research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of ethyl (3E)-5-(4-fluoro­phen­yl)3-{[(4-meth­­oxy­phen­yl)formamido]­imino}-7-methyl-2H,3H,5H-[1,3]thia­zolo[3,2-a]pyrimidine-6-carboxyl­ate 0.25-hydrate

crossmark logo

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt, fDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, PO Box, 11562, Egypt, and gChemistry Department, Faculty of Applied Science, Taiz University, Taiz, Yemen
*Correspondence e-mail: mokh.amin@taiz.edu.ye

Edited by M. Weil, Vienna University of Technology, Austria (Received 18 May 2022; accepted 7 June 2022; online 9 August 2022)

In the title compound, C24H23FN4O4S·0.25H2O, the di­hydro­pyrimidine ring is distinctly non-planar, with the flap C atom deviating by 0.297 (2) Å from the least-squares plane. In the crystal, zigzag chains are formed by N—H⋯N hydrogen bonds parallel to [010] and are connected into layers parallel to (100) by O—H⋯O, O—H⋯F, C—H⋯O, C—H⋯F and C—H⋯N hydrogen bonds. Additional C—H⋯O hydrogen bonds connect the layers into a three-dimensional network. A Hirshfeld surface analysis indicates that the most significant contributions to the crystal packing are from H⋯H (42.6%), O⋯H/H⋯O (16.8%) and C⋯H/H⋯C (15.5%) contacts.

1. Chemical context

Inter­est in the anti­cancer activities of di­hydro­pyrimidines (DHPMs) has been increasing since 1999, when monastrol was discovered (Mayer et al., 1999[Mayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. L. & Mitchison, T. J. (1999). Science, 286, 971-974.]; Leizerman et al., 2004[Leizerman, I., Avunie-Masala, R., Elkabets, M., Fich, A. & Gheber, L. (2004). Cell. Mol. Life Sci. 61, 2060-2070.]). In addition, 1,3,4-oxa­diazole has been reported to exhibit a significant anti­cancer activity (Yadagiri et al., 2015[Yadagiri, B., Gurrala, S., Bantu, R., Nagarapu, L., Polepalli, S., Srujana, G. & Jain, N. (2015). Bioorg. Med. Chem. Lett. 25, 2220-2224.]; Valente et al., 2014[Valente, S., Trisciuoglio, D., De Luca, T., Nebbioso, A., Labella, D., Lenoci, A., Bigogno, C., Dondio, G., Miceli, M., Brosch, G., Del Bufalo, D., Altucci, L. & Mai, A. (2014). J. Med. Chem. 57, 6259-6265.]; El-Din et al., 2015[El-Din, M. M. G., El-Gamal, M. I., Abdel-Maksoud, M. S., Yoo, K. H. & Oh, C.-H. (2015). Eur. J. Med. Chem. 90, 45-52.]). Since the combination of two or more pharmacophoric structural moieties can possibly augment the bioactivity, it was of inter­est to hybridize the DHPM moiety with 1,3,4-oxa­diazole, hoping to discover potent anti­cancer agents.

[Scheme 1]

In this context, a target compound was designed through the condensation of 6-methyl-4-aryl-1,2,3,4-tetra­hydro­pyrim­idine-2(1H)-thione derivatives and 2-(chloro­meth­yl)-5-aryl-1,3,4-oxa­diazole derivatives (Ragab et al., 2017[Ragab, F. A., Abou-Seri, S. M., Abdel-Aziz, S. A., Alfayomy, A. M. & Aboelmagd, M. (2017). Eur. J. Med. Chem. 138, 140-151.]). Unexpectedly, an intra­molecular cyclization and ring opening of 1,3,4-oxa­diazole occurred. The resulting product was chosen as an example of this series for further structural elucidation through X-ray crystallography. Herein we report the crystal structure and Hirshfeld analysis of the title compound, C24H23FN4O4S·0.25H2O.

2. Structural commentary

In the title compound (Fig. 1[link]), the di­hydro­pyrimidine portion (N1/C3/C2/C1/N2/C4) of the central ring is planar to within 0.0286 (9) Å (r.m.s. deviation of the fitted atoms = 0.0211 Å), with the flap C1 atom being 0.297 (2) Å out of this plane towards the bonded 4-fluoro­phenyl group. A puckering analysis (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) of this ring yielded the parameters Q = 0.2074 (15) Å, θ = 112.1 (4)° and φ = 3.5 (4)°. The dihedral angle between the C5–C10 phenyl ring and the least-squares plane of the di­hydro­pyrimidine plane is 88.76 (5)°. The C4/N2/C15/C16/S1 ring is planar to within 0.0191 (8) Å (r.m.s. deviation of the fitted atoms = 0.0140 Å) and is inclined to the N1/C3/C2/C1/N2/C4 plane by 3.99 (9)°. The dihedral angle between the C4/N2/C15/C16/S1 ring and the C18–C23 phenyl ring is 9.28 (8)°.

[Figure 1]
Figure 1
The title mol­ecule with the labelling scheme and displacement ellipsoids drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are connected into zigzag chains running parallel to [010] by N4—H4⋯N1 hydrogen bonds (Table 1[link]). The chains are connected into (100) layers by O5—H5B⋯O3 and O5—H5A⋯F1 hydrogen bonds involving the water mol­ecule, as well as by C13—H13B⋯F1, C16—H16A⋯N1 and all of the C—H⋯O hydrogen bonds listed in Table 1[link], except for the C24—H24C⋯O1 hydrogen bond (Figs. 2[link], 3[link] and 4[link]) that serves to link the layers into a three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯N1i 0.885 (19) 2.164 (19) 2.9888 (17) 154.8 (16)
C1—H1⋯O5ii 0.987 (17) 2.345 (18) 3.307 (5) 164.7 (13)
C7—H7⋯O4iii 0.97 (2) 2.41 (2) 3.285 (2) 148.7 (17)
C13—H13B⋯F1ii 0.98 (3) 2.49 (3) 3.386 (2) 153.0 (19)
C16—H16A⋯N1i 0.98 (2) 2.58 (2) 3.4019 (19) 142.4 (15)
C16—H16B⋯O5iv 0.98 (2) 2.37 (2) 3.282 (5) 154.6 (16)
C24—H24A⋯O1v 0.99 (2) 2.53 (2) 3.450 (3) 154.6 (18)
C24—H24C⋯O1vi 0.95 (2) 2.57 (2) 3.504 (2) 167.8 (17)
O5—H5A⋯F1 0.87 1.76 2.479 (5) 138
O5—H5B⋯O3vii 0.87 2.00 2.863 (5) 174
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, -y+2, -z+1]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+1, -y+1, -z+1]; (vi) [x-1, y+1, z]; (vii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
View of the mol­ecular packing along [100]. O—H⋯O, O—H⋯F, C—H⋯ O, C—H⋯N and C—H⋯F hydrogen bonds are shown as dashed lines.
[Figure 3]
Figure 3
View of the mol­ecular packing along [010]. Hydrogen bonds are depicted as in Fig. 2[link].
[Figure 4]
Figure 4
View of the mol­ecular packing along [001]. Hydrogen bonds are depicted as in Fig. 2[link].

4. Hirshfeld surface analysis

A Hirshfeld surface analysis was performed, and two-dimensional fingerprint plots were constructed using Crystal Explorer17.5 to qu­antify the inter­molecular inter­actions in the title mol­ecule (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). Fig. 5[link] depicts the Hirshfeld surface plotted over dnorm in the range −0.7253 to +1.4745 arbitrary units, with red patches indicating putative hydrogen bonding in the crystal structure.

[Figure 5]
Figure 5
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over dnorm, with a fixed colour scale of −0.7253 (red) to +1.4745 (blue) a.u.

The intensity of the red patches is more pronounced for N4—H4⋯N1, C1—H1⋯O5, C16—H16B⋯O5, C24—H24A⋯O1, C24—H24C⋯O1 and O5—H5B⋯O3, thus revealing the strongest inter­actions when compared to other red spots on the Hirshfeld surface. Table 2[link] gives numerical data for close inter­molecular contacts. The two-dimensional fingerprint plots (Fig. 6[link]) shows that the largest contributions are from H⋯H (42.6%; Fig. 6[link]b), O⋯H/H⋯O (16.8%; Fig. 6[link]c) and C⋯H/H⋯C (15.5%; Fig. 6[link]d) inter­actions. Other inter­actions contributing less to the crystal packing are from F⋯H/H⋯F (6.7%), N⋯H/H⋯N (4.5%), S⋯H/H⋯S (3.4%), S⋯C/C⋯S (3.4%), C⋯C (2.8%), S⋯N/N⋯S (1.4%),N⋯C/C⋯N (1.4%), O⋯C/C⋯O (0.7%), N⋯N (0.5%), O⋯N/N⋯O (0.2%) and S⋯O/O⋯S (0.1%) inter­actions.

Table 2
Summary of short inter­atomic contacts (Å) in the title compound.

Asterisks relate to atoms of the underoccupied water mol­ecule.

Contact Distance Symmetry operation
N1⋯H4 2.165 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z
F1⋯H13B 2.49 x, [{3\over 2}] − y, −[{1\over 2}] + z
F1⋯*H5A 1.76 x, y, z
F1⋯H14C 2.66 x, 1 + y, z
H14A⋯H24C 2.56 1 + x, −1 + y, z
H12C⋯O1 2.66 2 − x, 1 − y, 1 − z
H16B⋯O3 2.49 1 − x, 1 − y, 1 − z
O3⋯*H5B 2.00 x, [{3\over 2}] − y, [{1\over 2}] + z
H7⋯O4 2.41 1 − x, 2 − y, 1 − z
H16B⋯*H5B 2.05 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z
H13A⋯H24B 2.41 1 + x, [{3\over 2}] − y, [{1\over 2}] + z
H14C⋯*O5 2.87 x, −1 + y, z
[Figure 6]
Figure 6
Two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/H⋯O and (d) C⋯H/H⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for compounds most closely related to the 2,3-di­hydro-5H-[1,3]thia­zolo[3,2-a]pyrimidine unit of the title compound gave the following hits: refcodes ZOWXAM (I) (Krishnamurthy et al., 2014[Krishnamurthy, M. S., Nagarajaiah, H. & Begum, N. S. (2014). Acta Cryst. E70, o1187-o1188.]); PONVOF (II) (Krishnamurthy & Begum, 2014[Krishnamurthy, M. S. & Begum, N. S. (2014). Acta Cryst. E70, o1270-o1271.]); AFIZUM (III) (Fathima et al., 2013[Fathima, N., Nagarajaiah, H. & Begum, N. S. (2013). Acta Cryst. E69, o1262.]); YAYHAJ (IV) (Nagarajaiah et al., 2012[Nagarajaiah, H., Fathima, N. & Begum, N. S. (2012). Acta Cryst. E68, o1257-o1258.]); KUSQUL (V) (Jotani et al., 2010a[Jotani, M. M., Baldaniya, B. B. & Tiekink, E. R. T. (2010a). Acta Cryst. E66, o762-o763.]); PUJRIW (VI) (Jotani et al., 2010b[Jotani, M. M., Baldaniya, B. B. & Jasinski, J. P. (2010b). Acta Cryst. E66, o599-o600.]); DIWSIM (VII) (Jotani & Baldaniya, 2008[Jotani, M. M. & Baldaniya, B. B. (2008). Acta Cryst. E64, o739.]); TICHAP (VIII) (Jotani & Baldaniya, 2007[Jotani, M. M. & Baldaniya, B. B. (2007). Acta Cryst. E63, o1937-o1939.]); AWUPAK (IX) (Fun et al., 2011[Fun, H.-K., Loh, W.-S., Sarojini, B. K., Umesha, K. & Narayana, B. (2011). Acta Cryst. E67, o1913-o1914.]); XETKOX (X) (Sridhar et al., 2006[Sridhar, B., Ravikumar, K. & Sadanandam, Y. S. (2006). Acta Cryst. C62, o687-o690.]) and XETKOX01 (XI) (Sridhar et al., 2006[Sridhar, B., Ravikumar, K. & Sadanandam, Y. S. (2006). Acta Cryst. C62, o687-o690.]).

In the crystal of (I), pairs of weak C—H⋯O hydrogen bonds link mol­ecules related by twofold rotation axes, forming R22(10) rings, which in turn are linked by weak C—H⋯N inter­actions to form chains parallel to [010]. In addition, weak C—H⋯π(arene) inter­actions link the chains into layers parallel to (001), and ππ inter­actions connect these layers into a three-dimensional network.

In (II), weak C—H⋯F and C— H⋯O hydrogen bonds connect mol­ecules, forming zigzag chains parallel to [010]. In addition, ππ stacking inter­actions connect these chains into ladders via inversion-related 4-fluoro­phenyl groups.

In (III), pairs of weak C—H⋯O hydrogen bonds lead to the formation of inversion dimers. A weak C—H⋯π inter­action and ππ stacking inter­actions are observed.

In (IV), O—H⋯N and C— H⋯S inter­actions result in (001) layers. The supra­molecular assembly is stabilized by ππ stacking inter­actions between the 2-bromo­benzyl­idene and thia­zolo­pyrimidine rings. In addition, C—H⋯π inter­actions are also observed.

In (V), co-operative C—H⋯O and C—H⋯π inter­actions lead to supra­molecular chains parallel [100]. These chains are connected via ππ inter­actions.

The crystal packing of (VI) is influenced by weak inter­molecular C—H⋯π inter­actions and ππ stacking between the thia­zole and phenyl rings, which stack the mol­ecules parallel to [001].

In (VII), in addition to inter­molecular C— H⋯O hydrogen bonding, short intra­molecular C—H⋯S contacts and ππ stacking inter­actions contribute to the crystal packing.

In (VIII), short inter­molecular C—H⋯O, C—H⋯π and ππ stacking inter­actions contribute to the stability of the crystal packing.

In (IX), mol­ecules are linked into a three-dimensional network by inter­molecular C— H⋯O and C—H⋯F hydrogen bonds. The crystal structure is further stabilized by a C—H⋯π inter­action.

Compounds (X) and (XI) crystallize in two polymorphic forms having the same space-group type, viz. P1, with Z′ = 2 and Z′ = 1. In both polymorphs, the mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds.

6. Synthesis and crystallization

A mixture of ethyl 4-(4-fluoro­phen­yl)-6-methyl-2-thioxo-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate (2 mmol), 2-(chlor­o­meth­yl)-5-(4-meth­oxy­phen­yl)-1,3,4-oxa­diazole (2 mmol), potassium iodide (2 mmol) and triethyl amine (2.5 mmol), was refluxed for 4 h in absolute ethanol (20 ml). The reaction mixture was poured onto crushed ice (40 g) and acidified with acetic acid (2 ml). The deposited precipitate was filtered off, washed with cold water, dried and recrystallized from a methanol/DMF mixture.

Yield: 95%; melting point: 493–495 K; IR (KBr) νmax/cm−1 3390, 3178, 1693, 1654. 1H NMR (400 MHz, DMSO-d6) δ 10.60 (s, 1H, NH), 7.81 (d, J = 8.7 Hz, 2H, Ar—H), 7.44 (t, J = 7.7 Hz, 2H, Ar—H), 7.15 (t, J = 7.7 Hz, 2H, Ar—H), 7.03 (d, J = 8.7 Hz, 2H, Ar—H), 6.13 (s, 1H, C4—H), 4.45 (d, J = 17.4 Hz, 1H, S—CH2), 4.35 (d, J = 17.3 Hz, 1H, S—CH2), 4.03 (q, J = 7.1 Hz, 2H, CH2—CH3), 3.82 (s, 3H, OCH3), 2.34 (s, 3H, C6-CH3), 1.11 (t, J = 7.1 Hz, 3H, CH2—CH3). 13C NMR (125 MHz, DMSO-d6) δ 165.59, 163.23, 163.20, 162.65, 153.92, 153.58, 130.57, 130.50, 130.03, 125.90, 115.64, 115.47, 114.05, 105.95, 60.28, 55.87, 54.89, 28.56, 23.06, 14.45. Analysis calculated for C24H23FN4O4S (482.53): C 59.74, H 4.80, N 11.61. Found: C 60.02, H 4.89, N 11.87.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms were found in difference-Fourier maps; all C and N-bound H atoms were refined freely. The water mol­ecule was found to be occupationally disordered and was refined with a fixed site occupation factor of 1/4. The H atoms of the water mol­ecules were located in a difference-Fourier map, their bond lengths set to an ideal value of 0.87 Å, and were refined with Uiso(H) = 1.5 Ueq(O) using a riding model.

Table 3
Experimental details

Crystal data
Chemical formula C24H23FN4O4S·0.25H2O
Mr 487.03
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 14.4316 (3), 10.8518 (2), 15.5940 (3)
β (°) 109.941 (1)
V3) 2295.74 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.68
Crystal size (mm) 0.15 × 0.14 × 0.11
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.75, 0.84
No. of measured, independent and observed [I > 2σ(I)] reflections 17597, 4576, 4142
Rint 0.029
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.088, 1.04
No. of reflections 4576
No. of parameters 409
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.56
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Ethyl (3E)-5-(4-fluorophenyl)3-{[(4-methoxyphenyl)formamido]imino}-7-methyl-2H,3H,5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carboxylate 0.25-hydrate top
Crystal data top
C24H23FN4O4S·0.25H2OF(000) = 1018
Mr = 487.03Dx = 1.409 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 14.4316 (3) ÅCell parameters from 9970 reflections
b = 10.8518 (2) Åθ = 3.3–74.4°
c = 15.5940 (3) ŵ = 1.68 mm1
β = 109.941 (1)°T = 150 K
V = 2295.74 (8) Å3Block, colourless
Z = 40.15 × 0.14 × 0.11 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
4576 independent reflections
Radiation source: INCOATEC IµS micro–focus source4142 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.4167 pixels mm-1θmax = 74.4°, θmin = 3.3°
ω scansh = 1718
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1312
Tmin = 0.75, Tmax = 0.84l = 1918
17597 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0389P)2 + 1.1637P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4576 reflectionsΔρmax = 0.34 e Å3
409 parametersΔρmin = 0.56 e Å3
0 restraintsExtinction correction: SHELXL-2018/1 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00229 (19)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Refinement of the site occupancy factor for the lattice water (O5) converged at ca. 0.25. This was fixed at this value for the remainder of the refinement, the attached hydrogen atoms were located in a difference map and included as riding contributions in idealized positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.45709 (2)0.29846 (3)0.22568 (2)0.02637 (11)
F10.81951 (11)0.85095 (10)0.24433 (11)0.0709 (4)
O10.93592 (8)0.24379 (11)0.47803 (8)0.0365 (3)
O20.88439 (7)0.41670 (10)0.52684 (7)0.0294 (2)
O30.55706 (8)0.71812 (10)0.54550 (7)0.0307 (2)
O40.17420 (9)1.04606 (11)0.46165 (8)0.0390 (3)
N10.64445 (8)0.22708 (11)0.27415 (8)0.0220 (2)
N20.60560 (8)0.39869 (10)0.34918 (8)0.0200 (2)
N30.54560 (8)0.55654 (10)0.41266 (8)0.0206 (2)
N40.46512 (8)0.62737 (11)0.41154 (8)0.0209 (2)
H40.4182 (14)0.6419 (17)0.3587 (13)0.032 (5)*
C10.70873 (9)0.43284 (13)0.40035 (10)0.0213 (3)
H10.7122 (12)0.4512 (15)0.4634 (11)0.022 (4)*
C20.77324 (10)0.32264 (13)0.39918 (10)0.0224 (3)
C30.74171 (10)0.23233 (13)0.33574 (10)0.0224 (3)
C40.58287 (10)0.30597 (12)0.28731 (9)0.0207 (3)
C50.73684 (9)0.54708 (13)0.35807 (10)0.0233 (3)
C60.76870 (10)0.65331 (14)0.40974 (11)0.0291 (3)
H60.7696 (14)0.6545 (17)0.4744 (13)0.035 (5)*
C70.79756 (12)0.75620 (15)0.37183 (14)0.0365 (4)
H70.8223 (15)0.829 (2)0.4092 (14)0.048 (6)*
C80.79149 (13)0.75033 (15)0.28209 (14)0.0410 (4)
C90.75793 (15)0.64862 (16)0.22793 (14)0.0420 (4)
H90.7526 (16)0.651 (2)0.1629 (15)0.050 (6)*
C100.73134 (12)0.54590 (14)0.26730 (11)0.0314 (3)
H100.7067 (14)0.4745 (19)0.2304 (13)0.038 (5)*
C110.87186 (10)0.32007 (13)0.46924 (10)0.0253 (3)
C120.97996 (11)0.42561 (17)0.59855 (11)0.0331 (3)
H12A0.9878 (15)0.353 (2)0.6404 (14)0.045 (5)*
H12B1.0316 (14)0.4216 (17)0.5703 (12)0.034 (5)*
H12C0.9642 (16)0.618 (2)0.6014 (15)0.052 (6)*
C130.98133 (13)0.5454 (2)0.64668 (13)0.0412 (4)
H13A1.0491 (17)0.557 (2)0.6929 (15)0.055 (6)*
H13B0.9329 (18)0.545 (2)0.6776 (16)0.060 (7)*
C140.80354 (11)0.12659 (15)0.32406 (12)0.0287 (3)
H14A0.8649 (17)0.155 (2)0.3186 (15)0.052 (6)*
H14B0.8240 (16)0.074 (2)0.3764 (16)0.054 (6)*
H14C0.7663 (16)0.079 (2)0.2696 (15)0.046 (5)*
C150.52713 (9)0.47098 (12)0.35314 (9)0.0202 (3)
C160.43099 (10)0.43208 (14)0.28344 (10)0.0260 (3)
H16A0.4032 (14)0.4974 (19)0.2389 (13)0.040 (5)*
H16B0.3839 (15)0.4099 (18)0.3141 (14)0.043 (5)*
C170.48023 (10)0.71162 (13)0.48039 (9)0.0223 (3)
C180.39469 (10)0.79431 (13)0.47152 (9)0.0230 (3)
C190.41359 (12)0.90278 (14)0.52329 (10)0.0289 (3)
H190.4793 (15)0.9188 (17)0.5629 (13)0.036 (5)*
C200.33869 (12)0.98472 (15)0.51747 (11)0.0331 (3)
H200.3508 (16)1.062 (2)0.5510 (15)0.053 (6)*
C210.24267 (11)0.95909 (15)0.46124 (10)0.0294 (3)
C220.22193 (11)0.85134 (15)0.40997 (10)0.0287 (3)
H220.1533 (15)0.8314 (18)0.3709 (13)0.037 (5)*
C230.29829 (11)0.76979 (14)0.41584 (10)0.0260 (3)
H230.2829 (13)0.6946 (17)0.3814 (12)0.031 (5)*
C240.07367 (14)1.0253 (2)0.40748 (14)0.0456 (5)
H24A0.0502 (16)0.946 (2)0.4247 (15)0.054 (6)*
H24B0.0650 (16)1.025 (2)0.3411 (16)0.053 (6)*
H24C0.0390 (16)1.093 (2)0.4203 (14)0.048 (6)*
O50.7191 (3)0.9508 (5)0.0994 (3)0.0378 (10)0.25
H5A0.7662590.9017040.1306260.057*0.25
H5B0.6679960.9027640.0790720.057*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01757 (17)0.0260 (2)0.0312 (2)0.00125 (12)0.00266 (13)0.00720 (13)
F10.1061 (11)0.0263 (6)0.1191 (11)0.0171 (6)0.0888 (10)0.0055 (6)
O10.0214 (5)0.0345 (6)0.0476 (7)0.0093 (4)0.0038 (5)0.0055 (5)
O20.0177 (5)0.0313 (6)0.0326 (6)0.0026 (4)0.0002 (4)0.0057 (4)
O30.0271 (5)0.0336 (6)0.0274 (5)0.0038 (4)0.0040 (4)0.0039 (4)
O40.0370 (6)0.0405 (7)0.0400 (6)0.0175 (5)0.0137 (5)0.0051 (5)
N10.0198 (5)0.0194 (6)0.0257 (6)0.0010 (4)0.0064 (5)0.0013 (4)
N20.0151 (5)0.0186 (6)0.0246 (6)0.0011 (4)0.0046 (4)0.0013 (4)
N30.0174 (5)0.0202 (6)0.0246 (6)0.0028 (4)0.0078 (4)0.0011 (4)
N40.0179 (5)0.0216 (6)0.0231 (6)0.0044 (4)0.0069 (5)0.0005 (4)
C10.0151 (6)0.0211 (7)0.0256 (7)0.0001 (5)0.0042 (5)0.0028 (5)
C20.0169 (6)0.0208 (7)0.0284 (7)0.0019 (5)0.0062 (5)0.0005 (5)
C30.0190 (6)0.0205 (7)0.0276 (7)0.0016 (5)0.0079 (5)0.0023 (5)
C40.0206 (6)0.0181 (7)0.0230 (7)0.0001 (5)0.0067 (5)0.0005 (5)
C50.0146 (6)0.0199 (7)0.0348 (8)0.0012 (5)0.0077 (5)0.0021 (5)
C60.0207 (7)0.0237 (8)0.0399 (9)0.0007 (5)0.0066 (6)0.0057 (6)
C70.0270 (8)0.0204 (8)0.0640 (11)0.0040 (6)0.0179 (8)0.0093 (7)
C80.0439 (9)0.0204 (8)0.0744 (13)0.0032 (7)0.0406 (9)0.0001 (8)
C90.0582 (11)0.0270 (9)0.0568 (11)0.0018 (7)0.0402 (10)0.0014 (7)
C100.0373 (8)0.0227 (8)0.0403 (9)0.0035 (6)0.0212 (7)0.0051 (6)
C110.0191 (6)0.0238 (7)0.0312 (7)0.0015 (5)0.0064 (6)0.0005 (6)
C120.0177 (7)0.0431 (10)0.0315 (8)0.0004 (6)0.0005 (6)0.0031 (7)
C130.0284 (8)0.0560 (12)0.0348 (9)0.0025 (8)0.0053 (7)0.0140 (8)
C140.0239 (7)0.0252 (8)0.0356 (8)0.0050 (6)0.0083 (6)0.0037 (6)
C150.0171 (6)0.0186 (7)0.0246 (7)0.0011 (5)0.0068 (5)0.0028 (5)
C160.0187 (6)0.0254 (8)0.0303 (8)0.0020 (5)0.0038 (6)0.0048 (6)
C170.0226 (7)0.0217 (7)0.0234 (7)0.0007 (5)0.0090 (5)0.0015 (5)
C180.0246 (7)0.0235 (7)0.0234 (7)0.0023 (5)0.0113 (6)0.0002 (5)
C190.0287 (8)0.0288 (8)0.0292 (8)0.0003 (6)0.0098 (6)0.0039 (6)
C200.0378 (9)0.0286 (8)0.0336 (8)0.0043 (6)0.0134 (7)0.0072 (6)
C210.0322 (8)0.0313 (8)0.0286 (8)0.0110 (6)0.0155 (6)0.0018 (6)
C220.0254 (7)0.0341 (8)0.0283 (7)0.0042 (6)0.0114 (6)0.0016 (6)
C230.0256 (7)0.0274 (8)0.0273 (7)0.0014 (6)0.0121 (6)0.0035 (6)
C240.0357 (9)0.0540 (12)0.0455 (11)0.0212 (9)0.0119 (8)0.0026 (9)
O50.027 (2)0.042 (3)0.039 (3)0.0069 (19)0.0036 (19)0.006 (2)
Geometric parameters (Å, º) top
S1—C41.7422 (14)C9—C101.388 (2)
S1—C161.8130 (15)C9—H90.99 (2)
F1—C81.3657 (19)C10—H100.96 (2)
O1—C111.2133 (18)C12—C131.498 (2)
O2—C111.3522 (18)C12—H12A1.00 (2)
O2—C121.4526 (17)C12—H12B0.988 (19)
O3—C171.2236 (17)C13—H12C1.03 (2)
O4—C211.3680 (18)C13—H13A1.00 (2)
O4—C241.426 (2)C13—H13B0.98 (3)
N1—C41.2996 (18)C14—H14A0.97 (2)
N1—C31.4058 (17)C14—H14B0.96 (2)
N2—C41.3546 (17)C14—H14C0.98 (2)
N2—C151.3963 (17)C15—C161.5020 (19)
N2—C11.4762 (16)C16—H16A0.98 (2)
N3—C151.2750 (18)C16—H16B0.98 (2)
N3—N41.3880 (15)C17—C181.4939 (19)
N4—C171.3698 (18)C18—C231.391 (2)
N4—H40.885 (19)C18—C191.401 (2)
C1—C21.5194 (18)C19—C201.379 (2)
C1—C51.5226 (19)C19—H190.96 (2)
C1—H10.987 (17)C20—C211.392 (2)
C2—C31.356 (2)C20—H200.97 (2)
C2—C111.4694 (19)C21—C221.390 (2)
C3—C141.5024 (19)C22—C231.392 (2)
C5—C101.391 (2)C22—H220.99 (2)
C5—C61.392 (2)C23—H230.960 (19)
C6—C71.392 (2)C24—H24A0.99 (2)
C6—H61.004 (19)C24—H24B1.00 (2)
C7—C81.373 (3)C24—H24C0.95 (2)
C7—H70.97 (2)O5—H5A0.8700
C8—C91.374 (3)O5—H5B0.8701
C4—S1—C1692.44 (6)C13—C12—H12B112.3 (11)
C11—O2—C12116.09 (11)H12A—C12—H12B108.7 (16)
C21—O4—C24118.60 (14)C12—C13—H12C111.3 (12)
C4—N1—C3116.27 (12)C12—C13—H13A107.9 (13)
C4—N2—C15116.48 (11)H12C—C13—H13A110.2 (18)
C4—N2—C1121.74 (11)C12—C13—H13B110.9 (14)
C15—N2—C1121.23 (11)H12C—C13—H13B107.1 (18)
C15—N3—N4115.33 (11)H13A—C13—H13B109.4 (19)
C17—N4—N3116.80 (11)C3—C14—H14A111.4 (13)
C17—N4—H4118.6 (12)C3—C14—H14B112.1 (14)
N3—N4—H4118.8 (12)H14A—C14—H14B103.9 (18)
N2—C1—C2107.75 (11)C3—C14—H14C109.4 (12)
N2—C1—C5109.80 (11)H14A—C14—H14C109.8 (18)
C2—C1—C5112.38 (11)H14B—C14—H14C110.1 (18)
N2—C1—H1106.8 (9)N3—C15—N2118.03 (12)
C2—C1—H1110.3 (9)N3—C15—C16130.06 (12)
C5—C1—H1109.6 (10)N2—C15—C16111.90 (11)
C3—C2—C11121.84 (12)C15—C16—S1106.69 (9)
C3—C2—C1121.53 (12)C15—C16—H16A111.4 (12)
C11—C2—C1116.62 (12)S1—C16—H16A109.4 (11)
C2—C3—N1122.42 (12)C15—C16—H16B109.7 (12)
C2—C3—C14125.10 (13)S1—C16—H16B109.9 (12)
N1—C3—C14112.47 (12)H16A—C16—H16B109.8 (16)
N1—C4—N2126.10 (12)O3—C17—N4123.09 (13)
N1—C4—S1121.47 (10)O3—C17—C18121.90 (13)
N2—C4—S1112.41 (10)N4—C17—C18115.00 (12)
C10—C5—C6119.33 (14)C23—C18—C19118.49 (13)
C10—C5—C1120.14 (13)C23—C18—C17124.17 (13)
C6—C5—C1120.53 (13)C19—C18—C17117.34 (13)
C5—C6—C7120.41 (16)C20—C19—C18120.67 (15)
C5—C6—H6118.7 (11)C20—C19—H19120.6 (11)
C7—C6—H6120.9 (11)C18—C19—H19118.8 (11)
C8—C7—C6118.11 (15)C19—C20—C21120.16 (15)
C8—C7—H7122.1 (12)C19—C20—H20121.9 (13)
C6—C7—H7119.8 (12)C21—C20—H20117.9 (13)
F1—C8—C7118.48 (16)O4—C21—C22124.66 (14)
F1—C8—C9118.13 (17)O4—C21—C20115.13 (14)
C7—C8—C9123.39 (16)C22—C21—C20120.20 (14)
C8—C9—C10117.76 (17)C21—C22—C23119.12 (14)
C8—C9—H9119.7 (13)C21—C22—H22120.7 (11)
C10—C9—H9122.5 (13)C23—C22—H22120.2 (11)
C9—C10—C5120.96 (15)C18—C23—C22121.34 (14)
C9—C10—H10119.1 (12)C18—C23—H23120.2 (11)
C5—C10—H10119.9 (12)C22—C23—H23118.4 (11)
O1—C11—O2122.00 (13)O4—C24—H24A110.4 (13)
O1—C11—C2127.18 (14)O4—C24—H24B110.9 (13)
O2—C11—C2110.81 (11)H24A—C24—H24B110.1 (18)
O2—C12—C13106.88 (13)O4—C24—H24C104.9 (13)
O2—C12—H12A108.3 (12)H24A—C24—H24C111.1 (18)
C13—C12—H12A112.1 (12)H24B—C24—H24C109.4 (18)
O2—C12—H12B108.5 (11)H5A—O5—H5B104.0
C15—N3—N4—C17173.45 (12)C1—C5—C10—C9179.13 (15)
C4—N2—C1—C221.62 (17)C12—O2—C11—O11.5 (2)
C15—N2—C1—C2167.22 (11)C12—O2—C11—C2179.00 (12)
C4—N2—C1—C5101.08 (14)C3—C2—C11—O12.3 (2)
C15—N2—C1—C570.08 (15)C1—C2—C11—O1176.78 (15)
N2—C1—C2—C320.41 (18)C3—C2—C11—O2177.21 (13)
C5—C1—C2—C3100.69 (15)C1—C2—C11—O23.75 (18)
N2—C1—C2—C11160.54 (12)C11—O2—C12—C13173.66 (14)
C5—C1—C2—C1178.36 (15)N4—N3—C15—N2178.26 (11)
C11—C2—C3—N1173.50 (13)N4—N3—C15—C162.1 (2)
C1—C2—C3—N17.5 (2)C4—N2—C15—N3177.79 (12)
C11—C2—C3—C145.0 (2)C1—N2—C15—N310.60 (19)
C1—C2—C3—C14174.03 (14)C4—N2—C15—C161.93 (17)
C4—N1—C3—C27.2 (2)C1—N2—C15—C16169.67 (12)
C4—N1—C3—C14171.48 (13)N3—C15—C16—S1176.70 (12)
C3—N1—C4—N26.2 (2)N2—C15—C16—S12.98 (14)
C3—N1—C4—S1171.99 (10)C4—S1—C16—C152.61 (11)
C15—N2—C4—N1178.53 (13)N3—N4—C17—O37.08 (19)
C1—N2—C4—N19.9 (2)N3—N4—C17—C18174.20 (11)
C15—N2—C4—S10.18 (15)O3—C17—C18—C23160.50 (14)
C1—N2—C4—S1171.74 (10)N4—C17—C18—C2318.2 (2)
C16—S1—C4—N1179.84 (12)O3—C17—C18—C1919.1 (2)
C16—S1—C4—N21.73 (11)N4—C17—C18—C19162.14 (13)
N2—C1—C5—C1058.95 (16)C23—C18—C19—C201.5 (2)
C2—C1—C5—C1060.97 (17)C17—C18—C19—C20178.83 (14)
N2—C1—C5—C6121.37 (13)C18—C19—C20—C211.3 (2)
C2—C1—C5—C6118.72 (14)C24—O4—C21—C221.3 (2)
C10—C5—C6—C71.9 (2)C24—O4—C21—C20178.54 (16)
C1—C5—C6—C7177.79 (13)C19—C20—C21—O4179.23 (14)
C5—C6—C7—C81.4 (2)C19—C20—C21—C220.6 (2)
C6—C7—C8—F1179.90 (15)O4—C21—C22—C23179.73 (14)
C6—C7—C8—C90.4 (3)C20—C21—C22—C230.1 (2)
F1—C8—C9—C10178.81 (16)C19—C18—C23—C221.0 (2)
C7—C8—C9—C101.7 (3)C17—C18—C23—C22179.37 (13)
C8—C9—C10—C51.2 (3)C21—C22—C23—C180.3 (2)
C6—C5—C10—C90.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N1i0.885 (19)2.164 (19)2.9888 (17)154.8 (16)
C1—H1···O5ii0.987 (17)2.345 (18)3.307 (5)164.7 (13)
C7—H7···O4iii0.97 (2)2.41 (2)3.285 (2)148.7 (17)
C13—H13B···F1ii0.98 (3)2.49 (3)3.386 (2)153.0 (19)
C16—H16A···N1i0.98 (2)2.58 (2)3.4019 (19)142.4 (15)
C16—H16B···O5iv0.98 (2)2.37 (2)3.282 (5)154.6 (16)
C24—H24A···O1v0.99 (2)2.53 (2)3.450 (3)154.6 (18)
C24—H24C···O1vi0.95 (2)2.57 (2)3.504 (2)167.8 (17)
O5—H5A···F10.871.762.479 (5)138
O5—H5B···O3vii0.872.002.863 (5)174
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x+1, y+2, z+1; (iv) x+1, y1/2, z+1/2; (v) x+1, y+1, z+1; (vi) x1, y+1, z; (vii) x, y+3/2, z1/2.
Summary of short interatomic contacts (Å) in the title compound. top
Asterisks relate to atoms of the underoccupied water molecule.
ContactDistanceSymmetry operation
N1···H42.1651 - x, -1/2 + y, 1/2 - z
F1···H13B2.49x, 3/2 - y, -1/2 + z
F1···*H5A1.76x, y, z
F1···H14C2.66x, 1 + y, z
H14A···H24C2.561 + x, -1 + y, z
H12C···O12.662 - x, 1 - y, 1 - z
H16B···O32.491 - x, 1 - y, 1 - z
O3···*H5B2.00x, 3/2 - y, 1/2 + z
H7···O42.411 - x, 2 - y, 1 - z
H16B···*H5B2.051 - x, -1/2 + y, 1/2 - z
H13A···H24B2.411 + x, 3/2 - y, 1/2 + z
H14C···*O52.87x, -1 + y, z
 

Acknowledgements

Author contributions are as follows: synthesis and organic chemistry parts preparation, AMA, FAFR, SKM; conceptualization and study guide, AMA, SKM; financial support, MAA MAU?; crystal data production and validation, JTM; paper preparation and Hirshfeld study, MA, SKM.

Funding information

The support of NSF-MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl-Din, M. M. G., El-Gamal, M. I., Abdel-Maksoud, M. S., Yoo, K. H. & Oh, C.-H. (2015). Eur. J. Med. Chem. 90, 45–52.  Web of Science PubMed Google Scholar
First citationFathima, N., Nagarajaiah, H. & Begum, N. S. (2013). Acta Cryst. E69, o1262.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Sarojini, B. K., Umesha, K. & Narayana, B. (2011). Acta Cryst. E67, o1913–o1914.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJotani, M. M. & Baldaniya, B. B. (2007). Acta Cryst. E63, o1937–o1939.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJotani, M. M. & Baldaniya, B. B. (2008). Acta Cryst. E64, o739.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJotani, M. M., Baldaniya, B. B. & Jasinski, J. P. (2010b). Acta Cryst. E66, o599–o600.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJotani, M. M., Baldaniya, B. B. & Tiekink, E. R. T. (2010a). Acta Cryst. E66, o762–o763.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKrishnamurthy, M. S. & Begum, N. S. (2014). Acta Cryst. E70, o1270–o1271.  CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamurthy, M. S., Nagarajaiah, H. & Begum, N. S. (2014). Acta Cryst. E70, o1187–o1188.  CSD CrossRef IUCr Journals Google Scholar
First citationLeizerman, I., Avunie-Masala, R., Elkabets, M., Fich, A. & Gheber, L. (2004). Cell. Mol. Life Sci. 61, 2060–2070.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. L. & Mitchison, T. J. (1999). Science, 286, 971–974.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNagarajaiah, H., Fathima, N. & Begum, N. S. (2012). Acta Cryst. E68, o1257–o1258.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationRagab, F. A., Abou-Seri, S. M., Abdel-Aziz, S. A., Alfayomy, A. M. & Aboelmagd, M. (2017). Eur. J. Med. Chem. 138, 140–151.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSridhar, B., Ravikumar, K. & Sadanandam, Y. S. (2006). Acta Cryst. C62, o687–o690.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationValente, S., Trisciuoglio, D., De Luca, T., Nebbioso, A., Labella, D., Lenoci, A., Bigogno, C., Dondio, G., Miceli, M., Brosch, G., Del Bufalo, D., Altucci, L. & Mai, A. (2014). J. Med. Chem. 57, 6259–6265.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYadagiri, B., Gurrala, S., Bantu, R., Nagarapu, L., Polepalli, S., Srujana, G. & Jain, N. (2015). Bioorg. Med. Chem. Lett. 25, 2220–2224.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds