research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of Rb6[B12O18(OH)6]·2H2O

crossmark logo

aSchool of Science, China University of Geosciences, Beijing 100083, People's Republic of China, bAnalytical and Testing Centre, Beijing Institute of Technology, Beijing 100081, People's Republic of China, and cBeijing Chaoyang Foreign Language School, Beijing 100101, People's Republic of China
*Correspondence e-mail: qiuqiming890521@163.com

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 18 August 2022; accepted 29 August 2022; online 2 September 2022)

The solvothermal reaction of H3BO3, sodium tert-butoxide, Rb2CO3 and pyridine led to a new alkaline metal borate hexa­rubidium hexa­hydroxy­dodeca­borate dihydrate, Rb6[B12O18(OH)6]·2H2O. Its structure contains a large cyclic dodeca­oxoboron cluster, [B12O18(OH)6]6−, formed by six {B3O3} rings. In the crystal, O—H⋯O hydrogen bonds between the components lead to the formation of a three-dimensional supra­molecular framework.

1. Chemical context

In recent years, borates have made excellent contributions to the development of nonlinear optical (NLO) materials and so they are the focus of material chemists (Bashir et al., 2018[Bashir, B., Zhang, B., Pan, S. & Yang, Z. (2018). J. Alloys Compd. 758, 85-90.]; Qiu et al., 2021a[Qiu, Q.-M. & Yang, G.-Y. (2021a). J. Solid State Chem. 301, 122303.]; Wei et al., 2016[Wei, Q., Wang, J.-J., He, C., Cheng, J.-W. & Yang, G.-Y. (2016). Chem. Eur. J. 22, 10759-10762.]). Scientists have found that alkali- and alkaline-earth–metal borates often exhibit a short ultraviolet cut-off edge due to no dd and ff electron transition in the ultraviolet region with wide transparency ranges (Shi et al., 2019[Shi, Y.-T., Luo, M., Lin, C.-S., Peng, G. & Ye, N. (2019). Cryst. Growth Des. 19, 3052-3059.]; Tang et al., 2019[Tang, C.-C., Jiang, X.-X., Yin, W.-L., Liu, L.-J., Xia, M.-J., Huang, Q., Song, G.-M., Wang, X.-Y., Lin, Z.-S. & Chen, C.-T. (2019). Dalton Trans. 48, 21-24.]). Generally, boron has two kinds of coordination modes: either BO3 trigonal or BO4 tetra­hedral, and they further bond to each other through common O atoms forming different oxoboron clusters, which can further polymerize into isolated clusters, one-dimensional chains, two-dimensional layers or three-dimensional frameworks. Here, single crystals of Rb6[B12O18(OH)6]·2H2O with alkali metal atoms and isolated oxoboron clusters have been obtained under solvothermal conditions.

[Scheme 1]

2. Structural commentary

There are 13.5 independent atoms in the asymmetric unit of the title compound, including 3 B, 9/2 O, 3/2 OH, 3/2 Rb, and 1/2 H2O. It should be noted that the Rb1, Rb2, B2, B4, O4, O6 and O8 atoms are located on special positions with occupancy of 0.25 or 0.5, while the remaining Rb, B and O atoms are located at general positions with an occupancy of 1. Bond-valence-sum calculations show that Rb and B are consistent with the expected oxidation states (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]; Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]). Six trigonal BO2(OH) units [B—O(av.) = 1.360 Å] and six tetra­hedral BO4 units [B—O(av.) = 1.474 Å] are linked by vertex sharing. Each BO4 unit provides two terminal oxygen atoms to connect with two neighboring BO4 units and shares the other two corners with the BO2(OH) unit to form a [B12O18(OH)6]6− cluster (Fig. 1[link]). Each Rb atom is six-coordinate, with Rb—O distances in the range of 2.793 (5)-3.359 (5) Å.

[Figure 1]
Figure 1
The asymmetric unit of the oxoboron cluster of [B12O18(OH)6]6− [symmetry codes: (i) 2 − x, 2 − y, z; (ii) x, y, 2 − z]. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the title compound, each [B12O18(OH)6]6− cluster is connected to other clusters by O1—H1⋯O6, and O6—H6⋯O1 hydrogen bonds, resulting in a three-dimensional supra­molecular framework (Fig. 2[link], Table 1[link]). Water mol­ecules are also attached to supra­molecular structure via O—H⋯O hydrogen bonds. The title structure is different from those of previously reported analogues K7{(BO3)Mn[B12O18(OH)6]}·H2O (Zhang et al., 2004[Zhang, H.-X., Zhang, J., Zheng, S.-T. & Yang, G.-Y. (2004). Inorg. Chem. Commun. 7, 781-783.]), and Na2Cs4Ba2[B12O18(OH)6]·4OH (Zhang et al., 2016[Zhang, T.-J., Pan, R., He, H., Yang, B.-F. & Yang, G.-Y. (2016). J. Clust Sci. 27, 625-633.]). Both compounds crystallize in the non-centrosymmetric Pmn21 space group and their supra­molecular structures are different from that of the title compound. Therefore, the use of different alkali metals as templates may affect the crystallization of the oxoboron supra­molecular structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8B⋯O7i 0.85 2.25 3.046 (6) 155
O8—H8B⋯O4i 0.85 1.68 2.224 (7) 119
O8—H8A⋯O7ii 0.85 1.70 2.231 (5) 118
O8—H8A⋯O4ii 0.85 2.17 2.958 (7) 155
O6—H6⋯O1iii 0.82 1.86 2.670 (5) 167
O1—H1⋯O6iv 0.94 1.91 2.670 (5) 136
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+{\script{3\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
View of the three-dimensional supra­molecular framework along the [010] direction. All of the Rb—O bonds are omitted for clarity and blue dashed lines represent O—H⋯O hydrogen bonds.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.43, update June 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the cyclic dodeca-oxoboron unit {B12O24} ring gave eight hits. In the crystals of Li7Na2KRb2B12O24, Li7.35Na2.36K1.50Cs0.78B12O24, Li6.97Na2.63K1.24Cs1.15B12O24, and Li7.27Na2.67Rb2.06B12O24 (refcodes: JOGBIT, JOGBOZ, JOFNEA, JOFNIE, trigonal, R[\overline{3}] space group; Baiheti et al., 2019[Baiheti, T., Han, S. J., Bashir, B., Yang, Z. H., Wang, Y., Yu, H. H. & Pan, S. L. (2019). J. Solid State Chem. 273, 112-116.]), the terminal oxygens of this type of the {B12O24} ring can be completely deprotonated [B12O24]12− and fail to extend to high-dimensional structures through covalent bonds and hydrogen bonds. In the crystal of Na8[B12O20(OH)4] (refcode: ETIJAU, monoclinic, P21/c space group; Menchetti et al., 1979[Menchetti, S. & Sabelli, C. (1979). Acta Cryst. B35, 2488-2493.]), the partially protonated [B12O20(OH)4]8− unit also fails to extend to a higher dimensional structure through O—B—O bonds. While KNa8[Li@B12O18(OH)6](CO3)2 (refcode: EBUCAJ, trigonal, R[\overline{3}] space group; Qiu et al., 2021b[Qiu, Q.-M. & Yang, G.-Y. (2021b). CrystEngComm, 23, 6518-6525.]) is a borate carbonate with the isolated [Li@B12O18(OH)6]5− cluster and inter­esting layers formed by Na+ and CO32− ions, thus forming a two-dimensional supra­molecular structure. After changing the synthetic conditions, the isolated [Li@B12O18(OH)6]5− cluster was successfully extended to a layered structure via B—O—B bonds in Cs5[Li@B12O20(OH)2]·3H2O (refcode: EBUCIR, monoclinic, Pc space group; Qiu et al., 2021b[Qiu, Q.-M. & Yang, G.-Y. (2021b). CrystEngComm, 23, 6518-6525.]), by condensation reactions with the elimination of water mol­ecules between oxoboron clusters.

5. Synthesis and crystallization

A mixture of H3BO3 (0.618 g, 10 mmol), sodium tert-butoxide (0.096 g, 1 mmol) and Rb2CO3 (0.231 g, 1 mmol) was added into pyridine (3.0 mL). After stirring for 15 min, the resulting mixture was sealed in a 25 mL Teflon-lined stainless steel autoclave, heated at 483 K for 7 days, and then slowly cooled to room temperature. Colorless block-shaped crystals of Rb6[B12O18(OH)6]·2H2O were obtained (yield 51% based on H3BO3). Infrared (KBr pallet, cm−1): 3445vs, 1639m, 1427s, 1320m, 1003m, 939w, 873m, 721m, 622w, 542m. The thermogravimetric curve of the title compound is shown in Fig. 3[link]a. The weight loss of 8.6% (cal. 8.4%) in the temperature range 350–950 K for the compound is attributed to the loss of the water mol­ecules and the removal of dehydration of the hydroxyl groups. The compound has almost no weight loss after 950 K. The ultraviolet visible diffuse reflectance spectrum of the title compound is shown in Fig. 3[link]b. The band gap obtained by extrapolating the linear part of the rising curve to zero for the compound is 5.59 eV.

[Figure 3]
Figure 3
(a) Thermogravimetric curve and (b) ultraviolet visible diffuse reflectance spectrum of the title compound. Inset: plots of α/S versus E.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen-atom coordinates were refined without any constraints or restraints. Their Uiso values were set to 1.2Ueq of the parent atoms.

Table 2
Experimental details

Crystal data
Chemical formula Rb6[B12O18(OH)6]·2H2O
Mr 1068.62
Crystal system, space group Orthorhombic, Pnnm
Temperature (K) 296
a, b, c (Å) 13.395 (4), 9.251 (2), 12.368 (4)
V3) 1532.7 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 9.60
Crystal size (mm) 0.08 × 0.07 × 0.07
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.452, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 17510, 1980, 1523
Rint 0.057
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.173, 1.07
No. of reflections 1980
No. of parameters 110
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.57, −1.16
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/3 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

hexarubidium hexahydroxydodecaborate dihydrate, Rb6[B12O18(OH)6]·2H2O top
Crystal data top
Rb6[B12O18(OH)6]·2H2ODx = 2.316 Mg m3
Mr = 1068.62Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnnmCell parameters from 3469 reflections
a = 13.395 (4) Åθ = 2.7–26.1°
b = 9.251 (2) ŵ = 9.60 mm1
c = 12.368 (4) ÅT = 296 K
V = 1532.7 (7) Å3Block, colorless
Z = 20.08 × 0.07 × 0.07 mm
F(000) = 1000
Data collection top
Bruker APEXII CCD
diffractometer
1523 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube, Bruker (Mo) X-ray SourceRint = 0.057
φ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1717
Tmin = 0.452, Tmax = 0.746k = 1212
17510 measured reflectionsl = 1616
1980 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.173 w = 1/[σ2(Fo2) + (0.0825P)2 + 9.4675P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1980 reflectionsΔρmax = 1.57 e Å3
110 parametersΔρmin = 1.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rb11.0000001.0000000.5000000.0418 (4)
Rb21.0000000.5000001.0000000.0529 (5)
Rb30.74535 (5)1.03106 (9)0.73060 (7)0.0489 (3)
O11.0385 (4)0.6325 (4)0.6768 (4)0.0397 (12)
H11.0890800.6879770.6437180.048*
O20.9347 (3)0.7048 (4)0.8193 (3)0.0191 (8)
O31.0311 (3)0.8776 (4)0.7204 (3)0.0203 (8)
O40.9428 (4)0.7903 (6)1.0000000.0204 (11)
O50.7857 (3)0.7944 (4)0.9032 (3)0.0194 (8)
O60.6357 (4)0.7801 (7)1.0000000.0270 (13)
H60.5994570.7976730.9482240.032*0.5
O70.9137 (3)0.9603 (4)0.8563 (3)0.0224 (8)
O80.4074 (4)0.3941 (5)0.5000000.0144 (9)
H8A0.4015850.4838460.4866600.017*0.5
H8B0.4567850.3835260.5424700.017*0.5
B10.9999 (4)0.7413 (6)0.7399 (4)0.0193 (11)
B21.0000001.0000000.7919 (6)0.0127 (14)
B30.8956 (4)0.8163 (6)0.8960 (4)0.0114 (10)
B40.7386 (6)0.7897 (9)1.0000000.0176 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0586 (9)0.0472 (8)0.0196 (6)0.0159 (6)0.0000.000
Rb20.0971 (13)0.0268 (6)0.0348 (7)0.0271 (7)0.0000.000
Rb30.0324 (4)0.0516 (5)0.0628 (5)0.0101 (3)0.0090 (3)0.0248 (4)
O10.059 (3)0.0192 (19)0.041 (3)0.011 (2)0.036 (2)0.0119 (18)
O20.0257 (18)0.0140 (16)0.0175 (18)0.0067 (14)0.0084 (15)0.0047 (13)
O30.0296 (18)0.0153 (16)0.0158 (17)0.0080 (15)0.0094 (15)0.0048 (14)
O40.010 (2)0.036 (3)0.015 (2)0.007 (2)0.0000.000
O50.0110 (15)0.036 (2)0.0117 (16)0.0044 (15)0.0006 (13)0.0003 (14)
O60.013 (2)0.052 (4)0.016 (2)0.004 (2)0.0000.000
O70.0223 (19)0.0154 (17)0.029 (2)0.0031 (14)0.0108 (16)0.0055 (15)
O80.017 (2)0.012 (2)0.013 (2)0.0099 (18)0.0000.000
B10.025 (3)0.018 (3)0.014 (2)0.007 (2)0.004 (2)0.007 (2)
B20.016 (3)0.015 (3)0.006 (3)0.002 (3)0.0000.000
B30.008 (2)0.014 (2)0.012 (2)0.0031 (18)0.0010 (18)0.0018 (19)
B40.013 (4)0.024 (4)0.016 (4)0.004 (3)0.0000.000
Geometric parameters (Å, º) top
Rb1—O32.980 (4)Rb3—O53.105 (4)
Rb1—O3i2.980 (4)Rb3—O3ii3.114 (4)
Rb1—O3ii2.980 (4)Rb3—O1xi3.359 (5)
Rb1—O3iii2.980 (4)Rb3—B33.491 (5)
Rb1—O6iv3.166 (6)Rb3—B23.5061 (19)
Rb1—O6v3.166 (6)Rb3—B3v3.603 (5)
Rb1—B2iii3.610 (7)Rb3—B4v3.729 (5)
Rb1—B23.610 (7)O1—B11.374 (7)
Rb1—Rb34.4556 (12)O1—H10.9433
Rb1—Rb3i4.4556 (12)O2—B11.357 (6)
Rb1—Rb3ii4.4556 (12)O2—B31.495 (6)
Rb1—Rb3iii4.4556 (12)O3—B11.350 (7)
Rb2—O4vi2.793 (5)O3—B21.496 (5)
Rb2—O42.793 (5)O4—B3vii1.453 (5)
Rb2—O2vii3.058 (4)O4—B31.453 (5)
Rb2—O2viii3.058 (4)O5—B41.354 (5)
Rb2—O2vi3.058 (4)O5—B31.490 (6)
Rb2—O23.058 (4)O6—B41.381 (9)
Rb2—B33.488 (5)O6—H60.8200
Rb2—B3vii3.488 (5)O6—H6vii0.8200
Rb2—B3viii3.488 (5)O7—B31.441 (6)
Rb2—B3vi3.488 (5)O7—B21.452 (5)
Rb2—Rb3ix4.3609 (11)O8—H8A0.8500
Rb2—Rb3x4.3609 (11)O8—H8B0.8500
Rb3—O72.816 (4)O8—H8Ai0.8500
Rb3—O2v2.963 (4)O8—H8Bi0.8500
Rb3—O5v2.974 (4)
O3—Rb1—O3i132.24 (13)O3ii—Rb3—O1xi158.35 (10)
O3—Rb1—O3ii47.76 (13)O7—Rb3—B323.42 (11)
O3i—Rb1—O3ii180.00 (5)O2v—Rb3—B3154.19 (11)
O3—Rb1—O3iii180.0O5v—Rb3—B3150.79 (11)
O3i—Rb1—O3iii47.76 (13)O5—Rb3—B325.25 (10)
O3ii—Rb1—O3iii132.24 (13)O3ii—Rb3—B367.90 (10)
O3—Rb1—O6iv66.97 (7)O1xi—Rb3—B391.11 (11)
O3i—Rb1—O6iv66.97 (7)O7—Rb3—B223.45 (12)
O3ii—Rb1—O6iv113.03 (7)O2v—Rb3—B2151.80 (8)
O3iii—Rb1—O6iv113.03 (7)O5v—Rb3—B2108.86 (9)
O3—Rb1—O6v113.03 (7)O5—Rb3—B267.94 (10)
O3i—Rb1—O6v113.03 (7)O3ii—Rb3—B225.24 (9)
O3ii—Rb1—O6v66.97 (7)O1xi—Rb3—B2133.79 (11)
O3iii—Rb1—O6v66.97 (7)B3—Rb3—B242.74 (11)
O6iv—Rb1—O6v180.0O7—Rb3—B3v146.09 (12)
O3—Rb1—B2iii156.12 (7)O2v—Rb3—B3v23.88 (10)
O3i—Rb1—B2iii23.88 (7)O5v—Rb3—B3v23.81 (10)
O3ii—Rb1—B2iii156.12 (7)O5—Rb3—B3v155.00 (10)
O3iii—Rb1—B2iii23.88 (7)O3ii—Rb3—B3v106.72 (10)
O6iv—Rb1—B2iii90.0O1xi—Rb3—B3v92.62 (11)
O6v—Rb1—B2iii90.0B3—Rb3—B3v166.87 (12)
O3—Rb1—B223.88 (7)B2—Rb3—B3v131.60 (10)
O3i—Rb1—B2156.12 (7)O7—Rb3—B4v121.68 (14)
O3ii—Rb1—B223.88 (7)O2v—Rb3—B4v62.59 (13)
O3iii—Rb1—B2156.12 (7)O5v—Rb3—B4v19.43 (12)
O6iv—Rb1—B290.0O5—Rb3—B4v165.50 (14)
O6v—Rb1—B290.0O3ii—Rb3—B4v74.88 (13)
B2iii—Rb1—B2180.0O1xi—Rb3—B4v126.70 (14)
O3—Rb1—Rb363.01 (7)B3—Rb3—B4v141.27 (14)
O3i—Rb1—Rb3135.79 (7)B2—Rb3—B4v99.31 (15)
O3ii—Rb1—Rb344.21 (7)B3v—Rb3—B4v39.47 (14)
O3iii—Rb1—Rb3116.99 (7)O7—Rb3—Rb2v161.66 (8)
O6iv—Rb1—Rb3119.50 (7)O2v—Rb3—Rb2v44.45 (7)
O6v—Rb1—Rb360.50 (7)O5v—Rb3—Rb2v65.47 (7)
B2iii—Rb1—Rb3129.799 (15)O5—Rb3—Rb2v122.29 (7)
B2—Rb1—Rb350.201 (15)O3ii—Rb3—Rb2v135.72 (7)
O3—Rb1—Rb3i135.79 (7)O1xi—Rb3—Rb2v64.64 (7)
O3i—Rb1—Rb3i63.01 (7)B3—Rb3—Rb2v141.29 (9)
O3ii—Rb1—Rb3i116.99 (7)B2—Rb3—Rb2v150.36 (11)
O3iii—Rb1—Rb3i44.21 (7)B3v—Rb3—Rb2v50.87 (8)
O6iv—Rb1—Rb3i119.50 (7)B4v—Rb3—Rb2v65.52 (11)
O6v—Rb1—Rb3i60.50 (7)O7—Rb3—Rb174.06 (8)
B2iii—Rb1—Rb3i50.202 (15)O2v—Rb3—Rb1121.65 (7)
B2—Rb1—Rb3i129.798 (15)O5v—Rb3—Rb178.67 (7)
Rb3—Rb1—Rb3i79.60 (3)O5—Rb3—Rb1105.16 (7)
O3—Rb1—Rb3ii44.21 (7)O3ii—Rb3—Rb141.86 (7)
O3i—Rb1—Rb3ii116.99 (7)O1xi—Rb3—Rb1145.17 (7)
O3ii—Rb1—Rb3ii63.01 (7)B3—Rb3—Rb184.08 (9)
O3iii—Rb1—Rb3ii135.79 (7)B2—Rb3—Rb152.28 (12)
O6iv—Rb1—Rb3ii60.50 (7)B3v—Rb3—Rb199.81 (8)
O6v—Rb1—Rb3ii119.50 (7)B4v—Rb3—Rb160.50 (11)
B2iii—Rb1—Rb3ii129.798 (14)Rb2v—Rb3—Rb198.86 (3)
B2—Rb1—Rb3ii50.202 (14)B1—O1—Rb3xii116.5 (4)
Rb3—Rb1—Rb3ii100.40 (3)B1—O1—H196.8
Rb3i—Rb1—Rb3ii180.0Rb3xii—O1—H178.5
O3—Rb1—Rb3iii116.99 (7)B1—O2—B3120.9 (4)
O3i—Rb1—Rb3iii44.21 (7)B1—O2—Rb3x120.5 (3)
O3ii—Rb1—Rb3iii135.79 (7)B3—O2—Rb3x102.8 (2)
O3iii—Rb1—Rb3iii63.01 (7)B1—O2—Rb2119.9 (3)
O6iv—Rb1—Rb3iii60.50 (7)B3—O2—Rb293.7 (3)
O6v—Rb1—Rb3iii119.50 (7)Rb3x—O2—Rb292.81 (9)
B2iii—Rb1—Rb3iii50.202 (14)B1—O3—B2121.0 (4)
B2—Rb1—Rb3iii129.798 (14)B1—O3—Rb1118.4 (3)
Rb3—Rb1—Rb3iii180.0B2—O3—Rb1102.4 (3)
Rb3i—Rb1—Rb3iii100.40 (3)B1—O3—Rb3ii122.9 (3)
Rb3ii—Rb1—Rb3iii79.60 (3)B2—O3—Rb3ii92.20 (15)
O4vi—Rb2—O4180.0Rb1—O3—Rb3ii93.93 (9)
O4vi—Rb2—O2vii132.41 (6)B3vii—O4—B3124.6 (5)
O4—Rb2—O2vii47.59 (6)B3vii—O4—Rb2106.2 (3)
O4vi—Rb2—O2viii47.59 (6)B3—O4—Rb2106.2 (3)
O4—Rb2—O2viii132.41 (6)B4—O5—B3121.2 (4)
O2vii—Rb2—O2viii180.0B4—O5—Rb3x113.6 (4)
O4vi—Rb2—O2vi47.59 (6)B3—O5—Rb3x102.5 (3)
O4—Rb2—O2vi132.41 (6)B4—O5—Rb3123.3 (4)
O2vii—Rb2—O2vi86.08 (13)B3—O5—Rb392.0 (3)
O2viii—Rb2—O2vi93.92 (13)Rb3x—O5—Rb399.83 (10)
O4vi—Rb2—O2132.41 (6)B4—O6—Rb1x128.7 (5)
O4—Rb2—O247.59 (6)B4—O6—H6125.4
O2vii—Rb2—O293.92 (13)Rb1x—O6—H679.7
O2viii—Rb2—O286.08 (13)B4—O6—H6vii125.35 (13)
O2vi—Rb2—O2180.0Rb1x—O6—H6vii79.74 (6)
O4vi—Rb2—B3156.42 (9)H6—O6—H6vii102.7
O4—Rb2—B323.58 (9)B3—O7—B2123.7 (3)
O2vii—Rb2—B368.60 (11)B3—O7—Rb3105.6 (3)
O2viii—Rb2—B3111.40 (11)B2—O7—Rb3106.0 (3)
O2vi—Rb2—B3154.67 (10)H8A—O8—H8B107.7
O2—Rb2—B325.33 (10)H8A—O8—H8Ai22.4
O4vi—Rb2—B3vii156.42 (9)H8B—O8—H8Ai93.7
O4—Rb2—B3vii23.58 (9)H8A—O8—H8Bi93.7
O2vii—Rb2—B3vii25.33 (10)H8B—O8—H8Bi76.3
O2viii—Rb2—B3vii154.67 (10)H8Ai—O8—H8Bi107.7
O2vi—Rb2—B3vii111.40 (11)O3—B1—O2124.1 (5)
O2—Rb2—B3vii68.60 (11)O3—B1—O1117.8 (5)
B3—Rb2—B3vii43.27 (17)O2—B1—O1118.1 (5)
O4vi—Rb2—B3viii23.58 (9)O7ii—B2—O7113.4 (6)
O4—Rb2—B3viii156.42 (9)O7ii—B2—O3ii110.79 (19)
O2vii—Rb2—B3viii154.67 (10)O7—B2—O3ii107.1 (2)
O2viii—Rb2—B3viii25.33 (10)O7ii—B2—O3107.1 (2)
O2vi—Rb2—B3viii68.60 (11)O7—B2—O3110.79 (19)
O2—Rb2—B3viii111.40 (11)O3ii—B2—O3107.5 (5)
B3—Rb2—B3viii136.73 (17)O7ii—B2—Rb3150.8 (3)
B3vii—Rb2—B3viii180.0O7—B2—Rb350.53 (19)
O4vi—Rb2—B3vi23.58 (9)O3ii—B2—Rb362.57 (15)
O4—Rb2—B3vi156.42 (9)O3—B2—Rb3101.8 (2)
O2vii—Rb2—B3vi111.40 (11)O7ii—B2—Rb3ii50.52 (19)
O2viii—Rb2—B3vi68.60 (11)O7—B2—Rb3ii150.8 (3)
O2vi—Rb2—B3vi25.33 (10)O3ii—B2—Rb3ii101.8 (2)
O2—Rb2—B3vi154.67 (10)O3—B2—Rb3ii62.57 (15)
B3—Rb2—B3vi180.00 (9)Rb3—B2—Rb3ii155.0 (2)
B3vii—Rb2—B3vi136.73 (17)O7ii—B2—Rb1123.3 (3)
B3viii—Rb2—B3vi43.27 (17)O7—B2—Rb1123.3 (3)
O4vi—Rb2—Rb3ix74.33 (8)O3ii—B2—Rb153.8 (3)
O4—Rb2—Rb3ix105.67 (8)O3—B2—Rb153.8 (3)
O2vii—Rb2—Rb3ix77.20 (7)Rb3—B2—Rb177.52 (12)
O2viii—Rb2—Rb3ix102.80 (7)Rb3ii—B2—Rb177.52 (12)
O2vi—Rb2—Rb3ix42.74 (7)O7—B3—O4112.5 (4)
O2—Rb2—Rb3ix137.26 (7)O7—B3—O5108.2 (4)
B3—Rb2—Rb3ix126.76 (8)O4—B3—O5110.8 (4)
B3vii—Rb2—Rb3ix96.67 (8)O7—B3—O2111.3 (4)
B3viii—Rb2—Rb3ix83.33 (8)O4—B3—O2107.2 (4)
B3vi—Rb2—Rb3ix53.24 (8)O5—B3—O2106.9 (4)
O4vi—Rb2—Rb3x105.67 (8)O7—B3—Rb2146.6 (3)
O4—Rb2—Rb3x74.33 (8)O4—B3—Rb250.3 (3)
O2vii—Rb2—Rb3x102.80 (7)O5—B3—Rb2105.1 (3)
O2viii—Rb2—Rb3x77.20 (7)O2—B3—Rb261.0 (2)
O2vi—Rb2—Rb3x137.26 (7)O7—B3—Rb351.0 (2)
O2—Rb2—Rb3x42.74 (7)O4—B3—Rb3149.7 (3)
B3—Rb2—Rb3x53.24 (8)O5—B3—Rb362.7 (2)
B3vii—Rb2—Rb3x83.33 (8)O2—B3—Rb3102.9 (3)
B3viii—Rb2—Rb3x96.67 (8)Rb2—B3—Rb3157.61 (16)
B3vi—Rb2—Rb3x126.76 (8)O7—B3—Rb3x128.1 (3)
Rb3ix—Rb2—Rb3x180.0O4—B3—Rb3x119.4 (3)
O7—Rb3—O2v153.22 (11)O5—B3—Rb3x53.7 (2)
O7—Rb3—O5v127.55 (10)O2—B3—Rb3x53.3 (2)
O2v—Rb3—O5v47.64 (10)Rb2—B3—Rb3x75.88 (10)
O7—Rb3—O546.94 (10)Rb3—B3—Rb3x81.95 (10)
O2v—Rb3—O5131.85 (10)O5—B4—O5vii124.3 (6)
O5v—Rb3—O5169.84 (10)O5—B4—O6117.8 (3)
O7—Rb3—O3ii46.81 (9)O5vii—B4—O6117.8 (3)
O2v—Rb3—O3ii128.83 (9)O5—B4—Rb3x47.0 (3)
O5v—Rb3—O3ii83.65 (10)O5vii—B4—Rb3x132.1 (5)
O5—Rb3—O3ii92.98 (9)O6—B4—Rb3x90.9 (3)
O7—Rb3—O1xi111.56 (10)O5—B4—Rb3xiii132.1 (5)
O2v—Rb3—O1xi69.14 (10)O5vii—B4—Rb3xiii47.0 (3)
O5v—Rb3—O1xi116.34 (10)O6—B4—Rb3xiii90.9 (3)
O5—Rb3—O1xi65.88 (10)Rb3x—B4—Rb3xiii99.8 (2)
B2—O3—B1—O24.2 (8)Rb2—O4—B3—O592.7 (4)
Rb1—O3—B1—O2123.3 (5)B3vii—O4—B3—O2147.0 (4)
Rb3ii—O3—B1—O2120.5 (5)Rb2—O4—B3—O223.6 (4)
B2—O3—B1—O1174.3 (5)B3vii—O4—B3—Rb2123.5 (7)
Rb1—O3—B1—O158.2 (6)B3vii—O4—B3—Rb340.4 (11)
Rb3ii—O3—B1—O158.1 (6)Rb2—O4—B3—Rb3163.9 (5)
B3—O2—B1—O33.0 (8)B3vii—O4—B3—Rb3x89.9 (6)
Rb3x—O2—B1—O3127.7 (5)Rb2—O4—B3—Rb3x33.5 (3)
Rb2—O2—B1—O3118.4 (5)B4—O5—B3—O7107.7 (6)
B3—O2—B1—O1175.6 (5)Rb3x—O5—B3—O7124.4 (3)
Rb3x—O2—B1—O153.8 (6)Rb3—O5—B3—O723.9 (3)
Rb2—O2—B1—O160.1 (6)B4—O5—B3—O415.9 (7)
Rb3xii—O1—B1—O391.4 (5)Rb3x—O5—B3—O4111.9 (4)
Rb3xii—O1—B1—O287.2 (5)Rb3—O5—B3—O4147.5 (4)
B3—O7—B2—O7ii87.0 (4)B4—O5—B3—O2132.3 (5)
Rb3—O7—B2—O7ii151.1 (2)Rb3x—O5—B3—O24.5 (4)
B3—O7—B2—O3ii150.5 (4)Rb3—O5—B3—O296.0 (3)
Rb3—O7—B2—O3ii28.6 (4)B4—O5—B3—Rb268.6 (6)
B3—O7—B2—O333.5 (6)Rb3x—O5—B3—Rb259.2 (2)
Rb3—O7—B2—O388.4 (3)Rb3—O5—B3—Rb2159.77 (14)
B3—O7—B2—Rb3121.9 (5)B4—O5—B3—Rb3131.6 (6)
B3—O7—B2—Rb3ii37.2 (9)Rb3x—O5—B3—Rb3100.53 (14)
Rb3—O7—B2—Rb3ii159.0 (5)B4—O5—B3—Rb3x127.9 (6)
B3—O7—B2—Rb193.0 (4)Rb3—O5—B3—Rb3x100.53 (14)
Rb3—O7—B2—Rb128.9 (2)B1—O2—B3—O715.5 (6)
B1—O3—B2—O7ii106.5 (5)Rb3x—O2—B3—O7122.4 (3)
Rb1—O3—B2—O7ii119.1 (3)Rb2—O2—B3—O7143.9 (3)
Rb3ii—O3—B2—O7ii24.6 (3)B1—O2—B3—O4107.8 (5)
B1—O3—B2—O717.7 (6)Rb3x—O2—B3—O4114.3 (3)
Rb1—O3—B2—O7116.7 (4)Rb2—O2—B3—O420.6 (4)
Rb3ii—O3—B2—O7148.8 (3)B1—O2—B3—O5133.4 (5)
B1—O3—B2—O3ii134.4 (5)Rb3x—O2—B3—O54.5 (4)
Rb1—O3—B2—O3ii0.000 (2)Rb2—O2—B3—O598.2 (3)
Rb3ii—O3—B2—O3ii94.51 (12)B1—O2—B3—Rb2128.3 (5)
B1—O3—B2—Rb369.7 (5)Rb3x—O2—B3—Rb293.72 (13)
Rb1—O3—B2—Rb364.69 (18)B1—O2—B3—Rb368.4 (5)
Rb3ii—O3—B2—Rb3159.20 (13)Rb3x—O2—B3—Rb369.56 (19)
B1—O3—B2—Rb3ii131.1 (5)Rb2—O2—B3—Rb3163.28 (12)
Rb1—O3—B2—Rb3ii94.51 (12)B1—O2—B3—Rb3x137.9 (5)
B1—O3—B2—Rb1134.4 (5)Rb2—O2—B3—Rb3x93.72 (13)
Rb3ii—O3—B2—Rb194.51 (12)B3—O5—B4—O5vii4.5 (11)
B2—O7—B3—O487.7 (6)Rb3x—O5—B4—O5vii118.2 (7)
Rb3—O7—B3—O4150.2 (3)Rb3—O5—B4—O5vii121.1 (6)
B2—O7—B3—O5149.6 (4)B3—O5—B4—O6175.2 (6)
Rb3—O7—B3—O527.6 (4)Rb3x—O5—B4—O662.1 (8)
B2—O7—B3—O232.5 (6)Rb3—O5—B4—O658.6 (8)
Rb3—O7—B3—O289.5 (3)B3—O5—B4—Rb3x122.7 (6)
B2—O7—B3—Rb236.8 (8)Rb3—O5—B4—Rb3x120.7 (4)
Rb3—O7—B3—Rb2158.8 (4)B3—O5—B4—Rb3xiii64.7 (7)
B2—O7—B3—Rb3122.0 (5)Rb3x—O5—B4—Rb3xiii58.0 (5)
B2—O7—B3—Rb3x91.9 (5)Rb3—O5—B4—Rb3xiii178.7 (2)
Rb3—O7—B3—Rb3x30.1 (4)Rb1x—O6—B4—O590.1 (6)
B3vii—O4—B3—O790.4 (7)Rb1x—O6—B4—O5vii90.1 (6)
Rb2—O4—B3—O7146.2 (3)Rb1x—O6—B4—Rb3x49.90 (10)
B3vii—O4—B3—O530.8 (8)Rb1x—O6—B4—Rb3xiii49.90 (10)
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+2, z; (iii) x+2, y+2, z+1; (iv) x+1/2, y+3/2, z1/2; (v) x+3/2, y+1/2, z+3/2; (vi) x+2, y+1, z+2; (vii) x, y, z+2; (viii) x+2, y+1, z; (ix) x+1/2, y+3/2, z+1/2; (x) x+3/2, y1/2, z+3/2; (xi) x1/2, y+3/2, z+3/2; (xii) x+1/2, y+3/2, z+3/2; (xiii) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8B···O7x0.852.253.046 (6)155
O8—H8B···O4x0.851.682.224 (7)119
O8—H8A···O7xiv0.851.702.231 (5)118
O8—H8A···O4xiv0.852.172.958 (7)155
O6—H6···O1xi0.821.862.670 (5)167
O1—H1···O6iv0.941.912.670 (5)136
Symmetry codes: (iv) x+1/2, y+3/2, z1/2; (x) x+3/2, y1/2, z+3/2; (xi) x1/2, y+3/2, z+3/2; (xiv) x1/2, y+3/2, z1/2.
 

Funding information

We gratefully acknowledge support by the Fundamental Research Funds for the Central Universities (grant No. 2–9-2021–008).

References

First citationBaiheti, T., Han, S. J., Bashir, B., Yang, Z. H., Wang, Y., Yu, H. H. & Pan, S. L. (2019). J. Solid State Chem. 273, 112–116.  Web of Science CrossRef ICSD CAS Google Scholar
First citationBashir, B., Zhang, B., Pan, S. & Yang, Z. (2018). J. Alloys Compd. 758, 85–90.  Web of Science CrossRef CAS Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMenchetti, S. & Sabelli, C. (1979). Acta Cryst. B35, 2488–2493.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationQiu, Q.-M. & Yang, G.-Y. (2021a). J. Solid State Chem. 301, 122303.  Web of Science CSD CrossRef Google Scholar
First citationQiu, Q.-M. & Yang, G.-Y. (2021b). CrystEngComm, 23, 6518–6525.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, Y.-T., Luo, M., Lin, C.-S., Peng, G. & Ye, N. (2019). Cryst. Growth Des. 19, 3052–3059.  Web of Science CSD CrossRef CAS Google Scholar
First citationTang, C.-C., Jiang, X.-X., Yin, W.-L., Liu, L.-J., Xia, M.-J., Huang, Q., Song, G.-M., Wang, X.-Y., Lin, Z.-S. & Chen, C.-T. (2019). Dalton Trans. 48, 21–24.  Web of Science CrossRef ICSD CAS Google Scholar
First citationWei, Q., Wang, J.-J., He, C., Cheng, J.-W. & Yang, G.-Y. (2016). Chem. Eur. J. 22, 10759–10762.  Web of Science CSD CrossRef ICSD CAS PubMed Google Scholar
First citationZhang, H.-X., Zhang, J., Zheng, S.-T. & Yang, G.-Y. (2004). Inorg. Chem. Commun. 7, 781–783.  Web of Science CrossRef ICSD CAS Google Scholar
First citationZhang, T.-J., Pan, R., He, H., Yang, B.-F. & Yang, G.-Y. (2016). J. Clust Sci. 27, 625–633.  Web of Science CSD CrossRef ICSD CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds