tools for teaching crystallography\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­methyl­pyrazole: a simple heterocycle reflecting Kitaigorodskii's packing principle

crossmark logo

aInstitut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
*Correspondence e-mail: ullrich.englert@ac.rwth-aachen.de

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 29 June 2022; accepted 28 August 2022; online 2 September 2022)

The five-membered heterocycle 1,3,5-trimethyl-1H-pyrazole, C6H10N2 (1) crystallizes in space group Pnma with all non-hydrogen atoms of the mol­ecule on the crystallographic mirror plane. This arrangement has been recognized as favorable with respect to space filling by Kitaigorodskii and Wilson, pioneers in the field of crystal packing; Pnma represents a particularly rare space group for residues exclusively in a general position. Neighboring mol­ecules in 1 inter­act via non-classical C—H⋯N bonds in the plane and C—H⋯π contacts between adjacent layers. In Pnma, crystallographic inversion relates dipolar mol­ecules located on successive mirror planes and results in their head-to-tail arrangement. The inter­layer distance in the [010] direction is closely related to the van der Waals radii of C and N.

1. Introduction

Aleksander Kitaigorodskii was already working on his principle of close packing in the 1940s, at a time when structure analysis via single-crystal diffraction was still not fast and routine. We recall that about 20 years later, in 1965, the archives of the Cambridge Crystallographic Data Centre comprised only 3000 structures. Kitaigorodskii's finding that void space in crystals is in general unfavorable enabled him to rank certain space groups as more or less suitable for close packing. It took considerable time before Kitaigorodskii's ideas were appreciated in the western world (Kitaigorodskii, 1961[Kitaigorodskii, A. I. (1961). Organic Chemical Crystallography. New York: Consultants Bureau.], 1965[Kitaigorodskii, A. I. (1965). Acta Cryst. 18, 585-590.], 1973[Kitaigorodskii, A. I. (1973). Molecular Crystals and Molecules. New York and London: Academic Press.]). The term symmorphic refers to space groups that exhibit a special position with the same symmetry as the crystal class (Chapuis et al., 2022[Chapuis, G., Authier, A. & Brock, C. P. (2022). Online Dictionary of Crystallography. https://dictionary.iucr.org/Main_Page]). A. J. C. Wilson expanded these original ideas (Wilson, 1993a[Wilson, A. J. C. (1993a). Acta Cryst. A49, 210-212.]) and coined the term anti­morphic space groups (Wilson, 1993b[Wilson, A. J. C. (1993b). Acta Cryst. A49, 795-806.]), which only possess symmetry elements associated with a favorable packing, i.e. screw axes, glide planes and inversion centers. In contrast to Kitaigorodskii, W. Nowacki explained the statistical preference for certain space groups by their ability to form a favorable dipole arrangement rather than an efficient packing (Nowacki, 1943[Nowacki, W. (1943). Helv. Chim. Acta, 26, 459-462.], 1951[Nowacki, W. (1951). Helv. Chim. Acta, 34, 1957-1962.]). An excellent summary of the close-packing principle and its consequences for space-group frequencies, together with other packing criteria, was published by Brock & Dunitz (1994[Brock, C. P. & Dunitz, J. D. (1994). Chem. Mater. 6, 1118-1127.]).

[Scheme 1]

In this contribution, we present the crystal structure of the simple heterocycle 1,3,5-trimethyl-1H-pyrazole (1) in space group Pnma and describe its crystal packing in the context of Kitaigorodskii's and Wilson's ideas.

2. Results and Discussion

All non-hydrogen atoms in 1 occupy a crystallographic mirror plane in space group Pnma (Wyckoff position 4c), resulting in a strictly planar scaffold. A displacement ellipsoid plot of a heterocyclic mol­ecule is shown in Fig. 1[link].

[Figure 1]
Figure 1
Displacement ellipsoid plot (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) of a mol­ecule in 1; ellipsoids are drawn at 70% probability, H atoms are shown as spheres of arbitrary radii. Selected distances (Å) and angles (°): N1—N2 1.358 (4), N2—C1 1.351 (4), C1—C2 1.360 (5), C2—C3 1.392 (4), N2—C4 1.448 (4), C3—N1—N2 104.2 (3), C1—C2—C3 106.6 (3).

Compared to other simple pyrazoles, this is a unique property as most of them do not crystallize in space groups exhibiting a mirror plane, e.g. 1H-pyrazole (space groups Pna21 and Pbcn; Sikora & Katrusiak, 2013[Sikora, M. & Katrusiak, A. (2013). J. Phys. Chem. C, 117, 10661-10668.]), 3,5-dimethyl-1H-pyrazole (space group R[\overline{3}]c; Baldy et al., 1985[Baldy, A., Elguero, J., Faure, R., Pierrot, M. & Vincent, E. J. (1985). J. Am. Chem. Soc. 107, 5290-5291.]) or 1,5-dimethyl-1H-pyrazole-3-carb­oxy­lic acid ethyl ester (P[\overline{1}]; Schmidt et al., 2003[Schmidt, A., Habeck, T., Kindermann, M. K. & Nieger, M. (2003). J. Org. Chem. 68, 5977-5982.]). Intra­molecular distances and angles in these pyrazoles and 1 are very similar and adopt values within a narrow range (Table 1[link]).

Table 1
Comparison of selected distances (Å) in 1 with two comparable structures denoted by their CSD refcodes (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.])

Atom labels as in Fig. 1[link]. For PYRZOL27, a Z′ of 2 is observed and only values for the first residue are listed here.

Compound d(N1—N2) d(N2—C1) d(N1—C3) d(C2—C3) d(C1—C2)
1 1.358 (4) 1.351 (4) 1.336 (4) 1.392 (4) 1.360 (5)
PYRZOL27a 1.357 (2) 1.338 (3) 1.334 (3) 1.391 (3) 1.373 (3)
ALOSEZb 1.3464 (17) 1.3595 (14) 1.3415 (16) 1.3966 (15) 1.377 (2)
References: (a) Sikora & Katrusiak (2013[Sikora, M. & Katrusiak, A. (2013). J. Phys. Chem. C, 117, 10661-10668.]); (b) Schmidt et al. (2003[Schmidt, A., Habeck, T., Kindermann, M. K. & Nieger, M. (2003). J. Org. Chem. 68, 5977-5982.]).

Pnma, the space-group type adopted by the title compound, plays a central role in the concepts of Kitaigorodskii and Wilson. We cite literally from Wilson (1991[Wilson, A. J. C. (1991). Z. Kristallogr. 197, 85-88.]): `The space-group type Pnma is particularly inter­esting, as Kitaigorodskii (1965[Kitaigorodskii, A. I. (1965). Acta Cryst. 18, 585-590.]) predicted that it would be popular because it would permit close-packing of mol­ecules with inherent mirror symmetry […] The structures published in Acta Crystallographica C were checked, and all were found to consist of mol­ecules possessing and using inherent mirror planes.' The 1965[Kitaigorodskii, A. I. (1965). Acta Cryst. 18, 585-590.] article cited in Wilson's statement above refers to the Russian version of Organic Chemical Crystallography (Kitaigorodskii, 1961[Kitaigorodskii, A. I. (1961). Organic Chemical Crystallography. New York: Consultants Bureau.]). The heterocyclic mol­ecule in 1 is a candidate par excellence for Pnma: It not only matches the required site symmetry but all of its non-hydrogen atoms are located on this mirror plane, providing an efficient in-plane arrangement (Fig. 2[link], left).

[Figure 2]
Figure 2
Packing in the (010) plane (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). Non-classical C—H⋯N contacts are shown as dashed lines: d(N⋯Ha) = 2.56 Å; ∠(Ca—Ha⋯N) = 179°. Symmetry code: (a) −[{1\over 2}] + x, [{1\over 2}] − y, [{3\over 2}] − z.

Non-classical C—H⋯N hydrogen bonds represent the shortest directional contacts in the mirror plane and lead to chains along [100] (Fig. 2[link], right). This kind of inter­action is quite common for 4-unsubstituted pyrazoles and we only provide selected examples for comparison: ICEDUQ (Patra et al., 2004[Patra, S., Sarkar, B., Ghumaan, S., Fiedler, J., Kaim, W. & Lahiri, G. K. (2004). Inorg. Chem. 43, 6108-6113.]), LUNYID (Benisvy et al., 2009[Benisvy, L., Wanke, R., Kuznetsov, M. L., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2009). Tetrahedron, 65, 9218-9223.]) and KITNOR (Kidwai et al., 2008[Kidwai, M., Priya, & Rastogi, S. (2008). Z. Naturforsch. B, 63, 71-76.]) (Table 2[link]).

Table 2
Comparison of N⋯H—C contacts (Å, °) observed in 1 and selected other pyrazoles

Compound d(N⋯H) ∠(N⋯H—C)
1 2.56 179
ICEDUQa 2.852 (19) 177.3 (12)
LUNYIDb 2.66 154
KITNORc 2.458 (16) 156.2 (13)
References: (a) Patra et al. (2004[Patra, S., Sarkar, B., Ghumaan, S., Fiedler, J., Kaim, W. & Lahiri, G. K. (2004). Inorg. Chem. 43, 6108-6113.]); (b) Benisvy et al. (2009[Benisvy, L., Wanke, R., Kuznetsov, M. L., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2009). Tetrahedron, 65, 9218-9223.]); (c) Kidwai et al. (2008[Kidwai, M., Priya, & Rastogi, S. (2008). Z. Naturforsch. B, 63, 71-76.]).

A crystallographic center of inversion (Wyckoff position 4a) relates objects on the mirror planes at y = 0.25 and y = 0.75; the dipole moments of consecutive layers are therefore oriented in opposite directions, quite in agreement with early Nowacki (1943[Nowacki, W. (1943). Helv. Chim. Acta, 26, 459-462.]) ideas. The non-planar methyl groups in 1 provide the most relevant inter­layer contacts. Fig. 3[link] shows the head-to-tail arrangement of two mol­ecules, with a methyl H atom pointing towards the center of gravity of the five-membered ring of a neighbor. The shortest inter­atomic distance associated with this contact amounts to H4b⋯N2a [symmetry code: (a) 1 − x, −[{1\over 2}] + y, 1 − z] = 2.65 Å.

[Figure 3]
Figure 3
Short methyl C—H⋯π contacts about a center of inversion in 1 shown as dashed lines (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]): d(Cg⋯Hb) = 2.586 Å; ∠(Cb—HbCg) = 140.97°. Symmetry code: (b) 1 − x, −y, 1 − z.

The Hirshfeld surface (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) about one pyrazole moiety is shown in Fig. 4[link]. It has been mapped with the dimensionless inter­action-sensitive qu­antity dnorm; red areas indicate short contacts. Both the C—H⋯N hydrogen bond and the inter­layer meth­yl⋯π contact can clearly be perceived.

[Figure 4]
Figure 4
Hirshfeld surface (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeld­surface.net]) about one 1,3,5-trimethyl-1H-pyrazole moiety in 1.

The stacking of efficiently packed layers of which only the methyl H atoms protrude leads to a simple relationship between the lattice parameter in the stacking direction, i.e. unit-cell parameter b in the standard setting of space group Pnma, and the van der Waals radii of the partaking atoms. Fig. 5[link] provides a sketch of the situation.

[Figure 5]
Figure 5
View of the unit cell of 1 along c (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), methyl groups omitted. The radii of the atoms essentially denote their van der Waals radii (rvdW).

Kitaigorodskii himself had determined van der Waals radii (rvdW) of 1.8 Å for carbon and of 1.58 Å for nitro­gen (Kitaigorodskii, 1973[Kitaigorodskii, A. I. (1973). Molecular Crystals and Molecules. New York and London: Academic Press.]); values of 1.7 for C and 1.55 for N have been suggested by Batsanov (1995[Batsanov, S. S. (1995). Russ. Chem. Bull. 44, 18-23.]). The unit-cell parameter b for our title compound 1 amounts to approximately 6.7 Å, closely matching the expected fourfold van der Waals radius of the non-hydrogen atoms involved. Table 3[link] shows additional examples for small and planar organic mol­ecules crystallizing in the same space group type and with a similar cell parameter b.

Table 3
Other structures showing the same motif as 1; rvdW(C) = 1.7 Å; rvdW(N) = 1.55 Å (Batsanov, 1995[Batsanov, S. S. (1995). Russ. Chem. Bull. 44, 18-23.])

For MURANT the non-standard setting Pbnm was chosen, so the shown unit-cell parameter perpendicular to the mirror plane is c.

Compound Formula b (Å) b/4 (Å)
1 C6H10N2 6.687 (11) 1.672
CIJZEBa C4H4ClN3O2 6.1372 (5) 1.5343
CIJZEB01b C4H4ClN3O2 6.3050 (10) 1.5763
EQENULc C4H6BF3N2 6.635 (3) 1.659
FIFRANd C5H4N2O2 6.388 (2) 1.597
MURANTe C2H7N3O4 6.36 (2) 1.59
QOXVIIf C7H8N2O2 6.5670 (7) 1.6418
VORDIRg C4H6N2OS 6.4865 (4) 1.6216
WIQLOXh C7H8N2O 6.722 (4) 1.681
References: (a) Kubicki & Wagner (2007a[Kubicki, M. & Wagner, P. (2007a). Acta Cryst. C63, o454-o457.]); (b) Kubicki & Wagner (2007b[Kubicki, M. & Wagner, P. (2007b). Private Communication (refcode CIJZEB01). CCDC, Cambridge, England.]); (c) Takao & Ikeda (2008[Takao, K. & Ikeda, Y. (2008). Chem. Lett. 37, 682-683.]); (d) Rybalova et al. (1998[Rybalova, T. V., Sedova, V. F., Gatilov, Yu. V. & Shkurko, O. P. (1998). Chem. Heterocycl. Compd. 34, 1161-1165.]); (e) Bryden (1957[Bryden, J. H. (1957). Acta Cryst. 10, 714.]); (f) Nawrot et al. (2001[Nawrot, B., Michalak, O., Olejniczak, S., Wieczorek, M. W., Lis, T. & Stec, W. J. (2001). Tetrahedron, 57, 3979-3985.]); (g) Konstanti­nova et al. (2014[Konstantinova, L. S., Knyazeva, E. A., Obruchnikova, N. V., Vasilieva, N. V., Irtegova, I. G., Nelyubina, Yu. V., Bagryanskaya, I. Yu., Shundrin, L. A., Sosnovskaya, Z. Yu., Zibarev, A. V. & Rakitin, O. A. (2014). Tetrahedron, 70, 5558-5568.]); (h) Aldabbagh et al. (1999[Aldabbagh, F., Bowman, W. R., Mann, E. & Slawin, A. M. Z. (1999). Tetrahedron, 55, 8111-8128.]).

These examples share the same construction principle: The individual flat mol­ecules are arranged in the crystallographic mirror plane, and for symmetry reasons dipole directions alternate between consecutive layers along b.

3. Database survey

For all database searches, version 5.42 of the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), including all updates until September 2021 were used. The examples compiled in Table 3[link] were restricted to entries with space group Pnma crystallizing in unit cells similar to 1, with a tolerance of 0.7 Å for each unit-cell parameter. These conditions were met by seventeen entries; eight of these show a packing analogous to that of 1.

4. Synthesis and crystallization

The target compound 1,3,5-trimethyl-1H-pyrazole (1) is readily available by the Knorr pyrazole synthesis using acetyl­acetone and methyl­hydrazine (Knorr, 1883[Knorr, L. (1883). Ber. Dtsch. Chem. Ges. 16, 2597-2599.]; Stanovnik & Svete, 2002[Stanovnik, B. & Svete, J. (2002). Science of Synthesis, vol. 12, pp. 15-225. Stuttgart: Thieme.]). Alternatively, the compound may be purchased from common vendors. The single crystal for the reported structure was obtained from the reaction mixture. It is soluble in a wide range of common solvents; single crystals may also be grown via recrystallization from a solution in diethyl ether at 243 K. The small crystal size as well as the fast growth and the absence of any heavy atom restricted diffraction data to a limited resolution. The result is a comparatively high agreement factor of symmetry-related reflections (Rint = 13.77%) and agreement factor considering the intensity of reflections (Rσ = 7.07%).

5. Refinement details

Crystal data, data collection parameters and convergence results for the single crystal X-ray diffraction experiment have been summarized in Table 4[link]. Non-hydrogen atoms were assigned anisotropic displacement parameters. H atoms were introduced into calculated positions and treated as riding with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl and with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for the heteroaryl H atom. Tentative refinement of a model in which the methyl conformations were chosen to best match local difference-Fourier maxima leads to split positions, but for each CH3 group one H atom is located very close to the crystallographic mirror plane. We therefore decided to constrain the y coordinate of these almost in-plane hydrogens to fit the special position.

Table 4
Experimental details

Crystal data
Chemical formula C6H10N2
Mr 110.16
Crystal system, space group Orthorhombic, Pnma
Temperature (K) 100
a, b, c (Å) 11.205 (19), 6.687 (11), 8.373 (15)
V3) 627.3 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.21 × 0.10 × 0.09
 
Data collection
Diffractometer Bruker APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.657, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 6665, 648, 366
Rint 0.138
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.119, 0.87
No. of reflections 648
No. of parameters 50
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.23
Computer programs: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT-Plus (Bruker, 2009[Bruker (2009). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and Mercury (Macrae at al., 2020[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

6. Conclusion and outlook

What else can we learn from the packing of the simple heterocycle 1 in space group Pnma. Space filling is unexceptional; according to the well-known Kempster–Lipson rule (Kempster & Lipson, 1972[Kempster, C. J. E. & Lipson, H. (1972). Acta Cryst. B28, 3674.]) a mol­ecule with eight non-hydrogen atoms should be associated with a residue volume of approximately 150 Å3. The unit cell of 1 will therefore contain four pyrazole mol­ecules, necessarily in special positions. Wyckoff positions 4a and 4b require [\overline{1}] symmetry and can be excluded whereas 4c appears compatible with the mol­ecular symmetry. Harker vectors are subtended by atoms related by crystallographic symmetry. All Harker peaks and all Patterson cross peaks (Glusker et al., 1994[Glusker, J. P., Lewis, M. & Rossi, M. (1994). Crystal Structure Analysis for Chemists and Biologists. New York: VCH Publishers.]; Viterbo, 2002[Viterbo, D. (2002). Fundamentals of Crystallography, 2nd ed., edited by C. Giacovazzo. New York: Oxford University Press.]) derived for occupied 4c positions should be characterized by a Patterson coordinate of 0.0 or 0.5 in the [010] direction. The Patterson function for 1 perfectly matches this expectation: The highest Patterson peak with a v coordinate unequal to 0.0 or 0.5 has an intensity of less than 5% of the trivial origin peak. Our tri­methyl­pyrazole represents a well-suited example for teaching basic concepts of crystallography such as space groups, Wyckoff positions, packing rules, and popular short contacts!

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020) and Mercury (Macrae et al., 2020).

1,3,5-Trimethyl-1H-pyrazole top
Crystal data top
C6H10N2Dx = 1.166 Mg m3
Mr = 110.16Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 263 reflections
a = 11.205 (19) Åθ = 3.0–19.7°
b = 6.687 (11) ŵ = 0.07 mm1
c = 8.373 (15) ÅT = 100 K
V = 627.3 (19) Å3Block, colorless
Z = 40.21 × 0.10 × 0.09 mm
F(000) = 240
Data collection top
Bruker APEX CCD
diffractometer
648 independent reflections
Radiation source: microsource366 reflections with I > 2σ(I)
Multilayer optics monochromatorRint = 0.138
ω scansθmax = 25.9°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1313
Tmin = 0.657, Tmax = 0.745k = 88
6665 measured reflectionsl = 1010
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0645P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.119(Δ/σ)max < 0.001
S = 0.87Δρmax = 0.26 e Å3
648 reflectionsΔρmin = 0.23 e Å3
50 parametersExtinction correction: SHELXL-2019/2 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.011 (4)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4912 (2)0.2500000.6988 (3)0.0289 (7)
N20.5279 (2)0.2500000.5442 (3)0.0249 (6)
C10.6481 (3)0.2500000.5301 (4)0.0236 (7)
C20.6912 (3)0.2500000.6820 (3)0.0260 (8)
H20.7727110.2500000.7130770.031*
C30.5924 (3)0.2500000.7829 (4)0.0265 (7)
C40.4409 (3)0.2500000.4164 (3)0.0327 (9)
H4A0.3602670.2500000.4618470.049*
H4B0.4517010.1303350.3503690.049*
C50.7079 (3)0.2500000.3728 (4)0.0342 (8)
H5A0.7946080.2500000.3880490.051*
H5B0.6843660.3696650.3129850.051*
C60.5878 (3)0.2500000.9617 (4)0.0380 (9)
H6A0.5044030.2500000.9969050.057*
H6B0.6280210.3696651.0026250.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0378 (16)0.0195 (13)0.0295 (16)0.0000.0012 (14)0.000
N20.0297 (15)0.0182 (13)0.0268 (15)0.0000.0012 (12)0.000
C10.0238 (16)0.0149 (15)0.032 (2)0.0000.0009 (14)0.000
C20.0263 (17)0.0177 (15)0.034 (2)0.0000.0025 (16)0.000
C30.0356 (17)0.0166 (14)0.0274 (18)0.0000.0035 (17)0.000
C40.038 (2)0.0228 (15)0.037 (2)0.0000.0104 (16)0.000
C50.040 (2)0.0275 (16)0.035 (2)0.0000.0047 (16)0.000
C60.048 (2)0.0349 (17)0.031 (2)0.0000.0033 (17)0.000
Geometric parameters (Å, º) top
N1—C31.336 (4)C4—H4A0.9800
N1—N21.358 (4)C4—H4B0.9800
N2—C11.351 (4)C4—H4Bi0.9800
N2—C41.448 (4)C5—H5A0.9800
C1—C21.360 (5)C5—H5B0.9800
C1—C51.478 (4)C5—H5Bi0.9800
C2—C31.392 (4)C6—H6A0.9800
C2—H20.9500C6—H6B0.9800
C3—C61.498 (5)C6—H6Bi0.9800
C3—N1—N2104.2 (3)N2—C4—H4Bi109.47 (10)
C1—N2—N1112.7 (2)H4A—C4—H4Bi109.5
C1—N2—C4127.3 (3)H4B—C4—H4Bi109.5
N1—N2—C4120.0 (3)C1—C5—H5A109.5
N2—C1—C2105.8 (3)C1—C5—H5B109.5
N2—C1—C5122.0 (3)H5A—C5—H5B109.5
C2—C1—C5132.2 (3)C1—C5—H5Bi109.47 (11)
C1—C2—C3106.6 (3)H5A—C5—H5Bi109.5
C1—C2—H2126.7H5B—C5—H5Bi109.5
C3—C2—H2126.7C3—C6—H6A109.5
N1—C3—C2110.8 (3)C3—C6—H6B109.5
N1—C3—C6119.9 (3)H6A—C6—H6B109.5
C2—C3—C6129.4 (3)C3—C6—H6Bi109.47 (10)
N2—C4—H4A109.5H6A—C6—H6Bi109.5
N2—C4—H4B109.5H6B—C6—H6Bi109.5
H4A—C4—H4B109.5
Symmetry code: (i) x, y+1/2, z.
Comparison of selected distances (Å) in 1 with two comparable structures denoted by their CSD refcodes (Groom et al., 2016) top
Atom labels as in Figure 1. For PYRZOL27, a Z' of 2 is observed and only values for the first residue are listed here.
Compoundd(N1—N2)d(N2—C1)d(N1—C3)d(C2—C3)d(C1—C2)
11.358 (4)1.351 (4)1.336 (4)1.392 (4)1.360 (5)
PYRZOL27a1.357 (2)1.338 (3)1.334 (3)1.391 (3)1.373 (3)
ALOSEZb1.3464 (17)1.3595 (14)1.3415 (16)1.3966 (15)1.377 (2)
References: (a) Sikora & Katrusiak (2013); (b) Schmidt et al. (2003).
Comparison of N···H—C contacts (Å, °) observed in 1 and selected other pyrazoles top
Compoundd(N···H)angle(N···H—C)
12.56179
ICEDUQa2.852 (19)177.3 (12)
LUNYIDb2.66154
KITNORc2.458 (16)156.2 (13)
References: (a) Patra et al. (2004); (b) Benisvy et al. (2009); (c) Kidwai et al. (2008).
Other structures showing the same motif as 1; rvdW(C) = 1.7 Å; rvdW(N) = 1.55 Å (Batsanov, 1995) top
For MURANT the non-standard setting Pbnm was chosen, so the shown unit-cell parameter perpendicular to the mirror plane is c.
CompoundFormulab (Å)b/4 (Å)
1C6H10N26.687 (11)1.672
CIJZEBaC4H4ClN3O26.1372 (5)1.5343
CIJZEB01bC4H4ClN3O26.3050 (10)1.5763
EQENULcC4H6BF3N26.635 (3)1.659
FIFRANdC5H4N2O26.388 (2)1.597
MURANTeC2H7N3O46.36 (2)1.59
QOXVIIfC7H8N2O26.5670 (7)1.6418
VORDIRgC4H6N2OS6.4865 (4)1.6216
WIQLOXhC7H8N2O6.722 (4)1.681
References: (a) Kubicki & Wagner (2007a); (b) Kubicki & Wagner (2007b); (c) Takao & Ikeda (2008); (d) Rybalova et al. (1998); (e) Bryden (1957); (f) Nawrot et al. (2001); (g) Konstantinova et al. (2014); (h) Aldabbagh et al. (1999).
Comparison of selected distances in 1 with two comparable structures. top
For PYRZOL27 a Z' of 2 is observed and only values for the first residue have been taken into account.
Compoundd(N—N)d1(NC)d2(NC)d1(CC)d2(CC)
11.358 (4)1.351 (4)1.336 (4)1.392 (4)1.360 (5)
PYRZOL271.357 (2)1.338 (3)1.334 (3)1.391 (3)1.373 (3)
ALOSEZ1.3464 (17)1.3595 (14)1.3415 (16)1.3966 (15)1.377 (2)

Acknowledgements

UE acknowledges support from One Hundred Talent Program of Shanxi Province. The authors thank Anke Braun for help with the synthesis.

Funding information

Funding for this research was provided by: RWTH Graduiertenförderung (scholarship to SvT).

References

First citationAldabbagh, F., Bowman, W. R., Mann, E. & Slawin, A. M. Z. (1999). Tetrahedron, 55, 8111–8128.  Web of Science CSD CrossRef CAS Google Scholar
First citationBaldy, A., Elguero, J., Faure, R., Pierrot, M. & Vincent, E. J. (1985). J. Am. Chem. Soc. 107, 5290–5291.  CSD CrossRef CAS Web of Science Google Scholar
First citationBatsanov, S. S. (1995). Russ. Chem. Bull. 44, 18–23.  CrossRef Web of Science Google Scholar
First citationBenisvy, L., Wanke, R., Kuznetsov, M. L., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2009). Tetrahedron, 65, 9218–9223.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrock, C. P. & Dunitz, J. D. (1994). Chem. Mater. 6, 1118–1127.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBryden, J. H. (1957). Acta Cryst. 10, 714.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationChapuis, G., Authier, A. & Brock, C. P. (2022). Online Dictionary of Crystallography. https://dictionary.iucr.org/Main_Page  Google Scholar
First citationGlusker, J. P., Lewis, M. & Rossi, M. (1994). Crystal Structure Analysis for Chemists and Biologists. New York: VCH Publishers.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKempster, C. J. E. & Lipson, H. (1972). Acta Cryst. B28, 3674.  CrossRef IUCr Journals Web of Science Google Scholar
First citationKidwai, M., Priya, & Rastogi, S. (2008). Z. Naturforsch. B, 63, 71–76.  Google Scholar
First citationKitaigorodskii, A. I. (1961). Organic Chemical Crystallography. New York: Consultants Bureau.  Google Scholar
First citationKitaigorodskii, A. I. (1965). Acta Cryst. 18, 585–590.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKitaigorodskii, A. I. (1973). Molecular Crystals and Molecules. New York and London: Academic Press.  Google Scholar
First citationKnorr, L. (1883). Ber. Dtsch. Chem. Ges. 16, 2597–2599.  CrossRef Google Scholar
First citationKonstantinova, L. S., Knyazeva, E. A., Obruchnikova, N. V., Vasilieva, N. V., Irtegova, I. G., Nelyubina, Yu. V., Bagryanskaya, I. Yu., Shundrin, L. A., Sosnovskaya, Z. Yu., Zibarev, A. V. & Rakitin, O. A. (2014). Tetrahedron, 70, 5558–5568.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKubicki, M. & Wagner, P. (2007a). Acta Cryst. C63, o454–o457.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKubicki, M. & Wagner, P. (2007b). Private Communication (refcode CIJZEB01). CCDC, Cambridge, England.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNawrot, B., Michalak, O., Olejniczak, S., Wieczorek, M. W., Lis, T. & Stec, W. J. (2001). Tetrahedron, 57, 3979–3985.  Web of Science CSD CrossRef CAS Google Scholar
First citationNowacki, W. (1943). Helv. Chim. Acta, 26, 459–462.  CrossRef CAS Google Scholar
First citationNowacki, W. (1951). Helv. Chim. Acta, 34, 1957–1962.  CrossRef CAS Web of Science Google Scholar
First citationPatra, S., Sarkar, B., Ghumaan, S., Fiedler, J., Kaim, W. & Lahiri, G. K. (2004). Inorg. Chem. 43, 6108–6113.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRybalova, T. V., Sedova, V. F., Gatilov, Yu. V. & Shkurko, O. P. (1998). Chem. Heterocycl. Compd. 34, 1161–1165.  CrossRef CAS Google Scholar
First citationSchmidt, A., Habeck, T., Kindermann, M. K. & Nieger, M. (2003). J. Org. Chem. 68, 5977–5982.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSikora, M. & Katrusiak, A. (2013). J. Phys. Chem. C, 117, 10661–10668.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStanovnik, B. & Svete, J. (2002). Science of Synthesis, vol. 12, pp. 15–225. Stuttgart: Thieme.  Google Scholar
First citationTakao, K. & Ikeda, Y. (2008). Chem. Lett. 37, 682–683.  Web of Science CSD CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeld­surface.net  Google Scholar
First citationViterbo, D. (2002). Fundamentals of Crystallography, 2nd ed., edited by C. Giacovazzo. New York: Oxford University Press.  Google Scholar
First citationWilson, A. J. C. (1991). Z. Kristallogr. 197, 85–88.  CrossRef CAS Web of Science Google Scholar
First citationWilson, A. J. C. (1993a). Acta Cryst. A49, 210–212.  CrossRef Web of Science IUCr Journals Google Scholar
First citationWilson, A. J. C. (1993b). Acta Cryst. A49, 795–806.  CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds