research communications
of the monoglycidyl ether of isoeugenol
aICMUB CNRS UMR 6302, Université de Bourgogne Franche-Comté, Faculté des Sciences, 9 avenue Alain Savary, 21000 Dijon, France
*Correspondence e-mail: hcattey@u-bourgogne.fr, Laurent.Plasseraud@u-bourgogne.fr
The title compound, C13H16O3 [GE-isoEu; 2-({2-methoxy-4-[(E)-1-propen-1-yl]phenoxy}methyl)oxirane], which crystallizes in the triclinic P was synthesized in one step from iso-eugenol, a bio-based phenylpropanoid, with an excess of epichlorohydrin. Colourless prismatic crystals suitable for X-ray diffraction were obtained from a mixture of ethyl acetate and cyclohexane, during purification by on silica gel. GE-isoEu, which corresponds to the trans isomer of the monoglycidyl ether of iso-eugenol, is based on a 1,2,4-trisubstituted benzene ring by diglycidyl ether, methoxy and 1-(E)-propenyl groups, respectively. In the crystal, molecules are organized through offset π-stacking interactions. Chemically, GE-isoEu constitutes an intermediate in the synthesis protocol of 2-[3-methoxy-4-(2-oxiranylmethoxy)phenyl]-3-methyloxirane (GEEp-isoEu), a diepoxydized monomer used in the manufacturing of thermosetting resins and intended for the elaboration of bio-composites.
CCDC reference: 2208338
1. Chemical context
The bisphenol A diglycidyl ether molecule, also called BADGE or DGEBA, is the main building block used for the formulation of commercial epoxy resins (Mohan, 2013). Synthetically, this reagent is directly produced from 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), derived from petroleum resources (phenol) and recognized as being an endocrine disruptor (Fenichel et al., 2013). With the aim of designing more sustainable synthetic routes and alternatives to fossil resources, some of the molecules derived from biomass and in particular phenylpropanoids isolated from the fragmentation of lignin, are considered as potential building blocks to replace bisphenol A and its derivatives (Auvergne et al., 2014). This is particularly the case of the iso-eugenol molecule generally used in the composition of many perfumes and which can be also transformed into a diepoxidized monomer, 2-[3-methoxy-4-(2-oxiranylmethoxy)phenyl]-3-methyloxirane (GEEp-isoEu), well-suited to epoxy thermosetting applications and exhibiting comparable thermomechanical properties to DGEBA (François et al., 2016, 2017). The preparation of GEEp-isoEu involves a two-step synthesis via firstly the formation of the title compound as a synthesis intermediate. We report herein the X-ray of GE-isoEu [systematic name: 2-({2-methoxy-4-[(E)-1-propen-1-yl]phenoxy}methyl)oxirane], which crystallizes upon its purification from a mixture of cyclohexane and ethyl acetate.
2. Structural commentary
The title compound exhibits an asymmetrical structure, which is depicted in Fig. 1. GE-isoEu comprises a benzene ring substituted by two oxygenated functional groups, glycidyl ether [–OCH2C2H3O] and methoxy [–OCH3], and one 1-(E)-propenyl side chain [–HC=CHCH3] located in meta and para positions to the methoxy and glycidyl ether functions, respectively. The aromatic ring is planar with mean bond lengths and angles of 1.392 (3) Å and 120.13 (17)°. While the –OCH3 and –HC=CHCH3 groups are in the plane of the benzene ring, –C2H3O is out of the plane with an angle of 52.83 (14)°. The oxirane ring (C1/C2/O1) of the glycidyl ether group does not undergo any disorder, in contrast to what is frequently observed for diglycidyl ether derivatives (Cho et al., 1999; Flippen-Anderson & Gilardi, 1981). The double-bond distance of the 1-(E)-propenyl side chain was determined as 1.315 (3) Å. This length is consistent with those described in the literature for similar compounds (Stomberg et al., 1993; Stomberg & Lundquist, 1995).
3. Supramolecular features
The most significant supramolecular interaction observed in the crystal consists of offset π-stacking involving aromatic rings of GE-isoEu (Fig. 2 – red dotted lines). The interplanar and the centroid-to-centroid distances between parallel molecules are 3.456 (2) and 4.5931 (5) Å, respectively. The important difference between these two distances indicates that the benzene rings are strongly slipped. The slip angle (angle between the normal to the planes and the centroid–centroid vector) is 41.20° corresponding to a slippage distance of 3.025 (3) Å (these high values can nevertheless be considered as limit values). Typically, for such interactions, the interplanar distance between the arene planes is found around 3.3 to 3.8 Å (Janiak, 2000). In addition, molecules of GE-isoEu also interact in pairs, forming dimers, via non-classical intermolecular hydrogen bonds involving the methyl groups of the methoxy substituents, with the oxygen atoms of the ether [C10—H10A⋯O2 = 3.537 (2) Å, 167°] and methoxy functions [C10—H10A⋯O3 = 3.405 (2) Å, 132°] (Fig. 2 -– blue dotted lines). These supramolecular interactions result in a propagation of stacks of molecules oriented along the a-axis (Fig. 3).
4. Database survey
A search in the Cambridge Structural Database (WebCSD v1.1.2, update 2022-03-05; Groom et al., 2016), highlighted that, up to now, seventeen crystal structures comprising glycidyl ether-substituted phenyl ring moieties have been reported. They include (S)-1-(2-chloro-5-methylphenoxy)-2,3-epoxypropane (CIKQIZ: Bredikhin et al., 2018), 2,2-bis(3,5-dibromo-4-hydroxybenzene)propane diglycidyl ether (COMNEX: Saf'yanov et al., 1984), 2,2-bis(4-(oxiran-2-ylmethoxy)-3,5-dibromophenyl)propane (COMNEY: Cheban et al., 1985), rac-1,2-epoxy-3-(2-methoxyphenyloxy)propane (DAXKAP: Bredikhin et al., 2005), diglycidyl ether of bisphenol A (DGEBPA: Flippen-Anderson & Gilardi, 1980; (DGEBPA01: Heinemann et al., 1993; DGEBPA10: Flippen-Anderson & Gilardi, 1981), p-di(2,3-epoxypropyloxy)benzene (EOXHQE: Saf'yanov et al., 1977), 2,2′-[1,3-phenylene-bis(oxymethylene)]bis(oxirane) (FITWOU: Bocelli & Grenier-Loustalot, 1987), 1,2-epoxy-3-(2-cyanophenoxy)propane (JESHOF: Bredikhin, et al., 2006), 2-[(4-{3-[4-(oxiran-2-ylmethoxy)phenyl]tricyclo[3.3.1.13,7]decan-1-yl}phenoxy)methyl]oxirane (LANRUQ: Wang et al., 2017), 2-(4-{4-[4-(oxiran-2-ylmethoxy)phenoxy]phenyl}phenoxymethyl)oxirane (LAQTII: Song et al., 2012), 10-[2,5-bis(2,3-epoxy-1-propoxy)phenyl]-9-oxa-10-phosphaphenanthren-10-one (LIPSOS: Cho et al., 1999), 3,7-dimethoxy-2-[4-methoxy-3-(oxiran-2-ylmethoxy)phenyl]-5-(oxiran-2-ylmethoxy)-4H-chromen-4-one (ORASAD: Kristufek et al., 2016), 2,2′-{methylenebis[(2,1-phenylene)oxymethylene]}bis(oxirane) [PALQUS: Liu et al., 2021), 2-(N-methoxyethanimidoyl)-5-(oxiran-2-ylmethoxy)benzonitrile (SIJZIW: Gong et al., 2013); 2-({3-methoxy-4-[(oxiran-2-yl)methoxy]phenyl}methyl)oxirane (WASCIF: Vigier et al., 2017), 4-(oxiran-2-ylmethoxy)benzoic acid (ZEPYUQ: Obreza & Perdih, 2012). To the best of our knowledge, the structure of GE-isoEu based on a benzene ring tri-substituted by glycidyl ether, methoxy and 1-propenyl functions is new. In terms of application, several of these compounds are targeted as synthesis intermediates or precursors devoted to the formulation of thermosetting resins. The polymerization process involves the epoxy rings of molecules and occurs in the presence of hardeners (such as or acid anhydrides), leading to the cross-linking of infusible polymer networks.
5. Synthesis and crystallization
The title compound was prepared in one step from a commercial source of natural isoeugenol (mixture of cis/trans, 99% purity, Sigma-Aldrich) according to a previously reported protocol (François et al., 2016). The details of the synthesis of the title compound are summarized in Fig. 4. iso-Eugenol (10.0 g, 60.9 mmol) was added to an ethanolic sodium hydroxide solution (2.7 g, 66.6 mmol of NaOH in 30 mL of EtOH), then followed by the addition of an excess of epichlorohydrin (19.1 mL, 22.5 g, 243.6 mmol). The reaction mixture was heated at 353 K over 3 h under constant stirring. 70 mL of toluene were then added at room temperature. After cannula filtration, the filtrate was washed with distilled water (3 × 20 mL) and brine (1 × 20 mL), and finally dried over anhydrous MgSO4. After complete evaporation of the solvent under vacuum, the residue was then further purified by using a mixture of cyclohexane/ethyl acetate (3:1, v/v) as to give a white solid characterized as the monoglycidyl ether of iso-eugenol (6.2 g, yield 46%). Crystals of the trans isomer of GE-isoEu suitable for X-ray analysis were obtained during the purification by by evaporation of the eluting solvents at room temperature. 1H NMR (300.1 MHz, CDCl3): 6.90–6.82 (m, 3H, aryl), 6.08 (dq, J = 6.6 and 15.7 Hz, 1H, CH-propenyl), 6.33 (dd, J =1.6 and 15.7 Hz, 1H, CH-propenyl), 4.21 (dd, J = 11.4 and 3.6 Hz, 1H, CH2O), 4.03 (dd, J = 11.4 and 5.5 Hz, 1H, CH2O), 3.88 (s, 3H, OCH3); 3.38 (m, 1H, CH-oxirane), 2.89 (dd, J = 5.1 and 4.2 Hz, 1H, CH2-oxirane), 2.73 (dd, J = 5.0 and 2.7 Hz, 1H, CH2-oxirane), δ 1.86 (dd, J = 1.6 and 6.6 Hz, 3H, CH3); 13C{1H} NMR (75.4 MHz, CDCl3) δ 149.6, 147.1, 132.2, 130.5, 124.2, 118.6, 114.2, 109.1, 70.3, 55.8, 50.2, 45.0, 18.4; IR (ATR): 3023, 3000, 2957, 2937, 2913, 2878, 2842, 1601, 1582, 1509, 1464, 1450, 1419, 1259, 1226, 1195, 1158, 1135, 1024, 961, 908, 857, 805, 778, 759, 734, 621, 612, 569, 464 cm−1. Analysis calculated for C13H16O3: C, 69.67; H, 6.11. Found: C, 70.28; H, 7.57.
6. details
Crystal data, data collection and structure . All H atoms on carbon and oxygen atoms were placed at calculated positions using a riding model with C—H = 0.95 Å (aromatic) or 0.99 Å (methylene group) with Uiso(H) = 1.2Ueq and C—H = 0.98 Å (methyl group) with Uiso(H) = 1.5Ueq(H).
details are summarized in Table 1Supporting information
CCDC reference: 2208338
https://doi.org/10.1107/S2056989022009264/dj2051sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022009264/dj2051Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022009264/dj2051Isup3.cml
Data collection: APEX3 (Bruker, 2020); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C13H16O3 | Z = 2 |
Mr = 220.26 | F(000) = 236 |
Triclinic, P1 | Dx = 1.259 Mg m−3 |
a = 4.5931 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.9134 (9) Å | Cell parameters from 5145 reflections |
c = 15.0764 (18) Å | θ = 2.5–26.6° |
α = 74.808 (3)° | µ = 0.09 mm−1 |
β = 85.309 (4)° | T = 150 K |
γ = 77.430 (3)° | PRISM, colourless |
V = 581.18 (11) Å3 | 0.5 × 0.15 × 0.15 mm |
Bruker kappa APEXII diffractometer | 2647 independent reflections |
Radiation source: X-ray tube, Siemens KFF Mo 2K-180 | 1865 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
Detector resolution: 8.3 pixels mm-1 | θmax = 27.5°, θmin = 2.4° |
φ and ω scans | h = −5→5 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −11→11 |
Tmin = 0.668, Tmax = 0.746 | l = −19→19 |
17290 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.128 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0417P)2 + 0.3763P] where P = (Fo2 + 2Fc2)/3 |
2647 reflections | (Δ/σ)max < 0.001 |
147 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O3 | 0.5215 (3) | 0.37762 (14) | 0.60436 (8) | 0.0300 (3) | |
O2 | 0.8022 (3) | 0.53432 (15) | 0.67363 (9) | 0.0327 (3) | |
O1 | 0.7925 (3) | 0.88375 (17) | 0.59690 (12) | 0.0498 (4) | |
C5 | 0.6121 (4) | 0.3053 (2) | 0.69197 (11) | 0.0234 (4) | |
C6 | 0.5628 (4) | 0.1597 (2) | 0.74236 (12) | 0.0262 (4) | |
H6 | 0.457467 | 0.102195 | 0.715929 | 0.031* | |
C4 | 0.7670 (4) | 0.3919 (2) | 0.73067 (12) | 0.0247 (4) | |
C7 | 0.6660 (4) | 0.0952 (2) | 0.83221 (12) | 0.0307 (4) | |
C9 | 0.8683 (4) | 0.3293 (2) | 0.81886 (13) | 0.0322 (4) | |
H9 | 0.973015 | 0.386713 | 0.845569 | 0.039* | |
C3 | 0.9823 (4) | 0.6233 (2) | 0.70261 (14) | 0.0319 (4) | |
H3A | 1.174343 | 0.554383 | 0.725793 | 0.038* | |
H3B | 0.878503 | 0.670214 | 0.752225 | 0.038* | |
C8 | 0.8175 (4) | 0.1822 (2) | 0.86875 (13) | 0.0356 (5) | |
H8 | 0.888622 | 0.140217 | 0.929532 | 0.043* | |
C10 | 0.3618 (4) | 0.2968 (2) | 0.56109 (12) | 0.0288 (4) | |
H10A | 0.312228 | 0.360518 | 0.498608 | 0.043* | |
H10B | 0.177676 | 0.280713 | 0.596581 | 0.043* | |
H10C | 0.485826 | 0.193544 | 0.558386 | 0.043* | |
C11 | 0.6167 (5) | −0.0610 (2) | 0.88692 (13) | 0.0393 (5) | |
H11 | 0.697432 | −0.096779 | 0.946634 | 0.047* | |
C2 | 1.0334 (4) | 0.7498 (2) | 0.62068 (15) | 0.0376 (5) | |
H2 | 1.143379 | 0.712477 | 0.567846 | 0.045* | |
C12 | 0.4742 (5) | −0.1566 (2) | 0.86288 (15) | 0.0462 (6) | |
H12 | 0.392242 | −0.122483 | 0.803335 | 0.055* | |
C1 | 1.0655 (5) | 0.9043 (2) | 0.62760 (18) | 0.0450 (5) | |
H1A | 1.065235 | 0.921634 | 0.689846 | 0.054* | |
H1B | 1.195933 | 0.961206 | 0.581395 | 0.054* | |
C13 | 0.4301 (6) | −0.3142 (3) | 0.92108 (17) | 0.0583 (7) | |
H13A | 0.509844 | −0.396339 | 0.888173 | 0.087* | |
H13B | 0.216596 | −0.310609 | 0.934385 | 0.087* | |
H13C | 0.534885 | −0.338975 | 0.978846 | 0.087* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O3 | 0.0366 (7) | 0.0279 (7) | 0.0274 (6) | −0.0150 (5) | −0.0068 (5) | −0.0015 (5) |
O2 | 0.0337 (7) | 0.0320 (7) | 0.0361 (7) | −0.0159 (5) | −0.0066 (6) | −0.0057 (6) |
O1 | 0.0354 (8) | 0.0392 (9) | 0.0766 (11) | −0.0119 (7) | −0.0132 (7) | −0.0106 (8) |
C5 | 0.0197 (8) | 0.0257 (9) | 0.0231 (8) | −0.0015 (7) | 0.0001 (6) | −0.0060 (7) |
C6 | 0.0266 (9) | 0.0240 (9) | 0.0268 (9) | −0.0029 (7) | 0.0019 (7) | −0.0068 (7) |
C4 | 0.0185 (8) | 0.0255 (9) | 0.0290 (9) | −0.0020 (7) | 0.0002 (7) | −0.0071 (7) |
C7 | 0.0323 (10) | 0.0251 (9) | 0.0276 (9) | 0.0058 (7) | 0.0037 (7) | −0.0052 (7) |
C9 | 0.0275 (9) | 0.0362 (11) | 0.0331 (10) | −0.0001 (8) | −0.0045 (8) | −0.0130 (8) |
C3 | 0.0215 (9) | 0.0350 (10) | 0.0444 (11) | −0.0065 (7) | −0.0044 (8) | −0.0175 (9) |
C8 | 0.0390 (11) | 0.0352 (11) | 0.0259 (9) | 0.0063 (8) | −0.0046 (8) | −0.0064 (8) |
C10 | 0.0315 (9) | 0.0293 (10) | 0.0288 (9) | −0.0132 (7) | −0.0015 (7) | −0.0070 (7) |
C11 | 0.0492 (12) | 0.0295 (11) | 0.0281 (10) | 0.0056 (9) | 0.0039 (9) | −0.0005 (8) |
C2 | 0.0257 (10) | 0.0380 (11) | 0.0545 (13) | −0.0114 (8) | 0.0037 (9) | −0.0188 (10) |
C12 | 0.0630 (15) | 0.0281 (11) | 0.0378 (12) | −0.0021 (10) | 0.0079 (10) | −0.0001 (9) |
C1 | 0.0323 (11) | 0.0379 (12) | 0.0731 (16) | −0.0144 (9) | −0.0054 (10) | −0.0211 (11) |
C13 | 0.0827 (18) | 0.0276 (12) | 0.0526 (14) | −0.0028 (11) | 0.0208 (13) | −0.0029 (10) |
O3—C5 | 1.364 (2) | C3—C2 | 1.479 (3) |
O3—C10 | 1.427 (2) | C8—H8 | 0.9500 |
O2—C4 | 1.368 (2) | C10—H10A | 0.9800 |
O2—C3 | 1.425 (2) | C10—H10B | 0.9800 |
O1—C2 | 1.430 (2) | C10—H10C | 0.9800 |
O1—C1 | 1.435 (2) | C11—H11 | 0.9500 |
C5—C6 | 1.377 (2) | C11—C12 | 1.315 (3) |
C5—C4 | 1.408 (2) | C2—H2 | 1.0000 |
C6—H6 | 0.9500 | C2—C1 | 1.448 (3) |
C6—C7 | 1.403 (2) | C12—H12 | 0.9500 |
C4—C9 | 1.377 (2) | C12—C13 | 1.495 (3) |
C7—C8 | 1.382 (3) | C1—H1A | 0.9900 |
C7—C11 | 1.474 (3) | C1—H1B | 0.9900 |
C9—H9 | 0.9500 | C13—H13A | 0.9800 |
C9—C8 | 1.388 (3) | C13—H13B | 0.9800 |
C3—H3A | 0.9900 | C13—H13C | 0.9800 |
C3—H3B | 0.9900 | ||
C5—O3—C10 | 117.72 (13) | O3—C10—H10C | 109.5 |
C4—O2—C3 | 118.70 (14) | H10A—C10—H10B | 109.5 |
C2—O1—C1 | 60.72 (12) | H10A—C10—H10C | 109.5 |
O3—C5—C6 | 125.24 (15) | H10B—C10—H10C | 109.5 |
O3—C5—C4 | 114.77 (15) | C7—C11—H11 | 116.1 |
C6—C5—C4 | 119.99 (16) | C12—C11—C7 | 127.7 (2) |
C5—C6—H6 | 119.5 | C12—C11—H11 | 116.1 |
C5—C6—C7 | 120.90 (17) | O1—C2—C3 | 116.11 (16) |
C7—C6—H6 | 119.5 | O1—C2—H2 | 115.7 |
O2—C4—C5 | 114.35 (15) | O1—C2—C1 | 59.82 (12) |
O2—C4—C9 | 126.27 (16) | C3—C2—H2 | 115.7 |
C9—C4—C5 | 119.38 (16) | C1—C2—C3 | 122.05 (19) |
C6—C7—C11 | 121.60 (18) | C1—C2—H2 | 115.7 |
C8—C7—C6 | 118.10 (17) | C11—C12—H12 | 117.2 |
C8—C7—C11 | 120.29 (17) | C11—C12—C13 | 125.7 (2) |
C4—C9—H9 | 120.0 | C13—C12—H12 | 117.2 |
C4—C9—C8 | 119.97 (18) | O1—C1—C2 | 59.46 (12) |
C8—C9—H9 | 120.0 | O1—C1—H1A | 117.8 |
O2—C3—H3A | 110.5 | O1—C1—H1B | 117.8 |
O2—C3—H3B | 110.5 | C2—C1—H1A | 117.8 |
O2—C3—C2 | 106.23 (15) | C2—C1—H1B | 117.8 |
H3A—C3—H3B | 108.7 | H1A—C1—H1B | 115.0 |
C2—C3—H3A | 110.5 | C12—C13—H13A | 109.5 |
C2—C3—H3B | 110.5 | C12—C13—H13B | 109.5 |
C7—C8—C9 | 121.65 (17) | C12—C13—H13C | 109.5 |
C7—C8—H8 | 119.2 | H13A—C13—H13B | 109.5 |
C9—C8—H8 | 119.2 | H13A—C13—H13C | 109.5 |
O3—C10—H10A | 109.5 | H13B—C13—H13C | 109.5 |
O3—C10—H10B | 109.5 | ||
O3—C5—C6—C7 | 179.86 (15) | C4—O2—C3—C2 | 167.73 (14) |
O3—C5—C4—O2 | −0.3 (2) | C4—C5—C6—C7 | −0.3 (2) |
O3—C5—C4—C9 | −179.96 (15) | C4—C9—C8—C7 | 0.0 (3) |
O2—C4—C9—C8 | −179.64 (16) | C7—C11—C12—C13 | −179.97 (19) |
O2—C3—C2—O1 | 78.43 (19) | C3—O2—C4—C5 | −173.56 (14) |
O2—C3—C2—C1 | 147.72 (17) | C3—O2—C4—C9 | 6.1 (2) |
C5—C6—C7—C8 | 0.2 (2) | C3—C2—C1—O1 | −103.7 (2) |
C5—C6—C7—C11 | −179.63 (16) | C8—C7—C11—C12 | 178.9 (2) |
C5—C4—C9—C8 | 0.0 (3) | C10—O3—C5—C6 | 0.2 (2) |
C6—C5—C4—O2 | 179.83 (14) | C10—O3—C5—C4 | −179.68 (14) |
C6—C5—C4—C9 | 0.2 (2) | C11—C7—C8—C9 | 179.78 (17) |
C6—C7—C8—C9 | −0.1 (3) | C1—O1—C2—C3 | 113.5 (2) |
C6—C7—C11—C12 | −1.2 (3) |
Acknowledgements
The authors are also grateful for general and financial support from the Centre National de la Recherche Scientifique (CNRS-France) and the University of Bourgogne Franche-Comté. Dr Pawin Boonyaporn – Advanced Biochemical (Thailand) Co, Ltd (ABT) – is thanked for a generous donation of a sample of bio-based epichlorohydrin (Epicerol®).
Funding information
Funding for this research was provided by: Bio-Based Industries Joint Undertaking (BBI JU) under the European Union's Horizon 2020 research and innovation program (grant No. 744349).
References
Auvergne, R., Caillol, S., David, G., Boutevin, B. & Pascault, J.-P. (2014). Chem. Rev. 114, 1082–1115. Web of Science CrossRef CAS PubMed Google Scholar
Bocelli, G. & Grenier-Loustalot, M.-F. (1987). Acta Cryst. C43, 1221–1223. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Bredikhin, A. A., Bredikhina, Z. A., Kurenkov, A. V., Zakharychev, D. V. & Gubaidullin, A. T. (2018). J. Mol. Struct. 1173, 157–165. CSD CrossRef CAS Google Scholar
Bredikhin, A. A., Bredikhina, Z. A., Zakharychev, D. V., Akhatova, F. S., Krivolapov, D. B. & Litvinov, I. A. (2006). Mendeleev Commun. 16, 245–247. CSD CrossRef Google Scholar
Bredikhin, A. A., Strunskaya, E. I., Zakharychev, D. V., Krivolapov, D. B., Litvinov, I. A. & Bredikhina, Z. A. (2005). Tetrahedron Asymmetry, 16, 3361–3366. CSD CrossRef CAS Google Scholar
Bruker (2016). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2020). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cheban, I. M., Simonov, I. A., Rotaru, V. K. & Malinovskii, T. I. (1985). Dokl. Akad. Nauk SSSR, 283, 621–624. CAS Google Scholar
Cho, C.-S., Liau, W.-B. & Chen, L.-W. (1999). Acta Cryst. B55, 525–529. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fenichel, P., Chevalier, N. & Brucker-Davis, F. (2013). Ann. Endocrinol. (Paris), 74, 211–220. CrossRef CAS PubMed Google Scholar
Flippen-Anderson, J. L. & Gilardi, R. (1980). ACA, ser. 2. 8, 36a. Google Scholar
Flippen-Anderson, J. L. & Gilardi, R. (1981). Acta Cryst. B37, 1433–1435. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
François, C., Pourchet, S., Boni, G., Fontaine, S., Gaillard, Y., Placet, V., Galkin, M. V., Orebom, A., Samec, J. & Plasseraud, L. (2016). RSC Adv. 6, 68732–68738. Google Scholar
François, C., Pourchet, S., Boni, G., Rautiainen, S., Samec, S., Fournier, L., Robert, C., Thomas, C. M., Fontaine, S., Gaillard, Y., Placet, V. & Plasseraud, L. (2017). C. R. Chim. 20, 1006–1016. Google Scholar
Gong, T.-J., Xiao, B., Cheng, W.-M., Su, W., Xu, J., Liu, Z.-J., Liu, L. & Fu, Y. (2013). J. Am. Chem. Soc. 135, 10630–10633. CSD CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Heinemann, F., Hartung, H. & Derling, S. (1993). Z. Kristallogr. 207, 299–301. CAS Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kristufek, S. L., Yang, G., Link, L. A., Rohde, B. J., Robertson, M. L. & Wooley, K. L. (2016). ChemSusChem, 9, 2135–2142. CSD CrossRef CAS PubMed Google Scholar
Liu, K.-T., Chuang, J.-Y., Jeng, R.-J. & Leung, M.-K. (2021). ACS Omega, 6, 27279–27287. CSD CrossRef CAS PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mohan, P. (2013). Polym. Plast. Technol. Eng. 52, 107–125. CrossRef CAS Google Scholar
Obreza, A. & Perdih, F. (2012). Zh. Strukt. Khim. 53, 802–808. Google Scholar
Saf'yanov, Y. N., Bochkova, T. N., Golovachev, V. P. & Kuz'min, E. A. (1977). Zh. Struk. Khim. 18, 402–405. CAS Google Scholar
Saf'yanov, Y. N., Golovachev, V. P. & Kuz'min, E. A. (1984). Zh. Struk. Khim. 25, 156–157. CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Song, T., Liu, J. & Yang, S. (2012). Acta Cryst. E68, o719. CSD CrossRef IUCr Journals Google Scholar
Stomberg, R. & Lundquist, K. (1995). Z. Krystallogr. 210, 66–67. CSD CrossRef CAS Google Scholar
Stomberg, R., Lundquist, K. & Wallis, A. F. A. (1993). J. Crystallogr. Spectrosc. Res. 23, 317–331. CSD CrossRef CAS Web of Science Google Scholar
Vigier, J., François, C., Pourchet, S., Boni, G., Plasseraud, L., Placet, V., Fontaine, S. & Cattey, H. (2017). Acta Cryst. E73, 694–697. CSD CrossRef IUCr Journals Google Scholar
Wang, S.-J., Jing, X.-L., Meng, Y.-D. & Jia, Q.-X. (2017). Chin. J. Struc. Chem. 36, 396–400. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.