research communications
and Hirshfeld surface analysis of ethyl 2′-amino-5-bromo-3′-cyano-6′-methyl-2-oxospiro[indoline-3,4′-pyran]-5′-carboxylate
aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, e"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np
The crystal used for 17H14BrN3O4, an admixture [0.0324 (11)] of its 7-bromo isomer. The 2,3-dihydro-1H-indole ring system is nearly planar, while the conformation of the 4H-pyran ring is close to a flattened boat. The mean planes of these fragments form a dihedral angle of 86.67 (9)°. The carboxylate group lies near the plane of 4H-pyran, its orientation is stabilized by an intramolecular C—H⋯O contact. In the crystal, the molecules are connected into layers by N—H⋯N and N—H⋯O hydrogen bonds. The most important contributions to the crystal packing are from H⋯H (33.1%), O⋯H/H⋯O (16.3%), N⋯H/H⋯N (12.1%), Br⋯H/H⋯Br (11.5%) and C⋯H/H⋯C (10.6%) interactions.
contained, along with the title compound, CKeywords: crystal structure; spiro-oxindoles; hydrogen bonds; van der Waals interactions; Hirshfeld surface analysis.
CCDC reference: 2202347
1. Chemical context
The reactions that form C—C, C—N and C—O bonds play critical roles in various applications and in different fields of chemistry (Aliyeva et al., 2011; Zubkov et al., 2018; Viswanathan et al., 2019; Duruskari et al., 2020). Nitrogen heterocycles, especially those comprising indole fragments, are parts of various natural products and medicinal agents. This fragment constitutes the core of spiro-oxindole which exhibit a broad spectrum of biological activity (Edmondson et al., 1999; Ma & Hecht, 2004). The main synthetic pathway for the construction of spiro[4H-pyran-oxindole] compounds is based on three-component reactions (Fig. 1) of two 1,3-dicarbonyl (or other active methylene) compounds with isatin derivatives (Rad-Moghadam & Youseftabar-Miri, 2011).
Thus, in the framework of our ongoing structural studies (Naghiyev, Akkurt et al., 2020; Naghiyev, Cisterna et al., 2020; Naghiyev, Tereshina et al., 2021; Naghiyev et al., 2022; Khalilov et al., 2022; Mamedov et al., 2022), we report the and Hirshfeld surface analysis of the title compound.
2. Structural commentary
The crystal used for ). The 2,3-dihydro-1H-indole ring system is nearly planar with the largest deviation from planarity being 0.048 (2) Å for C3A, while the conformation of the 4H-pyran ring is close to a flattened boat [puckering parameters (Cremer & Pople, 1975): QT = 0.105 (2) Å, θ = 79.8 (11)° and φ = 196.9 (12)°], with the C8–C11 atoms forming the basal plane and O1 and C3 deviating from this plane by 0.063 (1) and 0.362 (2) Å, respectively. The mean planes of the 2,3-dihydro-1H-indole system and the 4H-pyran ring are approximately perpendicular to each other, forming a dihedral angle of 86.67 (9)°. The carboxylate group lies near the plane of 4H-pyran, with O3—C13—C10—C11 and O4—C13—C10—C3 torsion angles of −13.4 (3) and −8.8 (2)°, respectively. An intramolecular C16—H16A⋯O3 contact stabilizes the conformation of the molecule (Fig. 2, Table 1), generating an S(6) ring motif (Bernstein et al., 1995).
contained, along with the title compound, an admixture of its 7-bromo isomer. That is why the Br1 atom is distributed over two positions, at C5 and C7, in a 0.9676 (11):0.0324 (11) ratio, whereas the positions of other atoms of these isomers coincide with each other (Fig. 23. Supramolecular features and Hirshfeld surface analysis
In the crystal, the molecules are linked by N—H⋯N and N—H⋯O hydrogen bonds, forming double layers parallel to (001) (Table 1; Figs. 3–6). In addition, C—H⋯π interactions involving the centroids of the 4H-pyran and benzene rings link adjacent molecules within these layers (Table 1; Fig. 7). The layers are joined by van der Waals interactions (Table 2).
|
A Hirshfeld surface analysis was performed to visualize the intermolecular interactions, and the accompanying two-dimensional fingerprint plots were generated with CrystalExplorer17 (Turner et al., 2017). Fig. 8 depicts the Hirshfeld surface plotted over dnorm in the range −0.5859 to 1.4054 a.u. N—H⋯N and N—H⋯O contacts appear as red spots on the Hirshfeld surface.
The full two-dimensional fingerprint plot and those delineated into the major contributions are shown in Fig. 9: the H⋯H interactions (33.1%) are the major factor in the crystal packing, with O⋯H/H⋯O (16.3%), N⋯H/H⋯N (12.1%), Br⋯H/H⋯Br (11.5%) and C⋯H/H⋯C (10.6%) interactions representing the next highest contributions. Other contributions listed in Table 3 are less than 4.0%.
|
4. Database survey
A survey of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) using 2-amino-6-methyl-4H-pyran-3-carbonitrile as the main skeleton revealed the presence of three structures, CSD refcodes WIMBEC02 (I; Naghiyev, Grishina et al., 2021), HIRNUS (II; Athimoolam et al., 2007) and JEGWEX (III; Lokaj et al., 1990).
In the crystal of I, the molecular conformation is maintained by an intramolecular C—H⋯O interaction, generating a S(6) ring motif. The molecules are linked by pairs of N—H⋯O hydrogen bonds into ribbons extending along the b-axis direction and consisting of R22(8) and R22(14) rings. Between the ribbons, there are weak van der Waals contacts.
In the crystal of II, the six-membered pyran ring adopts a conformation close to a flattened boat, as in the title structure. The molecules are joined by pairs of N—H⋯N hydrogen bonds into dimers, those are linked by N—H⋯O contacts to form ribbons along the a-axis direction.
In the crystal of III, the pyran ring is nearly planar. The molecules are joined by pairs of N—H⋯N hydrogen bonds into centrosymmetric dimers, which are linked by N—H⋯O contacts into ribbons along the c-axis direction.
5. Synthesis and crystallization
The title compound was synthesized using the reported procedure (Rad-Moghadam & Youseftabar-Miri, 2011), and colourless crystals were obtained upon isothermal recrystallization from an ethanol/water (3:1) solution.
6. Refinement
Crystal data, data collection and structure . The Br1 and Br1′ atoms connected to the C5 and C7 atoms have occupancy ratios of 0.9676 (11):0.0324 (11). EXYZ and EADP instructions were used to refine the positional and displacement parameters of C5, C7 and their counterparts C5′, C7′. The H atoms of the NH and NH2 groups were located in a difference map, and their positional parameters were allowed to freely refine [N1—H1 = 0.88 (3), N8—H8A = 0.88 (3) and N8—H8B = 0.86 (3) Å], but their isotropic displacement parameters were constrained to take a value of 1.2Ueq(N). All H atoms bound to C atoms were positioned geometrically and refined as riding with C—H = 0.95 (aromatic), 0.99 (methylene) and 0.98 Å (methyl), withUiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all others.
details are summarized in Table 4
|
Supporting information
CCDC reference: 2202347
https://doi.org/10.1107/S2056989022008271/yk2174sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022008271/yk2174Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022008271/yk2174Isup3.cml
Data collection: Marccd (Doyle, 2011); cell
iMosflm (Battye et al., 2011); data reduction: iMosflm (Battye et al., 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C17H14BrN3O4 | Dx = 1.631 Mg m−3 |
Mr = 404.22 | Synchrotron radiation, λ = 0.74500 Å |
Orthorhombic, Pbca | Cell parameters from 1000 reflections |
a = 9.3880 (9) Å | θ = 1.5–25.0° |
b = 12.2260 (12) Å | µ = 2.84 mm−1 |
c = 28.693 (3) Å | T = 100 K |
V = 3293.3 (6) Å3 | Prism, colourless |
Z = 8 | 0.15 × 0.12 × 0.10 mm |
F(000) = 1632 |
Rayonix SX-165 CCD diffractometer | 4225 reflections with I > 2σ(I) |
/f scan | Rint = 0.058 |
Absorption correction: multi-scan (Scala; Evans, 2006) | θmax = 31.0°, θmin = 1.5° |
Tmin = 0.626, Tmax = 0.716 | h = −12→12 |
29648 measured reflections | k = −16→14 |
4526 independent reflections | l = −39→39 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.045 | w = 1/[σ2(Fo2) + (0.017P)2 + 5.6891P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.091 | (Δ/σ)max = 0.002 |
S = 1.13 | Δρmax = 0.79 e Å−3 |
4526 reflections | Δρmin = −0.66 e Å−3 |
248 parameters | Extinction correction: SHELXL-2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0033 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1 | 0.62887 (3) | 0.85694 (2) | 0.50801 (2) | 0.02994 (10) | 0.9676 (11) |
Br1' | 0.8404 (7) | 0.5117 (6) | 0.4176 (2) | 0.025 (2) | 0.0324 (11) |
O1 | 0.18714 (16) | 0.81785 (13) | 0.30258 (5) | 0.0224 (3) | |
O2 | 0.46032 (16) | 0.57274 (12) | 0.27537 (5) | 0.0218 (3) | |
O3 | 0.12303 (17) | 0.54444 (14) | 0.39298 (6) | 0.0273 (3) | |
O4 | 0.35898 (17) | 0.51716 (13) | 0.38771 (6) | 0.0247 (3) | |
N1 | 0.62336 (19) | 0.57936 (15) | 0.33512 (6) | 0.0221 (4) | |
H1 | 0.678 (3) | 0.524 (2) | 0.3268 (10) | 0.026* | |
C2 | 0.5028 (2) | 0.60843 (16) | 0.31277 (7) | 0.0187 (4) | |
C3 | 0.4272 (2) | 0.69936 (16) | 0.34194 (7) | 0.0165 (3) | |
C3A | 0.5230 (2) | 0.70400 (16) | 0.38470 (7) | 0.0183 (4) | |
C4 | 0.5179 (2) | 0.77196 (17) | 0.42322 (7) | 0.0212 (4) | |
H4 | 0.442127 | 0.822416 | 0.427551 | 0.025* | |
C5 | 0.6285 (2) | 0.76336 (19) | 0.45537 (7) | 0.0248 (4) | 0.9676 (11) |
C5' | 0.6285 (2) | 0.76336 (19) | 0.45537 (7) | 0.0248 (4) | 0.0324 (11) |
H5' | 0.627663 | 0.809277 | 0.482082 | 0.030* | 0.0324 (11) |
C6 | 0.7401 (2) | 0.6898 (2) | 0.44967 (8) | 0.0266 (4) | |
H6 | 0.812267 | 0.684771 | 0.472782 | 0.032* | |
C7 | 0.7467 (2) | 0.62349 (19) | 0.41036 (8) | 0.0254 (4) | 0.9676 (11) |
H7 | 0.822784 | 0.573406 | 0.405830 | 0.031* | 0.9676 (11) |
C7' | 0.7467 (2) | 0.62349 (19) | 0.41036 (8) | 0.0254 (4) | 0.0324 (11) |
C7A | 0.6377 (2) | 0.63345 (17) | 0.37805 (7) | 0.0210 (4) | |
C8 | 0.3205 (2) | 0.86078 (17) | 0.29895 (7) | 0.0192 (4) | |
N8 | 0.3187 (2) | 0.95830 (15) | 0.27841 (7) | 0.0223 (4) | |
H8A | 0.396 (3) | 0.987 (2) | 0.2662 (10) | 0.027* | |
H8B | 0.240 (3) | 0.988 (2) | 0.2695 (9) | 0.027* | |
C9 | 0.4361 (2) | 0.80761 (16) | 0.31652 (7) | 0.0176 (4) | |
C10 | 0.2714 (2) | 0.66972 (16) | 0.34957 (7) | 0.0185 (4) | |
C11 | 0.1654 (2) | 0.72529 (17) | 0.32916 (7) | 0.0201 (4) | |
C12 | 0.5680 (2) | 0.86311 (16) | 0.31568 (7) | 0.0206 (4) | |
N12 | 0.6748 (2) | 0.90831 (17) | 0.31616 (7) | 0.0298 (4) | |
C13 | 0.2387 (2) | 0.57211 (17) | 0.37850 (7) | 0.0206 (4) | |
C14 | 0.3525 (3) | 0.42971 (18) | 0.42180 (8) | 0.0272 (5) | |
H14A | 0.319199 | 0.361186 | 0.407002 | 0.033* | |
H14B | 0.285916 | 0.449044 | 0.447248 | 0.033* | |
C15 | 0.5010 (3) | 0.4153 (2) | 0.44064 (11) | 0.0428 (7) | |
H15A | 0.501376 | 0.356587 | 0.463876 | 0.064* | |
H15B | 0.532513 | 0.483667 | 0.455218 | 0.064* | |
H15C | 0.565745 | 0.396395 | 0.415096 | 0.064* | |
C16 | 0.0088 (2) | 0.7030 (2) | 0.32966 (8) | 0.0279 (5) | |
H16A | −0.007451 | 0.624599 | 0.334448 | 0.042* | |
H16B | −0.032855 | 0.725376 | 0.299839 | 0.042* | |
H16C | −0.035784 | 0.744306 | 0.355019 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02753 (14) | 0.03873 (16) | 0.02357 (13) | −0.00819 (10) | −0.00248 (9) | −0.00799 (9) |
Br1' | 0.021 (3) | 0.028 (4) | 0.025 (3) | 0.008 (3) | 0.001 (2) | 0.008 (2) |
O1 | 0.0160 (7) | 0.0240 (7) | 0.0273 (7) | −0.0005 (6) | −0.0001 (6) | 0.0033 (6) |
O2 | 0.0213 (7) | 0.0214 (7) | 0.0228 (7) | −0.0018 (6) | 0.0026 (5) | −0.0041 (5) |
O3 | 0.0234 (8) | 0.0299 (8) | 0.0286 (8) | −0.0064 (6) | 0.0053 (6) | 0.0022 (6) |
O4 | 0.0241 (8) | 0.0206 (7) | 0.0295 (8) | −0.0008 (6) | 0.0050 (6) | 0.0057 (6) |
N1 | 0.0205 (8) | 0.0208 (8) | 0.0249 (8) | 0.0054 (7) | 0.0016 (7) | −0.0008 (7) |
C2 | 0.0174 (9) | 0.0164 (8) | 0.0223 (9) | −0.0009 (7) | 0.0039 (7) | 0.0017 (7) |
C3 | 0.0143 (8) | 0.0153 (8) | 0.0199 (8) | 0.0001 (7) | 0.0014 (7) | 0.0004 (7) |
C3A | 0.0167 (8) | 0.0178 (8) | 0.0203 (9) | −0.0020 (7) | 0.0005 (7) | 0.0020 (7) |
C4 | 0.0195 (9) | 0.0222 (9) | 0.0220 (9) | −0.0029 (8) | 0.0010 (7) | −0.0007 (7) |
C5 | 0.0231 (10) | 0.0312 (11) | 0.0200 (9) | −0.0065 (9) | −0.0006 (8) | −0.0013 (8) |
C5' | 0.0231 (10) | 0.0312 (11) | 0.0200 (9) | −0.0065 (9) | −0.0006 (8) | −0.0013 (8) |
C6 | 0.0221 (10) | 0.0331 (11) | 0.0247 (10) | −0.0037 (9) | −0.0041 (8) | 0.0053 (9) |
C7 | 0.0190 (9) | 0.0286 (10) | 0.0287 (10) | 0.0027 (8) | −0.0010 (8) | 0.0054 (8) |
C7' | 0.0190 (9) | 0.0286 (10) | 0.0287 (10) | 0.0027 (8) | −0.0010 (8) | 0.0054 (8) |
C7A | 0.0196 (9) | 0.0203 (9) | 0.0232 (9) | −0.0005 (8) | 0.0010 (7) | 0.0028 (7) |
C8 | 0.0182 (9) | 0.0204 (9) | 0.0189 (9) | −0.0007 (7) | 0.0010 (7) | −0.0017 (7) |
N8 | 0.0191 (8) | 0.0221 (8) | 0.0257 (9) | 0.0020 (7) | −0.0005 (7) | 0.0049 (7) |
C9 | 0.0156 (8) | 0.0164 (8) | 0.0210 (9) | −0.0018 (7) | 0.0003 (7) | −0.0006 (7) |
C10 | 0.0174 (9) | 0.0172 (8) | 0.0208 (8) | −0.0027 (7) | 0.0031 (7) | −0.0011 (7) |
C11 | 0.0168 (9) | 0.0217 (9) | 0.0219 (9) | −0.0025 (7) | 0.0024 (7) | −0.0026 (7) |
C12 | 0.0233 (10) | 0.0169 (8) | 0.0216 (9) | −0.0007 (8) | −0.0019 (7) | 0.0018 (7) |
N12 | 0.0260 (10) | 0.0294 (10) | 0.0339 (10) | −0.0095 (8) | −0.0049 (8) | 0.0070 (8) |
C13 | 0.0225 (9) | 0.0191 (9) | 0.0200 (9) | −0.0032 (8) | 0.0024 (7) | −0.0036 (7) |
C14 | 0.0331 (12) | 0.0201 (9) | 0.0284 (10) | −0.0024 (9) | 0.0039 (9) | 0.0054 (8) |
C15 | 0.0414 (15) | 0.0389 (14) | 0.0483 (16) | −0.0018 (12) | −0.0035 (12) | 0.0206 (12) |
C16 | 0.0160 (9) | 0.0327 (11) | 0.0350 (12) | −0.0029 (9) | 0.0024 (8) | 0.0039 (9) |
Br1—C5 | 1.895 (2) | C6—C7 | 1.390 (3) |
Br1'—C7' | 1.639 (7) | C6—H6 | 0.9500 |
O1—C8 | 1.361 (2) | C7—C7A | 1.386 (3) |
O1—C11 | 1.380 (3) | C7—H7 | 0.9500 |
O2—C2 | 1.225 (3) | C7'—C7A | 1.386 (3) |
O3—C13 | 1.211 (3) | C8—N8 | 1.330 (3) |
O4—C13 | 1.340 (3) | C8—C9 | 1.362 (3) |
O4—C14 | 1.450 (3) | N8—H8A | 0.88 (3) |
N1—C2 | 1.349 (3) | N8—H8B | 0.86 (3) |
N1—C7A | 1.404 (3) | C9—C12 | 1.412 (3) |
N1—H1 | 0.88 (3) | C10—C11 | 1.340 (3) |
C2—C3 | 1.562 (3) | C10—C13 | 1.486 (3) |
C3—C9 | 1.513 (3) | C11—C16 | 1.494 (3) |
C3—C3A | 1.523 (3) | C12—N12 | 1.146 (3) |
C3—C10 | 1.523 (3) | C14—C15 | 1.505 (4) |
C3A—C4 | 1.383 (3) | C14—H14A | 0.9900 |
C3A—C7A | 1.393 (3) | C14—H14B | 0.9900 |
C4—C5' | 1.393 (3) | C15—H15A | 0.9800 |
C4—C5 | 1.393 (3) | C15—H15B | 0.9800 |
C4—H4 | 0.9500 | C15—H15C | 0.9800 |
C5—C6 | 1.390 (3) | C16—H16A | 0.9800 |
C5'—C6 | 1.390 (3) | C16—H16B | 0.9800 |
C5'—H5' | 0.9500 | C16—H16C | 0.9800 |
C6—C7' | 1.390 (3) | ||
C8—O1—C11 | 119.65 (16) | C7—C7A—N1 | 128.0 (2) |
C13—O4—C14 | 117.86 (17) | C3A—C7A—N1 | 109.74 (18) |
C2—N1—C7A | 111.92 (17) | N8—C8—O1 | 111.60 (18) |
C2—N1—H1 | 124.4 (19) | N8—C8—C9 | 127.0 (2) |
C7A—N1—H1 | 122.7 (18) | O1—C8—C9 | 121.37 (18) |
O2—C2—N1 | 126.56 (19) | C8—N8—H8A | 122.0 (19) |
O2—C2—C3 | 125.12 (18) | C8—N8—H8B | 121 (2) |
N1—C2—C3 | 108.30 (17) | H8A—N8—H8B | 115 (3) |
C9—C3—C3A | 108.85 (16) | C8—C9—C12 | 117.58 (18) |
C9—C3—C10 | 109.30 (16) | C8—C9—C3 | 123.48 (18) |
C3A—C3—C10 | 117.41 (16) | C12—C9—C3 | 118.49 (17) |
C9—C3—C2 | 109.83 (15) | C11—C10—C13 | 119.88 (18) |
C3A—C3—C2 | 100.96 (16) | C11—C10—C3 | 122.01 (18) |
C10—C3—C2 | 110.12 (16) | C13—C10—C3 | 118.02 (17) |
C4—C3A—C7A | 120.55 (19) | C10—C11—O1 | 123.18 (18) |
C4—C3A—C3 | 130.23 (19) | C10—C11—C16 | 129.3 (2) |
C7A—C3A—C3 | 108.85 (17) | O1—C11—C16 | 107.50 (18) |
C3A—C4—C5' | 117.3 (2) | N12—C12—C9 | 178.3 (2) |
C3A—C4—C5 | 117.3 (2) | O3—C13—O4 | 123.23 (19) |
C3A—C4—H4 | 121.4 | O3—C13—C10 | 126.9 (2) |
C5—C4—H4 | 121.4 | O4—C13—C10 | 109.82 (17) |
C6—C5—C4 | 122.2 (2) | O4—C14—C15 | 106.84 (19) |
C6—C5—Br1 | 118.89 (16) | O4—C14—H14A | 110.4 |
C4—C5—Br1 | 118.93 (17) | C15—C14—H14A | 110.4 |
C6—C5'—C4 | 122.2 (2) | O4—C14—H14B | 110.4 |
C6—C5'—H5' | 118.9 | C15—C14—H14B | 110.4 |
C4—C5'—H5' | 118.9 | H14A—C14—H14B | 108.6 |
C7—C6—C5 | 120.4 (2) | C14—C15—H15A | 109.5 |
C7'—C6—C5' | 120.4 (2) | C14—C15—H15B | 109.5 |
C7—C6—H6 | 119.8 | H15A—C15—H15B | 109.5 |
C5—C6—H6 | 119.8 | C14—C15—H15C | 109.5 |
C7A—C7—C6 | 117.3 (2) | H15A—C15—H15C | 109.5 |
C7A—C7—H7 | 121.3 | H15B—C15—H15C | 109.5 |
C6—C7—H7 | 121.3 | C11—C16—H16A | 109.5 |
C7A—C7'—C6 | 117.3 (2) | C11—C16—H16B | 109.5 |
C7A—C7'—Br1' | 123.7 (3) | H16A—C16—H16B | 109.5 |
C6—C7'—Br1' | 114.0 (3) | C11—C16—H16C | 109.5 |
C7'—C7A—C3A | 122.2 (2) | H16A—C16—H16C | 109.5 |
C7—C7A—C3A | 122.2 (2) | H16B—C16—H16C | 109.5 |
C7'—C7A—N1 | 128.0 (2) | ||
C7A—N1—C2—O2 | −178.0 (2) | C4—C3A—C7A—N1 | −175.73 (18) |
C7A—N1—C2—C3 | 3.9 (2) | C3—C3A—C7A—N1 | −2.1 (2) |
O2—C2—C3—C9 | −68.0 (2) | C2—N1—C7A—C7' | 179.5 (2) |
N1—C2—C3—C9 | 110.08 (18) | C2—N1—C7A—C7 | 179.5 (2) |
O2—C2—C3—C3A | 177.15 (19) | C2—N1—C7A—C3A | −1.2 (2) |
N1—C2—C3—C3A | −4.7 (2) | C11—O1—C8—N8 | −170.14 (17) |
O2—C2—C3—C10 | 52.4 (3) | C11—O1—C8—C9 | 7.7 (3) |
N1—C2—C3—C10 | −129.51 (18) | N8—C8—C9—C12 | 4.1 (3) |
C9—C3—C3A—C4 | 61.3 (3) | O1—C8—C9—C12 | −173.39 (18) |
C10—C3—C3A—C4 | −63.5 (3) | N8—C8—C9—C3 | 176.28 (19) |
C2—C3—C3A—C4 | 176.8 (2) | O1—C8—C9—C3 | −1.2 (3) |
C9—C3—C3A—C7A | −111.51 (18) | C3A—C3—C9—C8 | −136.6 (2) |
C10—C3—C3A—C7A | 123.70 (19) | C10—C3—C9—C8 | −7.1 (3) |
C2—C3—C3A—C7A | 4.0 (2) | C2—C3—C9—C8 | 113.8 (2) |
C7A—C3A—C4—C5' | −2.4 (3) | C3A—C3—C9—C12 | 35.6 (2) |
C3—C3A—C4—C5' | −174.5 (2) | C10—C3—C9—C12 | 165.02 (18) |
C7A—C3A—C4—C5 | −2.4 (3) | C2—C3—C9—C12 | −74.1 (2) |
C3—C3A—C4—C5 | −174.5 (2) | C9—C3—C10—C11 | 10.0 (3) |
C3A—C4—C5—C6 | −0.2 (3) | C3A—C3—C10—C11 | 134.6 (2) |
C3A—C4—C5—Br1 | 178.57 (15) | C2—C3—C10—C11 | −110.7 (2) |
C3A—C4—C5'—C6 | −0.2 (3) | C9—C3—C10—C13 | −173.50 (16) |
C4—C5—C6—C7 | 1.8 (3) | C3A—C3—C10—C13 | −48.9 (2) |
Br1—C5—C6—C7 | −176.99 (17) | C2—C3—C10—C13 | 65.8 (2) |
C4—C5'—C6—C7' | 1.8 (3) | C13—C10—C11—O1 | 178.68 (18) |
C5—C6—C7—C7A | −0.7 (3) | C3—C10—C11—O1 | −4.9 (3) |
C5'—C6—C7'—C7A | −0.7 (3) | C13—C10—C11—C16 | −1.6 (3) |
C5'—C6—C7'—Br1' | −156.6 (3) | C3—C10—C11—C16 | 174.8 (2) |
C6—C7'—C7A—C3A | −2.0 (3) | C8—O1—C11—C10 | −4.6 (3) |
Br1'—C7'—C7A—C3A | 151.5 (3) | C8—O1—C11—C16 | 175.58 (18) |
C6—C7'—C7A—N1 | 177.2 (2) | C14—O4—C13—O3 | −8.9 (3) |
Br1'—C7'—C7A—N1 | −29.3 (4) | C14—O4—C13—C10 | 170.02 (17) |
C6—C7—C7A—C3A | −2.0 (3) | C11—C10—C13—O3 | −13.4 (3) |
C6—C7—C7A—N1 | 177.2 (2) | C3—C10—C13—O3 | 170.1 (2) |
C4—C3A—C7A—C7' | 3.6 (3) | C11—C10—C13—O4 | 167.81 (18) |
C3—C3A—C7A—C7' | 177.22 (19) | C3—C10—C13—O4 | −8.8 (2) |
C4—C3A—C7A—C7 | 3.6 (3) | C13—O4—C14—C15 | −156.2 (2) |
C3—C3A—C7A—C7 | 177.22 (19) |
Cg2 and Cg3 are the centroids of the 4H-pyran ring (O1/C3/C8-C11) and the benzene ring (C3A/C4–C7/C7A) of the 2,3-dihydro-1H-indole ring system. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N12i | 0.88 (3) | 2.00 (3) | 2.874 (3) | 170 (2) |
N8—H8A···O2ii | 0.88 (3) | 2.08 (3) | 2.940 (2) | 165 (3) |
N8—H8B···O2iii | 0.86 (3) | 2.15 (3) | 2.971 (2) | 158 (2) |
C16—H16A···O3 | 0.98 | 2.30 | 2.865 (3) | 116 |
C14—H14A···Cg2iv | 0.99 | 2.92 | 3.773 (3) | 145 |
C15—H15B···Cg3 | 0.98 | 2.99 | 3.729 (3) | 133 |
C15—H15B···Cg4 | 0.98 | 2.99 | 3.729 (3) | 133 |
Symmetry codes: (i) −x+3/2, y−1/2, z; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1/2, y+1/2, z; (iv) −x+1/2, y−1/2, z. |
Contact | Distance | Symmetry operation |
H14B···Br1 | 3.07 | -1/2 + x, 3/2 - y, 1 - z |
H6···Br1 | 3.07 | 1/2 + x, 3/2 - y, 1 - z |
H15A···Br1 | 2.99 | 1 - x, 1 - y, 1 - z |
N12···H1 | 2.00 | 3/2 - x, 1/2 + y, z |
Br1'···O3 | 2.775 | 1 + x, y, z |
O2···H8A | 2.08 | 1 - x, -1/2 + y, 1/2 - z |
N12···H8B | 2.71 | 1/2 + x, y, 1/2 - z |
O2···H8B | 2.15 | 1/2 - x, -1/2 + y, z |
Contact | Percentage contribution |
H···H | 33.1 |
O···H/H···O | 16.3 |
N···H/H···N | 12.1 |
Br···H/H···Br | 11.5 |
C···H/H···C | 10.6 |
Br···O/O···Br | 4.0 |
O···C/C···O | 2.8 |
Br···Br | 2.5 |
Br···C/C···Br | 1.9 |
O···O | 1.5 |
Br···N/N···Br | 1.2 |
N···C/C···N | 1.0 |
O···N/N···O | 0.8 |
N···N | 0.5 |
C···C | 0.3 |
Acknowledgements
Authors contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK, FNN and IGM; investigation, ANK, MA and NUV; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, ANK and IGM; funding acquisition, VNK, AB and ANK; resources, AB, VNK and NUV; supervision, ANK and MA.
Funding information
This paper was supported by Baku State University and the Ministry of Science and Higher Education of the Russian Federation [award No. 075–03–2020-223 (FSSF-2020–0017)].
References
Aliyeva, K. N., Maharramov, A. M., Allahverdiyev, M. A., Gurbanov, A. V. & Brito, I. (2011). Acta Cryst. E67, o2293. Web of Science CSD CrossRef IUCr Journals Google Scholar
Athimoolam, S., Devi, N. S., Bahadur, S. A., Kannan, R. S. & Perumal, S. (2007). Acta Cryst. E63, o4680–o4681. Web of Science CSD CrossRef IUCr Journals Google Scholar
Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Doyle, R. A. (2011). Marccd software manual. Rayonix LLC, Evanston, IL 60201, USA. Google Scholar
Duruskari, G. S., Asgarova, A. R., Aliyeva, K. N., Musayeva, S. A. & Maharramov, A. M. (2020). Russ. J. Org. Chem. 56, 712–715. Web of Science CrossRef CAS Google Scholar
Edmondson, S., Danishefsky, S. J., Sepp-Lorenzino, L. & Rosen, N. (1999). J. Am. Chem. Soc. 121, 2147–2155. Web of Science CrossRef CAS Google Scholar
Evans, P. (2006). Acta Cryst. D62, 72–82. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Khalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525–529. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lokaj, J., Kettmann, V., Pavelčík, F., Ilavský, D. & Marchalín, Š. (1990). Acta Cryst. C46, 788–791. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Ma, J. & Hecht, S. M. (2004). Chem. Commun. pp. 1190–1191. CrossRef Google Scholar
Mamedov, I. G., Khrustalev, V. N., Akkurt, M., Novikov, A. P., Asgarova, A. R., Aliyeva, K. N. & Akobirshoeva, A. A. (2022). Acta Cryst. E78, 291–296. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235–2248. Web of Science CSD CrossRef CAS Google Scholar
Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Akkurt, M., Huseynova, A. T., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 739–743. CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554–558. CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516–521. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rad-Moghadam, K. & Youseftabar-Miri, L. (2011). Tetrahedron, 67, 5693–5699. CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Viswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. Web of Science CrossRef CAS PubMed Google Scholar
Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.