research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of ethyl 2′-amino-5-bromo-3′-cyano-6′-methyl-2-oxo­spiro­[indoline-3,4′-pyran]-5′-carboxyl­ate

crossmark logo

aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, e"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 28 July 2022; accepted 19 August 2022; online 26 August 2022)

The crystal used for structure determination contained, along with the title compound, C17H14BrN3O4, an admixture [0.0324 (11)] of its 7-bromo isomer. The 2,3-di­hydro-1H-indole ring system is nearly planar, while the conformation of the 4H-pyran ring is close to a flattened boat. The mean planes of these fragments form a dihedral angle of 86.67 (9)°. The carboxyl­ate group lies near the plane of 4H-pyran, its orientation is stabilized by an intra­molecular C—H⋯O contact. In the crystal, the mol­ecules are connected into layers by N—H⋯N and N—H⋯O hydrogen bonds. The most important contributions to the crystal packing are from H⋯H (33.1%), O⋯H/H⋯O (16.3%), N⋯H/H⋯N (12.1%), Br⋯H/H⋯Br (11.5%) and C⋯H/H⋯C (10.6%) inter­actions.

1. Chemical context

The reactions that form C—C, C—N and C—O bonds play critical roles in various applications and in different fields of chemistry (Aliyeva et al., 2011[Aliyeva, K. N., Maharramov, A. M., Allahverdiyev, M. A., Gurbanov, A. V. & Brito, I. (2011). Acta Cryst. E67, o2293.]; Zubkov et al., 2018[Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949-952.]; Viswanathan et al., 2019[Viswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291-303.]; Duruskari et al., 2020[Duruskari, G. S., Asgarova, A. R., Aliyeva, K. N., Musayeva, S. A. & Maharramov, A. M. (2020). Russ. J. Org. Chem. 56, 712-715.]). Nitro­gen heterocycles, especially those comprising indole fragments, are parts of various natural products and medicinal agents. This fragment constitutes the core of spiro-oxindole alkaloids, which exhibit a broad spectrum of biological activity (Edmondson et al., 1999[Edmondson, S., Danishefsky, S. J., Sepp-Lorenzino, L. & Rosen, N. (1999). J. Am. Chem. Soc. 121, 2147-2155.]; Ma & Hecht, 2004[Ma, J. & Hecht, S. M. (2004). Chem. Commun. pp. 1190-1191.]). The main synthetic pathway for the construction of spiro­[4H-pyran-oxindole] compounds is based on three-component reactions (Fig. 1[link]) of two 1,3-dicarbonyl (or other active methyl­ene) compounds with isatin derivatives (Rad-Moghadam & Youseftabar-Miri, 2011[Rad-Moghadam, K. & Youseftabar-Miri, L. (2011). Tetrahedron, 67, 5693-5699.]).

[Figure 1]
Figure 1
The three-component synthesis of the title compound.

Thus, in the framework of our ongoing structural studies (Naghiyev, Akkurt et al., 2020[Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720-723.]; Naghiyev, Cisterna et al., 2020[Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235-2248.]; Naghiyev, Tereshina et al., 2021[Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516-521.]; Naghiyev et al., 2022[Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554-558.]; Khalilov et al., 2022[Khalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525-529.]; Mamedov et al., 2022[Mamedov, I. G., Khrustalev, V. N., Akkurt, M., Novikov, A. P., Asgarova, A. R., Aliyeva, K. N. & Akobirshoeva, A. A. (2022). Acta Cryst. E78, 291-296.]), we report the crystal structure and Hirshfeld surface analysis of the title compound.

[Scheme 1]

2. Structural commentary

The crystal used for structure determination contained, along with the title compound, an admixture of its 7-bromo isomer. That is why the Br1 atom is distributed over two positions, at C5 and C7, in a 0.9676 (11):0.0324 (11) ratio, whereas the positions of other atoms of these isomers coincide with each other (Fig. 2[link]). The 2,3-di­hydro-1H-indole ring system is nearly planar with the largest deviation from planarity being 0.048 (2) Å for C3A, while the conformation of the 4H-pyran ring is close to a flattened boat [puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]): QT = 0.105 (2) Å, θ = 79.8 (11)° and φ = 196.9 (12)°], with the C8–C11 atoms forming the basal plane and O1 and C3 deviating from this plane by 0.063 (1) and 0.362 (2) Å, respectively. The mean planes of the 2,3-di­hydro-1H-indole system and the 4H-pyran ring are approximately perpendicular to each other, forming a dihedral angle of 86.67 (9)°. The carboxyl­ate group lies near the plane of 4H-pyran, with O3—C13—C10—C11 and O4—C13—C10—C3 torsion angles of −13.4 (3) and −8.8 (2)°, respectively. An intra­molecular C16—H16A⋯O3 contact stabilizes the conformation of the mol­ecule (Fig. 2[link], Table 1[link]), generating an S(6) ring motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the 4H-pyran ring (O1/C3/C8-C11) and the benzene ring (C3A/C4–C7/C7A) of the 2,3-di­hydro-1H-indole ring system.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N12i 0.88 (3) 2.00 (3) 2.874 (3) 170 (2)
N8—H8A⋯O2ii 0.88 (3) 2.08 (3) 2.940 (2) 165 (3)
N8—H8B⋯O2iii 0.86 (3) 2.15 (3) 2.971 (2) 158 (2)
C16—H16A⋯O3 0.98 2.30 2.865 (3) 116
C14—H14ACg2iv 0.99 2.92 3.773 (3) 145
C15—H15BCg3 0.98 2.99 3.729 (3) 133
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 2]
Figure 2
The mol­ecular structure of the title compound with the atom labelling and displacement ellipsoids drawn at the 50% probability level. Only the major position of Br1 [0.9676 (11)] is shown.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, the mol­ecules are linked by N—H⋯N and N—H⋯O hydrogen bonds, forming double layers parallel to (001) (Table 1[link]; Figs. 3[link]–6[link][link][link]). In addition, C—H⋯π inter­actions involving the centroids of the 4H-pyran and benzene rings link adjacent mol­ecules within these layers (Table 1[link]; Fig. 7[link]). The layers are joined by van der Waals inter­actions (Table 2[link]).

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
H14B⋯Br1 3.07 [{1\over 2}] + x, [{3\over 2}] − y, 1 − z
H6⋯Br1 3.07 [{1\over 2}] + x, [{3\over 2}] − y, 1 − z
H15A⋯Br1 2.99 1 − x, 1 − y, 1 − z
N12⋯H1 2.00 [{3\over 2}] − x, [{1\over 2}] + y, z
Br1′⋯O3 2.775 1 + x, y, z
O2⋯H8A 2.08 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z
N12⋯H8B 2.71 [{1\over 2}] + x, y, [{1\over 2}] − z
O2⋯H8B 2.15 [{1\over 2}] − x, −[{1\over 2}] + y, z
[Figure 3]
Figure 3
A general view of the packing of the title compound with N—H⋯N and N—H⋯O hydrogen bonds. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity. Symmetry codes: (i) −x + [{3\over 2}], y − [{1\over 2}], z; (ii) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]; (iii) −x + [{1\over 2}], y + [{1\over 2}], z; (iv) −x + [{1\over 2}], y − [{1\over 2}], z; (v) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]; (vi) −x + [{3\over 2}], y + [{1\over 2}], z.
[Figure 4]
Figure 4
The packing of the title compound viewed along the a axis and showing the N—H⋯N and N—H⋯O hydrogen bonds. Only the hydrogen atoms involved in hydrogen bonding are shown.
[Figure 5]
Figure 5
The packing of the title compound viewed along the b axis and showing N—H⋯N and N—H⋯O hydrogen bonds.
[Figure 6]
Figure 6
The packing of the title compound viewed along the c axis and showing N—H⋯N and N—H⋯O hydrogen bonds.
[Figure 7]
Figure 7
A general view of the packing in the unit cell of the title compound with C—H⋯π inter­actions shown as dashed lines.

A Hirshfeld surface analysis was performed to visualize the inter­molecular inter­actions, and the accompanying two-dimensional fingerprint plots were generated with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). Fig. 8[link] depicts the Hirshfeld surface plotted over dnorm in the range −0.5859 to 1.4054 a.u. N—H⋯N and N—H⋯O contacts appear as red spots on the Hirshfeld surface.

[Figure 8]
Figure 8
Front (a) and back (b) sides of the three-dimensional Hirshfeld surface of the title compound mapped over dnorm, with a fixed colour scale of −0.5859 to 1.4054 a.u.

The full two-dimensional fingerprint plot and those delineated into the major contributions are shown in Fig. 9[link]: the H⋯H inter­actions (33.1%) are the major factor in the crystal packing, with O⋯H/H⋯O (16.3%), N⋯H/H⋯N (12.1%), Br⋯H/H⋯Br (11.5%) and C⋯H/H⋯C (10.6%) inter­actions representing the next highest contributions. Other contributions listed in Table 3[link] are less than 4.0%.

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound

Contact Percentage contribution
H⋯H 33.1
O⋯H/H⋯O 16.3
N⋯H/H⋯N 12.1
Br⋯H/H⋯Br 11.5
C⋯H/H⋯C 10.6
Br⋯O/O⋯Br 4.0
O⋯C/C⋯O 2.8
Br⋯Br 2.5
Br⋯C/C⋯Br 1.9
O⋯O 1.5
Br⋯N/N⋯Br 1.2
N⋯C/C⋯N 1.0
O⋯N/N⋯O 0.8
N⋯N 0.5
C⋯C 0.3
[Figure 9]
Figure 9
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) N⋯H/H⋯N, (e) Br⋯H/H⋯Br and (f) C⋯H/H⋯C inter­actions. [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

A survey of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using 2-amino-6-methyl-4H-pyran-3-carbo­nitrile as the main skeleton revealed the presence of three structures, CSD refcodes WIMBEC02 (I; Naghiyev, Grishina et al., 2021[Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Akkurt, M., Huseynova, A. T., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 739-743.]), HIRNUS (II; Athimoolam et al., 2007[Athimoolam, S., Devi, N. S., Bahadur, S. A., Kannan, R. S. & Perumal, S. (2007). Acta Cryst. E63, o4680-o4681.]) and JEGWEX (III; Lokaj et al., 1990[Lokaj, J., Kettmann, V., Pavelčík, F., Ilavský, D. & Marchalín, Š. (1990). Acta Cryst. C46, 788-791.]).

In the crystal of I, the mol­ecular conformation is maintained by an intra­molecular C—H⋯O inter­action, generating a S(6) ring motif. The mol­ecules are linked by pairs of N—H⋯O hydrogen bonds into ribbons extending along the b-axis direction and consisting of R22(8) and R22(14) rings. Between the ribbons, there are weak van der Waals contacts.

In the crystal of II, the six-membered pyran ring adopts a conformation close to a flattened boat, as in the title structure. The mol­ecules are joined by pairs of N—H⋯N hydrogen bonds into dimers, those are linked by N—H⋯O contacts to form ribbons along the a-axis direction.

In the crystal of III, the pyran ring is nearly planar. The mol­ecules are joined by pairs of N—H⋯N hydrogen bonds into centrosymmetric dimers, which are linked by N—H⋯O contacts into ribbons along the c-axis direction.

5. Synthesis and crystallization

The title compound was synthesized using the reported procedure (Rad-Moghadam & Youseftabar-Miri, 2011[Rad-Moghadam, K. & Youseftabar-Miri, L. (2011). Tetrahedron, 67, 5693-5699.]), and colourless crystals were obtained upon isothermal recrystallization from an ethanol/water (3:1) solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The Br1 and Br1′ atoms connected to the C5 and C7 atoms have occupancy ratios of 0.9676 (11):0.0324 (11). EXYZ and EADP instructions were used to refine the positional and displacement parameters of C5, C7 and their counterparts C5′, C7′. The H atoms of the NH and NH2 groups were located in a difference map, and their positional parameters were allowed to freely refine [N1—H1 = 0.88 (3), N8—H8A = 0.88 (3) and N8—H8B = 0.86 (3) Å], but their isotropic displacement parameters were constrained to take a value of 1.2Ueq(N). All H atoms bound to C atoms were positioned geometrically and refined as riding with C—H = 0.95 (aromatic), 0.99 (methyl­ene) and 0.98 Å (meth­yl), withUiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all others.

Table 4
Experimental details

Crystal data
Chemical formula C17H14BrN3O4
Mr 404.22
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 9.3880 (9), 12.2260 (12), 28.693 (3)
V3) 3293.3 (6)
Z 8
Radiation type Synchrotron, λ = 0.74500 Å
μ (mm−1) 2.84
Crystal size (mm) 0.15 × 0.12 × 0.10
 
Data collection
Diffractometer Rayonix SX-165 CCD
Absorption correction Multi-scan (SCALA; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.])
Tmin, Tmax 0.626, 0.716
No. of measured, independent and observed [I > 2σ(I)] reflections 29648, 4526, 4225
Rint 0.058
(sin θ/λ)max−1) 0.692
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.091, 1.13
No. of reflections 4526
No. of parameters 248
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.79, −0.66
Computer programs: Marccd (Doyle, 2011[Doyle, R. A. (2011). Marccd software manual. Rayonix LLC, Evanston, IL 60201, USA.]), iMosflm (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: Marccd (Doyle, 2011); cell refinement: iMosflm (Battye et al., 2011); data reduction: iMosflm (Battye et al., 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

Ethyl 2'-amino-5-bromo-3'-cyano-6'-methyl-2-oxospiro[indoline-3,4'-pyran]-5'-carboxylate top
Crystal data top
C17H14BrN3O4Dx = 1.631 Mg m3
Mr = 404.22Synchrotron radiation, λ = 0.74500 Å
Orthorhombic, PbcaCell parameters from 1000 reflections
a = 9.3880 (9) Åθ = 1.5–25.0°
b = 12.2260 (12) ŵ = 2.84 mm1
c = 28.693 (3) ÅT = 100 K
V = 3293.3 (6) Å3Prism, colourless
Z = 80.15 × 0.12 × 0.10 mm
F(000) = 1632
Data collection top
Rayonix SX-165 CCD
diffractometer
4225 reflections with I > 2σ(I)
/f scanRint = 0.058
Absorption correction: multi-scan
(Scala; Evans, 2006)
θmax = 31.0°, θmin = 1.5°
Tmin = 0.626, Tmax = 0.716h = 1212
29648 measured reflectionsk = 1614
4526 independent reflectionsl = 3939
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.017P)2 + 5.6891P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.091(Δ/σ)max = 0.002
S = 1.13Δρmax = 0.79 e Å3
4526 reflectionsΔρmin = 0.66 e Å3
248 parametersExtinction correction: SHELXL-2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0033 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.62887 (3)0.85694 (2)0.50801 (2)0.02994 (10)0.9676 (11)
Br1'0.8404 (7)0.5117 (6)0.4176 (2)0.025 (2)0.0324 (11)
O10.18714 (16)0.81785 (13)0.30258 (5)0.0224 (3)
O20.46032 (16)0.57274 (12)0.27537 (5)0.0218 (3)
O30.12303 (17)0.54444 (14)0.39298 (6)0.0273 (3)
O40.35898 (17)0.51716 (13)0.38771 (6)0.0247 (3)
N10.62336 (19)0.57936 (15)0.33512 (6)0.0221 (4)
H10.678 (3)0.524 (2)0.3268 (10)0.026*
C20.5028 (2)0.60843 (16)0.31277 (7)0.0187 (4)
C30.4272 (2)0.69936 (16)0.34194 (7)0.0165 (3)
C3A0.5230 (2)0.70400 (16)0.38470 (7)0.0183 (4)
C40.5179 (2)0.77196 (17)0.42322 (7)0.0212 (4)
H40.4421270.8224160.4275510.025*
C50.6285 (2)0.76336 (19)0.45537 (7)0.0248 (4)0.9676 (11)
C5'0.6285 (2)0.76336 (19)0.45537 (7)0.0248 (4)0.0324 (11)
H5'0.6276630.8092770.4820820.030*0.0324 (11)
C60.7401 (2)0.6898 (2)0.44967 (8)0.0266 (4)
H60.8122670.6847710.4727820.032*
C70.7467 (2)0.62349 (19)0.41036 (8)0.0254 (4)0.9676 (11)
H70.8227840.5734060.4058300.031*0.9676 (11)
C7'0.7467 (2)0.62349 (19)0.41036 (8)0.0254 (4)0.0324 (11)
C7A0.6377 (2)0.63345 (17)0.37805 (7)0.0210 (4)
C80.3205 (2)0.86078 (17)0.29895 (7)0.0192 (4)
N80.3187 (2)0.95830 (15)0.27841 (7)0.0223 (4)
H8A0.396 (3)0.987 (2)0.2662 (10)0.027*
H8B0.240 (3)0.988 (2)0.2695 (9)0.027*
C90.4361 (2)0.80761 (16)0.31652 (7)0.0176 (4)
C100.2714 (2)0.66972 (16)0.34957 (7)0.0185 (4)
C110.1654 (2)0.72529 (17)0.32916 (7)0.0201 (4)
C120.5680 (2)0.86311 (16)0.31568 (7)0.0206 (4)
N120.6748 (2)0.90831 (17)0.31616 (7)0.0298 (4)
C130.2387 (2)0.57211 (17)0.37850 (7)0.0206 (4)
C140.3525 (3)0.42971 (18)0.42180 (8)0.0272 (5)
H14A0.3191990.3611860.4070020.033*
H14B0.2859160.4490440.4472480.033*
C150.5010 (3)0.4153 (2)0.44064 (11)0.0428 (7)
H15A0.5013760.3565870.4638760.064*
H15B0.5325130.4836670.4552180.064*
H15C0.5657450.3963950.4150960.064*
C160.0088 (2)0.7030 (2)0.32966 (8)0.0279 (5)
H16A0.0074510.6245990.3344480.042*
H16B0.0328550.7253760.2998390.042*
H16C0.0357840.7443060.3550190.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02753 (14)0.03873 (16)0.02357 (13)0.00819 (10)0.00248 (9)0.00799 (9)
Br1'0.021 (3)0.028 (4)0.025 (3)0.008 (3)0.001 (2)0.008 (2)
O10.0160 (7)0.0240 (7)0.0273 (7)0.0005 (6)0.0001 (6)0.0033 (6)
O20.0213 (7)0.0214 (7)0.0228 (7)0.0018 (6)0.0026 (5)0.0041 (5)
O30.0234 (8)0.0299 (8)0.0286 (8)0.0064 (6)0.0053 (6)0.0022 (6)
O40.0241 (8)0.0206 (7)0.0295 (8)0.0008 (6)0.0050 (6)0.0057 (6)
N10.0205 (8)0.0208 (8)0.0249 (8)0.0054 (7)0.0016 (7)0.0008 (7)
C20.0174 (9)0.0164 (8)0.0223 (9)0.0009 (7)0.0039 (7)0.0017 (7)
C30.0143 (8)0.0153 (8)0.0199 (8)0.0001 (7)0.0014 (7)0.0004 (7)
C3A0.0167 (8)0.0178 (8)0.0203 (9)0.0020 (7)0.0005 (7)0.0020 (7)
C40.0195 (9)0.0222 (9)0.0220 (9)0.0029 (8)0.0010 (7)0.0007 (7)
C50.0231 (10)0.0312 (11)0.0200 (9)0.0065 (9)0.0006 (8)0.0013 (8)
C5'0.0231 (10)0.0312 (11)0.0200 (9)0.0065 (9)0.0006 (8)0.0013 (8)
C60.0221 (10)0.0331 (11)0.0247 (10)0.0037 (9)0.0041 (8)0.0053 (9)
C70.0190 (9)0.0286 (10)0.0287 (10)0.0027 (8)0.0010 (8)0.0054 (8)
C7'0.0190 (9)0.0286 (10)0.0287 (10)0.0027 (8)0.0010 (8)0.0054 (8)
C7A0.0196 (9)0.0203 (9)0.0232 (9)0.0005 (8)0.0010 (7)0.0028 (7)
C80.0182 (9)0.0204 (9)0.0189 (9)0.0007 (7)0.0010 (7)0.0017 (7)
N80.0191 (8)0.0221 (8)0.0257 (9)0.0020 (7)0.0005 (7)0.0049 (7)
C90.0156 (8)0.0164 (8)0.0210 (9)0.0018 (7)0.0003 (7)0.0006 (7)
C100.0174 (9)0.0172 (8)0.0208 (8)0.0027 (7)0.0031 (7)0.0011 (7)
C110.0168 (9)0.0217 (9)0.0219 (9)0.0025 (7)0.0024 (7)0.0026 (7)
C120.0233 (10)0.0169 (8)0.0216 (9)0.0007 (8)0.0019 (7)0.0018 (7)
N120.0260 (10)0.0294 (10)0.0339 (10)0.0095 (8)0.0049 (8)0.0070 (8)
C130.0225 (9)0.0191 (9)0.0200 (9)0.0032 (8)0.0024 (7)0.0036 (7)
C140.0331 (12)0.0201 (9)0.0284 (10)0.0024 (9)0.0039 (9)0.0054 (8)
C150.0414 (15)0.0389 (14)0.0483 (16)0.0018 (12)0.0035 (12)0.0206 (12)
C160.0160 (9)0.0327 (11)0.0350 (12)0.0029 (9)0.0024 (8)0.0039 (9)
Geometric parameters (Å, º) top
Br1—C51.895 (2)C6—C71.390 (3)
Br1'—C7'1.639 (7)C6—H60.9500
O1—C81.361 (2)C7—C7A1.386 (3)
O1—C111.380 (3)C7—H70.9500
O2—C21.225 (3)C7'—C7A1.386 (3)
O3—C131.211 (3)C8—N81.330 (3)
O4—C131.340 (3)C8—C91.362 (3)
O4—C141.450 (3)N8—H8A0.88 (3)
N1—C21.349 (3)N8—H8B0.86 (3)
N1—C7A1.404 (3)C9—C121.412 (3)
N1—H10.88 (3)C10—C111.340 (3)
C2—C31.562 (3)C10—C131.486 (3)
C3—C91.513 (3)C11—C161.494 (3)
C3—C3A1.523 (3)C12—N121.146 (3)
C3—C101.523 (3)C14—C151.505 (4)
C3A—C41.383 (3)C14—H14A0.9900
C3A—C7A1.393 (3)C14—H14B0.9900
C4—C5'1.393 (3)C15—H15A0.9800
C4—C51.393 (3)C15—H15B0.9800
C4—H40.9500C15—H15C0.9800
C5—C61.390 (3)C16—H16A0.9800
C5'—C61.390 (3)C16—H16B0.9800
C5'—H5'0.9500C16—H16C0.9800
C6—C7'1.390 (3)
C8—O1—C11119.65 (16)C7—C7A—N1128.0 (2)
C13—O4—C14117.86 (17)C3A—C7A—N1109.74 (18)
C2—N1—C7A111.92 (17)N8—C8—O1111.60 (18)
C2—N1—H1124.4 (19)N8—C8—C9127.0 (2)
C7A—N1—H1122.7 (18)O1—C8—C9121.37 (18)
O2—C2—N1126.56 (19)C8—N8—H8A122.0 (19)
O2—C2—C3125.12 (18)C8—N8—H8B121 (2)
N1—C2—C3108.30 (17)H8A—N8—H8B115 (3)
C9—C3—C3A108.85 (16)C8—C9—C12117.58 (18)
C9—C3—C10109.30 (16)C8—C9—C3123.48 (18)
C3A—C3—C10117.41 (16)C12—C9—C3118.49 (17)
C9—C3—C2109.83 (15)C11—C10—C13119.88 (18)
C3A—C3—C2100.96 (16)C11—C10—C3122.01 (18)
C10—C3—C2110.12 (16)C13—C10—C3118.02 (17)
C4—C3A—C7A120.55 (19)C10—C11—O1123.18 (18)
C4—C3A—C3130.23 (19)C10—C11—C16129.3 (2)
C7A—C3A—C3108.85 (17)O1—C11—C16107.50 (18)
C3A—C4—C5'117.3 (2)N12—C12—C9178.3 (2)
C3A—C4—C5117.3 (2)O3—C13—O4123.23 (19)
C3A—C4—H4121.4O3—C13—C10126.9 (2)
C5—C4—H4121.4O4—C13—C10109.82 (17)
C6—C5—C4122.2 (2)O4—C14—C15106.84 (19)
C6—C5—Br1118.89 (16)O4—C14—H14A110.4
C4—C5—Br1118.93 (17)C15—C14—H14A110.4
C6—C5'—C4122.2 (2)O4—C14—H14B110.4
C6—C5'—H5'118.9C15—C14—H14B110.4
C4—C5'—H5'118.9H14A—C14—H14B108.6
C7—C6—C5120.4 (2)C14—C15—H15A109.5
C7'—C6—C5'120.4 (2)C14—C15—H15B109.5
C7—C6—H6119.8H15A—C15—H15B109.5
C5—C6—H6119.8C14—C15—H15C109.5
C7A—C7—C6117.3 (2)H15A—C15—H15C109.5
C7A—C7—H7121.3H15B—C15—H15C109.5
C6—C7—H7121.3C11—C16—H16A109.5
C7A—C7'—C6117.3 (2)C11—C16—H16B109.5
C7A—C7'—Br1'123.7 (3)H16A—C16—H16B109.5
C6—C7'—Br1'114.0 (3)C11—C16—H16C109.5
C7'—C7A—C3A122.2 (2)H16A—C16—H16C109.5
C7—C7A—C3A122.2 (2)H16B—C16—H16C109.5
C7'—C7A—N1128.0 (2)
C7A—N1—C2—O2178.0 (2)C4—C3A—C7A—N1175.73 (18)
C7A—N1—C2—C33.9 (2)C3—C3A—C7A—N12.1 (2)
O2—C2—C3—C968.0 (2)C2—N1—C7A—C7'179.5 (2)
N1—C2—C3—C9110.08 (18)C2—N1—C7A—C7179.5 (2)
O2—C2—C3—C3A177.15 (19)C2—N1—C7A—C3A1.2 (2)
N1—C2—C3—C3A4.7 (2)C11—O1—C8—N8170.14 (17)
O2—C2—C3—C1052.4 (3)C11—O1—C8—C97.7 (3)
N1—C2—C3—C10129.51 (18)N8—C8—C9—C124.1 (3)
C9—C3—C3A—C461.3 (3)O1—C8—C9—C12173.39 (18)
C10—C3—C3A—C463.5 (3)N8—C8—C9—C3176.28 (19)
C2—C3—C3A—C4176.8 (2)O1—C8—C9—C31.2 (3)
C9—C3—C3A—C7A111.51 (18)C3A—C3—C9—C8136.6 (2)
C10—C3—C3A—C7A123.70 (19)C10—C3—C9—C87.1 (3)
C2—C3—C3A—C7A4.0 (2)C2—C3—C9—C8113.8 (2)
C7A—C3A—C4—C5'2.4 (3)C3A—C3—C9—C1235.6 (2)
C3—C3A—C4—C5'174.5 (2)C10—C3—C9—C12165.02 (18)
C7A—C3A—C4—C52.4 (3)C2—C3—C9—C1274.1 (2)
C3—C3A—C4—C5174.5 (2)C9—C3—C10—C1110.0 (3)
C3A—C4—C5—C60.2 (3)C3A—C3—C10—C11134.6 (2)
C3A—C4—C5—Br1178.57 (15)C2—C3—C10—C11110.7 (2)
C3A—C4—C5'—C60.2 (3)C9—C3—C10—C13173.50 (16)
C4—C5—C6—C71.8 (3)C3A—C3—C10—C1348.9 (2)
Br1—C5—C6—C7176.99 (17)C2—C3—C10—C1365.8 (2)
C4—C5'—C6—C7'1.8 (3)C13—C10—C11—O1178.68 (18)
C5—C6—C7—C7A0.7 (3)C3—C10—C11—O14.9 (3)
C5'—C6—C7'—C7A0.7 (3)C13—C10—C11—C161.6 (3)
C5'—C6—C7'—Br1'156.6 (3)C3—C10—C11—C16174.8 (2)
C6—C7'—C7A—C3A2.0 (3)C8—O1—C11—C104.6 (3)
Br1'—C7'—C7A—C3A151.5 (3)C8—O1—C11—C16175.58 (18)
C6—C7'—C7A—N1177.2 (2)C14—O4—C13—O38.9 (3)
Br1'—C7'—C7A—N129.3 (4)C14—O4—C13—C10170.02 (17)
C6—C7—C7A—C3A2.0 (3)C11—C10—C13—O313.4 (3)
C6—C7—C7A—N1177.2 (2)C3—C10—C13—O3170.1 (2)
C4—C3A—C7A—C7'3.6 (3)C11—C10—C13—O4167.81 (18)
C3—C3A—C7A—C7'177.22 (19)C3—C10—C13—O48.8 (2)
C4—C3A—C7A—C73.6 (3)C13—O4—C14—C15156.2 (2)
C3—C3A—C7A—C7177.22 (19)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the 4H-pyran ring (O1/C3/C8-C11) and the benzene ring (C3A/C4–C7/C7A) of the 2,3-dihydro-1H-indole ring system.
D—H···AD—HH···AD···AD—H···A
N1—H1···N12i0.88 (3)2.00 (3)2.874 (3)170 (2)
N8—H8A···O2ii0.88 (3)2.08 (3)2.940 (2)165 (3)
N8—H8B···O2iii0.86 (3)2.15 (3)2.971 (2)158 (2)
C16—H16A···O30.982.302.865 (3)116
C14—H14A···Cg2iv0.992.923.773 (3)145
C15—H15B···Cg30.982.993.729 (3)133
C15—H15B···Cg40.982.993.729 (3)133
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y1/2, z.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
H14B···Br13.07-1/2 + x, 3/2 - y, 1 - z
H6···Br13.071/2 + x, 3/2 - y, 1 - z
H15A···Br12.991 - x, 1 - y, 1 - z
N12···H12.003/2 - x, 1/2 + y, z
Br1'···O32.7751 + x, y, z
O2···H8A2.081 - x, -1/2 + y, 1/2 - z
N12···H8B2.711/2 + x, y, 1/2 - z
O2···H8B2.151/2 - x, -1/2 + y, z
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound top
ContactPercentage contribution
H···H33.1
O···H/H···O16.3
N···H/H···N12.1
Br···H/H···Br11.5
C···H/H···C10.6
Br···O/O···Br4.0
O···C/C···O2.8
Br···Br2.5
Br···C/C···Br1.9
O···O1.5
Br···N/N···Br1.2
N···C/C···N1.0
O···N/N···O0.8
N···N0.5
C···C0.3
 

Acknowledgements

Authors contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK, FNN and IGM; investigation, ANK, MA and NUV; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, ANK and IGM; funding acquisition, VNK, AB and ANK; resources, AB, VNK and NUV; supervision, ANK and MA.

Funding information

This paper was supported by Baku State University and the Ministry of Science and Higher Education of the Russian Federation [award No. 075–03–2020-223 (FSSF-2020–0017)].

References

First citationAliyeva, K. N., Maharramov, A. M., Allahverdiyev, M. A., Gurbanov, A. V. & Brito, I. (2011). Acta Cryst. E67, o2293.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAthimoolam, S., Devi, N. S., Bahadur, S. A., Kannan, R. S. & Perumal, S. (2007). Acta Cryst. E63, o4680–o4681.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBattye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDoyle, R. A. (2011). Marccd software manual. Rayonix LLC, Evanston, IL 60201, USA.  Google Scholar
First citationDuruskari, G. S., Asgarova, A. R., Aliyeva, K. N., Musayeva, S. A. & Maharramov, A. M. (2020). Russ. J. Org. Chem. 56, 712–715.  Web of Science CrossRef CAS Google Scholar
First citationEdmondson, S., Danishefsky, S. J., Sepp-Lorenzino, L. & Rosen, N. (1999). J. Am. Chem. Soc. 121, 2147–2155.  Web of Science CrossRef CAS Google Scholar
First citationEvans, P. (2006). Acta Cryst. D62, 72–82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKhalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525–529.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLokaj, J., Kettmann, V., Pavelčík, F., Ilavský, D. & Marchalín, Š. (1990). Acta Cryst. C46, 788–791.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMa, J. & Hecht, S. M. (2004). Chem. Commun. pp. 1190–1191.  CrossRef Google Scholar
First citationMamedov, I. G., Khrustalev, V. N., Akkurt, M., Novikov, A. P., Asgarova, A. R., Aliyeva, K. N. & Akobirshoeva, A. A. (2022). Acta Cryst. E78, 291–296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235–2248.  Web of Science CSD CrossRef CAS Google Scholar
First citationNaghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Akkurt, M., Huseynova, A. T., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 739–743.  CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554–558.  CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516–521.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRad-Moghadam, K. & Youseftabar-Miri, L. (2011). Tetrahedron, 67, 5693–5699.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationViswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds