12) | 0.4512 (15) | 0.4634 (11) | 0.022 (4)* | |
C2 | 0.77324 (10) | 0.32264 (13) | 0.39918 (10) | 0.0224 (3) | |
C3 | 0.74171 (10) | 0.23233 (13) | 0.33574 (10) | 0.0224 (3) | |
C4 | 0.58287 (10) | 0.30597 (12) | 0.28731 (9) | 0.0207 (3) | |
C5 | 0.73684 (9) | 0.54708 (13) | 0.35807 (10) | 0.0233 (3) | |
C6 | 0.76870 (10) | 0.65331 (14) | 0.40974 (11) | 0.0291 (3) | |
H6 | 0.7696 (14) | 0.6545 (17) | 0.4744 (13) | 0.035 (5)* | |
C7 | 0.79756 (12) | 0.75620 (15) | 0.37183 (14) | 0.0365 (4) | |
H7 | 0.8223 (15) | 0.829 (2) | 0.4092 (14) | 0.048 (6)* | |
C8 | 0.79149 (13) | 0.75033 (15) | 0.28209 (14) | 0.0410 (4) | |
C9 | 0.75793 (15) | 0.64862 (16) | 0.22793 (14) | 0.0420 (4) | |
H9 | 0.7526 (16) | 0.651 (2) | 0.1629 (15) | 0.050 (6)* | |
C10 | 0.73134 (12) | 0.54590 (14) | 0.26730 (11) | 0.0314 (3) | |
H10 | 0.7067 (14) | 0.4745 (19) | 0.2304 (13) | 0.038 (5)* | |
C11 | 0.87186 (10) | 0.32007 (13) | 0.46924 (10) | 0.0253 (3) | |
C12 | 0.97996 (11) | 0.42561 (17) | 0.59855 (11) | 0.0331 (3) | |
H12A | 0.9878 (15) | 0.353 (2) | 0.6404 (14) | 0.045 (5)* | |
H12B | 1.0316 (14) | 0.4216 (17) | 0.5703 (12) | 0.034 (5)* | |
H12C | 0.9642 (16) | 0.618 (2) | 0.6014 (15) | 0.052 (6)* | |
C13 | 0.98133 (13) | 0.5454 (2) | 0.64668 (13) | 0.0412 (4) | |
H13A | 1.0491 (17) | 0.557 (2) | 0.6929 (15) | 0.055 (6)* | |
H13B | 0.9329 (18) | 0.545 (2) | 0.6776 (16) | 0.060 (7)* | |
C14 | 0.80354 (11) | 0.12659 (15) | 0.32406 (12) | 0.0287 (3) | |
H14A | 0.8649 (17) | 0.155 (2) | 0.3186 (15) | 0.052 (6)* | |
H14B | 0.8240 (16) | 0.074 (2) | 0.3764 (16) | 0.054 (6)* | |
H14C | 0.7663 (16) | 0.079 (2) | 0.2696 (15) | 0.046 (5)* | |
C15 | 0.52713 (9) | 0.47098 (12) | 0.35314 (9) | 0.0202 (3) | |
C16 | 0.43099 (10) | 0.43208 (14) | 0.28344 (10) | 0.0260 (3) | |
H16A | 0.4032 (14) | 0.4974 (19) | 0.2389 (13) | 0.040 (5)* | |
H16B | 0.3839 (15) | 0.4099 (18) | 0.3141 (14) | 0.043 (5)* | |
C17 | 0.48023 (10) | 0.71162 (13) | 0.48039 (9) | 0.0223 (3) | |
C18 | 0.39469 (10) | 0.79431 (13) | 0.47152 (9) | 0.0230 (3) | |
C19 | 0.41359 (12) | 0.90278 (14) | 0.52329 (10) | 0.0289 (3) | |
H19 | 0.4793 (15) | 0.9188 (17) | 0.5629 (13) | 0.036 (5)* | |
C20 | 0.33869 (12) | 0.98472 (15) | 0.51747 (11) | 0.0331 (3) | |
H20 | 0.3508 (16) | 1.062 (2) | 0.5510 (15) | 0.053 (6)* | |
C21 | 0.24267 (11) | 0.95909 (15) | 0.46124 (10) | 0.0294 (3) | |
C22 | 0.22193 (11) | 0.85134 (15) | 0.40997 (10) | 0.0287 (3) | |
H22 | 0.1533 (15) | 0.8314 (18) | 0.3709 (13) | 0.037 (5)* | |
C23 | 0.29829 (11) | 0.76979 (14) | 0.41584 (10) | 0.0260 (3) | |
H23 | 0.2829 (13) | 0.6946 (17) | 0.3814 (12) | 0.031 (5)* | |
C24 | 0.07367 (14) | 1.0253 (2) | 0.40748 (14) | 0.0456 (5) | |
H24A | 0.0502 (16) | 0.946 (2) | 0.4247 (15) | 0.054 (6)* | |
H24B | 0.0650 (16) | 1.025 (2) | 0.3411 (16) | 0.053 (6)* | |
H24C | 0.0390 (16) | 1.093 (2) | 0.4203 (14) | 0.048 (6)* | |
O5 | 0.7191 (3) | 0.9508 (5) | 0.0994 (3) | 0.0378 (10) | 0.25 |
H5A | 0.766259 | 0.901704 | 0.130626 | 0.057* | 0.25 |
H5B | 0.667996 | 0.902764 | 0.079072 | 0.057* | 0.25 |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01757 (17) | 0.0260 (2) | 0.0312 (2) | 0.00125 (12) | 0.00266 (13) | −0.00720 (13) |
F1 | 0.1061 (11) | 0.0263 (6) | 0.1191 (11) | −0.0171 (6) | 0.0888 (10) | −0.0055 (6) |
O1 | 0.0214 (5) | 0.0345 (6) | 0.0476 (7) | 0.0093 (4) | 0.0038 (5) | −0.0055 (5) |
O2 | 0.0177 (5) | 0.0313 (6) | 0.0326 (6) | 0.0026 (4) | 0.0002 (4) | −0.0057 (4) |
O3 | 0.0271 (5) | 0.0336 (6) | 0.0274 (5) | 0.0038 (4) | 0.0040 (4) | −0.0039 (4) |
O4 | 0.0370 (6) | 0.0405 (7) | 0.0400 (6) | 0.0175 (5) | 0.0137 (5) | −0.0051 (5) |
N1 | 0.0198 (5) | 0.0194 (6) | 0.0257 (6) | 0.0010 (4) | 0.0064 (5) | −0.0013 (4) |
N2 | 0.0151 (5) | 0.0186 (6) | 0.0246 (6) | 0.0011 (4) | 0.0046 (4) | −0.0013 (4) |
N3 | 0.0174 (5) | 0.0202 (6) | 0.0246 (6) | 0.0028 (4) | 0.0078 (4) | 0.0011 (4) |
N4 | 0.0179 (5) | 0.0216 (6) | 0.0231 (6) | 0.0044 (4) | 0.0069 (5) | 0.0005 (4) |
C1 | 0.0151 (6) | 0.0211 (7) | 0.0256 (7) | 0.0001 (5) | 0.0042 (5) | −0.0028 (5) |
C2 | 0.0169 (6) | 0.0208 (7) | 0.0284 (7) | 0.0019 (5) | 0.0062 (5) | 0.0005 (5) |
C3 | 0.0190 (6) | 0.0205 (7) | 0.0276 (7) | 0.0016 (5) | 0.0079 (5) | 0.0023 (5) |
C4 | 0.0206 (6) | 0.0181 (7) | 0.0230 (7) | −0.0001 (5) | 0.0067 (5) | 0.0005 (5) |
C5 | 0.0146 (6) | 0.0199 (7) | 0.0348 (8) | 0.0012 (5) | 0.0077 (5) | −0.0021 (5) |
C6 | 0.0207 (7) | 0.0237 (8) | 0.0399 (9) | 0.0007 (5) | 0.0066 (6) | −0.0057 (6) |
C7 | 0.0270 (8) | 0.0204 (8) | 0.0640 (11) | −0.0040 (6) | 0.0179 (8) | −0.0093 (7) |
C8 | 0.0439 (9) | 0.0204 (8) | 0.0744 (13) | −0.0032 (7) | 0.0406 (9) | 0.0001 (8) |
C9 | 0.0582 (11) | 0.0270 (9) | 0.0568 (11) | −0.0018 (7) | 0.0402 (10) | −0.0014 (7) |
C10 | 0.0373 (8) | 0.0227 (8) | 0.0403 (9) | −0.0035 (6) | 0.0212 (7) | −0.0051 (6) |
C11 | 0.0191 (6) | 0.0238 (7) | 0.0312 (7) | 0.0015 (5) | 0.0064 (6) | −0.0005 (6) |
C12 | 0.0177 (7) | 0.0431 (10) | 0.0315 (8) | 0.0004 (6) | −0.0005 (6) | −0.0031 (7) |
C13 | 0.0284 (8) | 0.0560 (12) | 0.0348 (9) | −0.0025 (8) | 0.0053 (7) | −0.0140 (8) |
C14 | 0.0239 (7) | 0.0252 (8) | 0.0356 (8) | 0.0050 (6) | 0.0083 (6) | −0.0037 (6) |
C15 | 0.0171 (6) | 0.0186 (7) | 0.0246 (7) | 0.0011 (5) | 0.0068 (5) | 0.0028 (5) |
C16 | 0.0187 (6) | 0.0254 (8) | 0.0303 (8) | 0.0020 (5) | 0.0038 (6) | −0.0048 (6) |
C17 | 0.0226 (7) | 0.0217 (7) | 0.0234 (7) | 0.0007 (5) | 0.0090 (5) | 0.0015 (5) |
C18 | 0.0246 (7) | 0.0235 (7) | 0.0234 (7) | 0.0023 (5) | 0.0113 (6) | 0.0002 (5) |
C19 | 0.0287 (8) | 0.0288 (8) | 0.0292 (8) | 0.0003 (6) | 0.0098 (6) | −0.0039 (6) |
C20 | 0.0378 (9) | 0.0286 (8) | 0.0336 (8) | 0.0043 (6) | 0.0134 (7) | −0.0072 (6) |
C21 | 0.0322 (8) | 0.0313 (8) | 0.0286 (8) | 0.0110 (6) | 0.0155 (6) | 0.0018 (6) |
C22 | 0.0254 (7) | 0.0341 (8) | 0.0283 (7) | 0.0042 (6) | 0.0114 (6) | −0.0016 (6) |
C23 | 0.0256 (7) | 0.0274 (8) | 0.0273 (7) | 0.0014 (6) | 0.0121 (6) | −0.0035 (6) |
C24 | 0.0357 (9) | 0.0540 (12) | 0.0455 (11) | 0.0212 (9) | 0.0119 (8) | −0.0026 (9) |
O5 | 0.027 (2) | 0.042 (3) | 0.039 (3) | −0.0069 (19) | 0.0036 (19) | 0.006 (2) |
S1—C4 | 1.7422 (14) | C9—C10 | 1.388 (2) |
S1—C16 | 1.8130 (15) | C9—H9 | 0.99 (2) |
F1—C8 | 1.3657 (19) | C10—H10 | 0.96 (2) |
O1—C11 | 1.2133 (18) | C12—C13 | 1.498 (2) |
O2—C11 | 1.3522 (18) | C12—H12A | 1.00 (2) |
O2—C12 | 1.4526 (17) | C12—H12B | 0.988 (19) |
O3—C17 | 1.2236 (17) | C13—H12C | 1.03 (2) |
O4—C21 | 1.3680 (18) | C13—H13A | 1.00 (2) |
O4—C24 | 1.426 (2) | C13—H13B | 0.98 (3) |
N1—C4 | 1.2996 (18) | C14—H14A | 0.97 (2) |
N1—C3 | 1.4058 (17) | C14—H14B | 0.96 (2) |
N2—C4 | 1.3546 (17) | C14—H14C | 0.98 (2) |
N2—C15 | 1.3963 (17) | C15—C16 | 1.5020 (19) |
N2—C1 | 1.4762 (16) | C16—H16A | 0.98 (2) |
N3—C15 | 1.2750 (18) | C16—H16B | 0.98 (2) |
N3—N4 | 1.3880 (15) | C17—C18 | 1.4939 (19) |
N4—C17 | 1.3698 (18) | C18—C23 | 1.391 (2) |
N4—H4 | 0.885 (19) | C18—C19 | 1.401 (2) |
C1—C2 | 1.5194 (18) | C19—C20 | 1.379 (2) |
C1—C5 | 1.5226 (19) | C19—H19 | 0.96 (2) |
C1—H1 | 0.987 (17) | C20—C21 | 1.392 (2) |
C2—C3 | 1.356 (2) | C20—H20 | 0.97 (2) |
C2—C11 | 1.4694 (19) | C21—C22 | 1.390 (2) |
C3—C14 | 1.5024 (19) | C22—C23 | 1.392 (2) |
C5—C10 | 1.391 (2) | C22—H22 | 0.99 (2) |
C5—C6 | 1.392 (2) | C23—H23 | 0.960 (19) |
C6—C7 | 1.392 (2) | C24—H24A | 0.99 (2) |
C6—H6 | 1.004 (19) | C24—H24B | 1.00 (2) |
C7—C8 | 1.373 (3) | C24—H24C | 0.95 (2) |
C7—H7 | 0.97 (2) | O5—H5A | 0.8700 |
C8—C9 | 1.374 (3) | O5—H5B | 0.8701 |
C4—S1—C16 | 92.44 (6) | C13—C12—H12B | 112.3 (11) |
C11—O2—C12 | 116.09 (11) | H12A—C12—H12B | 108.7 (16) |
C21—O4—C24 | 118.60 (14) | C12—C13—H12C | 111.3 (12) |
C4—N1—C3 | 116.27 (12) | C12—C13—H13A | 107.9 (13) |
C4—N2—C15 | 116.48 (11) | H12C—C13—H13A | 110.2 (18) |
C4—N2—C1 | 121.74 (11) | C12—C13—H13B | 110.9 (14) |
C15—N2—C1 | 121.23 (11) | H12C—C13—H13B | 107.1 (18) |
C15—N3—N4 | 115.33 (11) | H13A—C13—H13B | 109.4 (19) |
C17—N4—N3 | 116.80 (11) | C3—C14—H14A | 111.4 (13) |
C17—N4—H4 | 118.6 (12) | C3—C14—H14B | 112.1 (14) |
N3—N4—H4 | 118.8 (12) | H14A—C14—H14B | 103.9 (18) |
N2—C1—C2 | 107.75 (11) | C3—C14—H14C | 109.4 (12) |
N2—C1—C5 | 109.80 (11) | H14A—C14—H14C | 109.8 (18) |
C2—C1—C5 | 112.38 (11) | H14B—C14—H14C | 110.1 (18) |
N2—C1—H1 | 106.8 (9) | N3—C15—N2 | 118.03 (12) |
C2—C1—H1 | 110.3 (9) | N3—C15—C16 | 130.06 (12) |
C5—C1—H1 | 109.6 (10) | N2—C15—C16 | 111.90 (11) |
C3—C2—C11 | 121.84 (12) | C15—C16—S1 | 106.69 (9) |
C3—C2—C1 | 121.53 (12) | C15—C16—H16A | 111.4 (12) |
C11—C2—C1 | 116.62 (12) | S1—C16—H16A | 109.4 (11) |
C2—C3—N1 | 122.42 (12) | C15—C16—H16B | 109.7 (12) |
C2—C3—C14 | 125.10 (13) | S1—C16—H16B | 109.9 (12) |
N1—C3—C14 | 112.47 (12) | H16A—C16—H16B | 109.8 (16) |
N1—C4—N2 | 126.10 (12) | O3—C17—N4 | 123.09 (13) |
N1—C4—S1 | 121.47 (10) | O3—C17—C18 | 121.90 (13) |
N2—C4—S1 | 112.41 (10) | N4—C17—C18 | 115.00 (12) |
C10—C5—C6 | 119.33 (14) | C23—C18—C19 | 118.49 (13) |
C10—C5—C1 | 120.14 (13) | C23—C18—C17 | 124.17 (13) |
C6—C5—C1 | 120.53 (13) | C19—C18—C17 | 117.34 (13) |
C5—C6—C7 | 120.41 (16) | C20—C19—C18 | 120.67 (15) |
C5—C6—H6 | 118.7 (11) | C20—C19—H19 | 120.6 (11) |
C7—C6—H6 | 120.9 (11) | C18—C19—H19 | 118.8 (11) |
C8—C7—C6 | 118.11 (15) | C19—C20—C21 | 120.16 (15) |
C8—C7—H7 | 122.1 (12) | C19—C20—H20 | 121.9 (13) |
C6—C7—H7 | 119.8 (12) | C21—C20—H20 | 117.9 (13) |
F1—C8—C7 | 118.48 (16) | O4—C21—C22 | 124.66 (14) |
F1—C8—C9 | 118.13 (17) | O4—C21—C20 | 115.13 (14) |
C7—C8—C9 | 123.39 (16) | C22—C21—C20 | 120.20 (14) |
C8—C9—C10 | 117.76 (17) | C21—C22—C23 | 119.12 (14) |
C8—C9—H9 | 119.7 (13) | C21—C22—H22 | 120.7 (11) |
C10—C9—H9 | 122.5 (13) | C23—C22—H22 | 120.2 (11) |
C9—C10—C5 | 120.96 (15) | C18—C23—C22 | 121.34 (14) |
C9—C10—H10 | 119.1 (12) | C18—C23—H23 | 120.2 (11) |
C5—C10—H10 | 119.9 (12) | C22—C23—H23 | 118.4 (11) |
O1—C11—O2 | 122.00 (13) | O4—C24—H24A | 110.4 (13) |
O1—C11—C2 | 127.18 (14) | O4—C24—H24B | 110.9 (13) |
O2—C11—C2 | 110.81 (11) | H24A—C24—H24B | 110.1 (18) |
O2—C12—C13 | 106.88 (13) | O4—C24—H24C | 104.9 (13) |
O2—C12—H12A | 108.3 (12) | H24A—C24—H24C | 111.1 (18) |
C13—C12—H12A | 112.1 (12) | H24B—C24—H24C | 109.4 (18) |
O2—C12—H12B | 108.5 (11) | H5A—O5—H5B | 104.0 |
C15—N3—N4—C17 | 173.45 (12) | C1—C5—C10—C9 | −179.13 (15) |
C4—N2—C1—C2 | −21.62 (17) | C12—O2—C11—O1 | 1.5 (2) |
C15—N2—C1—C2 | 167.22 (11) | C12—O2—C11—C2 | −179.00 (12) |
C4—N2—C1—C5 | 101.08 (14) | C3—C2—C11—O1 | 2.3 (2) |
C15—N2—C1—C5 | −70.08 (15) | C1—C2—C11—O1 | −176.78 (15) |
N2—C1—C2—C3 | 20.41 (18) | C3—C2—C11—O2 | −177.21 (13) |
C5—C1—C2—C3 | −100.69 (15) | C1—C2—C11—O2 | 3.75 (18) |
N2—C1—C2—C11 | −160.54 (12) | C11—O2—C12—C13 | 173.66 (14) |
C5—C1—C2—C11 | 78.36 (15) | N4—N3—C15—N2 | 178.26 (11) |
C11—C2—C3—N1 | 173.50 (13) | N4—N3—C15—C16 | −2.1 (2) |
C1—C2—C3—N1 | −7.5 (2) | C4—N2—C15—N3 | 177.79 (12) |
C11—C2—C3—C14 | −5.0 (2) | C1—N2—C15—N3 | −10.60 (19) |
C1—C2—C3—C14 | 174.03 (14) | C4—N2—C15—C16 | −1.93 (17) |
C4—N1—C3—C2 | −7.2 (2) | C1—N2—C15—C16 | 169.67 (12) |
C4—N1—C3—C14 | 171.48 (13) | N3—C15—C16—S1 | −176.70 (12) |
C3—N1—C4—N2 | 6.2 (2) | N2—C15—C16—S1 | 2.98 (14) |
C3—N1—C4—S1 | −171.99 (10) | C4—S1—C16—C15 | −2.61 (11) |
C15—N2—C4—N1 | −178.53 (13) | N3—N4—C17—O3 | −7.08 (19) |
C1—N2—C4—N1 | 9.9 (2) | N3—N4—C17—C18 | 174.20 (11) |
C15—N2—C4—S1 | −0.18 (15) | O3—C17—C18—C23 | −160.50 (14) |
C1—N2—C4—S1 | −171.74 (10) | N4—C17—C18—C23 | 18.2 (2) |
C16—S1—C4—N1 | −179.84 (12) | O3—C17—C18—C19 | 19.1 (2) |
C16—S1—C4—N2 | 1.73 (11) | N4—C17—C18—C19 | −162.14 (13) |
N2—C1—C5—C10 | −58.95 (16) | C23—C18—C19—C20 | −1.5 (2) |
C2—C1—C5—C10 | 60.97 (17) | C17—C18—C19—C20 | 178.83 (14) |
N2—C1—C5—C6 | 121.37 (13) | C18—C19—C20—C21 | 1.3 (2) |
C2—C1—C5—C6 | −118.72 (14) | C24—O4—C21—C22 | 1.3 (2) |
C10—C5—C6—C7 | −1.9 (2) | C24—O4—C21—C20 | −178.54 (16) |
C1—C5—C6—C7 | 177.79 (13) | C19—C20—C21—O4 | 179.23 (14) |
C5—C6—C7—C8 | 1.4 (2) | C19—C20—C21—C22 | −0.6 (2) |
C6—C7—C8—F1 | 179.90 (15) | O4—C21—C22—C23 | −179.73 (14) |
C6—C7—C8—C9 | 0.4 (3) | C20—C21—C22—C23 | 0.1 (2) |
F1—C8—C9—C10 | 178.81 (16) | C19—C18—C23—C22 | 1.0 (2) |
C7—C8—C9—C10 | −1.7 (3) | C17—C18—C23—C22 | −179.37 (13) |
C8—C9—C10—C5 | 1.2 (3) | C21—C22—C23—C18 | −0.3 (2) |
C6—C5—C10—C9 | 0.6 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4···N1i | 0.885 (19) | 2.164 (19) | 2.9888 (17) | 154.8 (16) |
C1—H1···O5ii | 0.987 (17) | 2.345 (18) | 3.307 (5) | 164.7 (13) |
C7—H7···O4iii | 0.97 (2) | 2.41 (2) | 3.285 (2) | 148.7 (17) |
C13—H13B···F1ii | 0.98 (3) | 2.49 (3) | 3.386 (2) | 153.0 (19) |
C16—H16A···N1i | 0.98 (2) | 2.58 (2) | 3.4019 (19) | 142.4 (15) |
C16—H16B···O5iv | 0.98 (2) | 2.37 (2) | 3.282 (5) | 154.6 (16) |
C24—H24A···O1v | 0.99 (2) | 2.53 (2) | 3.450 (3) | 154.6 (18) |
C24—H24C···O1vi | 0.95 (2) | 2.57 (2) | 3.504 (2) | 167.8 (17) |
O5—H5A···F1 | 0.87 | 1.76 | 2.479 (5) | 138 |
O5—H5B···O3vii | 0.87 | 2.00 | 2.863 (5) | 174 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x, −y+3/2, z+1/2; (iii) −x+1, −y+2, −z+1; (iv) −x+1, y−1/2, −z+1/2; (v) −x+1, −y+1, −z+1; (vi) x−1, y+1, z; (vii) x, −y+3/2, z−1/2. |
Asterisks relate to atoms of the underoccupied water molecule. |
Contact | Distance | Symmetry operation |
N1···H4 | 2.165 | 1 - x, -1/2 + y, 1/2 - z |
F1···H13B | 2.49 | x, 3/2 - y, -1/2 + z |
F1···*H5A | 1.76 | x, y, z |
F1···H14C | 2.66 | x, 1 + y, z |
H14A···H24C | 2.56 | 1 + x, -1 + y, z |
H12C···O1 | 2.66 | 2 - x, 1 - y, 1 - z |
H16B···O3 | 2.49 | 1 - x, 1 - y, 1 - z |
O3···*H5B | 2.00 | x, 3/2 - y, 1/2 + z |
H7···O4 | 2.41 | 1 - x, 2 - y, 1 - z |
H16B···*H5B | 2.05 | 1 - x, -1/2 + y, 1/2 - z |
H13A···H24B | 2.41 | 1 + x, 3/2 - y, 1/2 + z |
H14C···*O5 | 2.87 | x, -1 + y, z |
Acknowledgements
Author contributions are as follows: synthesis and organic chemistry parts preparation, AMA, FAFR, SKM; conceptualization and study guide, AMA, SKM; financial support, MAA MAU?; crystal data production and validation, JTM; paper preparation and Hirshfeld study, MA, SKM.
Funding information
The support of NSF-MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
References
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
El-Din, M. M. G., El-Gamal, M. I., Abdel-Maksoud, M. S., Yoo, K. H. & Oh, C.-H. (2015). Eur. J. Med. Chem. 90, 45–52. Web of Science PubMed Google Scholar
Fathima, N., Nagarajaiah, H. & Begum, N. S. (2013). Acta Cryst. E69, o1262. CSD CrossRef IUCr Journals Google Scholar
Fun, H.-K., Loh, W.-S., Sarojini, B. K., Umesha, K. & Narayana, B. (2011). Acta Cryst. E67, o1913–o1914. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Jotani, M. M. & Baldaniya, B. B. (2007). Acta Cryst. E63, o1937–o1939. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jotani, M. M. & Baldaniya, B. B. (2008). Acta Cryst. E64, o739. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jotani, M. M., Baldaniya, B. B. & Jasinski, J. P. (2010b). Acta Cryst. E66, o599–o600. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jotani, M. M., Baldaniya, B. B. & Tiekink, E. R. T. (2010a). Acta Cryst. E66, o762–o763. Web of Science CSD CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Krishnamurthy, M. S. & Begum, N. S. (2014). Acta Cryst. E70, o1270–o1271. CSD CrossRef IUCr Journals Google Scholar
Krishnamurthy, M. S., Nagarajaiah, H. & Begum, N. S. (2014). Acta Cryst. E70, o1187–o1188. CSD CrossRef IUCr Journals Google Scholar
Leizerman, I., Avunie-Masala, R., Elkabets, M., Fich, A. & Gheber, L. (2004). Cell. Mol. Life Sci. 61, 2060–2070. Web of Science CrossRef PubMed CAS Google Scholar
Mayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. L. & Mitchison, T. J. (1999). Science, 286, 971–974. Web of Science CrossRef PubMed CAS Google Scholar
Nagarajaiah, H., Fathima, N. & Begum, N. S. (2012). Acta Cryst. E68, o1257–o1258. CSD CrossRef CAS IUCr Journals Google Scholar
Ragab, F. A., Abou-Seri, S. M., Abdel-Aziz, S. A., Alfayomy, A. M. & Aboelmagd, M. (2017). Eur. J. Med. Chem. 138, 140–151. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sridhar, B., Ravikumar, K. & Sadanandam, Y. S. (2006). Acta Cryst. C62, o687–o690. Web of Science CSD CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Valente, S., Trisciuoglio, D., De Luca, T., Nebbioso, A., Labella, D., Lenoci, A., Bigogno, C., Dondio, G., Miceli, M., Brosch, G., Del Bufalo, D., Altucci, L. & Mai, A. (2014). J. Med. Chem. 57, 6259–6265. Web of Science CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yadagiri, B., Gurrala, S., Bantu, R., Nagarapu, L., Polepalli, S., Srujana, G. & Jain, N. (2015). Bioorg. Med. Chem. Lett. 25, 2220–2224. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.