research communications
Synthesis and structure of clozapine N-oxide hemi(hydrochloride): an infinite hydrogen-bonded poly[n]catenane
aSchool of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, 3010, Australia, bAdvanced Molecular Technologies, Unit 1, 7-11 Rocco Drive, Scoresby, Victoria, 3179, Australia, and cBruker AXS GmbH, Oestliche Rheinbrueckenstr. 49, 76187 Karlsruhe, Germany
*Correspondence e-mail: whitejm@unimelb.edu.au
The structure of the title compound, 2C18H19ClN4O·HCl or (CNO)2·HCl (C36H39Cl3N8O2), at 100 K has tetragonal (I4/m) symmetry. The dihedral angle between the benzene rings of the fused ring system of the CNO molecule is 40.08 (6)° and the equivalent angle between the seven-membered ring and its pendant N-oxide ring is 31.14 (7)°. The structure contains a very strong, symmetrical O—H⋯O hydrogen bond [O⋯O = 2.434 (2) Å] between two equivalent R3N+—O− moieties, which share a proton lying on a crystallographic twofold rotation axis. These units then form a (CNO)4·(HCl)2 ring by way of two equivalent N—H⋯Cl hydrogen bonds (Cl− m). These rings are catenated into infinite chains propagating along the c-axis direction by way of shape complementarity and directional C—H⋯N and C—H⋯π interactions.
Keywords: hydrogen bonding; crystal structure; hydrogen-bonding catenation.
CCDC reference: 2208459
1. Chemical context
Coordination-driven self-assembly of supramolecular structures is a major focus area of materials science. However, hydrogen-bond-driven self-assembly has been less well studied, most likely as a consequence of the weakness of hydrogen bonding relative to coordinate bonding. Nevertheless, the directionality of hydrogen bonding can lend it to the controllable formation of supramolecular networks (González-Rodríguez & Schenning, 2011; Steiner, 2002; Prins et al., 2001). The simplest infinite interlocking systems are the one-dimensional polycatenanes (poly[n]catenanes). Such systems have been described involving interpenetrating metallocycles of silver/bis(2-methylimidazolyl) (Jin et al., 2006, 2008, 2018) and mercury/1,2-bis[(pyridin-4-ylthio)methyl]benzene (Xue et al., 2015). However, the lack of many examples beyond these suggests that the self-assembly of this interesting topological architecture is not easily achieved. Here, we report the serendipitous discovery of an infinite one-dimensional polycatenane architecture templated by a chloride anion that forms upon the attempted recrystallization of clozapine N-oxide (C18H19ClN4O; hereafter CNO) mono-hydrochloride, an inactive metabolite of clozapine that is utilized as an actuator of engineered muscarinic acetylcholine receptors (Armbruster et al., 2007; Urban & Roth, 2015; Dong et al., 2010; Gomez et al., 2017).
As part of efforts to develop a water-soluble salt form of CNO (van der Peet et al., 2018) we synthesized CNO·HBr and CNO·HCl by formation of the salt in methanol (Scheme 1).
The latter compound has been reported previously (Allen et al., 2019), but its preparation was not described. Elemental analysis of the precipitated CNO·HCl was consistent with the proposed structure in Scheme 1. Although crystals suitable for single crystal X-ray analysis were not obtained from the crude precipitate, powder X-ray diffraction of the precipitate suggested the material was substantially crystalline. To obtain structural verification and to locate the site of protonation, we attempted to grow single crystals of CNO·HCl for single crystal X-ray analysis. Slow evaporation of a solution of CNO·HCl from a variety of solvents, or by diffusion of diethyl ether into a variety of solvents consistently yielded small orange block-shaped crystals of the title hemihydrochloride, which were found to be no longer soluble in water or other solvents (Scheme 2).
2. Structural commentary
Single-crystal X-ray 2·HCl, in the tetragonal I4/m (Scheme 2 and Fig. 1). In this structure, two molecules of CNO, which are related by a crystallographic twofold axis, share a proton, which is located on the rotation axis and forms a strong, essentially linear and apparently symmetric O—H⋯O/O⋯H—O hydrogen bond between the two molecules via the N-oxide moieties [O1⋯O1i = 2.434 (2) Å; symmetry code (i) −x, 1 − y, z]. Within the structure, the chloride counter-ion (Cl2) is located on a crystallographic mirror plane and accepts equivalent N—H⋯Cl hydrogen bonds [N1⋯Cl2 = 3.3259 (14) Å] to two mirror-related (CNO)2H+ moieties resulting in the formation of a cyclic structure templated by the Cl− counter-ions (Fig. 2). The diazepine ring core in (CNO)2·HCl adopts a boat conformation (Table 1) in which the N1(H) group is at the bow and the C7=N2 imine group is the stern. A consequence of the boat conformation is the mean planes of the two fused benzene rings lie at an angle 40.08 (6)° to one another; this represents a less puckered ring to that observed in the (CNO)·MeOH solvate in which the aromatic rings are at an angle of 56.2° (van der Peet et al., 2018) demonstrating the flexibility of this ring system. The equivalent angle between the seven-membered diazepine ring and its pendant N-oxide ring is 31.14 (7)°
of the orange crystals revealed that the CNO·HCl salt implied by the analysis for the initially formed salt (above) had lost half an equivalent of HCl upon crystallization and crystallized as a hemihydrochloride, (CNO)
|
3. Supramolecular features
The tetrameric cyclic structures are catenated and form infinite chains extending along the z-direction (Figs. 3 and 4) in which adjacent links in the chain are related by a 42 screw axis. The catenated rings form both as a result of general complementarity in the shapes of the internal cavities of the interacting (CNO)2 dimers related by the ( − y, + x, − z), and further stabilized by four equivalent non-classical hydrogen-bonding interactions involving the polarized C—H bond adjacent to the N-oxide moiety; (C15—H15A⋯N1, Table 2) in addition to four equivalent C—H⋯π interactions [H15A⋯C8 = 2.706 (2) Å] (Fig. 5). Solvent voids, which account for approximately 17% of the unit-cell volume, lie between the catenated chains: the disordered solvent was accounted for using the Squeeze procedure in PLATON (Spek, 2015). To establish the relationship between the original material and that obtained after crystallization, powder X-ray diffraction data were obtained for the orange crystals and compared to that for the original material (Fig. 6). The two powder diffraction patterns are substantially different, which is consistent with the combustion analysis of the original material that analysed as (CNO)·HCl, whereas the crystallized material is (CNO)2·HCl. Application of the same approach to CNO·HBr did not lead to an equivalent polymeric material.
4. Database survey
The formation of strong hydrogen bonds is predicted to occur when the pKa value for the donor acid matches that for the acceptor's conjugate acid form (Gilli et al., 2009). In this structure, a strong hydrogen bond between a protonated tertiary amine N-oxide and its conjugate base is predicted. A search of the Cambridge Structural Database (2022.2.0, September 2022; Groom et al., 2016) for structures containing the R3N—OH⋯O—NR3 moiety with constraints on the R factor to 5% or less and only organic structures surveyed gave eight good-quality structures (CSD refcodes: RAJDAL (Bettencourt et al., 2021), AJESEQ (Wlaźlak et al., 2018), AREREW (Moore et al., 2016), BAYDEK (Jaskólski et al., 1982), EPSPOX (Małuszyńska & Okaya, 1977), FUBMAS (Moore et al., 2015), NUCDUK (Krzywda et al., 1996) and OBECUV (Bohmer et al., 2011): these structures are characterized by O⋯O distances ranging from 2.426–2.445 Å, which is comparable to the O⋯O distance of 2.434 (2) Å in this structure, thus all can be classified as strong O—H⋯O hydrogen bonds as predicted.
5. Synthesis and crystallization
Preparation of clozapine N-oxide hydrochloride (CNO·HCl)
A 250 ml round-bottom flask was charged with clozapine N-oxide (5.00 g, 0.015 mol) and methanol (50 ml) and stirred under N2. Initially, the solid dissolved but then precipitated as a presumed CNO·methanolate adduct. A solution of HCl in ethyl acetate (2.8 M, 6 ml, 0.017 mol, 1.1 eq) was added slowly to the suspension. After 10 min the solid dissolved, and then precipitated as a faint yellow solid. The suspension was stirred for 1 h, then the solid was collected by filtration, and washed with ethyl acetate to afford CNO·HCl as a yellow solid (2.2 g, 39%). Degradation point: 473–478 K (corrected); 1H NMR (400 MHz, CD3OD) δ 3.35–3.45 (m, 6 H), 3.65–3.80 (m, 4 H), 3.95 (br s, 2 H), 6.83 (d, J 8.4 Hz, 1 H), 6.87 (d, J 2.4, 8.4 Hz, 1 H), 6.97 (dd, J = 2.4 Hz, 1H), 7.01 (dd, J 1.0, 8.0 Hz, 1H), 7.06 (dt, J 1.1, 7.6 Hz, 1H), 7.33 (dd, J 1.4, 7.8 Hz, 1H), 7.37 (dt, J 1.5, 6.4 Hz, 1H); 13C NMR (100 MHz, CD3OD) δ 43.1, 58.9, 65.3, 121.5, 121.6, 123.6, 124.3, 125.1, 127.4, 129.6, 131.2, 133.9, 142.5, 143.1, 155.5, 164.0. Elemental analysis: calculated for C18H20Cl2N4O: C 57.0, H 5.3, N 14.8. Found: C 56.8, H 5.6, N 14.8.
Preparation of clozapine N-oxide hemihydrochloride (CNO)2·HCl
The above material (CNO·HCl) was recrystallized by diffusion of diethyl ether into a methanol solution giving (CNO)2·HCl as small orange blocks.
Preparation of clozapine N-oxide hydrobromide
A 25 ml round-bottom flask was charged with clozapine N-oxide (1.00 g, 2.92 mmol, 1 eq.) and methanol (5 ml) and stirred under N2. Initially, the solid dissolved but then precipitated as a presumed CNO·methanolate adduct. The solution was cooled in an ice–water bath and 48% HBr in water (0.35 ml, 3.07 mmol, 1.05 eq) was added slowly to the suspension. The mixture stirred for 1 h at rt, without formation of a precipitate. The solvent was evaporated and the residue suspended in EtOAc (10 ml). The resulting solid was collected by filtration and washed with EtOAc to afford CNO·HBr as a yellow solid (1.1 g, 89%). Degradation point: 483–493 K (corrected); 1H NMR (400 MHz, CD3OD) δ 3.68 (s, 3 H), 3.87 (br d, J 11.6 Hz, 2 H), 3.9–4.2 (m, 6 H), 7.01 (d, J 8.6 Hz, 1 H), 7.13–7.23 (m, 3 H), 7.27 (br s, 1 H), 7.53–7.60 (m, 2 H); 13C NMR (100 MHz, CD3OD) δ 44.7, 57.8, 57.9, 64.6, 64.7, 122.6, 124.9, 125.0, 126.7, 126.8, 128.4, 130.0, 133.1, 136.5, 145.9, 156.4.
6. Refinement
Crystal data, data collection and structure . Regions of the occupied by disordered solvent (1409 Å3; ≃ 18.1% of the unit-cell volume) were processed with the Squeeze algorithm in PLATON (Spek, 2015); the stated composition, density, etc. do not take account of the solvent.
details are summarized in Table 3Supporting information
CCDC reference: 2208459
https://doi.org/10.1107/S2056989022009306/hb8039sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022009306/hb8039Isup2.hkl
Data collection: AS QEGUI; cell
XDS (Kabsch, 1993); data reduction: XDS (Kabsch, 1993); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012).2C18H19ClN4O·HCl | Dx = 1.230 Mg m−3 |
Mr = 722.10 | Synchrotron radiation, λ = 0.710757 Å |
Tetragonal, I4/m | Cell parameters from 5908 reflections |
a = 17.305 (2) Å | θ = 1.4–31.8° |
c = 26.040 (5) Å | µ = 0.28 mm−1 |
V = 7798 (3) Å3 | T = 100 K |
Z = 8 | Block, yellow |
F(000) = 3024 | 0.06 × 0.05 × 0.04 mm |
ADSC Quantum 210r diffractometer | 5096 reflections with I > 2σ(I) |
Radiation source: MX1 Beamline Australian Synchrotron | Rint = 0.049 |
Silicon Double Crystal monochromator | θmax = 31.8°, θmin = 1.4° |
ω Scan scans | h = −25→25 |
66433 measured reflections | k = −25→25 |
5901 independent reflections | l = −36→36 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.049 | w = 1/[σ2(Fo2) + (0.0661P)2 + 11.4576P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.138 | (Δ/σ)max = 0.001 |
S = 1.03 | Δρmax = 0.81 e Å−3 |
5901 reflections | Δρmin = −0.49 e Å−3 |
231 parameters | Extinction correction: SHELXL2016/6 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0069 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.13932 (3) | 0.04426 (2) | 0.37292 (2) | 0.03680 (13) | |
Cl2 | 0.16534 (4) | 0.44691 (3) | 0.500000 | 0.03563 (15) | |
O1 | 0.02559 (6) | 0.43450 (7) | 0.13599 (5) | 0.0285 (2) | |
N3 | 0.17304 (7) | 0.39022 (7) | 0.21729 (5) | 0.0225 (2) | |
N2 | 0.15846 (7) | 0.30145 (7) | 0.28157 (5) | 0.0228 (2) | |
N1 | 0.18161 (8) | 0.38441 (8) | 0.37970 (5) | 0.0261 (3) | |
N4 | 0.10378 (8) | 0.43810 (8) | 0.12165 (5) | 0.0248 (3) | |
C1 | 0.23713 (9) | 0.42470 (8) | 0.35074 (6) | 0.0242 (3) | |
C7 | 0.18814 (8) | 0.36630 (8) | 0.26780 (5) | 0.0216 (3) | |
C2 | 0.24220 (8) | 0.41696 (8) | 0.29712 (6) | 0.0228 (3) | |
C10 | 0.15645 (9) | 0.18517 (9) | 0.32919 (6) | 0.0252 (3) | |
H10 | 0.150809 | 0.159189 | 0.298148 | 0.030* | |
C14 | 0.14157 (9) | 0.46872 (8) | 0.21112 (6) | 0.0239 (3) | |
H14A | 0.170572 | 0.504443 | 0.232387 | 0.029* | |
H14B | 0.088144 | 0.469610 | 0.222369 | 0.029* | |
C9 | 0.16811 (8) | 0.26540 (8) | 0.32932 (6) | 0.0228 (3) | |
C16 | 0.13708 (9) | 0.35868 (9) | 0.12884 (6) | 0.0254 (3) | |
H16A | 0.190585 | 0.358444 | 0.117741 | 0.030* | |
H16B | 0.108830 | 0.322118 | 0.107741 | 0.030* | |
C15 | 0.14617 (9) | 0.49399 (8) | 0.15559 (6) | 0.0245 (3) | |
H15A | 0.123725 | 0.545067 | 0.152003 | 0.029* | |
H15B | 0.199875 | 0.496810 | 0.145089 | 0.029* | |
C3 | 0.29823 (9) | 0.46033 (9) | 0.27067 (6) | 0.0256 (3) | |
H3 | 0.302804 | 0.454729 | 0.235282 | 0.031* | |
C11 | 0.15328 (9) | 0.14442 (9) | 0.37477 (6) | 0.0291 (3) | |
C5 | 0.33991 (10) | 0.52005 (10) | 0.34901 (7) | 0.0317 (3) | |
H5 | 0.371497 | 0.554918 | 0.366272 | 0.038* | |
C8 | 0.17647 (9) | 0.30343 (9) | 0.37683 (6) | 0.0253 (3) | |
C17 | 0.13260 (9) | 0.33393 (8) | 0.18470 (5) | 0.0237 (3) | |
H17A | 0.078931 | 0.330314 | 0.195175 | 0.028* | |
H17B | 0.156037 | 0.283374 | 0.188721 | 0.028* | |
C6 | 0.28604 (9) | 0.47695 (10) | 0.37606 (6) | 0.0291 (3) | |
H6 | 0.282259 | 0.482756 | 0.411475 | 0.035* | |
C4 | 0.34685 (9) | 0.51128 (9) | 0.29616 (7) | 0.0294 (3) | |
H4 | 0.383731 | 0.539293 | 0.278039 | 0.035* | |
C13 | 0.17144 (12) | 0.26047 (10) | 0.42216 (6) | 0.0352 (4) | |
H13 | 0.176053 | 0.285737 | 0.453531 | 0.042* | |
C12 | 0.15973 (11) | 0.18114 (10) | 0.42162 (7) | 0.0361 (4) | |
H12 | 0.156323 | 0.153376 | 0.452117 | 0.043* | |
C18 | 0.10927 (11) | 0.46237 (11) | 0.06669 (6) | 0.0345 (4) | |
H18A | 0.079973 | 0.427372 | 0.045739 | 0.052* | |
H18B | 0.162386 | 0.461630 | 0.056060 | 0.052* | |
H18C | 0.088990 | 0.513702 | 0.062973 | 0.052* | |
H1 | 0.1789 (13) | 0.3988 (13) | 0.4114 (9) | 0.037 (6)* | |
H1A | 0.000000 | 0.500000 | 0.1357 (17) | 0.077 (14)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0421 (2) | 0.02417 (19) | 0.0442 (2) | 0.00136 (15) | 0.01026 (17) | 0.00663 (15) |
Cl2 | 0.0513 (4) | 0.0331 (3) | 0.0224 (2) | 0.0004 (2) | 0.000 | 0.000 |
O1 | 0.0225 (5) | 0.0313 (6) | 0.0318 (6) | −0.0003 (4) | −0.0012 (4) | 0.0007 (4) |
N3 | 0.0265 (6) | 0.0200 (5) | 0.0210 (5) | −0.0002 (4) | −0.0015 (4) | −0.0017 (4) |
N2 | 0.0234 (6) | 0.0225 (5) | 0.0224 (5) | 0.0017 (4) | 0.0001 (4) | −0.0013 (4) |
N1 | 0.0321 (7) | 0.0252 (6) | 0.0211 (6) | 0.0006 (5) | 0.0007 (5) | −0.0034 (4) |
N4 | 0.0263 (6) | 0.0271 (6) | 0.0210 (6) | −0.0012 (5) | 0.0007 (4) | −0.0003 (4) |
C1 | 0.0234 (6) | 0.0237 (6) | 0.0256 (7) | 0.0024 (5) | −0.0024 (5) | −0.0013 (5) |
C7 | 0.0216 (6) | 0.0219 (6) | 0.0214 (6) | 0.0025 (5) | 0.0000 (5) | −0.0024 (5) |
C2 | 0.0219 (6) | 0.0214 (6) | 0.0249 (6) | 0.0018 (5) | −0.0018 (5) | −0.0015 (5) |
C10 | 0.0234 (6) | 0.0241 (7) | 0.0282 (7) | 0.0020 (5) | 0.0025 (5) | 0.0007 (5) |
C14 | 0.0272 (7) | 0.0211 (6) | 0.0233 (6) | 0.0015 (5) | −0.0014 (5) | −0.0014 (5) |
C9 | 0.0203 (6) | 0.0236 (6) | 0.0246 (6) | 0.0021 (5) | 0.0006 (5) | 0.0006 (5) |
C16 | 0.0286 (7) | 0.0256 (7) | 0.0220 (6) | −0.0001 (6) | 0.0009 (5) | −0.0028 (5) |
C15 | 0.0264 (7) | 0.0228 (6) | 0.0241 (6) | −0.0020 (5) | −0.0011 (5) | 0.0003 (5) |
C3 | 0.0239 (6) | 0.0236 (6) | 0.0293 (7) | 0.0010 (5) | 0.0000 (5) | −0.0010 (5) |
C11 | 0.0286 (7) | 0.0238 (7) | 0.0349 (8) | 0.0030 (6) | 0.0051 (6) | 0.0046 (6) |
C5 | 0.0275 (7) | 0.0284 (7) | 0.0392 (9) | −0.0019 (6) | −0.0071 (6) | −0.0053 (6) |
C8 | 0.0258 (7) | 0.0257 (7) | 0.0245 (7) | 0.0022 (5) | −0.0009 (5) | 0.0001 (5) |
C17 | 0.0275 (7) | 0.0230 (6) | 0.0205 (6) | −0.0010 (5) | −0.0005 (5) | −0.0027 (5) |
C6 | 0.0294 (7) | 0.0304 (7) | 0.0274 (7) | 0.0016 (6) | −0.0056 (6) | −0.0055 (6) |
C4 | 0.0233 (7) | 0.0262 (7) | 0.0387 (8) | −0.0019 (5) | −0.0006 (6) | −0.0014 (6) |
C13 | 0.0494 (10) | 0.0340 (8) | 0.0224 (7) | 0.0029 (7) | −0.0001 (7) | 0.0013 (6) |
C12 | 0.0477 (10) | 0.0327 (8) | 0.0279 (8) | 0.0034 (7) | 0.0032 (7) | 0.0070 (6) |
C18 | 0.0464 (9) | 0.0368 (8) | 0.0203 (7) | −0.0016 (7) | 0.0000 (6) | 0.0033 (6) |
Cl1—C11 | 1.7506 (17) | C9—C8 | 1.409 (2) |
O1—N4 | 1.4051 (17) | C16—C17 | 1.518 (2) |
O1—H1A | 1.2169 (12) | C16—H16A | 0.9700 |
N3—C7 | 1.4035 (18) | C16—H16B | 0.9700 |
N3—C17 | 1.4692 (18) | C15—H15A | 0.9700 |
N3—C14 | 1.4723 (18) | C15—H15B | 0.9700 |
N2—C7 | 1.2852 (19) | C3—C4 | 1.388 (2) |
N2—C9 | 1.4012 (19) | C3—H3 | 0.9300 |
N1—C1 | 1.406 (2) | C11—C12 | 1.380 (2) |
N1—C8 | 1.406 (2) | C5—C6 | 1.386 (2) |
N1—H1 | 0.86 (2) | C5—C4 | 1.390 (2) |
N4—C18 | 1.494 (2) | C5—H5 | 0.9300 |
N4—C15 | 1.5016 (19) | C8—C13 | 1.398 (2) |
N4—C16 | 1.502 (2) | C17—H17A | 0.9700 |
C1—C6 | 1.403 (2) | C17—H17B | 0.9700 |
C1—C2 | 1.405 (2) | C6—H6 | 0.9300 |
C7—C2 | 1.492 (2) | C4—H4 | 0.9300 |
C2—C3 | 1.406 (2) | C13—C12 | 1.388 (3) |
C10—C11 | 1.382 (2) | C13—H13 | 0.9300 |
C10—C9 | 1.403 (2) | C12—H12 | 0.9300 |
C10—H10 | 0.9300 | C18—H18A | 0.9600 |
C14—C15 | 1.513 (2) | C18—H18B | 0.9600 |
C14—H14A | 0.9700 | C18—H18C | 0.9600 |
C14—H14B | 0.9700 | ||
N4—O1—H1A | 107.9 (6) | N4—C15—H15A | 109.5 |
C7—N3—C17 | 115.75 (12) | C14—C15—H15A | 109.5 |
C7—N3—C14 | 116.31 (11) | N4—C15—H15B | 109.5 |
C17—N3—C14 | 111.87 (11) | C14—C15—H15B | 109.5 |
C7—N2—C9 | 126.07 (13) | H15A—C15—H15B | 108.1 |
C1—N1—C8 | 120.58 (13) | C4—C3—C2 | 121.53 (15) |
C1—N1—H1 | 114.0 (15) | C4—C3—H3 | 119.2 |
C8—N1—H1 | 109.5 (15) | C2—C3—H3 | 119.2 |
O1—N4—C18 | 109.17 (12) | C12—C11—C10 | 121.41 (15) |
O1—N4—C15 | 110.03 (11) | C12—C11—Cl1 | 119.43 (13) |
C18—N4—C15 | 110.59 (12) | C10—C11—Cl1 | 119.16 (13) |
O1—N4—C16 | 107.20 (11) | C6—C5—C4 | 120.17 (15) |
C18—N4—C16 | 110.61 (12) | C6—C5—H5 | 119.9 |
C15—N4—C16 | 109.18 (12) | C4—C5—H5 | 119.9 |
C6—C1—C2 | 119.37 (14) | C13—C8—N1 | 119.28 (14) |
C6—C1—N1 | 118.67 (14) | C13—C8—C9 | 119.13 (15) |
C2—C1—N1 | 121.88 (13) | N1—C8—C9 | 121.24 (13) |
N2—C7—N3 | 116.40 (13) | N3—C17—C16 | 110.00 (12) |
N2—C7—C2 | 128.37 (13) | N3—C17—H17A | 109.7 |
N3—C7—C2 | 115.03 (12) | C16—C17—H17A | 109.7 |
C1—C2—C3 | 118.60 (14) | N3—C17—H17B | 109.7 |
C1—C2—C7 | 121.68 (13) | C16—C17—H17B | 109.7 |
C3—C2—C7 | 119.68 (13) | H17A—C17—H17B | 108.2 |
C11—C10—C9 | 120.58 (14) | C5—C6—C1 | 120.92 (15) |
C11—C10—H10 | 119.7 | C5—C6—H6 | 119.5 |
C9—C10—H10 | 119.7 | C1—C6—H6 | 119.5 |
N3—C14—C15 | 110.58 (12) | C3—C4—C5 | 119.38 (15) |
N3—C14—H14A | 109.5 | C3—C4—H4 | 120.3 |
C15—C14—H14A | 109.5 | C5—C4—H4 | 120.3 |
N3—C14—H14B | 109.5 | C12—C13—C8 | 121.79 (16) |
C15—C14—H14B | 109.5 | C12—C13—H13 | 119.1 |
H14A—C14—H14B | 108.1 | C8—C13—H13 | 119.1 |
N2—C9—C10 | 114.92 (13) | C11—C12—C13 | 118.44 (15) |
N2—C9—C8 | 125.70 (13) | C11—C12—H12 | 120.8 |
C10—C9—C8 | 118.63 (13) | C13—C12—H12 | 120.8 |
N4—C16—C17 | 110.97 (12) | N4—C18—H18A | 109.5 |
N4—C16—H16A | 109.4 | N4—C18—H18B | 109.5 |
C17—C16—H16A | 109.4 | H18A—C18—H18B | 109.5 |
N4—C16—H16B | 109.4 | N4—C18—H18C | 109.5 |
C17—C16—H16B | 109.4 | H18A—C18—H18C | 109.5 |
H16A—C16—H16B | 108.0 | H18B—C18—H18C | 109.5 |
N4—C15—C14 | 110.53 (12) | ||
C8—N1—C1—C6 | −127.64 (15) | C18—N4—C15—C14 | −179.16 (13) |
C8—N1—C1—C2 | 55.7 (2) | C16—N4—C15—C14 | −57.23 (15) |
C9—N2—C7—N3 | 177.72 (13) | N3—C14—C15—N4 | 57.38 (16) |
C9—N2—C7—C2 | 3.2 (2) | C1—C2—C3—C4 | −1.4 (2) |
C17—N3—C7—N2 | −6.69 (19) | C7—C2—C3—C4 | 176.48 (14) |
C14—N3—C7—N2 | 127.72 (14) | C9—C10—C11—C12 | 1.4 (2) |
C17—N3—C7—C2 | 168.54 (12) | C9—C10—C11—Cl1 | −179.55 (11) |
C14—N3—C7—C2 | −57.05 (17) | C1—N1—C8—C13 | 132.81 (16) |
C6—C1—C2—C3 | 2.0 (2) | C1—N1—C8—C9 | −54.0 (2) |
N1—C1—C2—C3 | 178.72 (13) | N2—C9—C8—C13 | 168.37 (15) |
C6—C1—C2—C7 | −175.82 (13) | C10—C9—C8—C13 | −1.2 (2) |
N1—C1—C2—C7 | 0.9 (2) | N2—C9—C8—N1 | −4.9 (2) |
N2—C7—C2—C1 | −35.2 (2) | C10—C9—C8—N1 | −174.45 (14) |
N3—C7—C2—C1 | 150.21 (14) | C7—N3—C17—C16 | −166.50 (12) |
N2—C7—C2—C3 | 146.92 (15) | C14—N3—C17—C16 | 57.13 (16) |
N3—C7—C2—C3 | −27.63 (19) | N4—C16—C17—N3 | −57.28 (16) |
C7—N3—C14—C15 | 166.35 (12) | C4—C5—C6—C1 | −0.8 (2) |
C17—N3—C14—C15 | −57.55 (16) | C2—C1—C6—C5 | −1.0 (2) |
C7—N2—C9—C10 | −156.61 (14) | N1—C1—C6—C5 | −177.76 (15) |
C7—N2—C9—C8 | 33.5 (2) | C2—C3—C4—C5 | −0.3 (2) |
C11—C10—C9—N2 | −170.69 (14) | C6—C5—C4—C3 | 1.4 (2) |
C11—C10—C9—C8 | 0.0 (2) | N1—C8—C13—C12 | 174.49 (17) |
O1—N4—C16—C17 | −61.75 (15) | C9—C8—C13—C12 | 1.1 (3) |
C18—N4—C16—C17 | 179.32 (13) | C10—C11—C12—C13 | −1.5 (3) |
C15—N4—C16—C17 | 57.41 (16) | Cl1—C11—C12—C13 | 179.46 (14) |
O1—N4—C15—C14 | 60.16 (15) | C8—C13—C12—C11 | 0.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O1i | 1.22 (1) | 1.22 (1) | 2.434 (2) | 179 (4) |
N1—H1···Cl2 | 0.86 (2) | 2.46 (2) | 3.3259 (14) | 176 (2) |
C15—H15A···O1i | 0.97 | 2.64 | 3.2598 (19) | 122 |
C15—H15A···N1ii | 0.97 | 2.51 | 3.416 (2) | 156 |
C15—H15B···Cl1iii | 0.97 | 2.91 | 3.8431 (17) | 162 |
Symmetry codes: (i) −x, −y+1, z; (ii) −y+1/2, x+1/2, −z+1/2; (iii) −x+1/2, −y+1/2, −z+1/2. |
Acknowledgements
The Australian Synchrotron Collaborative Access Program is thanked for beamtime on MX1.
Funding information
Funding for this research was provided by: Australian Research Council (award No. DP160100597; award No. DP180101957); Australian Synchrotron (grant No. 13618b).
References
Allen, D. C., Carlson, T. L., Xiong, Y., Jin, J., Grant, K. A. & Cuzon Carlson, V. C. (2019). J. Pharmacol. Exp. Ther. 368, 199–207. CrossRef CAS PubMed Google Scholar
Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. (2007). Proc. Natl Acad. Sci. USA, 104, 5163–5168. CrossRef PubMed Google Scholar
Bettencourt, C. J., Chow, S., Moore, P. W., Read, C. D. G., Jiao, Y., Bakker, J. P., Zhao, S., Bernhardt, P. V. & Williams, C. M. (2021). Aust. J. Chem. 74, 652–659. CSD CrossRef CAS Google Scholar
Bohmer, V., Brusko, V. & Bolte, M. (2011). Private Communication (refcode OBECUV). CCDC, Cambridge, England. https://doi.org/10.5517/ccx8ltk Google Scholar
Dong, S., Allen, J. A., Farrell, M. & Roth, B. L. (2010). Mol. BioSyst. 6, 1376–1380. CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gilli, P., Pretto, V., Bertolasi, V. & Gilli, G. (2009). Acc. Chem. Res. 42, 33–44. CrossRef PubMed CAS Google Scholar
Gomez, J. L., Bonaventura, J., Lesniak, W., Mathews, W. B., Sysa-Shah, P., Rodriguez, L. A., Ellis, R. J., Richie, C. T., Harvey, B. K., Dannals, R. F., Pomper, M. G., Bonci, A. & Michaelides, M. (2017). Science, 357, 503–507. CrossRef CAS PubMed Google Scholar
González-Rodríguez, D. & Schenning, A. P. H. J. (2011). Chem. Mater. 23, 310–325. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Jaskólski, M., Olovsson, I., Tellgren, R. & Mickiewicz-Wichłacz, D. (1982). Acta Cryst. B38, 291–294. CSD CrossRef IUCr Journals Google Scholar
Jin, C. M., Lu, H., Wu, L. Y. & Huang, J. (2006). Chem. Commun. pp. 5039–5041. Web of Science CSD CrossRef Google Scholar
Jin, C.-M., Wu, L.-Y., Lu, H. & Xu, Y. (2008). Cryst. Growth Des. 8, 215–218. CSD CrossRef CAS Google Scholar
Jin, T., Zhou, J., Pan, Y., Huang, Y. & Jin, C. (2018). J. Mol. Struct. 1160, 222–226. CSD CrossRef CAS Google Scholar
Kabsch, W. (1993). J. Appl. Cryst. 26, 795–800. CrossRef CAS Web of Science IUCr Journals Google Scholar
Krzywda, S., Jaskólski, M., Gdaniec, M., Dega-Szafran, Z., Grundwald-Wyspiańska, M., Szafran, M., Dauter, Z. & Davies, G. (1996). J. Mol. Struct. 375, 197–206. CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Małuszyńska, H. & Okaya, Y. (1977). Acta Cryst. B33, 3049–3054. CSD CrossRef IUCr Journals Google Scholar
Moore, P. W., Jiao, Y., Mirzayans, P. M., Sheng, L. N. Q., Hooker, J. P. & Williams, C. M. (2016). Eur. J. Org. Chem. pp. 3401–3407. CSD CrossRef Google Scholar
Moore, P. W., Mirzayans, P. M. & Williams, C. M. (2015). Chem. Eur. J. 21, 3567–3571. CSD CrossRef CAS PubMed Google Scholar
Peet, P. L. van der, Gunawan, C., Abdul-Ridha, A., Ma, S., Scott, D. J., Gundlach, A. L., Bathgate, R. A. D., White, J. M. & Williams, S. J. (2018). MethodsX, 5, 257–267. PubMed Google Scholar
Prins, L. J., Reinhoudt, D. N. & Timmerman, P. (2001). Angew. Chem. Int. Ed. 40, 2382–2426. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76. Web of Science CrossRef CAS Google Scholar
Urban, D. J. & Roth, B. L. (2015). Annu. Rev. Pharmacol. Toxicol. 55, 399–417. CrossRef CAS PubMed Google Scholar
Wlaźlak, E., Kalinowska-Tłuścik, J., Nitek, W., Klejna, S., Mech, K., Macyk, W. & Szaciłowski, K. (2018). ChemElectroChem, 5, 3486–3497. Google Scholar
Xue, H., Jiang, F., Chen, Q., Yuan, D., Pang, J., Lv, G., Wan, X., Liang, L. & Hong, M. (2015). Chem. Commun. 51, 13706–13709. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.