research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structures of 1-benzoyl-4-(4-nitro­phen­yl)piperazine and 1-(4-bromo­benzo­yl)-4-phenyl­piperazine at 90 K

crossmark logo

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570 006, India, bDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysore-570 005, India, and cDepartment of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA
*Correspondence e-mail: yathirajan@hotmail.com

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 5 September 2022; accepted 8 September 2022; online 22 September 2022)

Synthesis and crystal structures of 1-benzoyl-4-(4-nitro­phen­yl)piperazine, C17H17N3O3, (I) and 1-(4-bromo­benzo­yl)-4-phenyl­piperazine, C17H17BrN2O, (II) are described. Compounds I and II crystallize in the ortho­rhom­bic and monoclinic crystal systems with space groups Pna21 (Z′ = 2, I) and P21 (Z′ = 1, II), respectively. The crystal of II was a two-component aggregate, treated as a `twin' for data-acquisition purposes. There are no conventional hydrogen bonds in either I or II, but there are weaker C—H⋯O contacts. Each mol­ecule consists of a central piperazine ring in a chair conformation, with either benzoyl and nitro­phenyl (I) or 4-bromo­benzoyl and phenyl (II) groups attached to different nitro­gen atoms of the piperazine. The various atom–atom contact coverages as qu­anti­fied by Hirshfeld surface analysis fingerprint plots are given.

1. Chemical context

Piperazines are important pharmacophores that are found in many biologically active compounds across a number of different therapeutic areas (Berkheij et al., 2005[Berkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Hiemstra, H., Iwema Bakker, W. I., van den Hoogenband, A. & van Maarseveen, J. H. (2005). Tetrahedron Lett. 46, 2369-2371.]; Brockunier et al., 2004[Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763-4766.]; Bogatcheva et al., 2006[Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045-3048.]) such as anti­fungal (Upadhayaya et al., 2004[Upadhayaya, P. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225-2238.]), anti-bacterial, anti-malarial and anti-psychotic agents (Chaudhary et al., 2006[Chaudhary, P., Kumar, R., Verma, K., Singh, D., Yadav, V., Chhillar, A. K., Sharma, G. L. & Chandra, R. (2006). Bioorg. Med. Chem. 14, 1819-1826.]). The pharmacological properties of phenyl­piperazines and their derivatives have been described by Cohen et al. (1982[Cohen, M. R., Hinsch, E., Palkoski, Z., Vergona, R., Urbano, S. & Sztokalo, J. (1982). J. Pharmacol. Exp. Ther. 223, 110-119.]), Conrado et al. (2008[Conrado, D. J., Verli, H., Neves, G., Fraga, C. A., Barreiro, E. J., Rates, S. M. & Dalla-Costa, T. (2008). J. Pharm. Pharmacol. 60, 699-707.]), Neves et al. (2003[Neves, G., Fenner, R., Heckler, A. P., Viana, A. F., Tasso, L., Menegatti, R., Fraga, C. A. M., Barreiro, E. J., Dalla-Costa, T. & Rates, S. M. K. (2003). Braz. J. Med. Biol. Res. 36, 625-629.]), and by Hanano et al. (2000[Hanano, T., Adachi, K., Aoki, Y., Morimoto, H., Naka, Y., Hisadome, M., Fukuda, T. & Sumichika, H. (2000). Bioorg. Med. Chem. Lett. 10, 875-879.]). The design and synthesis of phenyl­piperazine derivatives as potent anti­cancer agents for prostate cancer have been described by Demirci et al. (2019[Demirci, S., Hayal, T. B., Kıratlı, B., Şişli, H. B., Demirci, S., Şahin, F. & Doğan, A. (2019). Chem. Biol. Drug Des. 94, 1584-1595.]). Many pharmaceutical compounds are derived from 1-phenyl­piperazine, viz., oxypertine, trazodone, nefazodone, etc. Valuable insights into recent advances in anti­microbial activity of piperazine derivatives have been provided by Kharb et al. (2012[Kharb, R., Bansal, K. & Sharma, A. K. (2012). Pharma Chem. 4, 2470-2488.]). A review of current pharmacological and toxicological information for piperazine derivatives was conducted by Elliott (2011[Elliott, S. (2011). Drug Test. Anal. 3, 430-438.]).

4-Nitro­phenyl­piperazinium chloride monohydrate has been used as an inter­mediate in the synthesis of anti­cancer drugs, transcriptase inhibitors and anti­fungal reagents, and is also an important reagent for potassium channel openers, which show considerable biomolecular current-voltage rectification characteristics (Lu, 2007[Lu, Y.-X. (2007). Acta Cryst. E63, o3611.]). The inclusion behaviours of 4-sulf­on­ato­calix[n]arenes (SCXn) (n = 4, 6, 8) with 1-(4-nitro­phen­yl)piperazine (NPP) were investigated by UV and fluorescence spectroscopies at different pH values (Zhang et al., 2014[Zhang, Y., Chao, J., Zhao, S., Xu, P., Wang, H., Guo, Z. & Liu, D. (2014). Spectrochim. Acta Part A. 132, 44-51.]). The design, synthesis and biological profiling of aryl piperazine-based scaffolds for the management of androgen-sensitive prostatic disorders has also been reported by Gupta et al. (2016[Gupta, S., Pandey, D., Mandalapu, D., Bala, V., Sharma, V., Shukla, M., Yadav, S. K., Singh, N., Jaiswal, S., Maikhuri, J. P., Lal, J., Siddiqi, M. I., Gupta, G. & Sharma, V. L. (2016). MedChemComm, 7, 2111-2121.]). 4-Nitro­phenyl­piperazine was the starting material in the synthesis and biological evaluation of novel piperazine containing hydrazone derivatives (Kaya et al., 2016[Kaya, B., Özkay, Y., Temel, H. E. & Kaplancikli, Z. A. (2016). J. Chem. Article ID 5878410.]).

In view of the importance of piperazines in general and the use of 4-nitro­phenyl­piperazine and 1-phenyl­piperazine in particular, this paper reports the synthesis and crystal structures of 1-benzoyl-4-(4-nitro­phen­yl)piperazine, C17H17N3O3, (I) and 1-(4-bromo­benzo­yl)phenyl­piperazine, C17H17BrN2O, (II).

[Scheme 1]

2. Structural commentary

There are no unusual bond distances or angles in either I or II. The asymmetric unit of I (see scheme) contains two mol­ecules, suffixed `A' and `B' in Fig. 1[link]. Each consists of a central piperazine ring in a chair conformation, with a benzoyl and nitro­phenyl group attached to different nitro­gen atoms. The nitro groups are almost coplanar with their attached benzene rings, forming dihedral angles of 4.4 (2) and 3.0 (2)° for mol­ecules A and B, respectively. The phenyl rings are twisted out of planarity with the carbonyl group and its linkage to the piperazine rings, giving N1—C11—C12—C13 torsion angles of −46.8 (3) and 45.4 (3)° for A and B, respectively. The dihedral angles between the phenyl and nitro­benzene rings are 51.52 (6)° in A and 57.23 (7)° in B. Compound II on the other hand has just one mol­ecule in its asymmetric unit (Fig. 2[link]). The piperazine ring is also in a chair conformation and the brominated ring is torsioned [N1—C11—C12—C13 = 46.4 (4)°] to a similar degree to that in I, but the dihedral angle between the phenyl and brominated benzene rings is larger, at 86.6 (1)°.

[Figure 1]
Figure 1
An ellipsoid plot (50% probability) of I showing the two mol­ecules in the asymmetric unit.
[Figure 2]
Figure 2
An ellipsoid plot (50% probability) of II.

3. Supra­molecular features

There are no conventional hydrogen bonds in either I or II, but there are weaker C—H⋯O contacts (Table 1[link]). For I, SHELXL identifies a number of `potential' hydrogen-bonding inter­actions, but most of these have poor geometry for hydrogen bonds. The shortest donor–acceptor distances occur for the bifurcated pair C6B—H6B⋯O1A and C7B—H7B⋯O1A within the chosen asymmetric unit. A similar bifurcated pair of contacts C6A—H6A⋯O1Bi and C7A—H7A⋯O1Bi [symmetry code: (i) x, y, z + 1] occur between the A and B mol­ecules in adjacent (along c) asymmetric units. In combination, these inter­actions lead to double chains that extend parallel to [001] (Fig. 3[link]). In contrast to I, SHELXL identifies no `potential' hydrogen bonds for II. Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) on the other hand, which has different default parameters for flagging hydrogen bonds, identifies a bifurcated pair, C13—H13⋯O1ii and C14—H14⋯O1ii [symmetry code: (ii) x, y + 1, z] (Table 1[link]). A clearer picture of this inter­action is provided by a view of the Hirshfeld surface plotted over dnorm, as calculated by CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), which highlights contacts shorter than the van der Waals radius sum as red blobs (Fig. 4[link]). This bifurcated pair of inter­actions link mol­ecules of II into chains that extend along [010]. The various atom–atom contacts as qu­anti­fied in Hirshfeld surface analysis fingerprint plots are given in Figs. 5[link] and 6[link].

Table 1
Short inter­molecular C—H⋯O contacts (Å, °) in I and II

D—H⋯A D—H H⋯A DA D—H⋯A
I        
C6B—H6B⋯O1A 0.95 2.50 3.140 (2) 124.5
C7B—H7B⋯O1A 0.95 2.58 3.171 (2) 120.3
C6A—H6A⋯O1Bi 0.95 2.47 3.173 (2) 131.0
C7A—H7A⋯O1Bi 0.95 2.78 3.317 (2) 116.8
         
II        
C13—H13⋯O1ii 0.95 2.60 3.018 (4) 107.3
C14—H14⋯O1ii 0.95 2.68 3.052 (4) 104.0
Symmetry codes: (i) x, y, z + 1; (ii) x, y − 1, z
[Figure 3]
Figure 3
A partial packing plot of I, showing close contacts (dashed lines) that connect the mol­ecules into chains parallel to the c-axis.
[Figure 4]
Figure 4
A partial packing plot of II, showing the Hirshfeld surface of the central mol­ecule, highlighting (red blobs) the bifurcated close contacts (dashed lines) that join the mol­ecules into chains parallel to the b-axis.
[Figure 5]
Figure 5
Hirshfeld surface analysis fingerprint plots showing the relative coverage of different atom-atom contacts in I: (a) H⋯H = 38.3%, (b) O⋯H/H⋯O = 28.8%, (c) C⋯H/H⋯C = 24.1%, (d) N⋯H/H⋯N = 4.1%, (e) C⋯O/O.·C = 2.4%, (f) C⋯C = 1.8%. All other contacts are negligible.
[Figure 6]
Figure 6
Hirshfeld surface analysis fingerprint plots showing the relative coverage of different atom-atom contacts in II: (a) H⋯H = 45.5%, (b) C⋯H/H⋯C = 26.8, (c) Br⋯H/H⋯Br = 12.6%, (d) O⋯H/H⋯O = 7.1%, (e) N⋯H/H.·N = 3.1%, (f) O⋯Br/Br⋯O = 1.7%, (g) Br⋯Br = 1.1%, (h) C⋯Br/Br⋯C = 1.0%, (i) C⋯O/O⋯C = 0.8%. All other contacts are negligible.

4. Database survey

There are numerous crystal structures related to I and II in the Cambridge Structure Database (CSD v5.42 with updates through June 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). A search on the central core, piperazine-1-carbaldehyde gave 834 hits whereas search fragments 4-benzoyl­piperazine and 4-phenyl­piperazine-1-carbaldehyde gave 132 and 110 hits, respectively. A search on 1-benzoyl-4-phenyl­piperazine gave 20 hits, two of which have little in common with I or II. An NMR-based investigation of conformational behaviour in solution by Wodtke et al. (2018[Wodtke, R., Steinberg, J., Köckerling, M., Löser, R. & Mamat, C. (2018). RSC Adv. 8, 40921-40933.]) of acyl-functionalized piperazines includes the crystal structures of 1-(4-fluoro­benzo­yl)-4-(4-nitro­phen­yl)piperazine (BIQYIM), 1-(4-bromo­benzo­yl)-4-(4-nitro­phen­yl)piperazine (BIRHES), and 1-(3-bromo­benzo­yl)-4-(4-nitro­phen­yl)piperazine (BIRHIW). Six new 1-aroyl-4-(4-meth­oxy­phen­yl)piperazines (VONFOW, VONGAJ, VONGEN, VONGIR, VONGOX, VONGUD) were prepared using coupling reactions between benzoic acids and N-(4-meth­oxy­phen­yl)piperazine (Kiran Kumar et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1253-1260.]). Six 1-halobenzoyl-4-(2-meth­oxy­phen­yl)piperazines (FALHEJ, FALHIN, FALHOT, FALHUZ, FALJAH, FALJEL) with a variety of disorder, pseudosymmetry and twinning were described by Harish Chinthal et al. (2021[Harish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S. & Glidewell, C. (2021). Acta Cryst. E77, 5-13.]). 1-(3,5-Di­nitro­benzo­yl)-4-(2-meth­oxy­phen­yl)piperazine (LAHBIJ) was published by Harish Chinthal et al. (2020[Harish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S. & Glidewell, C. (2020). IUCrData, 5, x201523.]). The remaining two hits are piperazine derivatives with (2-meth­oxy­phenyl­sulfan­yl)benzoyl groups plus 2,3-di­chloro­phenyl (DEGHAZ: Chu et al., 2006[Chu, J.-C., Shang, Z.-H., Zhou, X.-Q. & Liu, D.-Z. (2006). Acta Cryst. E62, o1042-o1043.]) and 2-meth­oxy­phenyl (SAYYEX: Li et al., 2006[Li, A.-J., Tao, M.-L., Ma, J., Zhou, X.-Q. & Liu, D.-Z. (2006). Acta Cryst. E62, o158-o159.]).

5. Synthesis and crystallization

Synthetic routes for compounds similar to I and II have already been reported by two separate research groups (Kumari et al., 2015[Kumari, S., Mishra, C. B. & Tiwari, M. (2015). Bioorg. Med. Chem. Lett. 25, 1092-1099.]; Wodtke et al., 2018[Wodtke, R., Steinberg, J., Köckerling, M., Löser, R. & Mamat, C. (2018). RSC Adv. 8, 40921-40933.]). The present syntheses are totally different from those earlier reports. 1-(3-Di­methyl­amino­prop­yl)-3-ethyl­carbodi­imide hydro­chloride (109 mg, 0.7 mmol), 1-hy­droxy­benzotriazole (68 mg, 0.5 mmol) and tri­ethyl­amine (0.5 ml, 1.5 mmol) were added to a solution of benzoic acid (0.5 mmol) or 4-bromo­benzoic acid (0.5 mmol) in N,N-di­methyl­formamide (5 ml) and the resulting mixture was stirred for 20 min at 273 K. A solution of 1-(4-nitro­phen­yl)piperazine (104 mg, 0.5 mmol) or 1-phenyl­piperazine (81 mg, 0.5 mmol) in N,N-di­methyl­formamide (5 ml) was then added and stirring was continued overnight at ambient temperature. Reaction schemes are summarized in Fig. 7[link]. When the reactions were confirmed to be complete using thin-layer chromatography, each mixture was quenched with water (10 ml) and extracted with ethyl acetate (20 ml). Each organic fraction was separated and washed successively with an aqueous hydro­chloric acid solution (1 mol dm−3), a saturated solution of sodium hydrogencarbonate, and lastly with brine. The organic phases were dried over anhydrous sodium sulfate and the solvent was removed under reduced pressure. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in ethyl acetate (I: yield 81%, m.p. 428–430 K; II: yield 75%, m.p. 394–396 K).

[Figure 7]
Figure 7
Reaction schemes for the synthesis of I and II. EDC·HCl = 1-(3-di­methyl­amino­prop­yl)-3-ethyl­carbodi­imide hydro­chloride, HOBt = 1-hy­droxy­benzotriazole, TEA = tri­ethyl­amine, DMF = di­methyl­formamide.

6. Data collection and structure refinement

For I, an orange, irregular block-shaped crystal was mounted using polyisobutene oil on the tip of a fine glass fibre in a copper mounting pin. Cu Kα radiation was chosen to facilitate setting the correct absolute structure, which was definitively established by variants of Flack's parameter (Flack & Bernardinelli, 1999[Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908-915.]; Hooft et al., 2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]; Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]). For II, the available sample consisted of colourless plates, none of which were single crystals. A suitable specimen was mounted in the same way as for I. Diffraction data collected at 90 K showed two slightly mis-aligned, but sharp and distinct reciprocal lattices. These were not related by any rational twin operation, but by a seemingly arbitrary ∼4° rotation, presumably due to mis-stacking of aggregated plates. Nevertheless, for data acquisition and processing, facilities for handling twinning by non-merohedry were used. For a brief discussion of true twins vs aggregates, see Parkin (2021[Parkin, S. R. (2021). Acta Cryst. E77, 452-465.]). The absolute structure was again determined unambiguously via the Flack parameter and related methods. Crystal data, data collection and refinement statistics are summarized in Table 2[link]. For both structures, hydrogen atoms were included using riding models, with constrained distances set to 0.95 Å (Csp2H) and 0.99 Å (R2CH2). Uiso(H) parameters were set to 1.2Ueq of the attached atom.

Table 2
Experimental details

  I II
Crystal data
Chemical formula C17H17N3O3 C17H17BrN2O
Mr 311.33 345.23
Crystal system, space group Orthorhombic, Pna21 Monoclinic, P21
Temperature (K) 90 90
a, b, c (Å) 18.7779 (4), 10.0699 (2), 15.7288 (3) 7.5162 (3), 6.1125 (2), 15.7249 (5)
α, β, γ (°) 90, 90, 90 90, 98.625 (1), 90
V3) 2974.18 (10) 714.28 (4)
Z 8 2
Radiation type Cu Kα Mo Kα
μ (mm−1) 0.80 2.88
Crystal size (mm) 0.24 × 0.18 × 0.12 0.35 × 0.20 × 0.06
 
Data collection
Diffractometer Bruker D8 Venture dual source Bruker D8 Venture dual source
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (TWINABS; Sheldrick, 2012[Sheldrick, G. M. (2012). TWINABS. University of Göttingen, Germany.])
Tmin, Tmax 0.854, 0.942 0.568, 0.806
No. of measured, independent and observed [I > 2σ(I)] reflections 24139, 5684, 5575 6918, 6918, 6410
Rint 0.027 0.065
(sin θ/λ)max−1) 0.625 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.075, 1.04 0.023, 0.049, 1.04
No. of reflections 5684 6918
No. of parameters 416 191
No. of restraints 1 1
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.16 0.29, −0.22
Absolute structure Flack x determined using 2442 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 1306 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.01 (5) 0.012 (4)
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL and XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2016); cell refinement: APEX3 (Bruker, 2016); data reduction: APEX3 (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

1-Benzoyl-4-(4-nitrophenyl)piperazine (I) top
Crystal data top
C17H17N3O3Dx = 1.391 Mg m3
Mr = 311.33Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, Pna21Cell parameters from 9920 reflections
a = 18.7779 (4) Åθ = 4.4–74.3°
b = 10.0699 (2) ŵ = 0.80 mm1
c = 15.7288 (3) ÅT = 90 K
V = 2974.18 (10) Å3Cut block, orange
Z = 80.24 × 0.18 × 0.12 mm
F(000) = 1312
Data collection top
Bruker D8 Venture dual source
diffractometer
5684 independent reflections
Radiation source: microsource5575 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.027
φ and ω scansθmax = 74.5°, θmin = 4.7°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2323
Tmin = 0.854, Tmax = 0.942k = 1211
24139 measured reflectionsl = 1719
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0371P)2 + 0.6857P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.18 e Å3
5684 reflectionsΔρmin = 0.15 e Å3
416 parametersExtinction correction: SHELXL2019/2 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0022 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 2442 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using Platon (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.49268 (7)0.25685 (14)0.56553 (9)0.0244 (3)
O2A0.68624 (9)0.60163 (17)1.17477 (10)0.0361 (4)
O3A0.76060 (9)0.73323 (17)1.11319 (11)0.0414 (4)
N1A0.55858 (8)0.41895 (16)0.62597 (10)0.0210 (3)
N2A0.61000 (8)0.49591 (17)0.78914 (10)0.0195 (3)
N3A0.71215 (9)0.65057 (17)1.11034 (11)0.0261 (4)
C1A0.62179 (10)0.5034 (2)0.63281 (12)0.0214 (4)
H1AA0.6076170.5978680.6281760.026*
H1AB0.6549110.4832660.5855770.026*
C2A0.65919 (10)0.48038 (19)0.71744 (12)0.0207 (4)
H2AA0.6795760.3897230.7183160.025*
H2AB0.6988680.5444450.7234480.025*
C3A0.55049 (10)0.4032 (2)0.78203 (12)0.0210 (4)
H3AA0.5176260.4154360.8306220.025*
H3AB0.5684350.3108250.7832990.025*
C4A0.51124 (10)0.4282 (2)0.69932 (12)0.0226 (4)
H4AA0.4723930.3624650.6932530.027*
H4AB0.4894990.5177740.7009230.027*
C5A0.6365 (1)0.52962 (18)0.86888 (12)0.0185 (4)
C6A0.61095 (10)0.4696 (2)0.94373 (13)0.0212 (4)
H6A0.5763030.4011560.9399650.025*
C7A0.63554 (10)0.5089 (2)1.02259 (13)0.0224 (4)
H7A0.6180670.4676791.0727420.027*
C8A0.68595 (10)0.6092 (2)1.02784 (13)0.0210 (4)
C9A0.71253 (10)0.67057 (19)0.95518 (13)0.0204 (4)
H9A0.7469970.7392660.9597200.025*
C10A0.68827 (10)0.63056 (19)0.87663 (12)0.0196 (4)
H10A0.7066670.6715420.8268560.024*
C11A0.54106 (10)0.33847 (18)0.55996 (12)0.0193 (4)
C12A0.58053 (10)0.35251 (18)0.47737 (12)0.0192 (4)
C13A0.59294 (11)0.47549 (19)0.43979 (13)0.0217 (4)
H13A0.5800370.5544910.4689860.026*
C14A0.62417 (11)0.4834 (2)0.35964 (13)0.0248 (4)
H14A0.6325110.5676190.3342690.030*
C15A0.64312 (11)0.3679 (2)0.31679 (13)0.0245 (4)
H15A0.6649280.3731550.2623970.029*
C16A0.6302 (1)0.24515 (19)0.35343 (12)0.0235 (4)
H16A0.6431100.1663060.3240570.028*
C17A0.59843 (10)0.23706 (19)0.43299 (12)0.0216 (4)
H17A0.5888210.1526100.4573480.026*
O1B0.51435 (8)0.27356 (15)0.05162 (9)0.0293 (3)
O2B0.33405 (8)0.06911 (15)0.67739 (9)0.0282 (3)
O3B0.26109 (8)0.20433 (15)0.61629 (10)0.0329 (4)
N1B0.45677 (9)0.11868 (16)0.12905 (11)0.0228 (4)
N2B0.40172 (9)0.04918 (17)0.29159 (10)0.0217 (3)
N3B0.30667 (8)0.11612 (16)0.61295 (11)0.0224 (3)
C1B0.41561 (12)0.0033 (2)0.14059 (13)0.0253 (4)
H1BA0.4483700.0782270.1519530.030*
H1BB0.3889410.0232860.0878270.030*
C2B0.36400 (11)0.0112 (2)0.21386 (13)0.0234 (4)
H2BA0.3280460.0797220.1998250.028*
H2BB0.3388200.0739220.2231140.028*
C3B0.44607 (11)0.1676 (2)0.28017 (13)0.0233 (4)
H3BA0.4739690.1835270.3325970.028*
H3BB0.4150630.2456820.2706530.028*
C4B0.49644 (10)0.1524 (2)0.20567 (13)0.0250 (4)
H4BA0.5227150.2364920.1966720.030*
H4BB0.5315530.0817010.2180930.030*
C5B0.37409 (10)0.01813 (18)0.37065 (13)0.0188 (4)
C6B0.40552 (10)0.06711 (19)0.44607 (13)0.0217 (4)
H6B0.4429140.1303510.4421410.026*
C7B0.38332 (10)0.02550 (19)0.52486 (13)0.0199 (4)
H7B0.4056330.0586710.5747310.024*
C8B0.32797 (10)0.0655 (2)0.53103 (13)0.0215 (4)
C9B0.29260 (11)0.1085 (2)0.45864 (14)0.0291 (5)
H9B0.2528970.1664220.4635890.035*
C10B0.31504 (11)0.0671 (2)0.37969 (13)0.0286 (5)
H10B0.2903310.0965020.3304550.034*
C11B0.46938 (10)0.1852 (2)0.05581 (13)0.0220 (4)
C12B0.42532 (10)0.15513 (18)0.02141 (13)0.0221 (4)
C13B0.35132 (11)0.14223 (19)0.01901 (14)0.0256 (4)
H13B0.3270870.1427720.0340090.031*
C14B0.31314 (12)0.1286 (2)0.09407 (15)0.0306 (5)
H14B0.2628470.1188750.0919830.037*
C15B0.34732 (13)0.1291 (2)0.17155 (15)0.0322 (5)
H15B0.3206850.1200650.2225720.039*
C16B0.42102 (13)0.1427 (2)0.17482 (14)0.0299 (5)
H16B0.4448360.1434040.2281060.036*
C17B0.45955 (11)0.15539 (19)0.10018 (14)0.0256 (4)
H17B0.5098760.1643490.1026220.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0266 (7)0.0212 (7)0.0255 (7)0.0069 (5)0.0025 (6)0.0020 (6)
O2A0.0437 (9)0.0473 (10)0.0173 (7)0.0087 (7)0.0004 (7)0.0012 (7)
O3A0.0493 (9)0.0485 (10)0.0263 (8)0.0226 (8)0.0077 (8)0.0045 (8)
N1A0.0202 (8)0.0234 (8)0.0195 (8)0.0048 (6)0.0003 (6)0.0035 (7)
N2A0.0180 (7)0.0237 (9)0.0169 (8)0.0036 (6)0.0013 (6)0.0035 (6)
N3A0.0289 (8)0.0304 (9)0.0189 (8)0.0013 (7)0.0027 (7)0.0021 (7)
C1A0.0228 (9)0.0241 (10)0.0173 (10)0.0060 (7)0.0006 (7)0.0028 (7)
C2A0.0190 (9)0.0244 (9)0.0188 (10)0.0021 (7)0.0013 (7)0.0036 (8)
C3A0.0188 (8)0.0249 (10)0.0194 (9)0.0062 (7)0.0018 (7)0.0022 (8)
C4A0.0193 (9)0.0273 (10)0.0213 (10)0.0036 (7)0.0013 (8)0.0043 (8)
C5A0.0170 (8)0.0199 (9)0.0185 (9)0.0025 (7)0.0000 (7)0.0021 (7)
C6A0.0198 (9)0.0218 (9)0.0219 (10)0.0022 (7)0.0009 (8)0.0001 (8)
C7A0.0235 (9)0.0255 (10)0.0183 (9)0.0000 (8)0.0033 (8)0.0008 (8)
C8A0.0212 (9)0.0243 (10)0.0175 (9)0.0027 (7)0.0005 (7)0.0035 (8)
C9A0.0181 (8)0.0200 (9)0.0232 (10)0.0010 (7)0.0013 (8)0.0019 (8)
C10A0.0194 (9)0.0213 (9)0.0182 (9)0.0004 (7)0.0018 (7)0.0008 (7)
C11A0.0215 (9)0.0170 (9)0.0193 (9)0.0016 (7)0.0053 (7)0.0004 (7)
C12A0.0206 (9)0.0187 (9)0.0183 (9)0.0000 (7)0.0064 (7)0.0027 (7)
C13A0.0262 (9)0.0198 (9)0.0192 (9)0.0008 (7)0.0034 (8)0.0007 (7)
C14A0.027 (1)0.0231 (10)0.0243 (11)0.0019 (8)0.0061 (8)0.0034 (8)
C15A0.0224 (10)0.0327 (11)0.0185 (10)0.0009 (8)0.0033 (7)0.0007 (8)
C16A0.0233 (9)0.0255 (10)0.0218 (11)0.0043 (8)0.0047 (8)0.0055 (8)
C17A0.0244 (9)0.0188 (9)0.0215 (10)0.0008 (7)0.0058 (7)0.0001 (7)
O1B0.0278 (7)0.0310 (8)0.0290 (8)0.0081 (6)0.0022 (6)0.0076 (6)
O2B0.0288 (7)0.0390 (8)0.0169 (7)0.0015 (6)0.0034 (6)0.0029 (6)
O3B0.0366 (8)0.0368 (8)0.0255 (8)0.0143 (7)0.0050 (7)0.0004 (7)
N1B0.0261 (8)0.0203 (8)0.0221 (9)0.0031 (7)0.0031 (6)0.0008 (7)
N2B0.0228 (8)0.0239 (8)0.0183 (8)0.0061 (7)0.0002 (6)0.0008 (6)
N3B0.0220 (7)0.0263 (8)0.0189 (8)0.0012 (6)0.0009 (7)0.0011 (7)
C1B0.0353 (11)0.0183 (9)0.0224 (10)0.0035 (8)0.0039 (8)0.0009 (7)
C2B0.0285 (10)0.024 (1)0.0176 (10)0.0089 (8)0.0001 (8)0.0007 (8)
C3B0.0253 (9)0.0245 (10)0.0203 (10)0.0070 (8)0.0000 (8)0.0004 (8)
C4B0.0220 (9)0.0263 (10)0.0266 (11)0.0026 (7)0.0001 (8)0.0035 (8)
C5B0.0186 (9)0.0188 (9)0.0189 (9)0.0028 (7)0.0006 (7)0.0011 (7)
C6B0.0200 (8)0.0214 (9)0.0236 (9)0.0025 (7)0.0005 (8)0.0024 (8)
C7B0.0199 (9)0.0204 (10)0.0194 (9)0.0003 (7)0.0035 (7)0.0041 (7)
C8B0.0209 (9)0.0248 (10)0.0187 (9)0.0004 (8)0.0019 (7)0.0014 (8)
C9B0.0268 (10)0.0377 (12)0.0227 (10)0.0135 (9)0.0010 (9)0.0025 (9)
C10B0.0263 (10)0.0397 (12)0.0197 (10)0.0116 (9)0.0011 (8)0.0035 (9)
C11B0.0206 (9)0.0196 (9)0.0257 (10)0.0019 (7)0.0052 (8)0.0007 (8)
C12B0.0269 (10)0.0136 (9)0.0258 (10)0.0013 (7)0.0041 (8)0.0028 (7)
C13B0.0264 (10)0.0194 (10)0.0311 (12)0.0011 (8)0.0035 (8)0.0021 (8)
C14B0.0300 (11)0.022 (1)0.0398 (12)0.0012 (8)0.0013 (10)0.0051 (9)
C15B0.0452 (13)0.0194 (10)0.0319 (12)0.0013 (9)0.0079 (10)0.0056 (9)
C16B0.0457 (13)0.0185 (10)0.0256 (11)0.0027 (8)0.0056 (9)0.0001 (8)
C17B0.0299 (10)0.0180 (9)0.0289 (11)0.0043 (8)0.0065 (9)0.0025 (8)
Geometric parameters (Å, º) top
O1A—C11A1.228 (2)O1B—C11B1.228 (2)
O2A—N3A1.228 (2)O2B—N3B1.231 (2)
O3A—N3A1.234 (2)O3B—N3B1.235 (2)
N1A—C11A1.358 (2)N1B—C11B1.354 (3)
N1A—C4A1.459 (2)N1B—C4B1.457 (3)
N1A—C1A1.464 (2)N1B—C1B1.462 (2)
N2A—C5A1.391 (2)N2B—C5B1.383 (3)
N2A—C3A1.460 (2)N2B—C2B1.464 (2)
N2A—C2A1.466 (2)N2B—C3B1.465 (2)
N3A—C8A1.449 (3)N3B—C8B1.442 (3)
C1A—C2A1.523 (3)C1B—C2B1.513 (3)
C1A—H1AA0.9900C1B—H1BA0.9900
C1A—H1AB0.9900C1B—H1BB0.9900
C2A—H2AA0.9900C2B—H2BA0.9900
C2A—H2AB0.9900C2B—H2BB0.9900
C3A—C4A1.516 (3)C3B—C4B1.514 (3)
C3A—H3AA0.9900C3B—H3BA0.9900
C3A—H3AB0.9900C3B—H3BB0.9900
C4A—H4AA0.9900C4B—H4BA0.9900
C4A—H4AB0.9900C4B—H4BB0.9900
C5A—C6A1.407 (3)C5B—C10B1.409 (3)
C5A—C10A1.412 (3)C5B—C6B1.414 (3)
C6A—C7A1.381 (3)C6B—C7B1.373 (3)
C6A—H6A0.9500C6B—H6B0.9500
C7A—C8A1.386 (3)C7B—C8B1.389 (3)
C7A—H7A0.9500C7B—H7B0.9500
C8A—C9A1.392 (3)C8B—C9B1.388 (3)
C9A—C10A1.377 (3)C9B—C10B1.376 (3)
C9A—H9A0.9500C9B—H9B0.9500
C10A—H10A0.9500C10B—H10B0.9500
C11A—C12A1.502 (3)C11B—C12B1.500 (3)
C12A—C13A1.392 (3)C12B—C17B1.396 (3)
C12A—C17A1.397 (3)C12B—C13B1.396 (3)
C13A—C14A1.393 (3)C13B—C14B1.388 (3)
C13A—H13A0.9500C13B—H13B0.9500
C14A—C15A1.391 (3)C14B—C15B1.377 (3)
C14A—H14A0.9500C14B—H14B0.9500
C15A—C16A1.385 (3)C15B—C16B1.392 (4)
C15A—H15A0.9500C15B—H15B0.9500
C16A—C17A1.389 (3)C16B—C17B1.385 (3)
C16A—H16A0.9500C16B—H16B0.9500
C17A—H17A0.9500C17B—H17B0.9500
C11A—N1A—C4A119.69 (15)C11B—N1B—C4B119.94 (16)
C11A—N1A—C1A126.84 (16)C11B—N1B—C1B127.86 (17)
C4A—N1A—C1A113.47 (15)C4B—N1B—C1B111.31 (16)
C5A—N2A—C3A119.91 (16)C5B—N2B—C2B120.68 (15)
C5A—N2A—C2A119.61 (16)C5B—N2B—C3B120.49 (16)
C3A—N2A—C2A110.80 (15)C2B—N2B—C3B112.64 (16)
O2A—N3A—O3A122.22 (18)O2B—N3B—O3B122.08 (17)
O2A—N3A—C8A119.29 (16)O2B—N3B—C8B118.93 (15)
O3A—N3A—C8A118.49 (17)O3B—N3B—C8B118.99 (17)
N1A—C1A—C2A110.46 (16)N1B—C1B—C2B110.61 (16)
N1A—C1A—H1AA109.6N1B—C1B—H1BA109.5
C2A—C1A—H1AA109.6C2B—C1B—H1BA109.5
N1A—C1A—H1AB109.6N1B—C1B—H1BB109.5
C2A—C1A—H1AB109.6C2B—C1B—H1BB109.5
H1AA—C1A—H1AB108.1H1BA—C1B—H1BB108.1
N2A—C2A—C1A111.44 (16)N2B—C2B—C1B110.58 (16)
N2A—C2A—H2AA109.3N2B—C2B—H2BA109.5
C1A—C2A—H2AA109.3C1B—C2B—H2BA109.5
N2A—C2A—H2AB109.3N2B—C2B—H2BB109.5
C1A—C2A—H2AB109.3C1B—C2B—H2BB109.5
H2AA—C2A—H2AB108.0H2BA—C2B—H2BB108.1
N2A—C3A—C4A109.37 (16)N2B—C3B—C4B111.59 (17)
N2A—C3A—H3AA109.8N2B—C3B—H3BA109.3
C4A—C3A—H3AA109.8C4B—C3B—H3BA109.3
N2A—C3A—H3AB109.8N2B—C3B—H3BB109.3
C4A—C3A—H3AB109.8C4B—C3B—H3BB109.3
H3AA—C3A—H3AB108.2H3BA—C3B—H3BB108.0
N1A—C4A—C3A111.81 (15)N1B—C4B—C3B110.14 (16)
N1A—C4A—H4AA109.3N1B—C4B—H4BA109.6
C3A—C4A—H4AA109.3C3B—C4B—H4BA109.6
N1A—C4A—H4AB109.3N1B—C4B—H4BB109.6
C3A—C4A—H4AB109.3C3B—C4B—H4BB109.6
H4AA—C4A—H4AB107.9H4BA—C4B—H4BB108.1
N2A—C5A—C6A121.83 (17)N2B—C5B—C10B121.57 (18)
N2A—C5A—C10A119.99 (17)N2B—C5B—C6B121.25 (16)
C6A—C5A—C10A118.13 (17)C10B—C5B—C6B117.15 (18)
C7A—C6A—C5A120.95 (17)C7B—C6B—C5B121.61 (17)
C7A—C6A—H6A119.5C7B—C6B—H6B119.2
C5A—C6A—H6A119.5C5B—C6B—H6B119.2
C6A—C7A—C8A119.36 (19)C6B—C7B—C8B119.45 (18)
C6A—C7A—H7A120.3C6B—C7B—H7B120.3
C8A—C7A—H7A120.3C8B—C7B—H7B120.3
C7A—C8A—C9A121.29 (19)C9B—C8B—C7B120.44 (19)
C7A—C8A—N3A119.65 (18)C9B—C8B—N3B119.34 (17)
C9A—C8A—N3A119.06 (17)C7B—C8B—N3B120.22 (17)
C10A—C9A—C8A119.21 (17)C10B—C9B—C8B119.97 (18)
C10A—C9A—H9A120.4C10B—C9B—H9B120.0
C8A—C9A—H9A120.4C8B—C9B—H9B120.0
C9A—C10A—C5A121.06 (18)C9B—C10B—C5B121.08 (19)
C9A—C10A—H10A119.5C9B—C10B—H10B119.5
C5A—C10A—H10A119.5C5B—C10B—H10B119.5
O1A—C11A—N1A121.61 (18)O1B—C11B—N1B121.63 (19)
O1A—C11A—C12A119.32 (17)O1B—C11B—C12B118.80 (18)
N1A—C11A—C12A119.05 (16)N1B—C11B—C12B119.51 (17)
C13A—C12A—C17A119.19 (18)C17B—C12B—C13B118.9 (2)
C13A—C12A—C11A122.26 (17)C17B—C12B—C11B117.66 (17)
C17A—C12A—C11A118.19 (16)C13B—C12B—C11B123.07 (18)
C12A—C13A—C14A120.40 (18)C14B—C13B—C12B120.0 (2)
C12A—C13A—H13A119.8C14B—C13B—H13B120.0
C14A—C13A—H13A119.8C12B—C13B—H13B120.0
C15A—C14A—C13A119.89 (19)C15B—C14B—C13B120.76 (19)
C15A—C14A—H14A120.1C15B—C14B—H14B119.6
C13A—C14A—H14A120.1C13B—C14B—H14B119.6
C16A—C15A—C14A120.00 (18)C14B—C15B—C16B119.8 (2)
C16A—C15A—H15A120.0C14B—C15B—H15B120.1
C14A—C15A—H15A120.0C16B—C15B—H15B120.1
C15A—C16A—C17A120.16 (18)C17B—C16B—C15B119.8 (2)
C15A—C16A—H16A119.9C17B—C16B—H16B120.1
C17A—C16A—H16A119.9C15B—C16B—H16B120.1
C16A—C17A—C12A120.32 (18)C16B—C17B—C12B120.77 (19)
C16A—C17A—H17A119.8C16B—C17B—H17B119.6
C12A—C17A—H17A119.8C12B—C17B—H17B119.6
C11A—N1A—C1A—C2A129.76 (19)C11B—N1B—C1B—C2B132.2 (2)
C4A—N1A—C1A—C2A51.1 (2)C4B—N1B—C1B—C2B58.7 (2)
C5A—N2A—C2A—C1A155.27 (17)C5B—N2B—C2B—C1B154.05 (17)
C3A—N2A—C2A—C1A58.7 (2)C3B—N2B—C2B—C1B53.5 (2)
N1A—C1A—C2A—N2A53.4 (2)N1B—C1B—C2B—N2B55.6 (2)
C5A—N2A—C3A—C4A155.04 (17)C5B—N2B—C3B—C4B154.12 (18)
C2A—N2A—C3A—C4A59.0 (2)C2B—N2B—C3B—C4B53.3 (2)
C11A—N1A—C4A—C3A127.48 (18)C11B—N1B—C4B—C3B132.20 (19)
C1A—N1A—C4A—C3A53.3 (2)C1B—N1B—C4B—C3B57.7 (2)
N2A—C3A—C4A—N1A56.2 (2)N2B—C3B—C4B—N1B54.6 (2)
C3A—N2A—C5A—C6A4.6 (3)C2B—N2B—C5B—C10B9.5 (3)
C2A—N2A—C5A—C6A138.34 (19)C3B—N2B—C5B—C10B159.88 (19)
C3A—N2A—C5A—C10A172.59 (16)C2B—N2B—C5B—C6B172.66 (17)
C2A—N2A—C5A—C10A44.4 (3)C3B—N2B—C5B—C6B22.3 (3)
N2A—C5A—C6A—C7A176.91 (18)N2B—C5B—C6B—C7B172.84 (18)
C10A—C5A—C6A—C7A0.4 (3)C10B—C5B—C6B—C7B5.0 (3)
C5A—C6A—C7A—C8A0.2 (3)C5B—C6B—C7B—C8B0.9 (3)
C6A—C7A—C8A—C9A0.3 (3)C6B—C7B—C8B—C9B3.6 (3)
C6A—C7A—C8A—N3A179.79 (17)C6B—C7B—C8B—N3B176.42 (17)
O2A—N3A—C8A—C7A4.2 (3)O2B—N3B—C8B—C9B173.79 (18)
O3A—N3A—C8A—C7A174.95 (19)O3B—N3B—C8B—C9B5.5 (3)
O2A—N3A—C8A—C9A176.25 (18)O2B—N3B—C8B—C7B6.2 (3)
O3A—N3A—C8A—C9A4.6 (3)O3B—N3B—C8B—C7B174.52 (18)
C7A—C8A—C9A—C10A0.1 (3)C7B—C8B—C9B—C10B3.9 (3)
N3A—C8A—C9A—C10A179.36 (17)N3B—C8B—C9B—C10B176.2 (2)
C8A—C9A—C10A—C5A0.7 (3)C8B—C9B—C10B—C5B0.4 (3)
N2A—C5A—C10A—C9A176.52 (17)N2B—C5B—C10B—C9B173.1 (2)
C6A—C5A—C10A—C9A0.8 (3)C6B—C5B—C10B—C9B4.8 (3)
C4A—N1A—C11A—O1A12.0 (3)C4B—N1B—C11B—O1B0.7 (3)
C1A—N1A—C11A—O1A168.91 (18)C1B—N1B—C11B—O1B167.5 (2)
C4A—N1A—C11A—C12A166.20 (16)C4B—N1B—C11B—C12B176.48 (16)
C1A—N1A—C11A—C12A12.9 (3)C1B—N1B—C11B—C12B15.3 (3)
O1A—C11A—C12A—C13A131.5 (2)O1B—C11B—C12B—C17B40.6 (3)
N1A—C11A—C12A—C13A46.8 (3)N1B—C11B—C12B—C17B142.11 (18)
O1A—C11A—C12A—C17A41.6 (2)O1B—C11B—C12B—C13B131.9 (2)
N1A—C11A—C12A—C17A140.11 (18)N1B—C11B—C12B—C13B45.4 (3)
C17A—C12A—C13A—C14A1.3 (3)C17B—C12B—C13B—C14B0.6 (3)
C11A—C12A—C13A—C14A174.32 (17)C11B—C12B—C13B—C14B173.05 (18)
C12A—C13A—C14A—C15A0.0 (3)C12B—C13B—C14B—C15B0.7 (3)
C13A—C14A—C15A—C16A0.7 (3)C13B—C14B—C15B—C16B0.3 (3)
C14A—C15A—C16A—C17A0.1 (3)C14B—C15B—C16B—C17B0.2 (3)
C15A—C16A—C17A—C12A1.2 (3)C15B—C16B—C17B—C12B0.3 (3)
C13A—C12A—C17A—C16A1.9 (3)C13B—C12B—C17B—C16B0.2 (3)
C11A—C12A—C17A—C16A175.23 (16)C11B—C12B—C17B—C16B172.98 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6B—H6B···O1A0.952.503.140 (2)125
C7B—H7B···O1A0.952.583.171 (2)120
C6A—H6A···O1Bi0.952.473.173 (2)131
C7A—H7A···O1Bi0.952.783.317 (2)117
Symmetry code: (i) x, y, z+1.
1-(4-Bromobenzoyl)-4-phenylpiperazine (II) top
Crystal data top
C17H17BrN2OF(000) = 352
Mr = 345.23Dx = 1.605 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.5162 (3) ÅCell parameters from 9856 reflections
b = 6.1125 (2) Åθ = 2.6–27.5°
c = 15.7249 (5) ŵ = 2.88 mm1
β = 98.625 (1)°T = 90 K
V = 714.28 (4) Å3Slab cut from lath, colourless
Z = 20.35 × 0.20 × 0.06 mm
Data collection top
Bruker D8 Venture dual source
diffractometer
6918 independent reflections
Radiation source: microsource6410 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.065
φ and ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2012)
h = 99
Tmin = 0.568, Tmax = 0.806k = 77
6918 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.049 w = 1/[σ2(Fo2) + (0.0158P)2 + 0.0999P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6918 reflectionsΔρmax = 0.29 e Å3
191 parametersΔρmin = 0.22 e Å3
1 restraintAbsolute structure: Flack x determined using 1306 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.012 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using Platon (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Refined as a 2-component aggregate.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.09055 (3)0.11286 (6)0.95039 (2)0.01878 (8)
O10.6730 (3)0.8844 (4)0.83992 (15)0.0238 (5)
N10.7763 (3)0.6022 (7)0.76896 (13)0.0138 (4)
N20.8022 (3)0.5773 (4)0.58908 (14)0.0128 (6)
C10.7544 (4)0.3913 (5)0.72408 (19)0.0170 (6)
H1A0.6663660.3005350.7491810.020*
H1B0.8708920.3126540.7318470.020*
C20.6896 (4)0.4248 (5)0.62881 (19)0.0170 (6)
H2A0.6883550.2818870.5990770.020*
H2B0.5646660.4808610.6210720.020*
C30.8331 (4)0.7843 (5)0.63607 (18)0.0151 (6)
H3A0.7198030.8693900.6294140.018*
H3B0.9238290.8713350.6112190.018*
C40.8985 (4)0.7459 (5)0.73118 (19)0.0153 (6)
H4A1.0199050.6792670.7383440.018*
H4B0.9077570.8878660.7618190.018*
C50.7688 (3)0.5918 (7)0.49830 (16)0.0139 (6)
C60.8200 (4)0.7753 (5)0.4548 (2)0.0187 (6)
H60.8745360.8959310.4867950.022*
C70.7922 (5)0.7840 (5)0.3655 (2)0.0211 (7)
H70.8280300.9108760.3375730.025*
C80.7134 (3)0.6116 (10)0.31631 (16)0.0204 (5)
H80.6946720.6185760.2552690.024*
C90.6633 (5)0.4301 (6)0.3587 (2)0.0234 (7)
H90.6100060.3095790.3262390.028*
C100.6889 (5)0.4190 (5)0.4478 (2)0.0218 (7)
H100.6516250.2919400.4750970.026*
C110.6668 (4)0.6894 (5)0.82122 (18)0.0146 (6)
C120.5338 (4)0.5444 (4)0.85605 (17)0.0135 (6)
C130.5770 (4)0.3395 (5)0.89205 (18)0.0128 (6)
H130.6962200.2852670.8949780.015*
C140.4476 (4)0.2132 (5)0.92378 (17)0.0134 (6)
H140.4773620.0738590.9487190.016*
C150.2748 (4)0.2952 (5)0.91818 (18)0.0138 (6)
C160.2290 (4)0.5014 (5)0.88668 (18)0.0148 (6)
H160.1107010.5568010.8858960.018*
C170.3610 (3)0.6267 (8)0.85598 (15)0.0153 (5)
H170.3326680.7699400.8347540.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01541 (13)0.01942 (13)0.02254 (13)0.0012 (2)0.00626 (9)0.00283 (19)
O10.0269 (12)0.0140 (11)0.0336 (13)0.0023 (9)0.0145 (11)0.0065 (9)
N10.0159 (10)0.0124 (10)0.0136 (9)0.0026 (16)0.0042 (8)0.0007 (16)
N20.0162 (11)0.0102 (17)0.0123 (10)0.0017 (9)0.0032 (8)0.0013 (10)
C10.0258 (17)0.0119 (14)0.0149 (15)0.0002 (12)0.0081 (13)0.0008 (12)
C20.0255 (17)0.0119 (14)0.0140 (15)0.0060 (12)0.0050 (12)0.0023 (11)
C30.0161 (16)0.0129 (14)0.0159 (15)0.0020 (11)0.0016 (12)0.0001 (12)
C40.0141 (15)0.0179 (15)0.0146 (14)0.0037 (11)0.0044 (12)0.0001 (11)
C50.0101 (11)0.0178 (17)0.0136 (11)0.0018 (15)0.0010 (9)0.0042 (15)
C60.0194 (17)0.0190 (16)0.0179 (16)0.0020 (13)0.0030 (13)0.0020 (12)
C70.0218 (18)0.0223 (17)0.0202 (16)0.0008 (13)0.0066 (13)0.0074 (13)
C80.0167 (12)0.0307 (14)0.0134 (11)0.004 (2)0.0013 (9)0.002 (2)
C90.0257 (19)0.0272 (18)0.0167 (16)0.0065 (14)0.0010 (13)0.0038 (13)
C100.0264 (19)0.0216 (17)0.0166 (16)0.0074 (13)0.0009 (13)0.0012 (13)
C110.0146 (14)0.0155 (13)0.0130 (13)0.002 (1)0.0001 (11)0.0007 (10)
C120.0154 (14)0.0151 (15)0.0097 (13)0.0001 (10)0.0007 (11)0.0019 (9)
C130.0127 (14)0.0143 (14)0.0115 (13)0.0026 (11)0.0017 (11)0.0019 (11)
C140.0173 (15)0.0132 (14)0.0095 (13)0.0011 (11)0.0010 (11)0.0014 (11)
C150.0135 (14)0.0174 (15)0.0110 (14)0.0032 (11)0.0035 (11)0.0015 (11)
C160.0122 (14)0.0186 (15)0.0138 (14)0.0029 (11)0.0029 (11)0.0007 (12)
C170.0194 (12)0.0145 (14)0.0117 (11)0.0030 (19)0.0012 (9)0.0014 (16)
Geometric parameters (Å, º) top
Br1—C151.904 (3)C6—C71.389 (4)
O1—C111.227 (4)C6—H60.9500
N1—C111.356 (4)C7—C81.387 (6)
N1—C41.460 (4)C7—H70.9500
N1—C11.467 (4)C8—C91.376 (6)
N2—C51.415 (3)C8—H80.9500
N2—C21.461 (4)C9—C101.387 (4)
N2—C31.466 (4)C9—H90.9500
C1—C21.518 (4)C10—H100.9500
C1—H1A0.9900C11—C121.500 (4)
C1—H1B0.9900C12—C171.393 (4)
C2—H2A0.9900C12—C131.393 (4)
C2—H2B0.9900C13—C141.391 (4)
C3—C41.521 (4)C13—H130.9500
C3—H3A0.9900C14—C151.383 (4)
C3—H3B0.9900C14—H140.9500
C4—H4A0.9900C15—C161.379 (4)
C4—H4B0.9900C16—C171.395 (5)
C5—C61.397 (5)C16—H160.9500
C5—C101.401 (5)C17—H170.9500
C11—N1—C4119.1 (3)C5—C6—H6119.5
C11—N1—C1127.0 (3)C8—C7—C6121.5 (3)
C4—N1—C1111.4 (2)C8—C7—H7119.3
C5—N2—C2116.4 (2)C6—C7—H7119.3
C5—N2—C3116.4 (3)C9—C8—C7117.9 (2)
C2—N2—C3113.2 (2)C9—C8—H8121.1
N1—C1—C2110.6 (2)C7—C8—H8121.1
N1—C1—H1A109.5C8—C9—C10121.5 (3)
C2—C1—H1A109.5C8—C9—H9119.3
N1—C1—H1B109.5C10—C9—H9119.3
C2—C1—H1B109.5C9—C10—C5121.2 (3)
H1A—C1—H1B108.1C9—C10—H10119.4
N2—C2—C1112.8 (2)C5—C10—H10119.4
N2—C2—H2A109.0O1—C11—N1121.5 (3)
C1—C2—H2A109.0O1—C11—C12119.4 (3)
N2—C2—H2B109.0N1—C11—C12119.1 (3)
C1—C2—H2B109.0C17—C12—C13119.1 (3)
H2A—C2—H2B107.8C17—C12—C11117.3 (3)
N2—C3—C4111.4 (2)C13—C12—C11123.6 (3)
N2—C3—H3A109.3C14—C13—C12120.8 (3)
C4—C3—H3A109.3C14—C13—H13119.6
N2—C3—H3B109.3C12—C13—H13119.6
C4—C3—H3B109.3C15—C14—C13118.5 (3)
H3A—C3—H3B108.0C15—C14—H14120.8
N1—C4—C3111.3 (2)C13—C14—H14120.8
N1—C4—H4A109.4C16—C15—C14122.4 (3)
C3—C4—H4A109.4C16—C15—Br1118.6 (2)
N1—C4—H4B109.4C14—C15—Br1119.0 (2)
C3—C4—H4B109.4C15—C16—C17118.3 (3)
H4A—C4—H4B108.0C15—C16—H16120.9
C6—C5—C10117.0 (2)C17—C16—H16120.9
C6—C5—N2121.6 (3)C12—C17—C16120.9 (4)
C10—C5—N2121.4 (3)C12—C17—H17119.6
C7—C6—C5121.0 (3)C16—C17—H17119.6
C7—C6—H6119.5
C11—N1—C1—C2105.4 (3)C6—C5—C10—C90.4 (5)
C4—N1—C1—C256.4 (3)N2—C5—C10—C9177.2 (3)
C5—N2—C2—C1170.4 (3)C4—N1—C11—O12.8 (4)
C3—N2—C2—C150.7 (3)C1—N1—C11—O1163.3 (3)
N1—C1—C2—N252.8 (3)C4—N1—C11—C12176.5 (2)
C5—N2—C3—C4170.3 (2)C1—N1—C11—C1216.0 (4)
C2—N2—C3—C450.8 (3)O1—C11—C12—C1742.2 (4)
C11—N1—C4—C3105.9 (3)N1—C11—C12—C17137.1 (3)
C1—N1—C4—C357.5 (3)O1—C11—C12—C13134.3 (3)
N2—C3—C4—N154.1 (3)N1—C11—C12—C1346.4 (4)
C2—N2—C5—C6158.2 (3)C17—C12—C13—C143.2 (4)
C3—N2—C5—C620.7 (4)C11—C12—C13—C14179.6 (3)
C2—N2—C5—C1024.3 (4)C12—C13—C14—C150.5 (4)
C3—N2—C5—C10161.8 (3)C13—C14—C15—C163.6 (4)
C10—C5—C6—C70.0 (5)C13—C14—C15—Br1173.6 (2)
N2—C5—C6—C7177.6 (3)C14—C15—C16—C172.9 (4)
C5—C6—C7—C80.2 (5)Br1—C15—C16—C17174.3 (2)
C6—C7—C8—C90.1 (5)C13—C12—C17—C163.8 (4)
C7—C8—C9—C100.5 (5)C11—C12—C17—C16179.5 (3)
C8—C9—C10—C50.7 (5)C15—C16—C17—C120.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.952.603.018 (4)107
C14—H14···O1i0.952.683.052 (4)104
Symmetry code: (i) x, y1, z.
Short intermolecular C—H···O contacts (Å, °) in I and II top
I
D—H···AD—HH···AD···AD—H···A
C6B—H6B···O1A0.952.503.140 (2)124.5
C7B—H7B···O1A0.952.583.171 (2)120.3
C6A—H6A···O1Bi0.952.473.173 (2)131.0
C7A—H7A···O1Bi0.952.783.317 (2)116.8
II
C13—H13···O1ii0.952.603.018 (4)107.3
C14—H14···O1ii0.952.683.052 (4)104.0
Symmetry codes: (i) x, y, z + 1; (ii) x, y - 1, z
 

Acknowledgements

One of the authors (SDA) is grateful to the University of Mysore for research facilities.

Funding information

Funding for this research was provided by: NSF (MRI CHE1625732) and the University of Kentucky (Bruker D8 182 Venture diffractometer). HSY thanks the UGC for a BSR Faculty fellowship for three years.

References

First citationBerkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Hiemstra, H., Iwema Bakker, W. I., van den Hoogenband, A. & van Maarseveen, J. H. (2005). Tetrahedron Lett. 46, 2369–2371.  Web of Science CrossRef CAS Google Scholar
First citationBogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChaudhary, P., Kumar, R., Verma, K., Singh, D., Yadav, V., Chhillar, A. K., Sharma, G. L. & Chandra, R. (2006). Bioorg. Med. Chem. 14, 1819–1826.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChu, J.-C., Shang, Z.-H., Zhou, X.-Q. & Liu, D.-Z. (2006). Acta Cryst. E62, o1042–o1043.  CSD CrossRef IUCr Journals Google Scholar
First citationCohen, M. R., Hinsch, E., Palkoski, Z., Vergona, R., Urbano, S. & Sztokalo, J. (1982). J. Pharmacol. Exp. Ther. 223, 110–119.  CAS PubMed Web of Science Google Scholar
First citationConrado, D. J., Verli, H., Neves, G., Fraga, C. A., Barreiro, E. J., Rates, S. M. & Dalla-Costa, T. (2008). J. Pharm. Pharmacol. 60, 699–707.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDemirci, S., Hayal, T. B., Kıratlı, B., Şişli, H. B., Demirci, S., Şahin, F. & Doğan, A. (2019). Chem. Biol. Drug Des. 94, 1584–1595.  Web of Science CrossRef CAS PubMed Google Scholar
First citationElliott, S. (2011). Drug Test. Anal. 3, 430–438.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908–915.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGupta, S., Pandey, D., Mandalapu, D., Bala, V., Sharma, V., Shukla, M., Yadav, S. K., Singh, N., Jaiswal, S., Maikhuri, J. P., Lal, J., Siddiqi, M. I., Gupta, G. & Sharma, V. L. (2016). MedChemComm, 7, 2111–2121.  CrossRef CAS Google Scholar
First citationHanano, T., Adachi, K., Aoki, Y., Morimoto, H., Naka, Y., Hisadome, M., Fukuda, T. & Sumichika, H. (2000). Bioorg. Med. Chem. Lett. 10, 875–879.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHarish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S. & Glidewell, C. (2020). IUCrData, 5, x201523.  Google Scholar
First citationHarish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S. & Glidewell, C. (2021). Acta Cryst. E77, 5–13.  CSD CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKaya, B., Özkay, Y., Temel, H. E. & Kaplancikli, Z. A. (2016). J. Chem. Article ID 5878410.  Google Scholar
First citationKharb, R., Bansal, K. & Sharma, A. K. (2012). Pharma Chem. 4, 2470–2488.  CAS Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1253–1260.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKumari, S., Mishra, C. B. & Tiwari, M. (2015). Bioorg. Med. Chem. Lett. 25, 1092–1099.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, A.-J., Tao, M.-L., Ma, J., Zhou, X.-Q. & Liu, D.-Z. (2006). Acta Cryst. E62, o158–o159.  CSD CrossRef IUCr Journals Google Scholar
First citationLu, Y.-X. (2007). Acta Cryst. E63, o3611.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNeves, G., Fenner, R., Heckler, A. P., Viana, A. F., Tasso, L., Menegatti, R., Fraga, C. A. M., Barreiro, E. J., Dalla-Costa, T. & Rates, S. M. K. (2003). Braz. J. Med. Biol. Res. 36, 625–629.  Web of Science CrossRef PubMed CAS Google Scholar
First citationParkin, S. R. (2021). Acta Cryst. E77, 452–465.  Web of Science CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2012). TWINABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUpadhayaya, P. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225–2238.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWodtke, R., Steinberg, J., Köckerling, M., Löser, R. & Mamat, C. (2018). RSC Adv. 8, 40921–40933.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, Y., Chao, J., Zhao, S., Xu, P., Wang, H., Guo, Z. & Liu, D. (2014). Spectrochim. Acta Part A. 132, 44–51.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds