research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4,4′-(diazenediyl)dipyridinium nitrate perchlorate

crossmark logo

aSchool of Science, China University of Geosciences, Beijing 100083, People's Republic of China, and bBeijing Chaoyang Foreign Language School, Beijing 100101, People's Republic of China
*Correspondence e-mail: qiuqiming890521@163.com

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 8 July 2022; accepted 5 August 2022; online 12 August 2022)

The title compound, C10H10N42+·NO3·ClO4, was obtained unexpectedly by the reaction of Co(ClO4)2·6H2O and cytidine-5′-monophosphate with 4,4′-azo­pyridine in an aqueous solution of nitric acid. The mol­ecular structure comprises two planar 4,4′-diazenediyldipyridinium dications lying on inversion centres and perchlorate and nitrate anions in general positions. In the crystal, N—H⋯O hydrogen bonds between dications and anions lead to the formation of [232] chains.

1. Chemical context

If a mol­ecule contains two connected six-membered rings, and each of them contains N atoms, this mol­ecule can coordinate various metal ions in different ways. In particular, mol­ecules containing two or more pyridine rings are perfect bridging ligands to form supra­molecular structures (Zhang et al., 2005[Zhang, J., Ye, L. & Wu, L.-X. (2005). Acta Cryst. C61, o38-o40.]; Rusu et al., 2012[Rusu, E., Shova, S. & Rusu, G. (2012). Acta Cryst. E68, o2436.]; Theilmann et al., 2009[Theilmann, O., Saak, W., Haase, D. & Beckhaus, R. (2009). Organometallics, 28, 2799-2807.]; Aakeröy et al., 2013a[Aakeröy, C. B., Panikkattu, S., DeHaven, B. & Desper, J. (2013a). CrystEngComm, 15, 463-470.],b[Aakeröy, C. B., Panikkattu, S., Chopade, P. D. & Desper, J. (2013b). CrystEngComm, 15, 3125-3136.]; Huang et al., 2016[Huang, Y.-G., Shiota, Y., Su, S.-Q., Wu, S.-Q., Yao, Z.-S., Li, G.-L., Kanegawa, S., Kang, S., Kamachi, T., Yoshizawa, K., Ariga, K. & Sato, O. (2016). Angew. Chem. Int. Ed. 55, 14628-14632.]; Santana et al., 2017[Santana, C. M., Reinheimer, E. W., Krueger, H. R. Jr, MacGillivray, L. R. & Groeneman, R. H. (2017). Cryst. Growth Des. 17, 2054-2058.]; Hutchins et al., 2018[Hutchins, K. M., Unruh, D. K., Verdu, F. A. & Groeneman, R. H. (2018). Cryst. Growth Des. 18, 566-570.]). In our previous work (Qiu et al., 2017[Qiu, Q.-M., Zhou, P., Gu, L., Hao, L., Liu, M. & Li, H. (2017). Chem. Eur. J. 23, 7201-7206.]), we used, together with a cytidine-5′-monophosphate mononucleotide (CMP), an auxiliary ligands, namely 4,4′-azo­pyridine (azpy), to completely coordinate a metal ion to restrain the non-enzymatic hydrolysis of the phosphate group catalyzed by these ions, and we obtained the complex Co-CMP-azpy under pH = 5. As a result of the different charge states of CMP in aqueous solution, it seems to be meaningful to study nucleotide complexes at other pH values. Unexpectedly, single crystals of the title compound were obtained in a more acidic medium (pH = 3). The title compound is the first example of a salt of 4,4′-diazenediyldipyridinium dication with two different anions.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound comprises two planar [within 0.261 (5) Å] 4,4′-diazenediyldipyridinium dications lying on inversion centers and perchlorate and nitrate anions in general positions (Fig. 1[link]). A planar conformation of the 4,4′-diazenediyldipyridinium dications is commonly observed for this type of compound. However, in the structure of bis­(4,4′-diazenediyldipyridinium) bis­(μ-chloro)­octa­chloro­dibismuth (POPHIO; Klein, 2019a[Klein, A. (2019a). Private Communication (refcode: POPHIO, CCDC 1951253). CCDC, Cambridge, England.]) pyridinium rings are twisted by 19.0 (4)°, whereas in the structure of 4,4′-diazenediyldipyridinium bis­(iodide) (POPKEN; Klein, 2019b[Klein, A. (2019b). Private Communication (refcode: POPKEN, CCDC 1951262). CCDC, Cambridge, England.]) the mean planes of the pyridinium rings form a dihedral angle of 84.1 (2)°. In the title 4,4'-diazenediyldipyridinium, the value of the dihedral angle between the planes passing through the pyridine rings is 0°.

[Figure 1]
Figure 1
The structure of the title compound showing the asymmetric unit (labelled) with cations supplemented by the symmetry-generated moieties (not labelled) at 1 − x, 2 − y, 2 − z (molecule containing N1/N3) and at 1 − x, 1 − y, 2 − z (molecule containing N2/N4). Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

The 4,4′-diazenediyldipyridinium dications are connected by N—H⋯O hydrogen bonds with nitrate anions thus forming chains directed along [232] (Fig. 2[link], Table 1[link]). The perchlorate anions are attached to these chains via N—H⋯O hydrogen bonds. C—H⋯O inter­actions are also observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O2i 0.86 2.47 3.046 (5) 125
N2—H2B⋯O1i 0.86 1.97 2.833 (4) 177
N2—H2B⋯N5i 0.86 2.58 3.372 (4) 153
N1—H1B⋯O4ii 0.86 2.42 3.078 (5) 134
N1—H1B⋯O1 0.86 2.22 2.989 (5) 150
C10—H10⋯O2i 0.93 2.46 3.049 (5) 122
C10—H10⋯O2iii 0.93 2.42 3.257 (5) 150
C9—H9⋯O7iii 0.93 2.58 3.191 (6) 124
C7—H7⋯O6iv 0.93 2.45 3.285 (6) 150
C6—H6⋯O5v 0.93 2.42 3.302 (6) 159
C6—H6⋯O4v 0.93 2.56 3.318 (5) 139
C6—H6⋯Cl1v 0.93 2.93 3.798 (4) 156
C5—H5⋯O7ii 0.93 2.53 3.447 (7) 169
C1—H1A⋯O3 0.93 2.28 3.117 (5) 150
Symmetry codes: (i) [-x, -y, -z+1]; (ii) [-x, -y+1, -z+1]; (iii) x, y, z+1; (iv) [-x+1, -y+1, -z+1]; (v) [x, y-1, z].
[Figure 2]
Figure 2
Chain in the structure of the title compound formed by N—H⋯O hydrogen bonds (shown as dashed lines). Hydrogen atoms not involved in hydrogen bonding are omitted.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.40, update of March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 4,4′-diazenediyldipyridinium dication gave 17 hits, of which four purely organic structures are closely related to the title compound. In the crystal of 4,4′-diazenediyldipyridinium dinitrate (HUKQIN; Felloni et al., 2002[Felloni, M., Blake, A. J., Hubberstey, P., Wilson, C. & Schröder, M. (2002). CrystEngComm, 4, 483-495.]), N—H⋯O hydrogen bonds connect the dication to two anions, thus forming an island structure. The same type of structure is present in 4,4′-diazenediyldipyridinium dichloride (POPBUU; Klein, 2019c[Klein, A. (2019c). Private Communication (refcode: POPBUU, CCDC 1863101). CCDC, Cambridge, England.]) and 4,4′-diazenediyldipyridinium diiodide (POPKEN; Klein, 2019b[Klein, A. (2019b). Private Communication (refcode: POPKEN, CCDC 1951262). CCDC, Cambridge, England.]). In the salt with partially deprotonated 1,2,4,5-benzene­tetra­carb­oxy­lic acid (BULJEZ; Ravat et al., 2015[Ravat, P., SeethaLekshmi, S., Biswas, S. N., Nandy, P. & Varughese, S. (2015). Cryst. Growth Des. 15, 2389-2401.]), the 4,4′-diazenediyldipyridinium dications act as the spacers that join the layers of hydrogen-bonded anions into a three-dimensional structure.

5. Synthesis and crystallization

An aqueous solution (5 mL) of cytidine-5′-monophosphate (32 mg, 0.10 mmol) was added to an aqueous solution (5 mL) of Co(ClO4)2·6H2O (18 mg, 0.05 mmol). After stirring for 10 min, 4,4′-azo­pyridine (9 mg, 0.05 mmol) in distilled water (5 mL) was added to this mixture. Nitric acid was also dropped to it and the resulting solution (pH = 3) was stirred at room temperature for 30 min. Red block-shaped crystals were obtained by evaporation at room temperature for two weeks.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically (N—H = 0.86 Å, C—H = 0.93 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(N,C).

Table 2
Experimental details

Crystal data
Chemical formula C10H10N42+·NO3·ClO4
Mr 347.68
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 298
a, b, c (Å) 8.3023 (8), 10.0792 (9), 10.1052 (9)
α, β, γ (°) 116.966 (3), 105.481 (2), 92.871 (1)
V3) 711.77 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.32
Crystal size (mm) 0.45 × 0.40 × 0.33
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.873, 0.904
No. of measured, independent and observed [I > 2σ(I)] reflections 3625, 2466, 1896
Rint 0.034
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.250, 1.00
No. of reflections 2466
No. of parameters 208
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.63, −0.51
Computer programs: APEX2 and SAINT (Bruker, 2006[Bruker (2006). SMART and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: SAINT (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: APEX2 (Bruker, 2006); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

4,4'-(Diazenediyl)dipyridinium nitrate perchlorate top
Crystal data top
C10H10N42+·NO3·ClO4Z = 2
Mr = 347.68F(000) = 356
Triclinic, P1Dx = 1.622 Mg m3
a = 8.3023 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0792 (9) ÅCell parameters from 1709 reflections
c = 10.1052 (9) Åθ = 2.3–25.3°
α = 116.966 (3)°µ = 0.32 mm1
β = 105.481 (2)°T = 298 K
γ = 92.871 (1)°Block, red
V = 711.77 (11) Å30.45 × 0.40 × 0.33 mm
Data collection top
Bruker APEXII CCD
diffractometer
1896 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube, Bruker (Mo) X-ray SourceRint = 0.034
phi and ω continuous scansθmax = 25.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 99
Tmin = 0.873, Tmax = 0.904k = 117
3625 measured reflectionsl = 1212
2466 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.081H-atom parameters constrained
wR(F2) = 0.250 w = 1/[σ2(Fo2) + (0.189P)2 + 0.2213P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2466 reflectionsΔρmax = 0.63 e Å3
208 parametersΔρmin = 0.51 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2913 (7)0.5983 (5)0.6432 (5)0.0737 (14)
H1A0.3050310.5444420.5453630.088*
C20.3896 (6)0.7426 (5)0.7501 (5)0.0611 (11)
H2A0.4696720.7868440.7251640.073*
C30.3655 (5)0.8180 (4)0.8929 (4)0.0494 (9)
C40.2457 (5)0.7514 (5)0.9279 (5)0.0583 (10)
H40.2286890.8027951.0246390.070*
C50.1525 (6)0.6100 (6)0.8199 (6)0.0681 (13)
H50.0714840.5639240.8422780.082*
C60.2190 (5)0.0818 (4)0.6583 (4)0.0539 (10)
H60.2016940.0070990.5556760.065*
C70.3250 (5)0.2196 (5)0.7198 (4)0.0510 (9)
H70.3772270.2408020.6588650.061*
C80.3518 (4)0.3251 (4)0.8734 (4)0.0424 (8)
C90.2710 (5)0.2956 (4)0.9628 (4)0.0465 (9)
H90.2884210.3677141.0665390.056*
C100.1631 (5)0.1558 (4)0.8943 (5)0.0513 (9)
H100.1068010.1328130.9517520.062*
N10.1780 (6)0.5378 (4)0.6816 (5)0.0723 (12)
H1B0.1185260.4483150.6144760.087*
N20.1408 (4)0.0552 (3)0.7461 (4)0.0510 (8)
H2B0.0731370.0307830.7047630.061*
N30.4662 (5)0.9644 (4)1.0220 (4)0.0617 (9)
N40.4601 (4)0.4702 (3)0.9303 (3)0.0464 (8)
N50.1514 (4)0.2180 (4)0.2959 (4)0.0529 (8)
O10.0745 (4)0.2327 (3)0.3941 (3)0.0592 (8)
O20.1175 (5)0.0958 (4)0.1741 (4)0.0848 (11)
O30.2412 (6)0.3270 (4)0.3114 (4)0.1011 (15)
Cl10.22108 (13)0.71463 (11)0.30697 (11)0.0595 (4)
O40.0952 (4)0.7204 (4)0.3809 (4)0.0798 (10)
O50.2642 (6)0.8577 (4)0.3160 (5)0.1046 (14)
O60.3646 (6)0.6719 (7)0.3762 (7)0.131 (2)
O70.1536 (7)0.6059 (5)0.1466 (5)0.1112 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.106 (4)0.049 (3)0.042 (2)0.015 (3)0.015 (2)0.007 (2)
C20.072 (3)0.045 (2)0.057 (2)0.004 (2)0.026 (2)0.0163 (19)
C30.047 (2)0.0333 (18)0.051 (2)0.0021 (15)0.0095 (16)0.0102 (16)
C40.052 (2)0.054 (2)0.064 (2)0.0061 (18)0.0195 (18)0.025 (2)
C50.054 (3)0.056 (3)0.091 (4)0.001 (2)0.009 (2)0.043 (3)
C60.058 (2)0.041 (2)0.0427 (19)0.0034 (17)0.0141 (17)0.0061 (16)
C70.048 (2)0.048 (2)0.050 (2)0.0002 (16)0.0212 (16)0.0161 (18)
C80.0385 (18)0.0290 (16)0.0469 (19)0.0011 (13)0.0086 (14)0.0114 (15)
C90.051 (2)0.0363 (18)0.0387 (18)0.0029 (15)0.0151 (15)0.0075 (15)
C100.055 (2)0.044 (2)0.057 (2)0.0035 (17)0.0230 (17)0.0241 (18)
N10.076 (3)0.0365 (18)0.072 (3)0.0058 (17)0.013 (2)0.0219 (19)
N20.0477 (18)0.0341 (16)0.0548 (18)0.0064 (13)0.0102 (14)0.0134 (15)
N30.074 (3)0.050 (2)0.057 (2)0.0032 (17)0.0302 (17)0.0182 (17)
N40.0490 (18)0.0371 (16)0.0453 (15)0.0039 (13)0.0147 (13)0.0144 (14)
N50.058 (2)0.0440 (18)0.0464 (17)0.0044 (15)0.0227 (14)0.0116 (15)
O10.0702 (19)0.0487 (16)0.0513 (15)0.0080 (13)0.0297 (14)0.0148 (13)
O20.122 (3)0.0550 (19)0.0581 (18)0.0123 (18)0.0462 (19)0.0060 (15)
O30.121 (3)0.067 (2)0.092 (3)0.031 (2)0.065 (2)0.0067 (19)
Cl10.0639 (7)0.0527 (7)0.0564 (7)0.0023 (5)0.0317 (5)0.0162 (5)
O40.078 (2)0.0570 (19)0.092 (2)0.0099 (15)0.0561 (19)0.0123 (17)
O50.147 (4)0.063 (2)0.116 (3)0.003 (2)0.078 (3)0.036 (2)
O60.087 (3)0.209 (6)0.172 (5)0.040 (3)0.057 (3)0.145 (5)
O70.162 (4)0.081 (3)0.070 (2)0.012 (3)0.059 (3)0.010 (2)
Geometric parameters (Å, º) top
C1—N11.326 (7)C8—N41.452 (4)
C1—C21.391 (6)C9—C101.388 (5)
C1—H1A0.9300C9—H90.9300
C2—C31.369 (6)C10—N21.327 (5)
C2—H2A0.9300C10—H100.9300
C3—C41.379 (6)N1—H1B0.8600
C3—N31.458 (5)N2—H2B0.8600
C4—C51.360 (6)N3—N3i1.188 (7)
C4—H40.9300N4—N4ii1.216 (6)
C5—N11.334 (7)N5—O31.219 (4)
C5—H50.9300N5—O21.232 (4)
C6—N21.335 (5)N5—O11.276 (4)
C6—C71.377 (6)Cl1—O61.405 (5)
C6—H60.9300Cl1—O71.408 (4)
C7—C81.373 (5)Cl1—O51.424 (4)
C7—H70.9300Cl1—O41.427 (3)
C8—C91.379 (5)
N1—C1—C2119.7 (4)C8—C9—C10118.4 (3)
N1—C1—H1A120.2C8—C9—H9120.8
C2—C1—H1A120.2C10—C9—H9120.8
C3—C2—C1118.3 (4)N2—C10—C9119.4 (3)
C3—C2—H2A120.9N2—C10—H10120.3
C1—C2—H2A120.9C9—C10—H10120.3
C2—C3—C4120.2 (4)C1—N1—C5122.8 (4)
C2—C3—N3125.2 (4)C1—N1—H1B118.6
C4—C3—N3114.4 (3)C5—N1—H1B118.6
C5—C4—C3119.4 (4)C10—N2—C6122.9 (3)
C5—C4—H4120.3C10—N2—H2B118.6
C3—C4—H4120.3C6—N2—H2B118.6
N1—C5—C4119.6 (5)N3i—N3—C3112.2 (4)
N1—C5—H5120.2N4ii—N4—C8112.6 (4)
C4—C5—H5120.2O3—N5—O2119.4 (3)
N2—C6—C7120.0 (3)O3—N5—O1121.1 (3)
N2—C6—H6120.0O2—N5—O1118.9 (3)
C7—C6—H6120.0O6—Cl1—O7108.4 (3)
C8—C7—C6118.3 (4)O6—Cl1—O5111.8 (3)
C8—C7—H7120.9O7—Cl1—O5107.3 (3)
C6—C7—H7120.9O6—Cl1—O4110.1 (2)
C7—C8—C9121.0 (3)O7—Cl1—O4109.5 (3)
C7—C8—N4115.9 (3)O5—Cl1—O4109.7 (2)
C9—C8—N4123.0 (3)
N1—C1—C2—C30.0 (7)N4—C8—C9—C10176.6 (3)
C1—C2—C3—C40.4 (6)C8—C9—C10—N20.0 (6)
C1—C2—C3—N3175.1 (4)C2—C1—N1—C50.3 (7)
C2—C3—C4—C50.4 (6)C4—C5—N1—C10.2 (7)
N3—C3—C4—C5175.6 (4)C9—C10—N2—C60.4 (6)
C3—C4—C5—N10.1 (6)C7—C6—N2—C101.5 (6)
N2—C6—C7—C82.2 (6)C2—C3—N3—N3i22.8 (7)
C6—C7—C8—C91.8 (6)C4—C3—N3—N3i161.4 (5)
C6—C7—C8—N4178.0 (3)C7—C8—N4—N4ii149.2 (4)
C7—C8—C9—C100.7 (5)C9—C8—N4—N4ii34.8 (5)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O2iii0.862.473.046 (5)125
N2—H2B···O1iii0.861.972.833 (4)177
N2—H2B···N5iii0.862.583.372 (4)153
N1—H1B···O4iv0.862.423.078 (5)134
N1—H1B···O10.862.222.989 (5)150
C10—H10···O2iii0.932.463.049 (5)122
C10—H10···O2v0.932.423.257 (5)150
C9—H9···O7v0.932.583.191 (6)124
C7—H7···O6vi0.932.453.285 (6)150
C6—H6···O5vii0.932.423.302 (6)159
C6—H6···O4vii0.932.563.318 (5)139
C6—H6···Cl1vii0.932.933.798 (4)156
C5—H5···O7iv0.932.533.447 (7)169
C1—H1A···O30.932.283.117 (5)150
Symmetry codes: (iii) x, y, z+1; (iv) x, y+1, z+1; (v) x, y, z+1; (vi) x+1, y+1, z+1; (vii) x, y1, z.
 

Funding information

We gratefully acknowledge support by the Fundamental Research Funds for the Central Universities (grant No. 2–9–2021–008).

References

First citationAakeröy, C. B., Panikkattu, S., Chopade, P. D. & Desper, J. (2013b). CrystEngComm, 15, 3125–3136.  Google Scholar
First citationAakeröy, C. B., Panikkattu, S., DeHaven, B. & Desper, J. (2013a). CrystEngComm, 15, 463–470.  Google Scholar
First citationBruker (2006). SMART and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFelloni, M., Blake, A. J., Hubberstey, P., Wilson, C. & Schröder, M. (2002). CrystEngComm, 4, 483–495.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHuang, Y.-G., Shiota, Y., Su, S.-Q., Wu, S.-Q., Yao, Z.-S., Li, G.-L., Kanegawa, S., Kang, S., Kamachi, T., Yoshizawa, K., Ariga, K. & Sato, O. (2016). Angew. Chem. Int. Ed. 55, 14628–14632.  Web of Science CSD CrossRef CAS Google Scholar
First citationHutchins, K. M., Unruh, D. K., Verdu, F. A. & Groeneman, R. H. (2018). Cryst. Growth Des. 18, 566–570.  Web of Science CSD CrossRef CAS Google Scholar
First citationKlein, A. (2019a). Private Communication (refcode: POPHIO, CCDC 1951253). CCDC, Cambridge, England.  Google Scholar
First citationKlein, A. (2019b). Private Communication (refcode: POPKEN, CCDC 1951262). CCDC, Cambridge, England.  Google Scholar
First citationKlein, A. (2019c). Private Communication (refcode: POPBUU, CCDC 1863101). CCDC, Cambridge, England.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationQiu, Q.-M., Zhou, P., Gu, L., Hao, L., Liu, M. & Li, H. (2017). Chem. Eur. J. 23, 7201–7206.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRavat, P., SeethaLekshmi, S., Biswas, S. N., Nandy, P. & Varughese, S. (2015). Cryst. Growth Des. 15, 2389–2401.  Web of Science CSD CrossRef CAS Google Scholar
First citationRusu, E., Shova, S. & Rusu, G. (2012). Acta Cryst. E68, o2436.  CSD CrossRef IUCr Journals Google Scholar
First citationSantana, C. M., Reinheimer, E. W., Krueger, H. R. Jr, MacGillivray, L. R. & Groeneman, R. H. (2017). Cryst. Growth Des. 17, 2054–2058.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTheilmann, O., Saak, W., Haase, D. & Beckhaus, R. (2009). Organometallics, 28, 2799–2807.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, J., Ye, L. & Wu, L.-X. (2005). Acta Cryst. C61, o38–o40.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds