research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and crystal structures of the ethanol, aceto­nitrile and di­ethyl ether Werner clathrates bis­­(iso­thio­cyanato-κN)tetra­kis­(3-methyl­pyridine-κN)nickel(II)

crossmark logo

aInstitut für Anorganische Chemie, Universität Kiel, Max-Eyth-Str. 2, 24118 Kiel, Germany
*Correspondence e-mail: cnaether@ac.uni-kiel.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 30 August 2022; accepted 6 September 2022; online 8 September 2022)

The reaction of nickel(II)thio­cyanate with 3-methyl­pyridine (3-picoline; C6H7N) in different solvents leads to the formation of crystals of bis­(iso­thio­cyanato-κN)tetra­kis­(3-methyl­pyridine-κN)nickel(II) as the ethanol disolvate, [Ni(NCS)2(C6H7N)4]·2C2H5OH (1), the acetonitrile disolvate, [Ni(NCS)2(C6H7N)4]·2CH3CN (2), and the diethyl ether monosolvate, [Ni(NCS)2(C6H7N)4]·C4H10O (3). The crystal structures of these compounds consist of NiII cations coordinated by two N-bonded thio­cyanate anions and four 3-methyl­pyridine ligands to generate NiN6 octa­hedra with the thio­cyanate groups in a trans orientation. In compounds 1 and 2 these complexes are located on centers of inversion, whereas in compound 3, they occupy general positions. In the crystal structures, the complexes are packed in such a way that cavities are formed in which the solvent mol­ecules are located. Compounds 1 and 2 are isotypic, which is not the case for compound 3. In compounds 1 and 2 the solvate mol­ecules are disordered, whereas they are fully ordered in compound 3. Disorder is also observed for one of the 3-methyl­pyridine ligands in compound 2. Powder X-ray diffraction and IR measurements show that at room temperature all compounds decompose almost immediately into the same phase, as a result of the loss of the solvent mol­ecules.

1. Chemical context

The synthesis and structural characterization of new compounds is still an important topic in coordination chemistry, because some of them might have the potential for future applications such as magnetic behavior. In this context, coord­ination compounds in which the cations are linked by small-sized anionic ligands into networks of different dimensionality are of special inter­est. Therefore, many compounds based on, for example, cyanide or azide ligands have been reported in the literature. Magnetic exchange can also be mediated by thio­cyanate anions and this is one reason why we and others have been inter­ested in this class of compounds for many years (Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.], Rams et al., 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.], Böhme et al., 2020[Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325-5338.]). Regarding this, compounds are of inter­est in which the paramagnetic metal cations are linked by thio­cyanate anions into chains or layers (Werner et al., 2014[Werner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333-17342.], 2015a[Werner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015a). Eur. J. Inorg. Chem. pp. 3236-3245.],b[Werner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015b). Dalton Trans. 44, 14149-14158.]; Suckert et al., 2016[Suckert, S., Rams, M., Böhme, M., Germann, L., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190-18201.]). In contrast to azides or cyanides, the synthesis of thio­cyanates with bridging coordination is more difficult to achieve, because metal cations such as MnII, FeII, CoII and NiII are less chalcophilic and therefore prefer a terminal N coordination. Nevertheless, a large number of compounds with μ-1,3-bridging thio­cyanate anions have been reported in recent years (Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.] and Werner et al., 2015a[Werner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015a). Eur. J. Inorg. Chem. pp. 3236-3245.],b[Werner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015b). Dalton Trans. 44, 14149-14158.]).

[Scheme 1]

In our own investigations, we are particularly inter­ested in the influence of the neutral co-ligand on the chemical reactivity, the crystal structure and the magnetic properties of thio­cyanate coordination polymers of 3d metal cations. In most cases, we used pyridine derivatives that are substituted in the 4-position as co-ligands, but recently we also became inter­ested in such ligands where the substitutent is located in the 3-position, including 3-methyl­pyridine (also called 3-picoline), C6H7N. With Co(NCS)2, two discrete complexes with the composition Co(NCS)2(C6H7N)4 (refcodes EYAROM and EYAROM01; Boeckmann et al., 2011[Boeckmann, J., Reimer, B. & Näther, C. (2011). Z. Naturforsch. Teil B, 66, 819-827.] and Małecki et al., 2012[Małecki, J. G., Bałanda, M., Groń, T. & Kruszyński, R. (2012). Struct. Chem. 23, 1219-1232.]) and Co(NCS)2(C6H7N)2(H2O)2 (EYAREC; Boeckmann et al., 2011[Boeckmann, J., Reimer, B. & Näther, C. (2011). Z. Naturforsch. Teil B, 66, 819-827.]) are deposited in the Cambridge Structural Database, in which the cobalt cations are octa­hedrally coordinated by two terminal N-bonded thio­cyanate anions and four 3-methyl­pyridine in the former compound and two 3-methyl­pyridine and two water ligands in the latter. Upon heating, these complexes lose half of their co-ligands and transform into Co(NCS)2(C6H7N)2 (EYARIG; Boeckmann et al., 2011[Boeckmann, J., Reimer, B. & Näther, C. (2011). Z. Naturforsch. Teil B, 66, 819-827.]) before a decomposition into Co(NCS)2 is observed. Surprisingly, in contrast to most other compounds with pyridine derivatives substituted in the 4-position where chains or layers are formed, in this compound the CoII cations are tetra­hedrally coordinated by two terminal N-bonded thio­cyanate anions and two 3-methyl­pyridine co-ligands, forming discrete complexes.

Most compounds with 3-methyl­pyridine as co-ligand are reported with Ni(NCS)2, but surprisingly in none of them are the NiII cations linked by the thio­cyanate anions. This includes, for example, Ni(NCS)2(C6H7N)2(H2O)2 (MEGCEH; Tan et al., 2006[Tan, X.-N., Che, Y.-X. & Zheng, J.-M. (2006). Jiegou Huaxue, 25, 358.]), which is isotypic to its cobalt analog. Moreover, a number of compounds consist of discrete complexes with the general composition Ni(NCS)2(C6H7N)4 in which the NiII cations are octa­hedrally coordinated by two terminal N-bonded thio­cyanate anions as well as by four 3-methyl­pyridine co-ligands. In all of these compounds, the discrete complexes are packed in such a way that cavities are formed, in which additional solvate mol­ecules are embedded. Altogether, three different structure types are observed. The mono-di­chloro­methane (Laylus, Pang et al., 1992[Pang, L., Lucken, E. A. C. & Bernardinelli, G. (1992). J. Incl Phenom. Macrocycl Chem. 13, 63-76.]), mono-tri­chloro­methane (CIVJEW and CIFJEW01; Nassimbeni et al., 1984[Nassimbeni, L. R., Bond, D. R., Moore, M. & Papanicolaou, S. (1984). Acta Cryst. A40, C111.], 1986[Nassimbeni, L. R., Papanicolaou, S. & Moore, M. H. (1986). J. Inclusion Phenom. 4, 31-42.]), mono-tetra­chloro­methane, mono-di­bromo­dichloro­methane and mono-2,2-di­chloro­propane clathrates (JICMIR, LAYLAY and LAYLEC; Pang et al., 1990[Pang, L., Lucken, E. A. C. & Bernardinelli, G. (1990). J. Am. Chem. Soc. 112, 8754-8764.], 1992[Pang, L., Lucken, E. A. C. & Bernardinelli, G. (1992). J. Incl Phenom. Macrocycl Chem. 13, 63-76.]) crystallize in the ortho­rhom­bic space group Fddd. If two mol­ecules of tri­chloro­methane are incorporated, the clathrate crystallizes with triclinic symmetry in space group P[\overline{1}] (LAYLOM; Pang et al., 1992[Pang, L., Lucken, E. A. C. & Bernardinelli, G. (1992). J. Incl Phenom. Macrocycl Chem. 13, 63-76.]) and the bis­(di­chloro­methane) clathrate crystallizes in the monoclinic space group C2/c (LAYLIG; Pang et al., 1992[Pang, L., Lucken, E. A. C. & Bernardinelli, G. (1992). J. Incl Phenom. Macrocycl Chem. 13, 63-76.]). It is noted that the two latter unit cells are crystallographically unrelated. The formation of these clathrates for such simple nickel complexes is surprising because this is not observed in practically all other complexes with Ni(NCS)2 and pyridine derivatives as co-ligands. However, it might be traced back to the fact that all of these solvents are non-polar and cannot coordinate to NiII cations to form, for example, solvato octa­hedral complexes with the composition Ni(NCS)2(C6H7N)2(L)2 (L = co-ligand).

Based on these assumptions, we tried to prepare additional compounds based on Ni(NCS)2 and 3-methyl­pyridine as co-ligand, for which we used diethyl ether, ethanol and aceto­nitrile as solvents. All of them can coordinate to NiII cations, which might lead to solvato complexes that afterwards might be transformed into the desired compounds with a bridging coordination by thermal decomposition. On the other hand, they are not very strong donor ligands, which means that compounds with a bridging coordination of the anionic ligands might form directly. With all three solvents, suitable crystals were obtained, which were characterized by single-crystal X-ray diffraction. Structure analysis reveals that even in this case, clathrates with the composition Ni(NCS)2(C6H7N)4 · 2 ethanol (1), Ni(NCS)2(C6H7N)4 · 2 aceto­nitrile (2) and Ni(NCS)2(C6H7N)4 · diethyl ether (3) have formed, which crystallize in two different structure types, with compounds 1 and 2 isotypic to the bis­(di­chloro­methane) clathrate reported by Pang et al. (1992[Pang, L., Lucken, E. A. C. & Bernardinelli, G. (1992). J. Incl Phenom. Macrocycl Chem. 13, 63-76.]). Unfortunately, all of these compounds lose their solvents almost immediately at room temperature and X-ray powder diffraction shows that the same crystalline phase is obtained (Fig. S1 in the supporting information). In their IR spectra, the CN stretching vibration is observed at 2074 cm−1, indicating that the anionic ligands are still terminally N-bonded (Fig. S2). Therefore, one can assume that a solvent-free compound with the composition Ni(NCS)2(C6H7N)4 has formed, that still consists of discrete complexes and for which the crystal structure is unknown.

2. Structural commentary

The asymmetric units of Ni(NCS)2(C6H7N)4 · 2 ethanol (1) and Ni(NCS)2(C6H7N)4 · 2 aceto­nitrile (2) consist of half of an NiII cation that is located on a center of inversion, one thio­cyanate anion and two 3-methyl­pyridine ligands as well as one ethanol (1) and one aceto­nitrile (2) solvate mol­ecules in general positions (Figs. 1[link] and 2[link]). The asymmetric unit in Ni(NCS)2(C6H7N)4 · diethyl ether (3) consists of one NiII cation, two thio­cyanate anions, four 3-methyl­pyridine ligands and one diethyl ether solvate mol­ecule that occupy general positions (Fig. 3[link]). In compounds 1 and 2, the solvate mol­ecules are disordered and were refined using a split model (see Refinement), whereas in compound 3 they are fully ordered. The ethanol and aceto­nitrile solvates 1 and 2 crystallize in the monoclinic C-centered space group C2/c and are isotypic to the bis­(di­chloro­methane) clathrate reported by Pang et al. (1992[Pang, L., Lucken, E. A. C. & Bernardinelli, G. (1992). J. Incl Phenom. Macrocycl Chem. 13, 63-76.]). Compound 3 crystallizes in space group P21/n and its structure type is different from that of the solvates of Ni(NCS)2(C6H7N)4 already reported in the literature (see Chemical Context).

[Figure 1]
Figure 1
The mol­ecular structure of compound 1 with labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry code: (A) −x + 1, y, −z + [{3\over 2}].
[Figure 2]
Figure 2
The mol­ecular structure of compound 2 with labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry code: (A) −x + 1, y, −z + [{3\over 2}].
[Figure 3]
Figure 3
The mol­ecular structure of compound 3 with labeling and displacement ellipsoids drawn at the 50% probability level.

In all three compounds the nickel(II) cations are octa­hedrally coordinated by two terminal N-bonded thio­cyanate anions and four 3-methyl­pyridine co-ligands, forming discrete complexes. In compound 1 and 2 the discrete complexes are located on centers of inversion, whereas in compound 3 the complexes are located in general positions. The Ni—N bond lengths are comparable in all three compounds (Tables 1[link]–3[link][link]) and from the bonding angles, it is obvious that all octa­hedra are slightly distorted (see supporting information). This is reflected in the octa­hedral angle variance and the mean octa­hedral quadratic elongation calculated by the method of Robinson et al. (1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]), which amount to 0.0857°2 and 1.0004, respectively, for compound 1, 0.3299°2 and 1.0006 for compound 2 and 1.0694°2 and 1.0010 for compound 3.

Table 1
Selected bond lengths (Å) for 1[link]

Ni1—N1 2.0597 (13) Ni1—N21 2.1200 (11)
Ni1—N11 2.1196 (12)    

Table 2
Selected bond lengths (Å) for 2[link]

Ni1—N1 2.0528 (16) Ni1—N21 2.1224 (13)
Ni1—N11 2.1235 (14)    

Table 3
Selected bond lengths (Å) for 3[link]

Ni1—N1 2.0517 (11) Ni1—N21 2.1266 (10)
Ni1—N2 2.0552 (11) Ni1—N31 2.1523 (11)
Ni1—N11 2.1358 (10) Ni1—N41 2.1291 (11)

3. Supra­molecular features

In the crystal structures, the Ni(NCS)2(C6H7N)4 complexes are packed in such a way that cavities are formed, in which the solvate mol­ecules are embedded (Figs. 4[link] and 5[link]). In compound 1, both ethanol mol­ecules are linked to the complex by O—H⋯S hydrogen bonding between the hydroxyl hydrogen atom of the ethanol mol­ecule and the thio­cyanate S atom (Fig. 4[link]). The H⋯S distance amounts to 2.464 (4) Å and the O—H⋯S angle to 172 (2)°, which indicates that this is a strong inter­action (Table 4[link]). There is one additional inter­molecular contact between a pyridine H atom and the ethanol O atom, but the distance and geometry of this contact shows that this should be only a very weak inter­action (Table 4[link]). In the isotypic compound 2, no pronounced inter­molecular inter­actions are observed and the packing seems to be dominated by van der Waals inter­actions. This is similar in the diethyl ether solvate 3, where the complexes are arranged in stacks along the c-axis direction (Fig. 5[link]). For all compounds, the void spaces occupied by the solvate mol­ecules were calculated, leading to values of 221 Å3 (6.5% of the unit-cell volume) for 1, 162 Å3 (4.8%) for 2 and 165 Å3 (5.1%) for 3. The higher value for compound 1 might be traced back to the inter­molecular hydrogen bonding.

Table 4
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O31i 0.95 2.61 3.373 (2) 138
O31—H31⋯S1 0.88 (4) 2.46 (4) 3.3379 (17) 172 (2)
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].
[Figure 4]
Figure 4
Crystal structure of compound 1 as a representative with view along the crystallographic b-axis and inter­molecular O—H⋯S hydrogen bonds shown as dashed lines.
[Figure 5]
Figure 5
Crystal structure of compound 3 with view along the crystallographic c-axis.

4. Database survey

Several thio­cyanate compounds with transition metal cations and 3-methyl­pyridine as co-ligand are reported in the Cambridge Structure Database CSD (version 5.43, last update November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), including the Co and Ni compounds mentioned above.

With Cd(NCS)2, one compound with the composition Cd(NCS)2(C6H7N)2 (FIYGUP; Taniguchi et al., 1987[Taniguchi, M., Sugita, Y. & Ouchi, A. (1987). Bull. Chem. Soc. Jpn, 60, 1321-1326.]) is reported, in which the CdII cations are octa­hedrally coordinated and linked by pairs of thio­cyanate anions into chains. With copper, discrete complexes with the composition Cu(NCS)2(C6H7N)2 (ABOTET; Handy et al., 2017[Handy, J. V., Ayala, G. & Pike, R. D. (2017). Inorg. Chim. Acta, 456, 64-75.]) and Cu(NCS)2(C6H7N)3 (VEPBAT; Kabešová & Kožíšková, 1989[Kabešová, M. & Kožíšková, Z. (1989). Collect. Czech. Chem. Commun. 54, 1800-1807.]) are reported. There is also one chain compound with the composition Cu(NCS)2(C6H7N)2 (CUHBEM; Healy et al., 1984[Healy, P. C., Pakawatchai, C., Papasergio, R. I., Patrick, V. A. & White, A. H. (1984). Inorg. Chem. 23, 3769-3776.]), in which the copper cations are tetra­hedrally coord­inated. With Zn(NCS)2, the discrete complex Zn(NCS)2(C6H7N)2 with a tetra­hedral structure is found (ETUSAO; Boeckmann & Näther, 2011[Boeckmann, J. & Näther, C. (2011). Acta Cryst. E67, m994.]), which is isotypic to Co(NCS)2(C6H7N)2. With MnII and FeII, two discrete complexes with the composition M(NCS)2(C6H7N)4 (M = Mn, Fe) are reported (Ceglarska et al., 2022[Ceglarska, M., Krebs, C. & Näther, C. (2022). Acta Cryst. E78, 755-760.]). Additionally there is also a mixed-metal compound with manganese and mercury with the composition catena-[tetra­kis­(thio­cyanato)­bis­(3-meth­yl­pyridine)­manganese-mercury] (NAQYOW; Małecki, 2017[Małecki, J. G. (2017). CSD Communication (refcode NAQYOW). CCDC, Cambridge, England.]).

5. Synthesis and crystallization

Synthesis

3-Methyl­pyridine was purchased from Alfa Aesar. Ni(NCS)2 was purchased from Santa Cruz Biotechnology. Aceto­nitrile was dried over CaH2 and ethanol over sodium before use.

Ni(NCS)2(C6H7N)4 · 2 ethanol (1): 0.25 mmol Ni(NCS)2 (43.7 mg) and 2.5 mmol 3-methyl­pyridine (243 µl) were added to 1.5 ml of ethanol and stored under hydro­thermal conditions at 403 K to form light-purple single crystals.

Ni(NCS)2(C6H7N)4 · 2 aceto­nitrile (2): To synthesize single crystals suitable for single-crystal X-ray analysis, 0.25 mmol of Ni(NCS)2 (43.7 mg) and 2.5 mmol of 3-methyl­pyridine (243 µl) were combined in a snap-cap vial and 1.5 ml of aceto­nitrile were added. After two days at room temperature, light-purple blocks were obtained.

Ni(NCS)2(C6H7N)4 · di­ethyl­ether (3): In a mixture of diethyl ether and H2O, 0.25 mmol of Ni(NCS)2 (43.7 mg) and 2.5 mmol of 3-methyl­pyridine (243 µl) were added. Single crystals in the form of light-purple blocks were obtained after heating the reaction mixture to 353 K and storing it at this temperature for two days.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The C-bound H atoms were positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip) and were refined isotropically with Uiso(H) = 1.2 Ueq(C) (1.5 for methyl H atoms) using a riding model.

Table 5
Experimental details

  1 2 3
Crystal data
Chemical formula [Ni(NCS)2(C6H7N)4]·2C2H6O [Ni(NCS)2(C6H7N)4]·2C2H3N [Ni(NCS)2(C6H7N)4]·C4H10O
Mr 639.51 629.48 621.49
Crystal system, space group Monoclinic, C2/c Monoclinic, C2/c Monoclinic, P21/n
Temperature (K) 100 100 100
a, b, c (Å) 18.5763 (1), 11.6179 (1), 15.8998 (1) 18.7990 (1), 11.3033 (1), 15.8639 (1) 10.2275 (10), 25.0468 (1), 12.7180 (1)
β (°) 97.448 (1) 96.825 (1) 94.600 (1)
V3) 3402.51 (4) 3347.04 (4) 3247.4 (3)
Z 4 4 4
Radiation type Cu Kα Cu Kα Cu Kα
μ (mm−1) 2.24 2.25 2.31
Crystal size (mm) 0.2 × 0.1 × 0.05 0.25 × 0.15 × 0.05 0.2 × 0.2 × 0.15
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix XtaLAB Synergy, Dualflex, HyPix XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.857, 1.000 0.746, 1.000 0.933, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 36997, 3672, 3589 35196, 3605, 3462 56224, 6974, 6907
Rint 0.018 0.021 0.020
(sin θ/λ)max−1) 0.638 0.638 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.09 0.046, 0.153, 1.07 0.029, 0.076, 1.03
No. of reflections 3672 3605 6974
No. of parameters 213 264 368
No. of restraints 1 82 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.44, −0.38 0.80, −0.46 0.54, −0.32
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(isothiocyanato-κN)tetrakis(3-methylpyridine-κN)\ nickel(II) ethanol disolvate (1) top
Crystal data top
[Ni(NCS)2(C6H7N)4]·2C2H6OF(000) = 1352
Mr = 639.51Dx = 1.248 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 18.5763 (1) ÅCell parameters from 28027 reflections
b = 11.6179 (1) Åθ = 4.5–79.4°
c = 15.8998 (1) ŵ = 2.24 mm1
β = 97.448 (1)°T = 100 K
V = 3402.51 (4) Å3Block, light purple
Z = 40.2 × 0.1 × 0.05 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
3672 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source3589 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.018
Detector resolution: 10.0000 pixels mm-1θmax = 79.7°, θmin = 4.5°
ω scansh = 2321
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
k = 1414
Tmin = 0.857, Tmax = 1.000l = 1920
36997 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0454P)2 + 3.9194P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.44 e Å3
3672 reflectionsΔρmin = 0.38 e Å3
213 parametersExtinction correction: SHELXL-2016/6 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.00015 (4)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.5000000.25420 (2)0.7500000.01790 (12)
N10.42011 (7)0.25422 (10)0.82854 (8)0.0245 (3)
C10.36585 (8)0.25217 (11)0.85683 (9)0.0221 (3)
S10.28878 (2)0.24794 (3)0.89699 (2)0.03098 (12)
N110.55731 (6)0.38324 (10)0.82555 (7)0.0245 (2)
C110.52238 (9)0.47165 (12)0.85584 (9)0.0288 (3)
H110.4708960.4733170.8446200.035*
C120.55721 (10)0.56143 (14)0.90293 (11)0.0398 (4)
C130.63193 (12)0.5568 (2)0.91929 (16)0.0632 (7)
H130.6579090.6158080.9516510.076*
C140.66863 (11)0.4666 (2)0.88857 (16)0.0678 (7)
H140.7201010.4629740.8990440.081*
C150.62980 (9)0.38109 (16)0.84226 (11)0.0393 (4)
H150.6554610.3186350.8215790.047*
C160.51427 (13)0.65865 (17)0.93377 (14)0.0536 (5)
H16A0.5067390.7183480.8899710.080*
H16B0.5409100.6912510.9855430.080*
H16C0.4671300.6298000.9459300.080*
N210.44290 (6)0.12465 (10)0.67471 (7)0.0212 (2)
C210.43798 (7)0.12692 (12)0.58975 (8)0.0220 (3)
H210.4601600.1891640.5641020.026*
C220.40237 (7)0.04368 (12)0.53708 (8)0.0248 (3)
C230.37036 (9)0.04668 (14)0.57566 (10)0.0329 (3)
H230.3455070.1057160.5422330.039*
C240.37492 (10)0.05012 (15)0.66333 (10)0.0381 (4)
H240.3532660.1113510.6906950.046*
C250.41140 (8)0.03678 (13)0.71022 (9)0.0294 (3)
H250.4142690.0340900.7702760.035*
C260.39962 (9)0.05215 (14)0.44214 (9)0.0323 (3)
H26A0.3617530.1069220.4199020.048*
H26B0.3886350.0236840.4166760.048*
H26C0.4466990.0787200.4281040.048*
O310.21100 (8)0.26594 (14)0.69605 (11)0.0553 (4)
H310.2297 (17)0.253 (2)0.749 (2)0.081 (10)*
C310.2139 (2)0.1760 (4)0.6416 (3)0.0422 (8)0.5
H31A0.2639610.1658110.6279650.051*0.5
H31B0.1813660.1903370.5882230.051*0.5
C320.1896 (3)0.0696 (4)0.6854 (4)0.0599 (13)0.5
H32A0.2245650.0524940.7354400.090*0.5
H32B0.1870160.0042150.6461230.090*0.5
H32C0.1416550.0831780.7028170.090*0.5
C31'0.2032 (3)0.1313 (6)0.6797 (3)0.0653 (13)0.5
H31C0.2442890.0889680.7114920.078*0.5
H31D0.1571850.1019770.6966690.078*0.5
C32'0.2038 (3)0.1196 (5)0.5860 (3)0.0780 (16)0.5
H32D0.1625970.1617790.5559350.117*0.5
H32E0.2000580.0380530.5702150.117*0.5
H32F0.2492140.1512120.5705160.117*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01946 (19)0.01906 (18)0.01550 (18)0.0000.00346 (12)0.000
N10.0232 (6)0.0273 (6)0.0235 (6)0.0014 (4)0.0054 (5)0.0020 (4)
C10.0271 (7)0.0214 (6)0.0178 (6)0.0030 (5)0.0024 (5)0.0015 (4)
S10.0215 (2)0.0433 (2)0.0295 (2)0.00391 (13)0.00857 (15)0.00623 (14)
N110.0283 (6)0.0239 (6)0.0218 (5)0.0037 (5)0.0046 (4)0.0031 (4)
C110.0368 (8)0.0249 (7)0.0257 (7)0.0014 (6)0.0079 (6)0.0026 (5)
C120.0528 (10)0.0317 (8)0.0383 (8)0.0107 (7)0.0190 (7)0.0116 (7)
C130.0501 (11)0.0683 (14)0.0754 (15)0.0315 (10)0.0244 (10)0.0458 (12)
C140.0319 (9)0.0880 (17)0.0852 (16)0.0214 (10)0.0138 (10)0.0533 (14)
C150.0272 (7)0.0477 (10)0.0435 (9)0.0073 (7)0.0067 (7)0.0188 (8)
C160.0740 (14)0.0356 (9)0.0547 (11)0.0057 (9)0.0221 (10)0.0198 (8)
N210.0231 (5)0.0233 (5)0.0172 (5)0.0032 (4)0.0031 (4)0.0004 (4)
C210.0230 (6)0.0247 (6)0.0184 (6)0.0016 (5)0.0034 (5)0.0015 (5)
C220.0242 (6)0.0297 (7)0.0202 (6)0.0010 (5)0.0019 (5)0.0022 (5)
C230.0371 (8)0.0324 (8)0.0290 (7)0.0132 (6)0.0034 (6)0.0058 (6)
C240.0504 (10)0.0354 (8)0.0295 (8)0.0206 (7)0.0091 (7)0.0001 (6)
C250.0379 (8)0.0315 (7)0.0195 (6)0.0102 (6)0.0057 (6)0.0019 (5)
C260.0393 (8)0.0371 (8)0.0197 (7)0.0045 (6)0.0014 (6)0.0043 (6)
O310.0430 (8)0.0768 (11)0.0444 (8)0.0050 (7)0.0006 (6)0.0149 (7)
C310.0380 (19)0.048 (2)0.041 (2)0.0017 (16)0.0067 (16)0.0083 (19)
C320.052 (3)0.041 (2)0.089 (4)0.016 (2)0.018 (2)0.013 (3)
C31'0.075 (4)0.068 (4)0.050 (3)0.007 (3)0.006 (3)0.001 (3)
C32'0.093 (4)0.077 (3)0.058 (3)0.021 (3)0.010 (3)0.020 (3)
Geometric parameters (Å, º) top
Ni1—N1i2.0596 (13)C22—C231.388 (2)
Ni1—N12.0597 (13)C22—C261.5070 (19)
Ni1—N11i2.1195 (12)C23—H230.9500
Ni1—N112.1196 (12)C23—C241.386 (2)
Ni1—N212.1200 (11)C24—H240.9500
Ni1—N21i2.1200 (11)C24—C251.380 (2)
N1—C11.156 (2)C25—H250.9500
C1—S11.6423 (15)C26—H26A0.9800
N11—C111.3375 (19)C26—H26B0.9800
N11—C151.339 (2)C26—H26C0.9800
C11—H110.9500O31—H310.88 (4)
C11—C121.393 (2)O31—C311.362 (4)
C12—C131.380 (3)O31—C31'1.589 (7)
C12—C161.501 (2)C31—H31A0.9900
C13—H130.9500C31—H31B0.9900
C13—C141.375 (3)C31—C321.515 (6)
C14—H140.9500C32—H32A0.9800
C14—C151.382 (2)C32—H32B0.9800
C15—H150.9500C32—H32C0.9800
C16—H16A0.9800C31'—H31C0.9900
C16—H16B0.9800C31'—H31D0.9900
C16—H16C0.9800C31'—C32'1.498 (7)
N21—C211.3423 (16)C32'—H32D0.9800
N21—C251.3376 (17)C32'—H32E0.9800
C21—H210.9500C32'—H32F0.9800
C21—C221.3894 (19)
N1i—Ni1—N1179.98 (6)C22—C21—H21118.0
N1—Ni1—N1190.27 (5)C21—C22—C26120.66 (13)
N1i—Ni1—N1189.72 (5)C23—C22—C21117.25 (12)
N1—Ni1—N11i89.72 (5)C23—C22—C26122.09 (13)
N1i—Ni1—N11i90.27 (5)C22—C23—H23120.2
N1—Ni1—N21i90.27 (4)C24—C23—C22119.50 (14)
N1i—Ni1—N21i89.74 (5)C24—C23—H23120.2
N1i—Ni1—N2190.27 (4)C23—C24—H24120.5
N1—Ni1—N2189.74 (5)C25—C24—C23118.95 (14)
N11i—Ni1—N1189.96 (7)C25—C24—H24120.5
N11i—Ni1—N2190.25 (5)N21—C25—C24122.79 (13)
N11—Ni1—N21i90.25 (5)N21—C25—H25118.6
N11—Ni1—N21179.79 (5)C24—C25—H25118.6
N11i—Ni1—N21i179.79 (5)C22—C26—H26A109.5
N21i—Ni1—N2189.53 (6)C22—C26—H26B109.5
C1—N1—Ni1165.69 (12)C22—C26—H26C109.5
N1—C1—S1179.47 (12)H26A—C26—H26B109.5
C11—N11—Ni1121.04 (10)H26A—C26—H26C109.5
C11—N11—C15117.74 (13)H26B—C26—H26C109.5
C15—N11—Ni1121.18 (10)C31—O31—H31116.0 (18)
N11—C11—H11118.1C31'—O31—H3190.7 (18)
N11—C11—C12123.72 (15)O31—C31—H31A110.3
C12—C11—H11118.1O31—C31—H31B110.3
C11—C12—C16120.62 (17)O31—C31—C32107.2 (4)
C13—C12—C11117.27 (16)H31A—C31—H31B108.5
C13—C12—C16122.11 (17)C32—C31—H31A110.3
C12—C13—H13120.1C32—C31—H31B110.3
C14—C13—C12119.71 (17)C31—C32—H32A109.5
C14—C13—H13120.1C31—C32—H32B109.5
C13—C14—H14120.4C31—C32—H32C109.5
C13—C14—C15119.27 (18)H32A—C32—H32B109.5
C15—C14—H14120.4H32A—C32—H32C109.5
N11—C15—C14122.30 (17)H32B—C32—H32C109.5
N11—C15—H15118.9O31—C31'—H31C111.0
C14—C15—H15118.9O31—C31'—H31D111.0
C12—C16—H16A109.5H31C—C31'—H31D109.0
C12—C16—H16B109.5C32'—C31'—O31103.9 (5)
C12—C16—H16C109.5C32'—C31'—H31C111.0
H16A—C16—H16B109.5C32'—C31'—H31D111.0
H16A—C16—H16C109.5C31'—C32'—H32D109.5
H16B—C16—H16C109.5C31'—C32'—H32E109.5
C21—N21—Ni1121.21 (9)C31'—C32'—H32F109.5
C25—N21—Ni1121.18 (9)H32D—C32'—H32E109.5
C25—N21—C21117.61 (12)H32D—C32'—H32F109.5
N21—C21—H21118.0H32E—C32'—H32F109.5
N21—C21—C22123.90 (12)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O31i0.952.613.373 (2)138
O31—H31···S10.88 (4)2.46 (4)3.3379 (17)172 (2)
Symmetry code: (i) x+1, y, z+3/2.
Bis(isothiocyanato-κN)tetrakis(3-methylpyridine-κN)\ nickel(II) acetonitrile disolvate (2) top
Crystal data top
[Ni(NCS)2(C6H7N)4]·2C2H3NF(000) = 1320
Mr = 629.48Dx = 1.249 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 18.7990 (1) ÅCell parameters from 26840 reflections
b = 11.3033 (1) Åθ = 4.5–79.2°
c = 15.8639 (1) ŵ = 2.25 mm1
β = 96.825 (1)°T = 100 K
V = 3347.04 (4) Å3Block, light purple
Z = 40.25 × 0.15 × 0.05 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
3605 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source3462 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 10.0000 pixels mm-1θmax = 79.7°, θmin = 4.6°
ω scansh = 2321
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
k = 1314
Tmin = 0.746, Tmax = 1.000l = 2019
35196 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0965P)2 + 2.692P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3605 reflectionsΔρmax = 0.80 e Å3
264 parametersΔρmin = 0.46 e Å3
82 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.5000000.24890 (3)0.7500000.02595 (17)
N10.42021 (9)0.24892 (10)0.82781 (11)0.0345 (4)
C10.36511 (10)0.24794 (11)0.85346 (11)0.0284 (4)
S10.28727 (2)0.24611 (4)0.88985 (3)0.04010 (18)
N110.55665 (7)0.38053 (12)0.82637 (9)0.0330 (3)
C110.52259 (10)0.47154 (15)0.85750 (11)0.0386 (4)
H110.4720970.4766130.8438330.046*
C120.55697 (12)0.55942 (17)0.90889 (13)0.0503 (5)
C130.63026 (13)0.5497 (2)0.92937 (16)0.0608 (6)
H130.6556370.6071650.9648300.073*
C140.66640 (11)0.4564 (2)0.89825 (16)0.0612 (6)
H140.7167690.4487070.9119460.073*
C150.62794 (9)0.37415 (17)0.84660 (12)0.0449 (4)
H150.6530790.3105050.8245530.054*
C160.51514 (16)0.6613 (2)0.93882 (19)0.0760 (8)
H16A0.5099290.7229690.8950900.114*
H16B0.5405910.6936730.9912740.114*
H16C0.4676360.6337420.9496200.114*
N210.44432 (7)0.11538 (12)0.67464 (8)0.0310 (3)
C210.43764 (9)0.12022 (14)0.58979 (10)0.0337 (3)
H210.4605550.1837600.5645690.040*0.757 (5)
H21A0.4526650.1883270.5615970.040*0.243 (5)
C220.4005 (3)0.0410 (5)0.5368 (4)0.0347 (12)0.757 (5)
C230.3683 (3)0.0535 (4)0.5741 (3)0.0400 (9)0.757 (5)
H230.3434600.1126810.5397240.048*0.757 (5)
C240.3730 (2)0.0603 (3)0.6615 (2)0.0453 (8)0.757 (5)
H240.3508970.1236170.6879390.054*0.757 (5)
C250.4100 (2)0.0254 (5)0.7095 (4)0.0380 (11)0.757 (5)
H250.4116870.0216860.7695280.046*0.757 (5)
C260.39812 (15)0.0533 (2)0.44197 (14)0.0466 (7)0.757 (5)
H26A0.3683780.1214560.4226080.070*0.757 (5)
H26B0.3776440.0186570.4143740.070*0.757 (5)
H26C0.4467940.0649300.4272120.070*0.757 (5)
C22'0.4062 (13)0.017 (2)0.5403 (11)0.042 (4)0.243 (5)
H22'0.3984020.0201710.4801030.051*0.243 (5)
C23'0.3890 (8)0.0810 (15)0.5813 (11)0.048 (3)0.243 (5)
H23'0.3673390.1460670.5502090.058*0.243 (5)
C24'0.4025 (5)0.0869 (9)0.6675 (6)0.0368 (19)0.243 (5)
C25'0.4322 (6)0.0147 (15)0.7115 (12)0.027 (2)0.243 (5)
H25'0.4440860.0092320.7712770.033*0.243 (5)
C26'0.3910 (5)0.1978 (8)0.7179 (5)0.054 (2)0.243 (5)
H26D0.3498460.2416960.6898510.081*0.243 (5)
H26E0.3817430.1758340.7753730.081*0.243 (5)
H26F0.4339100.2475240.7210770.081*0.243 (5)
N310.3955 (6)0.6917 (11)0.7911 (7)0.164 (3)0.5
C310.3454 (6)0.6475 (8)0.8069 (6)0.126 (2)0.5
C320.2775 (8)0.5919 (12)0.8173 (13)0.160 (5)0.5
H32A0.2419920.6131180.7694010.239*0.5
H32B0.2610970.6191300.8703400.239*0.5
H32C0.2835980.5057670.8191830.239*0.5
N31'0.2788 (5)0.7116 (10)0.9198 (8)0.163 (3)0.5
C31'0.2854 (4)0.6431 (8)0.8677 (8)0.113 (2)0.5
C32'0.2937 (5)0.5588 (9)0.8067 (11)0.122 (3)0.5
H32D0.3288280.5866040.7701660.182*0.5
H32E0.2476700.5450620.7722170.182*0.5
H32F0.3106630.4847780.8343600.182*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0266 (3)0.0241 (3)0.0272 (3)0.0000.00339 (17)0.000
N10.0328 (8)0.0347 (8)0.0367 (8)0.0004 (4)0.0076 (6)0.0012 (5)
C10.0336 (8)0.0257 (8)0.0254 (8)0.0016 (5)0.0009 (6)0.0006 (4)
S10.0297 (3)0.0488 (3)0.0431 (3)0.00236 (14)0.0093 (2)0.00200 (15)
N110.0360 (7)0.0286 (6)0.0346 (7)0.0035 (5)0.0044 (5)0.0037 (5)
C110.0452 (9)0.0324 (8)0.0395 (8)0.0026 (7)0.0099 (7)0.0057 (6)
C120.0649 (12)0.0391 (9)0.0491 (10)0.0099 (8)0.0166 (9)0.0137 (8)
C130.0609 (13)0.0601 (13)0.0611 (13)0.0223 (11)0.0067 (10)0.0259 (11)
C140.0425 (10)0.0660 (14)0.0729 (14)0.0132 (9)0.0023 (9)0.0211 (11)
C150.0364 (8)0.0431 (9)0.0538 (10)0.0042 (7)0.0001 (7)0.0112 (8)
C160.0889 (19)0.0580 (14)0.0850 (18)0.0064 (12)0.0269 (15)0.0332 (13)
N210.0352 (7)0.0295 (6)0.0276 (6)0.0048 (5)0.0008 (5)0.0009 (5)
C210.0393 (8)0.0330 (8)0.0288 (7)0.0021 (6)0.0038 (6)0.0018 (6)
C220.0409 (18)0.031 (2)0.0324 (18)0.0011 (17)0.0058 (14)0.0012 (12)
C230.046 (2)0.037 (2)0.0369 (16)0.0138 (16)0.0011 (16)0.0052 (13)
C240.054 (2)0.0409 (17)0.0411 (14)0.0197 (15)0.0044 (15)0.0019 (12)
C250.041 (3)0.0412 (18)0.0315 (15)0.014 (2)0.001 (2)0.0053 (12)
C260.0616 (15)0.0482 (14)0.0294 (11)0.0122 (11)0.0032 (10)0.0058 (9)
C22'0.064 (8)0.037 (7)0.019 (4)0.014 (5)0.020 (4)0.012 (4)
C23'0.053 (8)0.042 (6)0.045 (4)0.000 (5)0.012 (5)0.009 (4)
C24'0.034 (5)0.036 (4)0.038 (3)0.004 (3)0.004 (3)0.004 (3)
C25'0.021 (6)0.030 (4)0.029 (4)0.006 (4)0.008 (4)0.002 (3)
C26'0.063 (5)0.045 (4)0.050 (4)0.025 (4)0.010 (4)0.001 (3)
N310.188 (4)0.153 (7)0.146 (7)0.007 (4)0.003 (4)0.067 (6)
C310.178 (4)0.098 (5)0.096 (5)0.025 (3)0.002 (4)0.040 (4)
C320.172 (5)0.099 (9)0.202 (14)0.038 (4)0.000 (5)0.092 (9)
N31'0.128 (7)0.131 (5)0.221 (5)0.049 (5)0.016 (4)0.031 (4)
C31'0.051 (3)0.087 (4)0.197 (5)0.011 (3)0.001 (4)0.062 (3)
C32'0.100 (5)0.077 (4)0.184 (5)0.025 (4)0.000 (4)0.076 (3)
Geometric parameters (Å, º) top
Ni1—N1i2.0528 (16)C22—C261.506 (6)
Ni1—N12.0528 (16)C23—H230.9500
Ni1—N112.1235 (14)C23—C241.381 (5)
Ni1—N11i2.1235 (13)C24—H240.9500
Ni1—N212.1224 (13)C24—C251.370 (7)
Ni1—N21i2.1224 (13)C25—H250.9500
N1—C11.157 (3)C26—H26A0.9800
C1—S11.6358 (19)C26—H26B0.9800
N11—C111.337 (2)C26—H26C0.9800
N11—C151.342 (2)C22'—H22'0.9500
C11—H110.9500C22'—C23'1.34 (2)
C11—C121.394 (2)C23'—H23'0.9500
C12—C131.382 (3)C23'—C24'1.363 (19)
C12—C161.503 (3)C24'—C25'1.423 (19)
C13—H130.9500C24'—C26'1.516 (13)
C13—C141.377 (3)C25'—H25'0.9500
C14—H140.9500C26'—H26D0.9800
C14—C151.385 (3)C26'—H26E0.9800
C15—H150.9500C26'—H26F0.9800
C16—H16A0.9800N31—C311.121 (11)
C16—H16B0.9800C31—C321.449 (14)
C16—H16C0.9800C32—H32A0.9800
N21—C211.3381 (19)C32—H32B0.9800
N21—C251.357 (6)C32—H32C0.9800
N21—C25'1.312 (19)N31'—C31'1.151 (12)
C21—H210.9500C31'—C32'1.381 (15)
C21—H21A0.9500C32'—H32D0.9800
C21—C221.363 (6)C32'—H32E0.9800
C21—C22'1.490 (19)C32'—H32F0.9800
C22—C231.394 (6)
N1i—Ni1—N1179.99 (7)C22'—C21—H21A120.6
N1i—Ni1—N11i90.55 (6)C21—C22—C23117.3 (4)
N1—Ni1—N11i89.44 (6)C21—C22—C26120.5 (3)
N1—Ni1—N1190.55 (6)C23—C22—C26122.1 (5)
N1i—Ni1—N1189.44 (6)C22—C23—H23120.3
N1i—Ni1—N2190.46 (6)C24—C23—C22119.3 (4)
N1—Ni1—N2189.55 (6)C24—C23—H23120.3
N1—Ni1—N21i90.46 (6)C23—C24—H24120.4
N1i—Ni1—N21i89.55 (6)C25—C24—C23119.1 (4)
N11—Ni1—N11i91.03 (8)C25—C24—H24120.4
N21i—Ni1—N1189.80 (6)N21—C25—C24122.5 (5)
N21i—Ni1—N11i179.16 (5)N21—C25—H25118.7
N21—Ni1—N11i89.80 (6)C24—C25—H25118.7
N21—Ni1—N11179.16 (5)C22—C26—H26A109.5
N21—Ni1—N21i89.36 (7)C22—C26—H26B109.5
C1—N1—Ni1163.77 (15)C22—C26—H26C109.5
N1—C1—S1179.81 (16)H26A—C26—H26B109.5
C11—N11—Ni1121.35 (11)H26A—C26—H26C109.5
C11—N11—C15117.48 (15)H26B—C26—H26C109.5
C15—N11—Ni1121.16 (11)C21—C22'—H22'120.2
N11—C11—H11118.1C23'—C22'—C21119.6 (14)
N11—C11—C12123.73 (17)C23'—C22'—H22'120.2
C12—C11—H11118.1C22'—C23'—H23'120.0
C11—C12—C16120.5 (2)C22'—C23'—C24'120.0 (15)
C13—C12—C11117.42 (18)C24'—C23'—H23'120.0
C13—C12—C16122.1 (2)C23'—C24'—C25'117.9 (13)
C12—C13—H13120.1C23'—C24'—C26'123.3 (10)
C14—C13—C12119.83 (19)C25'—C24'—C26'118.7 (11)
C14—C13—H13120.1N21—C25'—C24'124.1 (15)
C13—C14—H14120.6N21—C25'—H25'118.0
C13—C14—C15118.7 (2)C24'—C25'—H25'118.0
C15—C14—H14120.6C24'—C26'—H26D109.5
N11—C15—C14122.78 (18)C24'—C26'—H26E109.5
N11—C15—H15118.6C24'—C26'—H26F109.5
C14—C15—H15118.6H26D—C26'—H26E109.5
C12—C16—H16A109.5H26D—C26'—H26F109.5
C12—C16—H16B109.5H26E—C26'—H26F109.5
C12—C16—H16C109.5N31—C31—C32173.6 (12)
H16A—C16—H16B109.5C31—C32—H32A109.5
H16A—C16—H16C109.5C31—C32—H32B109.5
H16B—C16—H16C109.5C31—C32—H32C109.5
C21—N21—Ni1121.24 (10)H32A—C32—H32B109.5
C21—N21—C25116.6 (3)H32A—C32—H32C109.5
C25—N21—Ni1122.0 (3)H32B—C32—H32C109.5
C25'—N21—Ni1117.8 (8)N31'—C31'—C32'178.5 (12)
C25'—N21—C21118.9 (8)C31'—C32'—H32D109.5
N21—C21—H21117.5C31'—C32'—H32E109.5
N21—C21—H21A120.6C31'—C32'—H32F109.5
N21—C21—C22125.0 (2)H32D—C32'—H32E109.5
N21—C21—C22'118.8 (8)H32D—C32'—H32F109.5
C22—C21—H21117.5H32E—C32'—H32F109.5
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25···N21i0.952.482.991 (15)114
C32—H32A···S1ii0.982.933.791 (17)147
C32—H32F···S10.982.893.779 (10)152
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1/2, y+1/2, z+3/2.
Bis(isothiocyanato-κN)tetrakis(3-methylpyridine-κN)\ nickel(II) diethyl ether monosolvate (3) top
Crystal data top
[Ni(NCS)2(C6H7N)4]·C4H10OF(000) = 1312
Mr = 621.49Dx = 1.271 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 10.2275 (10) ÅCell parameters from 43692 reflections
b = 25.0468 (1) Åθ = 3.5–79.0°
c = 12.7180 (1) ŵ = 2.31 mm1
β = 94.600 (1)°T = 100 K
V = 3247.4 (3) Å3Block, light purple
Z = 40.2 × 0.2 × 0.15 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
6974 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source6907 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.020
Detector resolution: 10.0000 pixels mm-1θmax = 79.6°, θmin = 3.5°
ω scansh = 1213
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
k = 3130
Tmin = 0.933, Tmax = 1.000l = 1516
56224 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0356P)2 + 1.9652P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max = 0.002
S = 1.03Δρmax = 0.54 e Å3
6974 reflectionsΔρmin = 0.32 e Å3
368 parametersExtinction correction: SHELXL-2016/6 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00020 (4)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.24076 (2)0.61197 (2)0.27926 (2)0.01630 (7)
N10.24400 (11)0.60562 (4)0.44028 (9)0.0217 (2)
C10.24082 (12)0.62304 (5)0.52491 (10)0.0188 (2)
S10.23850 (4)0.64887 (2)0.64199 (3)0.03244 (9)
N20.23270 (11)0.61727 (4)0.11760 (9)0.0209 (2)
C20.26680 (12)0.62259 (5)0.03386 (10)0.0195 (2)
S20.31719 (4)0.63063 (2)0.08404 (3)0.02805 (9)
N110.11637 (10)0.54346 (4)0.26359 (8)0.0182 (2)
C110.12071 (12)0.51046 (5)0.18089 (10)0.0195 (2)
H110.1808940.5184060.1299340.023*
C120.04240 (12)0.46529 (5)0.16522 (10)0.0212 (2)
C130.04471 (13)0.45407 (5)0.24070 (11)0.0252 (3)
H130.1005940.4237860.2330600.030*
C140.04931 (13)0.48748 (6)0.32726 (11)0.0259 (3)
H140.1076950.4801290.3798820.031*
C150.03222 (12)0.53170 (5)0.33612 (10)0.0218 (2)
H150.0285030.5544840.3955160.026*
C160.05390 (14)0.42992 (6)0.07075 (11)0.0286 (3)
H16A0.0906670.4504250.0144930.043*
H16B0.0331500.4165640.0456990.043*
H16C0.1116550.3997220.0905430.043*
N210.40489 (10)0.55986 (4)0.27878 (8)0.0181 (2)
C210.48770 (12)0.56126 (5)0.20234 (10)0.0209 (2)
H210.4799560.5899740.1534330.025*
C220.58430 (13)0.52316 (5)0.19038 (11)0.0249 (3)
C230.59499 (13)0.48144 (5)0.26294 (11)0.0251 (3)
H230.6583470.4541050.2568710.030*
C240.51244 (13)0.48016 (5)0.34399 (11)0.0240 (3)
H240.5197580.4524690.3951650.029*
C250.41891 (12)0.51993 (5)0.34931 (10)0.0208 (2)
H250.3624700.5189000.4050780.025*
C260.67263 (16)0.52747 (7)0.10169 (14)0.0393 (4)
H26A0.6325090.5512290.0469970.059*
H26B0.6851630.4920040.0715580.059*
H26C0.7577410.5419950.1287350.059*
N310.36520 (10)0.68134 (4)0.29236 (8)0.0190 (2)
C310.44241 (12)0.69197 (5)0.38051 (10)0.0206 (2)
H310.4458530.6665020.4360280.025*
C320.51760 (12)0.73812 (5)0.39515 (10)0.0220 (3)
C330.51474 (13)0.77437 (5)0.31195 (11)0.0240 (3)
H330.5652530.8062070.3182390.029*
C340.43767 (14)0.76355 (5)0.22017 (11)0.0262 (3)
H340.4357110.7875480.1622140.031*
C350.36329 (13)0.71725 (5)0.21377 (11)0.0238 (3)
H350.3086310.7106220.1511700.029*
C360.59863 (15)0.74773 (6)0.49744 (12)0.0310 (3)
H36A0.5678830.7801670.5308020.046*
H36B0.6909020.7520640.4835400.046*
H36C0.5898760.7172170.5445960.046*
N410.07440 (10)0.66297 (4)0.28090 (9)0.0202 (2)
C410.02476 (13)0.65985 (5)0.20552 (11)0.0228 (3)
H410.0202800.6333030.1525740.027*
C420.13370 (13)0.69318 (6)0.20032 (12)0.0277 (3)
C430.13848 (14)0.73168 (5)0.27870 (12)0.0291 (3)
H430.2110050.7554050.2781840.035*
C440.03766 (15)0.73536 (5)0.35720 (12)0.0291 (3)
H440.0400570.7614380.4112570.035*
C450.06728 (14)0.70034 (5)0.35589 (11)0.0252 (3)
H450.1366180.7028970.4100140.030*
C460.24086 (16)0.68799 (8)0.11234 (16)0.0458 (4)
H46A0.2152540.6614260.0612680.069*
H46B0.2547550.7225550.0770990.069*
H46C0.3222320.6766130.1414650.069*
O10.69662 (10)0.62578 (4)0.59182 (9)0.0317 (2)
C510.73601 (16)0.60727 (7)0.41488 (14)0.0366 (3)
H51A0.7957310.5895240.3694940.055*
H51B0.7322050.6454940.3984250.055*
H51C0.6481450.5917540.4026250.055*
C520.78480 (15)0.59971 (6)0.52804 (14)0.0347 (3)
H52A0.7894050.5611780.5453020.042*
H52B0.8737820.6150960.5410810.042*
C530.72920 (16)0.61857 (6)0.70157 (13)0.0343 (3)
H53A0.8209880.6297590.7201640.041*
H53B0.7207010.5804480.7203960.041*
C540.63737 (18)0.65180 (8)0.76094 (14)0.0444 (4)
H54A0.5465350.6420060.7388250.067*
H54B0.6510520.6896780.7459210.067*
H54C0.6546300.6453880.8368000.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01686 (11)0.01632 (11)0.01561 (11)0.00084 (7)0.00063 (8)0.00079 (7)
N10.0249 (5)0.0217 (5)0.0185 (5)0.0001 (4)0.0018 (4)0.0013 (4)
C10.0193 (6)0.0166 (5)0.0206 (6)0.0011 (4)0.0021 (4)0.0029 (4)
S10.0513 (2)0.02888 (18)0.01775 (16)0.00010 (15)0.00635 (14)0.00430 (12)
N20.0198 (5)0.0204 (5)0.0223 (6)0.0006 (4)0.0008 (4)0.0006 (4)
C20.0214 (6)0.0145 (5)0.0216 (6)0.0021 (4)0.0046 (5)0.0029 (4)
S20.03759 (19)0.02713 (17)0.02051 (16)0.00213 (13)0.00901 (13)0.00014 (12)
N110.0171 (5)0.0177 (5)0.0196 (5)0.0011 (4)0.0002 (4)0.0001 (4)
C110.0187 (5)0.0204 (6)0.0192 (6)0.0007 (4)0.0006 (4)0.0002 (5)
C120.0197 (6)0.0201 (6)0.0232 (6)0.0009 (5)0.0027 (5)0.0010 (5)
C130.0203 (6)0.0228 (6)0.0323 (7)0.0033 (5)0.0007 (5)0.0002 (5)
C140.0209 (6)0.0282 (7)0.0294 (7)0.0023 (5)0.0064 (5)0.0006 (5)
C150.0189 (6)0.0237 (6)0.0229 (6)0.0012 (5)0.0029 (5)0.0014 (5)
C160.0313 (7)0.0265 (7)0.0276 (7)0.0049 (5)0.0005 (5)0.0061 (5)
N210.0165 (5)0.0175 (5)0.0199 (5)0.0002 (4)0.0003 (4)0.0010 (4)
C210.0190 (6)0.0207 (6)0.0230 (6)0.0003 (5)0.0015 (5)0.0016 (5)
C220.0220 (6)0.0244 (6)0.0287 (7)0.0018 (5)0.0056 (5)0.0001 (5)
C230.0218 (6)0.0211 (6)0.0326 (7)0.0038 (5)0.0024 (5)0.0010 (5)
C240.0247 (6)0.0196 (6)0.0275 (7)0.0009 (5)0.0006 (5)0.0031 (5)
C250.0205 (6)0.0203 (6)0.0215 (6)0.0003 (5)0.0012 (5)0.0010 (5)
C260.0373 (8)0.0393 (9)0.0441 (9)0.0125 (7)0.0206 (7)0.0100 (7)
N310.0191 (5)0.0164 (5)0.0212 (5)0.0008 (4)0.0008 (4)0.0007 (4)
C310.0202 (6)0.0200 (6)0.0215 (6)0.0005 (5)0.0003 (5)0.0002 (5)
C320.0206 (6)0.0206 (6)0.0245 (6)0.0004 (5)0.0001 (5)0.0030 (5)
C330.0240 (6)0.0172 (6)0.0310 (7)0.0012 (5)0.0031 (5)0.0014 (5)
C340.0318 (7)0.0193 (6)0.0272 (7)0.0006 (5)0.0002 (5)0.0038 (5)
C350.0266 (6)0.0203 (6)0.0236 (6)0.0007 (5)0.0026 (5)0.0014 (5)
C360.0350 (7)0.0260 (7)0.0302 (7)0.0064 (6)0.0077 (6)0.0020 (6)
N410.0201 (5)0.0185 (5)0.0223 (5)0.0022 (4)0.0033 (4)0.0007 (4)
C410.0216 (6)0.0209 (6)0.0259 (6)0.0013 (5)0.0021 (5)0.0005 (5)
C420.0215 (6)0.0251 (7)0.0363 (8)0.0030 (5)0.0013 (5)0.0052 (6)
C430.0257 (7)0.0221 (6)0.0407 (8)0.0076 (5)0.0092 (6)0.0059 (6)
C440.0344 (7)0.0207 (6)0.0333 (7)0.0062 (5)0.0088 (6)0.0009 (5)
C450.0287 (7)0.0208 (6)0.0260 (7)0.0036 (5)0.0027 (5)0.0012 (5)
C460.0300 (8)0.0435 (9)0.0607 (11)0.0116 (7)0.0155 (8)0.0055 (8)
O10.0290 (5)0.0293 (5)0.0369 (6)0.0067 (4)0.0030 (4)0.0052 (4)
C510.0323 (8)0.0337 (8)0.0445 (9)0.0039 (6)0.0078 (7)0.0041 (7)
C520.0259 (7)0.0278 (7)0.0502 (9)0.0042 (6)0.0026 (6)0.0010 (7)
C530.0341 (8)0.0298 (7)0.0380 (8)0.0031 (6)0.0044 (6)0.0070 (6)
C540.0454 (10)0.0504 (10)0.0375 (9)0.0008 (8)0.0045 (7)0.0028 (8)
Geometric parameters (Å, º) top
Ni1—N12.0517 (11)C31—H310.9500
Ni1—N22.0552 (11)C31—C321.3926 (18)
Ni1—N112.1358 (10)C32—C331.3928 (19)
Ni1—N212.1266 (10)C32—C361.5047 (18)
Ni1—N312.1523 (11)C33—H330.9500
Ni1—N412.1291 (11)C33—C341.382 (2)
N1—C11.1643 (17)C34—H340.9500
C1—S11.6254 (13)C34—C351.3858 (19)
N2—C21.1546 (18)C35—H350.9500
C2—S21.6366 (13)C36—H36A0.9800
N11—C111.3413 (16)C36—H36B0.9800
N11—C151.3437 (16)C36—H36C0.9800
C11—H110.9500N41—C411.3409 (17)
C11—C121.3912 (17)N41—C451.3423 (17)
C12—C131.3898 (19)C41—H410.9500
C12—C161.5050 (18)C41—C421.3894 (18)
C13—H130.9500C42—C431.391 (2)
C13—C141.387 (2)C42—C461.508 (2)
C14—H140.9500C43—H430.9500
C14—C151.3855 (18)C43—C441.380 (2)
C15—H150.9500C44—H440.9500
C16—H16A0.9800C44—C451.3872 (19)
C16—H16B0.9800C45—H450.9500
C16—H16C0.9800C46—H46A0.9800
N21—C211.3400 (16)C46—H46B0.9800
N21—C251.3436 (16)C46—H46C0.9800
C21—H210.9500O1—C521.4195 (19)
C21—C221.3907 (18)O1—C531.4202 (19)
C22—C231.3927 (19)C51—H51A0.9800
C22—C261.5045 (19)C51—H51B0.9800
C23—H230.9500C51—H51C0.9800
C23—C241.3841 (19)C51—C521.497 (2)
C24—H240.9500C52—H52A0.9900
C24—C251.3864 (18)C52—H52B0.9900
C25—H250.9500C53—H53A0.9900
C26—H26A0.9800C53—H53B0.9900
C26—H26B0.9800C53—C541.503 (2)
C26—H26C0.9800C54—H54A0.9800
N31—C311.3452 (16)C54—H54B0.9800
N31—C351.3437 (17)C54—H54C0.9800
N1—Ni1—N2178.45 (4)N31—C31—H31118.1
N1—Ni1—N1189.58 (4)N31—C31—C32123.82 (12)
N1—Ni1—N2190.33 (4)C32—C31—H31118.1
N1—Ni1—N3191.33 (4)C31—C32—C33117.51 (12)
N1—Ni1—N4189.18 (4)C31—C32—C36120.55 (12)
N2—Ni1—N1189.02 (4)C33—C32—C36121.94 (12)
N2—Ni1—N2190.29 (4)C32—C33—H33120.3
N2—Ni1—N3190.07 (4)C34—C33—C32119.32 (12)
N2—Ni1—N4190.18 (4)C34—C33—H33120.3
N11—Ni1—N31179.05 (4)C33—C34—H34120.4
N21—Ni1—N1188.35 (4)C33—C34—C35119.14 (13)
N21—Ni1—N3191.93 (4)C35—C34—H34120.4
N21—Ni1—N41178.94 (4)N31—C35—C34122.78 (12)
N41—Ni1—N1190.72 (4)N31—C35—H35118.6
N41—Ni1—N3189.02 (4)C34—C35—H35118.6
C1—N1—Ni1153.43 (10)C32—C36—H36A109.5
N1—C1—S1178.36 (12)C32—C36—H36B109.5
C2—N2—Ni1159.93 (10)C32—C36—H36C109.5
N2—C2—S2179.10 (13)H36A—C36—H36B109.5
C11—N11—Ni1120.75 (8)H36A—C36—H36C109.5
C11—N11—C15117.80 (11)H36B—C36—H36C109.5
C15—N11—Ni1121.44 (8)C41—N41—Ni1121.14 (9)
N11—C11—H11118.0C41—N41—C45117.88 (11)
N11—C11—C12123.96 (12)C45—N41—Ni1120.95 (9)
C12—C11—H11118.0N41—C41—H41118.1
C11—C12—C16120.81 (12)N41—C41—C42123.82 (13)
C13—C12—C11117.33 (12)C42—C41—H41118.1
C13—C12—C16121.86 (12)C41—C42—C43117.17 (13)
C12—C13—H13120.3C41—C42—C46121.06 (14)
C14—C13—C12119.39 (12)C43—C42—C46121.76 (13)
C14—C13—H13120.3C42—C43—H43120.1
C13—C14—H14120.4C44—C43—C42119.85 (13)
C15—C14—C13119.24 (12)C44—C43—H43120.1
C15—C14—H14120.4C43—C44—H44120.6
N11—C15—C14122.27 (12)C43—C44—C45118.89 (13)
N11—C15—H15118.9C45—C44—H44120.6
C14—C15—H15118.9N41—C45—C44122.38 (13)
C12—C16—H16A109.5N41—C45—H45118.8
C12—C16—H16B109.5C44—C45—H45118.8
C12—C16—H16C109.5C42—C46—H46A109.5
H16A—C16—H16B109.5C42—C46—H46B109.5
H16A—C16—H16C109.5C42—C46—H46C109.5
H16B—C16—H16C109.5H46A—C46—H46B109.5
C21—N21—Ni1122.07 (8)H46A—C46—H46C109.5
C21—N21—C25117.64 (11)H46B—C46—H46C109.5
C25—N21—Ni1119.80 (8)C52—O1—C53113.17 (12)
N21—C21—H21118.1H51A—C51—H51B109.5
N21—C21—C22123.87 (12)H51A—C51—H51C109.5
C22—C21—H21118.1H51B—C51—H51C109.5
C21—C22—C23117.46 (12)C52—C51—H51A109.5
C21—C22—C26120.49 (13)C52—C51—H51B109.5
C23—C22—C26122.06 (12)C52—C51—H51C109.5
C22—C23—H23120.3O1—C52—C51108.25 (12)
C24—C23—C22119.38 (12)O1—C52—H52A110.0
C24—C23—H23120.3O1—C52—H52B110.0
C23—C24—H24120.5C51—C52—H52A110.0
C23—C24—C25118.96 (12)C51—C52—H52B110.0
C25—C24—H24120.5H52A—C52—H52B108.4
N21—C25—C24122.64 (12)O1—C53—H53A110.0
N21—C25—H25118.7O1—C53—H53B110.0
C24—C25—H25118.7O1—C53—C54108.46 (13)
C22—C26—H26A109.5H53A—C53—H53B108.4
C22—C26—H26B109.5C54—C53—H53A110.0
C22—C26—H26C109.5C54—C53—H53B110.0
H26A—C26—H26B109.5C53—C54—H54A109.5
H26A—C26—H26C109.5C53—C54—H54B109.5
H26B—C26—H26C109.5C53—C54—H54C109.5
C31—N31—Ni1121.89 (8)H54A—C54—H54B109.5
C35—N31—Ni1120.64 (9)H54A—C54—H54C109.5
C35—N31—C31117.39 (11)H54B—C54—H54C109.5
Ni1—N11—C11—C12179.71 (9)C23—C24—C25—N210.0 (2)
Ni1—N11—C15—C14179.93 (10)C25—N21—C21—C221.80 (19)
Ni1—N21—C21—C22170.21 (10)C26—C22—C23—C24178.84 (14)
Ni1—N21—C25—C24170.56 (10)N31—C31—C32—C331.89 (19)
Ni1—N31—C31—C32175.46 (9)N31—C31—C32—C36178.29 (12)
Ni1—N31—C35—C34177.39 (10)C31—N31—C35—C340.66 (19)
Ni1—N41—C41—C42177.75 (10)C31—C32—C33—C340.66 (19)
Ni1—N41—C45—C44177.81 (10)C32—C33—C34—C351.1 (2)
N11—C11—C12—C130.29 (19)C33—C34—C35—N311.8 (2)
N11—C11—C12—C16179.46 (12)C35—N31—C31—C321.23 (19)
C11—N11—C15—C140.57 (18)C36—C32—C33—C34179.52 (13)
C11—C12—C13—C140.44 (19)N41—C41—C42—C430.1 (2)
C12—C13—C14—C150.6 (2)N41—C41—C42—C46179.09 (14)
C13—C14—C15—N110.1 (2)C41—N41—C45—C440.3 (2)
C15—N11—C11—C120.79 (18)C41—C42—C43—C440.2 (2)
C16—C12—C13—C14178.71 (13)C42—C43—C44—C450.2 (2)
N21—C21—C22—C230.3 (2)C43—C44—C45—N410.0 (2)
N21—C21—C22—C26179.49 (14)C45—N41—C41—C420.4 (2)
C21—N21—C25—C241.63 (18)C46—C42—C43—C44179.38 (15)
C21—C22—C23—C241.4 (2)C52—O1—C53—C54174.86 (13)
C22—C23—C24—C251.5 (2)C53—O1—C52—C51176.55 (12)
 

Funding information

Financial support by the State of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References

First citationBoeckmann, J. & Näther, C. (2011). Acta Cryst. E67, m994.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBoeckmann, J., Reimer, B. & Näther, C. (2011). Z. Naturforsch. Teil B, 66, 819–827.  CrossRef CAS Google Scholar
First citationBöhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325–5338.  Web of Science PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCeglarska, M., Krebs, C. & Näther, C. (2022). Acta Cryst. E78, 755–760.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHandy, J. V., Ayala, G. & Pike, R. D. (2017). Inorg. Chim. Acta, 456, 64–75.  Web of Science CSD CrossRef CAS Google Scholar
First citationHealy, P. C., Pakawatchai, C., Papasergio, R. I., Patrick, V. A. & White, A. H. (1984). Inorg. Chem. 23, 3769–3776.  CSD CrossRef CAS Web of Science Google Scholar
First citationKabešová, M. & Kožíšková, Z. (1989). Collect. Czech. Chem. Commun. 54, 1800–1807.  Google Scholar
First citationMałecki, J. G. (2017). CSD Communication (refcode NAQYOW). CCDC, Cambridge, England.  Google Scholar
First citationMałecki, J. G., Bałanda, M., Groń, T. & Kruszyński, R. (2012). Struct. Chem. 23, 1219–1232.  Google Scholar
First citationMautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436–442.  Web of Science CSD CrossRef CAS Google Scholar
First citationNassimbeni, L. R., Bond, D. R., Moore, M. & Papanicolaou, S. (1984). Acta Cryst. A40, C111.  CrossRef Web of Science IUCr Journals Google Scholar
First citationNassimbeni, L. R., Papanicolaou, S. & Moore, M. H. (1986). J. Inclusion Phenom. 4, 31–42.  CSD CrossRef CAS Web of Science Google Scholar
First citationPang, L., Lucken, E. A. C. & Bernardinelli, G. (1990). J. Am. Chem. Soc. 112, 8754–8764.  CSD CrossRef CAS Web of Science Google Scholar
First citationPang, L., Lucken, E. A. C. & Bernardinelli, G. (1992). J. Incl Phenom. Macrocycl Chem. 13, 63–76.  CSD CrossRef CAS Web of Science Google Scholar
First citationRams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837–2851.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuckert, S., Rams, M., Böhme, M., Germann, L., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190–18201.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTan, X.-N., Che, Y.-X. & Zheng, J.-M. (2006). Jiegou Huaxue, 25, 358.  Google Scholar
First citationTaniguchi, M., Sugita, Y. & Ouchi, A. (1987). Bull. Chem. Soc. Jpn, 60, 1321–1326.  CSD CrossRef CAS Web of Science Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333–17342.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015a). Eur. J. Inorg. Chem. pp. 3236–3245.  Web of Science CSD CrossRef Google Scholar
First citationWerner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015b). Dalton Trans. 44, 14149–14158.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds