research communications
6[B12O18(OH)6]·2H2O
of RbaSchool of Science, China University of Geosciences, Beijing 100083, People's Republic of China, bAnalytical and Testing Centre, Beijing Institute of Technology, Beijing 100081, People's Republic of China, and cBeijing Chaoyang Foreign Language School, Beijing 100101, People's Republic of China
*Correspondence e-mail: qiuqiming890521@163.com
The solvothermal reaction of H3BO3, sodium tert-butoxide, Rb2CO3 and pyridine led to a new alkaline metal borate hexarubidium hexahydroxydodecaborate dihydrate, Rb6[B12O18(OH)6]·2H2O. Its structure contains a large cyclic dodecaoxoboron cluster, [B12O18(OH)6]6−, formed by six {B3O3} rings. In the crystal, O—H⋯O hydrogen bonds between the components lead to the formation of a three-dimensional supramolecular framework.
Keywords: alkaline metal borate; solvothermal synthesis; hydrogen bond; supramolecular framework; crystal structure.
CCDC reference: 2192069
1. Chemical context
In recent years, borates have made excellent contributions to the development of nonlinear optical (NLO) materials and so they are the focus of material chemists (Bashir et al., 2018; Qiu et al., 2021a; Wei et al., 2016). Scientists have found that alkali- and alkaline-earth–metal borates often exhibit a short ultraviolet cut-off edge due to no d–d and f–f electron transition in the ultraviolet region with wide transparency ranges (Shi et al., 2019; Tang et al., 2019). Generally, boron has two kinds of coordination modes: either BO3 trigonal or BO4 tetrahedral, and they further bond to each other through common O atoms forming different oxoboron clusters, which can further polymerize into isolated clusters, one-dimensional chains, two-dimensional layers or three-dimensional frameworks. Here, single crystals of Rb6[B12O18(OH)6]·2H2O with alkali metal atoms and isolated oxoboron clusters have been obtained under solvothermal conditions.
2. Structural commentary
There are 13.5 independent atoms in the 2O. It should be noted that the Rb1, Rb2, B2, B4, O4, O6 and O8 atoms are located on special positions with occupancy of 0.25 or 0.5, while the remaining Rb, B and O atoms are located at general positions with an occupancy of 1. Bond-valence-sum calculations show that Rb and B are consistent with the expected oxidation states (Brown & Altermatt, 1985; Brese & O'Keeffe, 1991). Six trigonal BO2(OH) units [B—O(av.) = 1.360 Å] and six tetrahedral BO4 units [B—O(av.) = 1.474 Å] are linked by vertex sharing. Each BO4 unit provides two terminal oxygen atoms to connect with two neighboring BO4 units and shares the other two corners with the BO2(OH) unit to form a [B12O18(OH)6]6− cluster (Fig. 1). Each Rb atom is six-coordinate, with Rb—O distances in the range of 2.793 (5)-3.359 (5) Å.
of the title compound, including 3 B, 9/2 O, 3/2 OH, 3/2 Rb, and 1/2 H3. Supramolecular features
In the title compound, each [B12O18(OH)6]6− cluster is connected to other clusters by O1—H1⋯O6, and O6—H6⋯O1 hydrogen bonds, resulting in a three-dimensional supramolecular framework (Fig. 2, Table 1). Water molecules are also attached to supramolecular structure via O—H⋯O hydrogen bonds. The title structure is different from those of previously reported analogues K7{(BO3)Mn[B12O18(OH)6]}·H2O (Zhang et al., 2004), and Na2Cs4Ba2[B12O18(OH)6]·4OH (Zhang et al., 2016). Both compounds crystallize in the non-centrosymmetric Pmn21 and their supramolecular structures are different from that of the title compound. Therefore, the use of different alkali metals as templates may affect the crystallization of the oxoboron supramolecular structure.
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.43, update June 2022; Groom et al., 2016) for the cyclic dodeca-oxoboron unit {B12O24} ring gave eight hits. In the crystals of Li7Na2KRb2B12O24, Li7.35Na2.36K1.50Cs0.78B12O24, Li6.97Na2.63K1.24Cs1.15B12O24, and Li7.27Na2.67Rb2.06B12O24 (refcodes: JOGBIT, JOGBOZ, JOFNEA, JOFNIE, trigonal, R Baiheti et al., 2019), the terminal oxygens of this type of the {B12O24} ring can be completely deprotonated [B12O24]12− and fail to extend to high-dimensional structures through covalent bonds and hydrogen bonds. In the crystal of Na8[B12O20(OH)4] (refcode: ETIJAU, monoclinic, P21/c Menchetti et al., 1979), the partially protonated [B12O20(OH)4]8− unit also fails to extend to a higher dimensional structure through O—B—O bonds. While KNa8[Li@B12O18(OH)6](CO3)2 (refcode: EBUCAJ, trigonal, R Qiu et al., 2021b) is a borate carbonate with the isolated [Li@B12O18(OH)6]5− cluster and interesting layers formed by Na+ and CO32− ions, thus forming a two-dimensional supramolecular structure. After changing the synthetic conditions, the isolated [Li@B12O18(OH)6]5− cluster was successfully extended to a layered structure via B—O—B bonds in Cs5[Li@B12O20(OH)2]·3H2O (refcode: EBUCIR, monoclinic, Pc Qiu et al., 2021b), by condensation reactions with the elimination of water molecules between oxoboron clusters.
5. Synthesis and crystallization
A mixture of H3BO3 (0.618 g, 10 mmol), sodium tert-butoxide (0.096 g, 1 mmol) and Rb2CO3 (0.231 g, 1 mmol) was added into pyridine (3.0 mL). After stirring for 15 min, the resulting mixture was sealed in a 25 mL Teflon-lined stainless steel autoclave, heated at 483 K for 7 days, and then slowly cooled to room temperature. Colorless block-shaped crystals of Rb6[B12O18(OH)6]·2H2O were obtained (yield 51% based on H3BO3). Infrared (KBr pallet, cm−1): 3445vs, 1639m, 1427s, 1320m, 1003m, 939w, 873m, 721m, 622w, 542m. The thermogravimetric curve of the title compound is shown in Fig. 3a. The weight loss of 8.6% (cal. 8.4%) in the temperature range 350–950 K for the compound is attributed to the loss of the water molecules and the removal of dehydration of the hydroxyl groups. The compound has almost no weight loss after 950 K. The ultraviolet visible diffuse reflectance spectrum of the title compound is shown in Fig. 3b. The band gap obtained by extrapolating the linear part of the rising curve to zero for the compound is 5.59 eV.
6. Refinement
Crystal data, data collection and structure . Hydrogen-atom coordinates were refined without any constraints or restraints. Their Uiso values were set to 1.2Ueq of the parent atoms.
details are summarized in Table 2Supporting information
CCDC reference: 2192069
https://doi.org/10.1107/S2056989022008611/tx2056sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022008611/tx2056Isup3.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Rb6[B12O18(OH)6]·2H2O | Dx = 2.316 Mg m−3 |
Mr = 1068.62 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pnnm | Cell parameters from 3469 reflections |
a = 13.395 (4) Å | θ = 2.7–26.1° |
b = 9.251 (2) Å | µ = 9.60 mm−1 |
c = 12.368 (4) Å | T = 296 K |
V = 1532.7 (7) Å3 | Block, colorless |
Z = 2 | 0.08 × 0.07 × 0.07 mm |
F(000) = 1000 |
Bruker APEXII CCD diffractometer | 1523 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube, Bruker (Mo) X-ray Source | Rint = 0.057 |
φ and ω scans | θmax = 28.3°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −17→17 |
Tmin = 0.452, Tmax = 0.746 | k = −12→12 |
17510 measured reflections | l = −16→16 |
1980 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.061 | H-atom parameters constrained |
wR(F2) = 0.173 | w = 1/[σ2(Fo2) + (0.0825P)2 + 9.4675P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
1980 reflections | Δρmax = 1.57 e Å−3 |
110 parameters | Δρmin = −1.16 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Rb1 | 1.000000 | 1.000000 | 0.500000 | 0.0418 (4) | |
Rb2 | 1.000000 | 0.500000 | 1.000000 | 0.0529 (5) | |
Rb3 | 0.74535 (5) | 1.03106 (9) | 0.73060 (7) | 0.0489 (3) | |
O1 | 1.0385 (4) | 0.6325 (4) | 0.6768 (4) | 0.0397 (12) | |
H1 | 1.089080 | 0.687977 | 0.643718 | 0.048* | |
O2 | 0.9347 (3) | 0.7048 (4) | 0.8193 (3) | 0.0191 (8) | |
O3 | 1.0311 (3) | 0.8776 (4) | 0.7204 (3) | 0.0203 (8) | |
O4 | 0.9428 (4) | 0.7903 (6) | 1.000000 | 0.0204 (11) | |
O5 | 0.7857 (3) | 0.7944 (4) | 0.9032 (3) | 0.0194 (8) | |
O6 | 0.6357 (4) | 0.7801 (7) | 1.000000 | 0.0270 (13) | |
H6 | 0.599457 | 0.797673 | 0.948224 | 0.032* | 0.5 |
O7 | 0.9137 (3) | 0.9603 (4) | 0.8563 (3) | 0.0224 (8) | |
O8 | 0.4074 (4) | 0.3941 (5) | 0.500000 | 0.0144 (9) | |
H8A | 0.401585 | 0.483846 | 0.486660 | 0.017* | 0.5 |
H8B | 0.456785 | 0.383526 | 0.542470 | 0.017* | 0.5 |
B1 | 0.9999 (4) | 0.7413 (6) | 0.7399 (4) | 0.0193 (11) | |
B2 | 1.000000 | 1.000000 | 0.7919 (6) | 0.0127 (14) | |
B3 | 0.8956 (4) | 0.8163 (6) | 0.8960 (4) | 0.0114 (10) | |
B4 | 0.7386 (6) | 0.7897 (9) | 1.000000 | 0.0176 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Rb1 | 0.0586 (9) | 0.0472 (8) | 0.0196 (6) | 0.0159 (6) | 0.000 | 0.000 |
Rb2 | 0.0971 (13) | 0.0268 (6) | 0.0348 (7) | 0.0271 (7) | 0.000 | 0.000 |
Rb3 | 0.0324 (4) | 0.0516 (5) | 0.0628 (5) | 0.0101 (3) | −0.0090 (3) | 0.0248 (4) |
O1 | 0.059 (3) | 0.0192 (19) | 0.041 (3) | −0.011 (2) | 0.036 (2) | −0.0119 (18) |
O2 | 0.0257 (18) | 0.0140 (16) | 0.0175 (18) | −0.0067 (14) | 0.0084 (15) | −0.0047 (13) |
O3 | 0.0296 (18) | 0.0153 (16) | 0.0158 (17) | −0.0080 (15) | 0.0094 (15) | −0.0048 (14) |
O4 | 0.010 (2) | 0.036 (3) | 0.015 (2) | 0.007 (2) | 0.000 | 0.000 |
O5 | 0.0110 (15) | 0.036 (2) | 0.0117 (16) | −0.0044 (15) | −0.0006 (13) | −0.0003 (14) |
O6 | 0.013 (2) | 0.052 (4) | 0.016 (2) | −0.004 (2) | 0.000 | 0.000 |
O7 | 0.0223 (19) | 0.0154 (17) | 0.029 (2) | 0.0031 (14) | 0.0108 (16) | 0.0055 (15) |
O8 | 0.017 (2) | 0.012 (2) | 0.013 (2) | 0.0099 (18) | 0.000 | 0.000 |
B1 | 0.025 (3) | 0.018 (3) | 0.014 (2) | −0.007 (2) | 0.004 (2) | −0.007 (2) |
B2 | 0.016 (3) | 0.015 (3) | 0.006 (3) | 0.002 (3) | 0.000 | 0.000 |
B3 | 0.008 (2) | 0.014 (2) | 0.012 (2) | −0.0031 (18) | −0.0010 (18) | −0.0018 (19) |
B4 | 0.013 (4) | 0.024 (4) | 0.016 (4) | −0.004 (3) | 0.000 | 0.000 |
Rb1—O3 | 2.980 (4) | Rb3—O5 | 3.105 (4) |
Rb1—O3i | 2.980 (4) | Rb3—O3ii | 3.114 (4) |
Rb1—O3ii | 2.980 (4) | Rb3—O1xi | 3.359 (5) |
Rb1—O3iii | 2.980 (4) | Rb3—B3 | 3.491 (5) |
Rb1—O6iv | 3.166 (6) | Rb3—B2 | 3.5061 (19) |
Rb1—O6v | 3.166 (6) | Rb3—B3v | 3.603 (5) |
Rb1—B2iii | 3.610 (7) | Rb3—B4v | 3.729 (5) |
Rb1—B2 | 3.610 (7) | O1—B1 | 1.374 (7) |
Rb1—Rb3 | 4.4556 (12) | O1—H1 | 0.9433 |
Rb1—Rb3i | 4.4556 (12) | O2—B1 | 1.357 (6) |
Rb1—Rb3ii | 4.4556 (12) | O2—B3 | 1.495 (6) |
Rb1—Rb3iii | 4.4556 (12) | O3—B1 | 1.350 (7) |
Rb2—O4vi | 2.793 (5) | O3—B2 | 1.496 (5) |
Rb2—O4 | 2.793 (5) | O4—B3vii | 1.453 (5) |
Rb2—O2vii | 3.058 (4) | O4—B3 | 1.453 (5) |
Rb2—O2viii | 3.058 (4) | O5—B4 | 1.354 (5) |
Rb2—O2vi | 3.058 (4) | O5—B3 | 1.490 (6) |
Rb2—O2 | 3.058 (4) | O6—B4 | 1.381 (9) |
Rb2—B3 | 3.488 (5) | O6—H6 | 0.8200 |
Rb2—B3vii | 3.488 (5) | O6—H6vii | 0.8200 |
Rb2—B3viii | 3.488 (5) | O7—B3 | 1.441 (6) |
Rb2—B3vi | 3.488 (5) | O7—B2 | 1.452 (5) |
Rb2—Rb3ix | 4.3609 (11) | O8—H8A | 0.8500 |
Rb2—Rb3x | 4.3609 (11) | O8—H8B | 0.8500 |
Rb3—O7 | 2.816 (4) | O8—H8Ai | 0.8500 |
Rb3—O2v | 2.963 (4) | O8—H8Bi | 0.8500 |
Rb3—O5v | 2.974 (4) | ||
O3—Rb1—O3i | 132.24 (13) | O3ii—Rb3—O1xi | 158.35 (10) |
O3—Rb1—O3ii | 47.76 (13) | O7—Rb3—B3 | 23.42 (11) |
O3i—Rb1—O3ii | 180.00 (5) | O2v—Rb3—B3 | 154.19 (11) |
O3—Rb1—O3iii | 180.0 | O5v—Rb3—B3 | 150.79 (11) |
O3i—Rb1—O3iii | 47.76 (13) | O5—Rb3—B3 | 25.25 (10) |
O3ii—Rb1—O3iii | 132.24 (13) | O3ii—Rb3—B3 | 67.90 (10) |
O3—Rb1—O6iv | 66.97 (7) | O1xi—Rb3—B3 | 91.11 (11) |
O3i—Rb1—O6iv | 66.97 (7) | O7—Rb3—B2 | 23.45 (12) |
O3ii—Rb1—O6iv | 113.03 (7) | O2v—Rb3—B2 | 151.80 (8) |
O3iii—Rb1—O6iv | 113.03 (7) | O5v—Rb3—B2 | 108.86 (9) |
O3—Rb1—O6v | 113.03 (7) | O5—Rb3—B2 | 67.94 (10) |
O3i—Rb1—O6v | 113.03 (7) | O3ii—Rb3—B2 | 25.24 (9) |
O3ii—Rb1—O6v | 66.97 (7) | O1xi—Rb3—B2 | 133.79 (11) |
O3iii—Rb1—O6v | 66.97 (7) | B3—Rb3—B2 | 42.74 (11) |
O6iv—Rb1—O6v | 180.0 | O7—Rb3—B3v | 146.09 (12) |
O3—Rb1—B2iii | 156.12 (7) | O2v—Rb3—B3v | 23.88 (10) |
O3i—Rb1—B2iii | 23.88 (7) | O5v—Rb3—B3v | 23.81 (10) |
O3ii—Rb1—B2iii | 156.12 (7) | O5—Rb3—B3v | 155.00 (10) |
O3iii—Rb1—B2iii | 23.88 (7) | O3ii—Rb3—B3v | 106.72 (10) |
O6iv—Rb1—B2iii | 90.0 | O1xi—Rb3—B3v | 92.62 (11) |
O6v—Rb1—B2iii | 90.0 | B3—Rb3—B3v | 166.87 (12) |
O3—Rb1—B2 | 23.88 (7) | B2—Rb3—B3v | 131.60 (10) |
O3i—Rb1—B2 | 156.12 (7) | O7—Rb3—B4v | 121.68 (14) |
O3ii—Rb1—B2 | 23.88 (7) | O2v—Rb3—B4v | 62.59 (13) |
O3iii—Rb1—B2 | 156.12 (7) | O5v—Rb3—B4v | 19.43 (12) |
O6iv—Rb1—B2 | 90.0 | O5—Rb3—B4v | 165.50 (14) |
O6v—Rb1—B2 | 90.0 | O3ii—Rb3—B4v | 74.88 (13) |
B2iii—Rb1—B2 | 180.0 | O1xi—Rb3—B4v | 126.70 (14) |
O3—Rb1—Rb3 | 63.01 (7) | B3—Rb3—B4v | 141.27 (14) |
O3i—Rb1—Rb3 | 135.79 (7) | B2—Rb3—B4v | 99.31 (15) |
O3ii—Rb1—Rb3 | 44.21 (7) | B3v—Rb3—B4v | 39.47 (14) |
O3iii—Rb1—Rb3 | 116.99 (7) | O7—Rb3—Rb2v | 161.66 (8) |
O6iv—Rb1—Rb3 | 119.50 (7) | O2v—Rb3—Rb2v | 44.45 (7) |
O6v—Rb1—Rb3 | 60.50 (7) | O5v—Rb3—Rb2v | 65.47 (7) |
B2iii—Rb1—Rb3 | 129.799 (15) | O5—Rb3—Rb2v | 122.29 (7) |
B2—Rb1—Rb3 | 50.201 (15) | O3ii—Rb3—Rb2v | 135.72 (7) |
O3—Rb1—Rb3i | 135.79 (7) | O1xi—Rb3—Rb2v | 64.64 (7) |
O3i—Rb1—Rb3i | 63.01 (7) | B3—Rb3—Rb2v | 141.29 (9) |
O3ii—Rb1—Rb3i | 116.99 (7) | B2—Rb3—Rb2v | 150.36 (11) |
O3iii—Rb1—Rb3i | 44.21 (7) | B3v—Rb3—Rb2v | 50.87 (8) |
O6iv—Rb1—Rb3i | 119.50 (7) | B4v—Rb3—Rb2v | 65.52 (11) |
O6v—Rb1—Rb3i | 60.50 (7) | O7—Rb3—Rb1 | 74.06 (8) |
B2iii—Rb1—Rb3i | 50.202 (15) | O2v—Rb3—Rb1 | 121.65 (7) |
B2—Rb1—Rb3i | 129.798 (15) | O5v—Rb3—Rb1 | 78.67 (7) |
Rb3—Rb1—Rb3i | 79.60 (3) | O5—Rb3—Rb1 | 105.16 (7) |
O3—Rb1—Rb3ii | 44.21 (7) | O3ii—Rb3—Rb1 | 41.86 (7) |
O3i—Rb1—Rb3ii | 116.99 (7) | O1xi—Rb3—Rb1 | 145.17 (7) |
O3ii—Rb1—Rb3ii | 63.01 (7) | B3—Rb3—Rb1 | 84.08 (9) |
O3iii—Rb1—Rb3ii | 135.79 (7) | B2—Rb3—Rb1 | 52.28 (12) |
O6iv—Rb1—Rb3ii | 60.50 (7) | B3v—Rb3—Rb1 | 99.81 (8) |
O6v—Rb1—Rb3ii | 119.50 (7) | B4v—Rb3—Rb1 | 60.50 (11) |
B2iii—Rb1—Rb3ii | 129.798 (14) | Rb2v—Rb3—Rb1 | 98.86 (3) |
B2—Rb1—Rb3ii | 50.202 (14) | B1—O1—Rb3xii | 116.5 (4) |
Rb3—Rb1—Rb3ii | 100.40 (3) | B1—O1—H1 | 96.8 |
Rb3i—Rb1—Rb3ii | 180.0 | Rb3xii—O1—H1 | 78.5 |
O3—Rb1—Rb3iii | 116.99 (7) | B1—O2—B3 | 120.9 (4) |
O3i—Rb1—Rb3iii | 44.21 (7) | B1—O2—Rb3x | 120.5 (3) |
O3ii—Rb1—Rb3iii | 135.79 (7) | B3—O2—Rb3x | 102.8 (2) |
O3iii—Rb1—Rb3iii | 63.01 (7) | B1—O2—Rb2 | 119.9 (3) |
O6iv—Rb1—Rb3iii | 60.50 (7) | B3—O2—Rb2 | 93.7 (3) |
O6v—Rb1—Rb3iii | 119.50 (7) | Rb3x—O2—Rb2 | 92.81 (9) |
B2iii—Rb1—Rb3iii | 50.202 (14) | B1—O3—B2 | 121.0 (4) |
B2—Rb1—Rb3iii | 129.798 (14) | B1—O3—Rb1 | 118.4 (3) |
Rb3—Rb1—Rb3iii | 180.0 | B2—O3—Rb1 | 102.4 (3) |
Rb3i—Rb1—Rb3iii | 100.40 (3) | B1—O3—Rb3ii | 122.9 (3) |
Rb3ii—Rb1—Rb3iii | 79.60 (3) | B2—O3—Rb3ii | 92.20 (15) |
O4vi—Rb2—O4 | 180.0 | Rb1—O3—Rb3ii | 93.93 (9) |
O4vi—Rb2—O2vii | 132.41 (6) | B3vii—O4—B3 | 124.6 (5) |
O4—Rb2—O2vii | 47.59 (6) | B3vii—O4—Rb2 | 106.2 (3) |
O4vi—Rb2—O2viii | 47.59 (6) | B3—O4—Rb2 | 106.2 (3) |
O4—Rb2—O2viii | 132.41 (6) | B4—O5—B3 | 121.2 (4) |
O2vii—Rb2—O2viii | 180.0 | B4—O5—Rb3x | 113.6 (4) |
O4vi—Rb2—O2vi | 47.59 (6) | B3—O5—Rb3x | 102.5 (3) |
O4—Rb2—O2vi | 132.41 (6) | B4—O5—Rb3 | 123.3 (4) |
O2vii—Rb2—O2vi | 86.08 (13) | B3—O5—Rb3 | 92.0 (3) |
O2viii—Rb2—O2vi | 93.92 (13) | Rb3x—O5—Rb3 | 99.83 (10) |
O4vi—Rb2—O2 | 132.41 (6) | B4—O6—Rb1x | 128.7 (5) |
O4—Rb2—O2 | 47.59 (6) | B4—O6—H6 | 125.4 |
O2vii—Rb2—O2 | 93.92 (13) | Rb1x—O6—H6 | 79.7 |
O2viii—Rb2—O2 | 86.08 (13) | B4—O6—H6vii | 125.35 (13) |
O2vi—Rb2—O2 | 180.0 | Rb1x—O6—H6vii | 79.74 (6) |
O4vi—Rb2—B3 | 156.42 (9) | H6—O6—H6vii | 102.7 |
O4—Rb2—B3 | 23.58 (9) | B3—O7—B2 | 123.7 (3) |
O2vii—Rb2—B3 | 68.60 (11) | B3—O7—Rb3 | 105.6 (3) |
O2viii—Rb2—B3 | 111.40 (11) | B2—O7—Rb3 | 106.0 (3) |
O2vi—Rb2—B3 | 154.67 (10) | H8A—O8—H8B | 107.7 |
O2—Rb2—B3 | 25.33 (10) | H8A—O8—H8Ai | 22.4 |
O4vi—Rb2—B3vii | 156.42 (9) | H8B—O8—H8Ai | 93.7 |
O4—Rb2—B3vii | 23.58 (9) | H8A—O8—H8Bi | 93.7 |
O2vii—Rb2—B3vii | 25.33 (10) | H8B—O8—H8Bi | 76.3 |
O2viii—Rb2—B3vii | 154.67 (10) | H8Ai—O8—H8Bi | 107.7 |
O2vi—Rb2—B3vii | 111.40 (11) | O3—B1—O2 | 124.1 (5) |
O2—Rb2—B3vii | 68.60 (11) | O3—B1—O1 | 117.8 (5) |
B3—Rb2—B3vii | 43.27 (17) | O2—B1—O1 | 118.1 (5) |
O4vi—Rb2—B3viii | 23.58 (9) | O7ii—B2—O7 | 113.4 (6) |
O4—Rb2—B3viii | 156.42 (9) | O7ii—B2—O3ii | 110.79 (19) |
O2vii—Rb2—B3viii | 154.67 (10) | O7—B2—O3ii | 107.1 (2) |
O2viii—Rb2—B3viii | 25.33 (10) | O7ii—B2—O3 | 107.1 (2) |
O2vi—Rb2—B3viii | 68.60 (11) | O7—B2—O3 | 110.79 (19) |
O2—Rb2—B3viii | 111.40 (11) | O3ii—B2—O3 | 107.5 (5) |
B3—Rb2—B3viii | 136.73 (17) | O7ii—B2—Rb3 | 150.8 (3) |
B3vii—Rb2—B3viii | 180.0 | O7—B2—Rb3 | 50.53 (19) |
O4vi—Rb2—B3vi | 23.58 (9) | O3ii—B2—Rb3 | 62.57 (15) |
O4—Rb2—B3vi | 156.42 (9) | O3—B2—Rb3 | 101.8 (2) |
O2vii—Rb2—B3vi | 111.40 (11) | O7ii—B2—Rb3ii | 50.52 (19) |
O2viii—Rb2—B3vi | 68.60 (11) | O7—B2—Rb3ii | 150.8 (3) |
O2vi—Rb2—B3vi | 25.33 (10) | O3ii—B2—Rb3ii | 101.8 (2) |
O2—Rb2—B3vi | 154.67 (10) | O3—B2—Rb3ii | 62.57 (15) |
B3—Rb2—B3vi | 180.00 (9) | Rb3—B2—Rb3ii | 155.0 (2) |
B3vii—Rb2—B3vi | 136.73 (17) | O7ii—B2—Rb1 | 123.3 (3) |
B3viii—Rb2—B3vi | 43.27 (17) | O7—B2—Rb1 | 123.3 (3) |
O4vi—Rb2—Rb3ix | 74.33 (8) | O3ii—B2—Rb1 | 53.8 (3) |
O4—Rb2—Rb3ix | 105.67 (8) | O3—B2—Rb1 | 53.8 (3) |
O2vii—Rb2—Rb3ix | 77.20 (7) | Rb3—B2—Rb1 | 77.52 (12) |
O2viii—Rb2—Rb3ix | 102.80 (7) | Rb3ii—B2—Rb1 | 77.52 (12) |
O2vi—Rb2—Rb3ix | 42.74 (7) | O7—B3—O4 | 112.5 (4) |
O2—Rb2—Rb3ix | 137.26 (7) | O7—B3—O5 | 108.2 (4) |
B3—Rb2—Rb3ix | 126.76 (8) | O4—B3—O5 | 110.8 (4) |
B3vii—Rb2—Rb3ix | 96.67 (8) | O7—B3—O2 | 111.3 (4) |
B3viii—Rb2—Rb3ix | 83.33 (8) | O4—B3—O2 | 107.2 (4) |
B3vi—Rb2—Rb3ix | 53.24 (8) | O5—B3—O2 | 106.9 (4) |
O4vi—Rb2—Rb3x | 105.67 (8) | O7—B3—Rb2 | 146.6 (3) |
O4—Rb2—Rb3x | 74.33 (8) | O4—B3—Rb2 | 50.3 (3) |
O2vii—Rb2—Rb3x | 102.80 (7) | O5—B3—Rb2 | 105.1 (3) |
O2viii—Rb2—Rb3x | 77.20 (7) | O2—B3—Rb2 | 61.0 (2) |
O2vi—Rb2—Rb3x | 137.26 (7) | O7—B3—Rb3 | 51.0 (2) |
O2—Rb2—Rb3x | 42.74 (7) | O4—B3—Rb3 | 149.7 (3) |
B3—Rb2—Rb3x | 53.24 (8) | O5—B3—Rb3 | 62.7 (2) |
B3vii—Rb2—Rb3x | 83.33 (8) | O2—B3—Rb3 | 102.9 (3) |
B3viii—Rb2—Rb3x | 96.67 (8) | Rb2—B3—Rb3 | 157.61 (16) |
B3vi—Rb2—Rb3x | 126.76 (8) | O7—B3—Rb3x | 128.1 (3) |
Rb3ix—Rb2—Rb3x | 180.0 | O4—B3—Rb3x | 119.4 (3) |
O7—Rb3—O2v | 153.22 (11) | O5—B3—Rb3x | 53.7 (2) |
O7—Rb3—O5v | 127.55 (10) | O2—B3—Rb3x | 53.3 (2) |
O2v—Rb3—O5v | 47.64 (10) | Rb2—B3—Rb3x | 75.88 (10) |
O7—Rb3—O5 | 46.94 (10) | Rb3—B3—Rb3x | 81.95 (10) |
O2v—Rb3—O5 | 131.85 (10) | O5—B4—O5vii | 124.3 (6) |
O5v—Rb3—O5 | 169.84 (10) | O5—B4—O6 | 117.8 (3) |
O7—Rb3—O3ii | 46.81 (9) | O5vii—B4—O6 | 117.8 (3) |
O2v—Rb3—O3ii | 128.83 (9) | O5—B4—Rb3x | 47.0 (3) |
O5v—Rb3—O3ii | 83.65 (10) | O5vii—B4—Rb3x | 132.1 (5) |
O5—Rb3—O3ii | 92.98 (9) | O6—B4—Rb3x | 90.9 (3) |
O7—Rb3—O1xi | 111.56 (10) | O5—B4—Rb3xiii | 132.1 (5) |
O2v—Rb3—O1xi | 69.14 (10) | O5vii—B4—Rb3xiii | 47.0 (3) |
O5v—Rb3—O1xi | 116.34 (10) | O6—B4—Rb3xiii | 90.9 (3) |
O5—Rb3—O1xi | 65.88 (10) | Rb3x—B4—Rb3xiii | 99.8 (2) |
B2—O3—B1—O2 | 4.2 (8) | Rb2—O4—B3—O5 | 92.7 (4) |
Rb1—O3—B1—O2 | −123.3 (5) | B3vii—O4—B3—O2 | −147.0 (4) |
Rb3ii—O3—B1—O2 | 120.5 (5) | Rb2—O4—B3—O2 | −23.6 (4) |
B2—O3—B1—O1 | −174.3 (5) | B3vii—O4—B3—Rb2 | −123.5 (7) |
Rb1—O3—B1—O1 | 58.2 (6) | B3vii—O4—B3—Rb3 | 40.4 (11) |
Rb3ii—O3—B1—O1 | −58.1 (6) | Rb2—O4—B3—Rb3 | 163.9 (5) |
B3—O2—B1—O3 | −3.0 (8) | B3vii—O4—B3—Rb3x | −89.9 (6) |
Rb3x—O2—B1—O3 | 127.7 (5) | Rb2—O4—B3—Rb3x | 33.5 (3) |
Rb2—O2—B1—O3 | −118.4 (5) | B4—O5—B3—O7 | −107.7 (6) |
B3—O2—B1—O1 | 175.6 (5) | Rb3x—O5—B3—O7 | 124.4 (3) |
Rb3x—O2—B1—O1 | −53.8 (6) | Rb3—O5—B3—O7 | 23.9 (3) |
Rb2—O2—B1—O1 | 60.1 (6) | B4—O5—B3—O4 | 15.9 (7) |
Rb3xii—O1—B1—O3 | 91.4 (5) | Rb3x—O5—B3—O4 | −111.9 (4) |
Rb3xii—O1—B1—O2 | −87.2 (5) | Rb3—O5—B3—O4 | 147.5 (4) |
B3—O7—B2—O7ii | −87.0 (4) | B4—O5—B3—O2 | 132.3 (5) |
Rb3—O7—B2—O7ii | 151.1 (2) | Rb3x—O5—B3—O2 | 4.5 (4) |
B3—O7—B2—O3ii | 150.5 (4) | Rb3—O5—B3—O2 | −96.0 (3) |
Rb3—O7—B2—O3ii | 28.6 (4) | B4—O5—B3—Rb2 | 68.6 (6) |
B3—O7—B2—O3 | 33.5 (6) | Rb3x—O5—B3—Rb2 | −59.2 (2) |
Rb3—O7—B2—O3 | −88.4 (3) | Rb3—O5—B3—Rb2 | −159.77 (14) |
B3—O7—B2—Rb3 | 121.9 (5) | B4—O5—B3—Rb3 | −131.6 (6) |
B3—O7—B2—Rb3ii | −37.2 (9) | Rb3x—O5—B3—Rb3 | 100.53 (14) |
Rb3—O7—B2—Rb3ii | −159.0 (5) | B4—O5—B3—Rb3x | 127.9 (6) |
B3—O7—B2—Rb1 | 93.0 (4) | Rb3—O5—B3—Rb3x | −100.53 (14) |
Rb3—O7—B2—Rb1 | −28.9 (2) | B1—O2—B3—O7 | 15.5 (6) |
B1—O3—B2—O7ii | 106.5 (5) | Rb3x—O2—B3—O7 | −122.4 (3) |
Rb1—O3—B2—O7ii | −119.1 (3) | Rb2—O2—B3—O7 | 143.9 (3) |
Rb3ii—O3—B2—O7ii | −24.6 (3) | B1—O2—B3—O4 | −107.8 (5) |
B1—O3—B2—O7 | −17.7 (6) | Rb3x—O2—B3—O4 | 114.3 (3) |
Rb1—O3—B2—O7 | 116.7 (4) | Rb2—O2—B3—O4 | 20.6 (4) |
Rb3ii—O3—B2—O7 | −148.8 (3) | B1—O2—B3—O5 | 133.4 (5) |
B1—O3—B2—O3ii | −134.4 (5) | Rb3x—O2—B3—O5 | −4.5 (4) |
Rb1—O3—B2—O3ii | 0.000 (2) | Rb2—O2—B3—O5 | −98.2 (3) |
Rb3ii—O3—B2—O3ii | 94.51 (12) | B1—O2—B3—Rb2 | −128.3 (5) |
B1—O3—B2—Rb3 | −69.7 (5) | Rb3x—O2—B3—Rb2 | 93.72 (13) |
Rb1—O3—B2—Rb3 | 64.69 (18) | B1—O2—B3—Rb3 | 68.4 (5) |
Rb3ii—O3—B2—Rb3 | 159.20 (13) | Rb3x—O2—B3—Rb3 | −69.56 (19) |
B1—O3—B2—Rb3ii | 131.1 (5) | Rb2—O2—B3—Rb3 | −163.28 (12) |
Rb1—O3—B2—Rb3ii | −94.51 (12) | B1—O2—B3—Rb3x | 137.9 (5) |
B1—O3—B2—Rb1 | −134.4 (5) | Rb2—O2—B3—Rb3x | −93.72 (13) |
Rb3ii—O3—B2—Rb1 | 94.51 (12) | B3—O5—B4—O5vii | −4.5 (11) |
B2—O7—B3—O4 | 87.7 (6) | Rb3x—O5—B4—O5vii | 118.2 (7) |
Rb3—O7—B3—O4 | −150.2 (3) | Rb3—O5—B4—O5vii | −121.1 (6) |
B2—O7—B3—O5 | −149.6 (4) | B3—O5—B4—O6 | 175.2 (6) |
Rb3—O7—B3—O5 | −27.6 (4) | Rb3x—O5—B4—O6 | −62.1 (8) |
B2—O7—B3—O2 | −32.5 (6) | Rb3—O5—B4—O6 | 58.6 (8) |
Rb3—O7—B3—O2 | 89.5 (3) | B3—O5—B4—Rb3x | −122.7 (6) |
B2—O7—B3—Rb2 | 36.8 (8) | Rb3—O5—B4—Rb3x | 120.7 (4) |
Rb3—O7—B3—Rb2 | 158.8 (4) | B3—O5—B4—Rb3xiii | −64.7 (7) |
B2—O7—B3—Rb3 | −122.0 (5) | Rb3x—O5—B4—Rb3xiii | 58.0 (5) |
B2—O7—B3—Rb3x | −91.9 (5) | Rb3—O5—B4—Rb3xiii | 178.7 (2) |
Rb3—O7—B3—Rb3x | 30.1 (4) | Rb1x—O6—B4—O5 | 90.1 (6) |
B3vii—O4—B3—O7 | 90.4 (7) | Rb1x—O6—B4—O5vii | −90.1 (6) |
Rb2—O4—B3—O7 | −146.2 (3) | Rb1x—O6—B4—Rb3x | 49.90 (10) |
B3vii—O4—B3—O5 | −30.8 (8) | Rb1x—O6—B4—Rb3xiii | −49.90 (10) |
Symmetry codes: (i) x, y, −z+1; (ii) −x+2, −y+2, z; (iii) −x+2, −y+2, −z+1; (iv) x+1/2, −y+3/2, z−1/2; (v) −x+3/2, y+1/2, −z+3/2; (vi) −x+2, −y+1, −z+2; (vii) x, y, −z+2; (viii) −x+2, −y+1, z; (ix) x+1/2, −y+3/2, z+1/2; (x) −x+3/2, y−1/2, −z+3/2; (xi) x−1/2, −y+3/2, −z+3/2; (xii) x+1/2, −y+3/2, −z+3/2; (xiii) −x+3/2, y−1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O8—H8B···O7x | 0.85 | 2.25 | 3.046 (6) | 155 |
O8—H8B···O4x | 0.85 | 1.68 | 2.224 (7) | 119 |
O8—H8A···O7xiv | 0.85 | 1.70 | 2.231 (5) | 118 |
O8—H8A···O4xiv | 0.85 | 2.17 | 2.958 (7) | 155 |
O6—H6···O1xi | 0.82 | 1.86 | 2.670 (5) | 167 |
O1—H1···O6iv | 0.94 | 1.91 | 2.670 (5) | 136 |
Symmetry codes: (iv) x+1/2, −y+3/2, z−1/2; (x) −x+3/2, y−1/2, −z+3/2; (xi) x−1/2, −y+3/2, −z+3/2; (xiv) x−1/2, −y+3/2, z−1/2. |
Funding information
We gratefully acknowledge support by the Fundamental Research Funds for the Central Universities (grant No. 2–9-2021–008).
References
Baiheti, T., Han, S. J., Bashir, B., Yang, Z. H., Wang, Y., Yu, H. H. & Pan, S. L. (2019). J. Solid State Chem. 273, 112–116. Web of Science CrossRef ICSD CAS Google Scholar
Bashir, B., Zhang, B., Pan, S. & Yang, Z. (2018). J. Alloys Compd. 758, 85–90. Web of Science CrossRef CAS Google Scholar
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Menchetti, S. & Sabelli, C. (1979). Acta Cryst. B35, 2488–2493. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Qiu, Q.-M. & Yang, G.-Y. (2021a). J. Solid State Chem. 301, 122303. Web of Science CSD CrossRef Google Scholar
Qiu, Q.-M. & Yang, G.-Y. (2021b). CrystEngComm, 23, 6518–6525. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shi, Y.-T., Luo, M., Lin, C.-S., Peng, G. & Ye, N. (2019). Cryst. Growth Des. 19, 3052–3059. Web of Science CSD CrossRef CAS Google Scholar
Tang, C.-C., Jiang, X.-X., Yin, W.-L., Liu, L.-J., Xia, M.-J., Huang, Q., Song, G.-M., Wang, X.-Y., Lin, Z.-S. & Chen, C.-T. (2019). Dalton Trans. 48, 21–24. Web of Science CrossRef ICSD CAS Google Scholar
Wei, Q., Wang, J.-J., He, C., Cheng, J.-W. & Yang, G.-Y. (2016). Chem. Eur. J. 22, 10759–10762. Web of Science CSD CrossRef ICSD CAS PubMed Google Scholar
Zhang, H.-X., Zhang, J., Zheng, S.-T. & Yang, G.-Y. (2004). Inorg. Chem. Commun. 7, 781–783. Web of Science CrossRef ICSD CAS Google Scholar
Zhang, T.-J., Pan, R., He, H., Yang, B.-F. & Yang, G.-Y. (2016). J. Clust Sci. 27, 625–633. Web of Science CSD CrossRef ICSD CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.