research communications
Synthesis and crystal structures of 1-benzoyl-4-(4-nitrophenyl)piperazine and 1-(4-bromobenzoyl)-4-phenylpiperazine at 90 K
aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570 006, India, bDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysore-570 005, India, and cDepartment of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA
*Correspondence e-mail: yathirajan@hotmail.com
Synthesis and crystal structures of 1-benzoyl-4-(4-nitrophenyl)piperazine, C17H17N3O3, (I) and 1-(4-bromobenzoyl)-4-phenylpiperazine, C17H17BrN2O, (II) are described. Compounds I and II crystallize in the orthorhombic and monoclinic crystal systems with space groups Pna21 (Z′ = 2, I) and P21 (Z′ = 1, II), respectively. The crystal of II was a two-component aggregate, treated as a `twin' for data-acquisition purposes. There are no conventional hydrogen bonds in either I or II, but there are weaker C—H⋯O contacts. Each molecule consists of a central piperazine ring in a chair conformation, with either benzoyl and nitrophenyl (I) or 4-bromobenzoyl and phenyl (II) groups attached to different nitrogen atoms of the piperazine. The various atom–atom contact coverages as quantified by Hirshfeld surface analysis fingerprint plots are given.
Keywords: piperazine; crystal structure; absolute structure; aggregate crystal.
1. Chemical context
Piperazines are important pharmacophores that are found in many biologically active compounds across a number of different therapeutic areas (Berkheij et al., 2005; Brockunier et al., 2004; Bogatcheva et al., 2006) such as antifungal (Upadhayaya et al., 2004), anti-bacterial, anti-malarial and anti-psychotic agents (Chaudhary et al., 2006). The pharmacological properties of phenylpiperazines and their derivatives have been described by Cohen et al. (1982), Conrado et al. (2008), Neves et al. (2003), and by Hanano et al. (2000). The design and synthesis of phenylpiperazine derivatives as potent anticancer agents for prostate cancer have been described by Demirci et al. (2019). Many pharmaceutical compounds are derived from 1-phenylpiperazine, viz., oxypertine, trazodone, nefazodone, etc. Valuable insights into recent advances in antimicrobial activity of piperazine derivatives have been provided by Kharb et al. (2012). A review of current pharmacological and toxicological information for piperazine derivatives was conducted by Elliott (2011).
4-Nitrophenylpiperazinium chloride monohydrate has been used as an intermediate in the synthesis of anticancer drugs, transcriptase inhibitors and antifungal reagents, and is also an important reagent for potassium channel openers, which show considerable biomolecular current-voltage rectification characteristics (Lu, 2007). The inclusion behaviours of 4-sulfonatocalix[n]arenes (SCXn) (n = 4, 6, 8) with 1-(4-nitrophenyl)piperazine (NPP) were investigated by UV and fluorescence spectroscopies at different pH values (Zhang et al., 2014). The design, synthesis and biological profiling of aryl piperazine-based scaffolds for the management of androgen-sensitive prostatic disorders has also been reported by Gupta et al. (2016). 4-Nitrophenylpiperazine was the starting material in the synthesis and biological evaluation of novel piperazine containing hydrazone derivatives (Kaya et al., 2016).
In view of the importance of piperazines in general and the use of 4-nitrophenylpiperazine and 1-phenylpiperazine in particular, this paper reports the synthesis and crystal structures of 1-benzoyl-4-(4-nitrophenyl)piperazine, C17H17N3O3, (I) and 1-(4-bromobenzoyl)phenylpiperazine, C17H17BrN2O, (II).
2. Structural commentary
There are no unusual bond distances or angles in either I or II. The of I (see scheme) contains two molecules, suffixed `A' and `B' in Fig. 1. Each consists of a central piperazine ring in a chair conformation, with a benzoyl and nitrophenyl group attached to different nitrogen atoms. The nitro groups are almost coplanar with their attached benzene rings, forming dihedral angles of 4.4 (2) and 3.0 (2)° for molecules A and B, respectively. The phenyl rings are twisted out of planarity with the carbonyl group and its linkage to the piperazine rings, giving N1—C11—C12—C13 torsion angles of −46.8 (3) and 45.4 (3)° for A and B, respectively. The dihedral angles between the phenyl and nitrobenzene rings are 51.52 (6)° in A and 57.23 (7)° in B. Compound II on the other hand has just one molecule in its (Fig. 2). The piperazine ring is also in a chair conformation and the brominated ring is torsioned [N1—C11—C12—C13 = 46.4 (4)°] to a similar degree to that in I, but the dihedral angle between the phenyl and brominated benzene rings is larger, at 86.6 (1)°.
3. Supramolecular features
There are no conventional hydrogen bonds in either I or II, but there are weaker C—H⋯O contacts (Table 1). For I, SHELXL identifies a number of `potential' hydrogen-bonding interactions, but most of these have poor geometry for hydrogen bonds. The shortest donor–acceptor distances occur for the bifurcated pair C6B—H6B⋯O1A and C7B—H7B⋯O1A within the chosen A similar bifurcated pair of contacts C6A—H6A⋯O1Bi and C7A—H7A⋯O1Bi [symmetry code: (i) x, y, z + 1] occur between the A and B molecules in adjacent (along c) asymmetric units. In combination, these interactions lead to double chains that extend parallel to [001] (Fig. 3). In contrast to I, SHELXL identifies no `potential' hydrogen bonds for II. Mercury (Macrae et al., 2020) on the other hand, which has different default parameters for flagging hydrogen bonds, identifies a bifurcated pair, C13—H13⋯O1ii and C14—H14⋯O1ii [symmetry code: (ii) x, y + 1, z] (Table 1). A clearer picture of this interaction is provided by a view of the Hirshfeld surface plotted over dnorm, as calculated by CrystalExplorer (Spackman et al., 2021), which highlights contacts shorter than the van der Waals radius sum as red blobs (Fig. 4). This bifurcated pair of interactions link molecules of II into chains that extend along [010]. The various atom–atom contacts as quantified in Hirshfeld surface analysis fingerprint plots are given in Figs. 5 and 6.
4. Database survey
There are numerous crystal structures related to I and II in the Cambridge Structure Database (CSD v5.42 with updates through June 2022; Groom et al., 2016). A search on the central core, piperazine-1-carbaldehyde gave 834 hits whereas search fragments 4-benzoylpiperazine and 4-phenylpiperazine-1-carbaldehyde gave 132 and 110 hits, respectively. A search on 1-benzoyl-4-phenylpiperazine gave 20 hits, two of which have little in common with I or II. An NMR-based investigation of conformational behaviour in solution by Wodtke et al. (2018) of acyl-functionalized piperazines includes the crystal structures of 1-(4-fluorobenzoyl)-4-(4-nitrophenyl)piperazine (BIQYIM), 1-(4-bromobenzoyl)-4-(4-nitrophenyl)piperazine (BIRHES), and 1-(3-bromobenzoyl)-4-(4-nitrophenyl)piperazine (BIRHIW). Six new 1-aroyl-4-(4-methoxyphenyl)piperazines (VONFOW, VONGAJ, VONGEN, VONGIR, VONGOX, VONGUD) were prepared using coupling reactions between benzoic acids and N-(4-methoxyphenyl)piperazine (Kiran Kumar et al., 2019). Six 1-halobenzoyl-4-(2-methoxyphenyl)piperazines (FALHEJ, FALHIN, FALHOT, FALHUZ, FALJAH, FALJEL) with a variety of disorder, and were described by Harish Chinthal et al. (2021). 1-(3,5-Dinitrobenzoyl)-4-(2-methoxyphenyl)piperazine (LAHBIJ) was published by Harish Chinthal et al. (2020). The remaining two hits are piperazine derivatives with (2-methoxyphenylsulfanyl)benzoyl groups plus 2,3-dichlorophenyl (DEGHAZ: Chu et al., 2006) and 2-methoxyphenyl (SAYYEX: Li et al., 2006).
5. Synthesis and crystallization
Synthetic routes for compounds similar to I and II have already been reported by two separate research groups (Kumari et al., 2015; Wodtke et al., 2018). The present syntheses are totally different from those earlier reports. 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (109 mg, 0.7 mmol), 1-hydroxybenzotriazole (68 mg, 0.5 mmol) and triethylamine (0.5 ml, 1.5 mmol) were added to a solution of benzoic acid (0.5 mmol) or 4-bromobenzoic acid (0.5 mmol) in N,N-dimethylformamide (5 ml) and the resulting mixture was stirred for 20 min at 273 K. A solution of 1-(4-nitrophenyl)piperazine (104 mg, 0.5 mmol) or 1-phenylpiperazine (81 mg, 0.5 mmol) in N,N-dimethylformamide (5 ml) was then added and stirring was continued overnight at ambient temperature. Reaction schemes are summarized in Fig. 7. When the reactions were confirmed to be complete using each mixture was quenched with water (10 ml) and extracted with ethyl acetate (20 ml). Each organic fraction was separated and washed successively with an aqueous hydrochloric acid solution (1 mol dm−3), a of sodium hydrogencarbonate, and lastly with brine. The organic phases were dried over anhydrous sodium sulfate and the solvent was removed under reduced pressure. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in ethyl acetate (I: yield 81%, m.p. 428–430 K; II: yield 75%, m.p. 394–396 K).
6. Data collection and structure refinement
For I, an orange, irregular block-shaped crystal was mounted using polyisobutene oil on the tip of a fine glass fibre in a copper mounting pin. Cu Kα radiation was chosen to facilitate setting the correct which was definitively established by variants of Flack's parameter (Flack & Bernardinelli, 1999; Hooft et al., 2008; Parsons et al., 2013). For II, the available sample consisted of colourless plates, none of which were single crystals. A suitable specimen was mounted in the same way as for I. Diffraction data collected at 90 K showed two slightly mis-aligned, but sharp and distinct reciprocal lattices. These were not related by any rational but by a seemingly arbitrary ∼4° rotation, presumably due to mis-stacking of aggregated plates. Nevertheless, for data acquisition and processing, facilities for handling by non-merohedry were used. For a brief discussion of true twins vs aggregates, see Parkin (2021). The was again determined unambiguously via the and related methods. Crystal data, data collection and are summarized in Table 2. For both structures, hydrogen atoms were included using riding models, with constrained distances set to 0.95 Å (Csp2H) and 0.99 Å (R2CH2). Uiso(H) parameters were set to 1.2Ueq of the attached atom.
|
Supporting information
https://doi.org/10.1107/S2056989022009008/tx2058sup1.cif
contains datablocks I, II, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022009008/tx2058Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989022009008/tx2058IIsup3.hkl
For both structures, data collection: APEX3 (Bruker, 2016); cell
APEX3 (Bruker, 2016); data reduction: APEX3 (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).C17H17N3O3 | Dx = 1.391 Mg m−3 |
Mr = 311.33 | Cu Kα radiation, λ = 1.54178 Å |
Orthorhombic, Pna21 | Cell parameters from 9920 reflections |
a = 18.7779 (4) Å | θ = 4.4–74.3° |
b = 10.0699 (2) Å | µ = 0.80 mm−1 |
c = 15.7288 (3) Å | T = 90 K |
V = 2974.18 (10) Å3 | Cut block, orange |
Z = 8 | 0.24 × 0.18 × 0.12 mm |
F(000) = 1312 |
Bruker D8 Venture dual source diffractometer | 5684 independent reflections |
Radiation source: microsource | 5575 reflections with I > 2σ(I) |
Detector resolution: 7.41 pixels mm-1 | Rint = 0.027 |
φ and ω scans | θmax = 74.5°, θmin = 4.7° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −23→23 |
Tmin = 0.854, Tmax = 0.942 | k = −12→11 |
24139 measured reflections | l = −17→19 |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.028 | w = 1/[σ2(Fo2) + (0.0371P)2 + 0.6857P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.075 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.18 e Å−3 |
5684 reflections | Δρmin = −0.15 e Å−3 |
416 parameters | Extinction correction: SHELXL2019/2 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.0022 (4) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack x determined using 2442 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.01 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement progress was checked using Platon (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF. |
x | y | z | Uiso*/Ueq | ||
O1A | 0.49268 (7) | 0.25685 (14) | 0.56553 (9) | 0.0244 (3) | |
O2A | 0.68624 (9) | 0.60163 (17) | 1.17477 (10) | 0.0361 (4) | |
O3A | 0.76060 (9) | 0.73323 (17) | 1.11319 (11) | 0.0414 (4) | |
N1A | 0.55858 (8) | 0.41895 (16) | 0.62597 (10) | 0.0210 (3) | |
N2A | 0.61000 (8) | 0.49591 (17) | 0.78914 (10) | 0.0195 (3) | |
N3A | 0.71215 (9) | 0.65057 (17) | 1.11034 (11) | 0.0261 (4) | |
C1A | 0.62179 (10) | 0.5034 (2) | 0.63281 (12) | 0.0214 (4) | |
H1AA | 0.607617 | 0.597868 | 0.628176 | 0.026* | |
H1AB | 0.654911 | 0.483266 | 0.585577 | 0.026* | |
C2A | 0.65919 (10) | 0.48038 (19) | 0.71744 (12) | 0.0207 (4) | |
H2AA | 0.679576 | 0.389723 | 0.718316 | 0.025* | |
H2AB | 0.698868 | 0.544445 | 0.723448 | 0.025* | |
C3A | 0.55049 (10) | 0.4032 (2) | 0.78203 (12) | 0.0210 (4) | |
H3AA | 0.517626 | 0.415436 | 0.830622 | 0.025* | |
H3AB | 0.568435 | 0.310825 | 0.783299 | 0.025* | |
C4A | 0.51124 (10) | 0.4282 (2) | 0.69932 (12) | 0.0226 (4) | |
H4AA | 0.472393 | 0.362465 | 0.693253 | 0.027* | |
H4AB | 0.489499 | 0.517774 | 0.700923 | 0.027* | |
C5A | 0.6365 (1) | 0.52962 (18) | 0.86888 (12) | 0.0185 (4) | |
C6A | 0.61095 (10) | 0.4696 (2) | 0.94373 (13) | 0.0212 (4) | |
H6A | 0.576303 | 0.401156 | 0.939965 | 0.025* | |
C7A | 0.63554 (10) | 0.5089 (2) | 1.02259 (13) | 0.0224 (4) | |
H7A | 0.618067 | 0.467679 | 1.072742 | 0.027* | |
C8A | 0.68595 (10) | 0.6092 (2) | 1.02784 (13) | 0.0210 (4) | |
C9A | 0.71253 (10) | 0.67057 (19) | 0.95518 (13) | 0.0204 (4) | |
H9A | 0.746997 | 0.739266 | 0.959720 | 0.025* | |
C10A | 0.68827 (10) | 0.63056 (19) | 0.87663 (12) | 0.0196 (4) | |
H10A | 0.706667 | 0.671542 | 0.826856 | 0.024* | |
C11A | 0.54106 (10) | 0.33847 (18) | 0.55996 (12) | 0.0193 (4) | |
C12A | 0.58053 (10) | 0.35251 (18) | 0.47737 (12) | 0.0192 (4) | |
C13A | 0.59294 (11) | 0.47549 (19) | 0.43979 (13) | 0.0217 (4) | |
H13A | 0.580037 | 0.554491 | 0.468986 | 0.026* | |
C14A | 0.62417 (11) | 0.4834 (2) | 0.35964 (13) | 0.0248 (4) | |
H14A | 0.632511 | 0.567619 | 0.334269 | 0.030* | |
C15A | 0.64312 (11) | 0.3679 (2) | 0.31679 (13) | 0.0245 (4) | |
H15A | 0.664928 | 0.373155 | 0.262397 | 0.029* | |
C16A | 0.6302 (1) | 0.24515 (19) | 0.35343 (12) | 0.0235 (4) | |
H16A | 0.643110 | 0.166306 | 0.324057 | 0.028* | |
C17A | 0.59843 (10) | 0.23706 (19) | 0.43299 (12) | 0.0216 (4) | |
H17A | 0.588821 | 0.152610 | 0.457348 | 0.026* | |
O1B | 0.51435 (8) | 0.27356 (15) | 0.05162 (9) | 0.0293 (3) | |
O2B | 0.33405 (8) | −0.06911 (15) | 0.67739 (9) | 0.0282 (3) | |
O3B | 0.26109 (8) | −0.20433 (15) | 0.61629 (10) | 0.0329 (4) | |
N1B | 0.45677 (9) | 0.11868 (16) | 0.12905 (11) | 0.0228 (4) | |
N2B | 0.40172 (9) | 0.04918 (17) | 0.29159 (10) | 0.0217 (3) | |
N3B | 0.30667 (8) | −0.11612 (16) | 0.61295 (11) | 0.0224 (3) | |
C1B | 0.41561 (12) | −0.0033 (2) | 0.14059 (13) | 0.0253 (4) | |
H1BA | 0.448370 | −0.078227 | 0.151953 | 0.030* | |
H1BB | 0.388941 | −0.023286 | 0.087827 | 0.030* | |
C2B | 0.36400 (11) | 0.0112 (2) | 0.21386 (13) | 0.0234 (4) | |
H2BA | 0.328046 | 0.079722 | 0.199825 | 0.028* | |
H2BB | 0.338820 | −0.073922 | 0.223114 | 0.028* | |
C3B | 0.44607 (11) | 0.1676 (2) | 0.28017 (13) | 0.0233 (4) | |
H3BA | 0.473969 | 0.183527 | 0.332597 | 0.028* | |
H3BB | 0.415063 | 0.245682 | 0.270653 | 0.028* | |
C4B | 0.49644 (10) | 0.1524 (2) | 0.20567 (13) | 0.0250 (4) | |
H4BA | 0.522715 | 0.236492 | 0.196672 | 0.030* | |
H4BB | 0.531553 | 0.081701 | 0.218093 | 0.030* | |
C5B | 0.37409 (10) | 0.01813 (18) | 0.37065 (13) | 0.0188 (4) | |
C6B | 0.40552 (10) | 0.06711 (19) | 0.44607 (13) | 0.0217 (4) | |
H6B | 0.442914 | 0.130351 | 0.442141 | 0.026* | |
C7B | 0.38332 (10) | 0.02550 (19) | 0.52486 (13) | 0.0199 (4) | |
H7B | 0.405633 | 0.058671 | 0.574731 | 0.024* | |
C8B | 0.32797 (10) | −0.0655 (2) | 0.53103 (13) | 0.0215 (4) | |
C9B | 0.29260 (11) | −0.1085 (2) | 0.45864 (14) | 0.0291 (5) | |
H9B | 0.252897 | −0.166422 | 0.463589 | 0.035* | |
C10B | 0.31504 (11) | −0.0671 (2) | 0.37969 (13) | 0.0286 (5) | |
H10B | 0.290331 | −0.096502 | 0.330455 | 0.034* | |
C11B | 0.46938 (10) | 0.1852 (2) | 0.05581 (13) | 0.0220 (4) | |
C12B | 0.42532 (10) | 0.15513 (18) | −0.02141 (13) | 0.0221 (4) | |
C13B | 0.35132 (11) | 0.14223 (19) | −0.01901 (14) | 0.0256 (4) | |
H13B | 0.327087 | 0.142772 | 0.034009 | 0.031* | |
C14B | 0.31314 (12) | 0.1286 (2) | −0.09407 (15) | 0.0306 (5) | |
H14B | 0.262847 | 0.118875 | −0.091983 | 0.037* | |
C15B | 0.34732 (13) | 0.1291 (2) | −0.17155 (15) | 0.0322 (5) | |
H15B | 0.320685 | 0.120065 | −0.222572 | 0.039* | |
C16B | 0.42102 (13) | 0.1427 (2) | −0.17482 (14) | 0.0299 (5) | |
H16B | 0.444836 | 0.143404 | −0.228106 | 0.036* | |
C17B | 0.45955 (11) | 0.15539 (19) | −0.10018 (14) | 0.0256 (4) | |
H17B | 0.509876 | 0.164349 | −0.102622 | 0.031* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1A | 0.0266 (7) | 0.0212 (7) | 0.0255 (7) | −0.0069 (5) | −0.0025 (6) | −0.0020 (6) |
O2A | 0.0437 (9) | 0.0473 (10) | 0.0173 (7) | −0.0087 (7) | −0.0004 (7) | −0.0012 (7) |
O3A | 0.0493 (9) | 0.0485 (10) | 0.0263 (8) | −0.0226 (8) | −0.0077 (8) | −0.0045 (8) |
N1A | 0.0202 (8) | 0.0234 (8) | 0.0195 (8) | −0.0048 (6) | 0.0003 (6) | −0.0035 (7) |
N2A | 0.0180 (7) | 0.0237 (9) | 0.0169 (8) | −0.0036 (6) | 0.0013 (6) | −0.0035 (6) |
N3A | 0.0289 (8) | 0.0304 (9) | 0.0189 (8) | −0.0013 (7) | −0.0027 (7) | −0.0021 (7) |
C1A | 0.0228 (9) | 0.0241 (10) | 0.0173 (10) | −0.0060 (7) | 0.0006 (7) | −0.0028 (7) |
C2A | 0.0190 (9) | 0.0244 (9) | 0.0188 (10) | −0.0021 (7) | 0.0013 (7) | −0.0036 (8) |
C3A | 0.0188 (8) | 0.0249 (10) | 0.0194 (9) | −0.0062 (7) | 0.0018 (7) | −0.0022 (8) |
C4A | 0.0193 (9) | 0.0273 (10) | 0.0213 (10) | −0.0036 (7) | 0.0013 (8) | −0.0043 (8) |
C5A | 0.0170 (8) | 0.0199 (9) | 0.0185 (9) | 0.0025 (7) | 0.0000 (7) | −0.0021 (7) |
C6A | 0.0198 (9) | 0.0218 (9) | 0.0219 (10) | −0.0022 (7) | 0.0009 (8) | −0.0001 (8) |
C7A | 0.0235 (9) | 0.0255 (10) | 0.0183 (9) | 0.0000 (8) | 0.0033 (8) | 0.0008 (8) |
C8A | 0.0212 (9) | 0.0243 (10) | 0.0175 (9) | 0.0027 (7) | −0.0005 (7) | −0.0035 (8) |
C9A | 0.0181 (8) | 0.0200 (9) | 0.0232 (10) | −0.0010 (7) | −0.0013 (8) | −0.0019 (8) |
C10A | 0.0194 (9) | 0.0213 (9) | 0.0182 (9) | 0.0004 (7) | 0.0018 (7) | 0.0008 (7) |
C11A | 0.0215 (9) | 0.0170 (9) | 0.0193 (9) | 0.0016 (7) | −0.0053 (7) | 0.0004 (7) |
C12A | 0.0206 (9) | 0.0187 (9) | 0.0183 (9) | 0.0000 (7) | −0.0064 (7) | −0.0027 (7) |
C13A | 0.0262 (9) | 0.0198 (9) | 0.0192 (9) | 0.0008 (7) | −0.0034 (8) | −0.0007 (7) |
C14A | 0.027 (1) | 0.0231 (10) | 0.0243 (11) | −0.0019 (8) | −0.0061 (8) | 0.0034 (8) |
C15A | 0.0224 (10) | 0.0327 (11) | 0.0185 (10) | 0.0009 (8) | −0.0033 (7) | −0.0007 (8) |
C16A | 0.0233 (9) | 0.0255 (10) | 0.0218 (11) | 0.0043 (8) | −0.0047 (8) | −0.0055 (8) |
C17A | 0.0244 (9) | 0.0188 (9) | 0.0215 (10) | 0.0008 (7) | −0.0058 (7) | −0.0001 (7) |
O1B | 0.0278 (7) | 0.0310 (8) | 0.0290 (8) | −0.0081 (6) | 0.0022 (6) | 0.0076 (6) |
O2B | 0.0288 (7) | 0.0390 (8) | 0.0169 (7) | −0.0015 (6) | −0.0034 (6) | −0.0029 (6) |
O3B | 0.0366 (8) | 0.0368 (8) | 0.0255 (8) | −0.0143 (7) | 0.0050 (7) | −0.0004 (7) |
N1B | 0.0261 (8) | 0.0203 (8) | 0.0221 (9) | −0.0031 (7) | 0.0031 (6) | 0.0008 (7) |
N2B | 0.0228 (8) | 0.0239 (8) | 0.0183 (8) | −0.0061 (7) | −0.0002 (6) | −0.0008 (6) |
N3B | 0.0220 (7) | 0.0263 (8) | 0.0189 (8) | 0.0012 (6) | 0.0009 (7) | −0.0011 (7) |
C1B | 0.0353 (11) | 0.0183 (9) | 0.0224 (10) | −0.0035 (8) | 0.0039 (8) | −0.0009 (7) |
C2B | 0.0285 (10) | 0.024 (1) | 0.0176 (10) | −0.0089 (8) | 0.0001 (8) | −0.0007 (8) |
C3B | 0.0253 (9) | 0.0245 (10) | 0.0203 (10) | −0.0070 (8) | 0.0000 (8) | −0.0004 (8) |
C4B | 0.0220 (9) | 0.0263 (10) | 0.0266 (11) | −0.0026 (7) | −0.0001 (8) | 0.0035 (8) |
C5B | 0.0186 (9) | 0.0188 (9) | 0.0189 (9) | 0.0028 (7) | −0.0006 (7) | −0.0011 (7) |
C6B | 0.0200 (8) | 0.0214 (9) | 0.0236 (9) | −0.0025 (7) | −0.0005 (8) | −0.0024 (8) |
C7B | 0.0199 (9) | 0.0204 (10) | 0.0194 (9) | 0.0003 (7) | −0.0035 (7) | −0.0041 (7) |
C8B | 0.0209 (9) | 0.0248 (10) | 0.0187 (9) | 0.0004 (8) | 0.0019 (7) | −0.0014 (8) |
C9B | 0.0268 (10) | 0.0377 (12) | 0.0227 (10) | −0.0135 (9) | 0.0010 (9) | −0.0025 (9) |
C10B | 0.0263 (10) | 0.0397 (12) | 0.0197 (10) | −0.0116 (9) | −0.0011 (8) | −0.0035 (9) |
C11B | 0.0206 (9) | 0.0196 (9) | 0.0257 (10) | 0.0019 (7) | 0.0052 (8) | 0.0007 (8) |
C12B | 0.0269 (10) | 0.0136 (9) | 0.0258 (10) | 0.0013 (7) | 0.0041 (8) | 0.0028 (7) |
C13B | 0.0264 (10) | 0.0194 (10) | 0.0311 (12) | 0.0011 (8) | 0.0035 (8) | −0.0021 (8) |
C14B | 0.0300 (11) | 0.022 (1) | 0.0398 (12) | −0.0012 (8) | −0.0013 (10) | −0.0051 (9) |
C15B | 0.0452 (13) | 0.0194 (10) | 0.0319 (12) | 0.0013 (9) | −0.0079 (10) | −0.0056 (9) |
C16B | 0.0457 (13) | 0.0185 (10) | 0.0256 (11) | 0.0027 (8) | 0.0056 (9) | −0.0001 (8) |
C17B | 0.0299 (10) | 0.0180 (9) | 0.0289 (11) | 0.0043 (8) | 0.0065 (9) | 0.0025 (8) |
O1A—C11A | 1.228 (2) | O1B—C11B | 1.228 (2) |
O2A—N3A | 1.228 (2) | O2B—N3B | 1.231 (2) |
O3A—N3A | 1.234 (2) | O3B—N3B | 1.235 (2) |
N1A—C11A | 1.358 (2) | N1B—C11B | 1.354 (3) |
N1A—C4A | 1.459 (2) | N1B—C4B | 1.457 (3) |
N1A—C1A | 1.464 (2) | N1B—C1B | 1.462 (2) |
N2A—C5A | 1.391 (2) | N2B—C5B | 1.383 (3) |
N2A—C3A | 1.460 (2) | N2B—C2B | 1.464 (2) |
N2A—C2A | 1.466 (2) | N2B—C3B | 1.465 (2) |
N3A—C8A | 1.449 (3) | N3B—C8B | 1.442 (3) |
C1A—C2A | 1.523 (3) | C1B—C2B | 1.513 (3) |
C1A—H1AA | 0.9900 | C1B—H1BA | 0.9900 |
C1A—H1AB | 0.9900 | C1B—H1BB | 0.9900 |
C2A—H2AA | 0.9900 | C2B—H2BA | 0.9900 |
C2A—H2AB | 0.9900 | C2B—H2BB | 0.9900 |
C3A—C4A | 1.516 (3) | C3B—C4B | 1.514 (3) |
C3A—H3AA | 0.9900 | C3B—H3BA | 0.9900 |
C3A—H3AB | 0.9900 | C3B—H3BB | 0.9900 |
C4A—H4AA | 0.9900 | C4B—H4BA | 0.9900 |
C4A—H4AB | 0.9900 | C4B—H4BB | 0.9900 |
C5A—C6A | 1.407 (3) | C5B—C10B | 1.409 (3) |
C5A—C10A | 1.412 (3) | C5B—C6B | 1.414 (3) |
C6A—C7A | 1.381 (3) | C6B—C7B | 1.373 (3) |
C6A—H6A | 0.9500 | C6B—H6B | 0.9500 |
C7A—C8A | 1.386 (3) | C7B—C8B | 1.389 (3) |
C7A—H7A | 0.9500 | C7B—H7B | 0.9500 |
C8A—C9A | 1.392 (3) | C8B—C9B | 1.388 (3) |
C9A—C10A | 1.377 (3) | C9B—C10B | 1.376 (3) |
C9A—H9A | 0.9500 | C9B—H9B | 0.9500 |
C10A—H10A | 0.9500 | C10B—H10B | 0.9500 |
C11A—C12A | 1.502 (3) | C11B—C12B | 1.500 (3) |
C12A—C13A | 1.392 (3) | C12B—C17B | 1.396 (3) |
C12A—C17A | 1.397 (3) | C12B—C13B | 1.396 (3) |
C13A—C14A | 1.393 (3) | C13B—C14B | 1.388 (3) |
C13A—H13A | 0.9500 | C13B—H13B | 0.9500 |
C14A—C15A | 1.391 (3) | C14B—C15B | 1.377 (3) |
C14A—H14A | 0.9500 | C14B—H14B | 0.9500 |
C15A—C16A | 1.385 (3) | C15B—C16B | 1.392 (4) |
C15A—H15A | 0.9500 | C15B—H15B | 0.9500 |
C16A—C17A | 1.389 (3) | C16B—C17B | 1.385 (3) |
C16A—H16A | 0.9500 | C16B—H16B | 0.9500 |
C17A—H17A | 0.9500 | C17B—H17B | 0.9500 |
C11A—N1A—C4A | 119.69 (15) | C11B—N1B—C4B | 119.94 (16) |
C11A—N1A—C1A | 126.84 (16) | C11B—N1B—C1B | 127.86 (17) |
C4A—N1A—C1A | 113.47 (15) | C4B—N1B—C1B | 111.31 (16) |
C5A—N2A—C3A | 119.91 (16) | C5B—N2B—C2B | 120.68 (15) |
C5A—N2A—C2A | 119.61 (16) | C5B—N2B—C3B | 120.49 (16) |
C3A—N2A—C2A | 110.80 (15) | C2B—N2B—C3B | 112.64 (16) |
O2A—N3A—O3A | 122.22 (18) | O2B—N3B—O3B | 122.08 (17) |
O2A—N3A—C8A | 119.29 (16) | O2B—N3B—C8B | 118.93 (15) |
O3A—N3A—C8A | 118.49 (17) | O3B—N3B—C8B | 118.99 (17) |
N1A—C1A—C2A | 110.46 (16) | N1B—C1B—C2B | 110.61 (16) |
N1A—C1A—H1AA | 109.6 | N1B—C1B—H1BA | 109.5 |
C2A—C1A—H1AA | 109.6 | C2B—C1B—H1BA | 109.5 |
N1A—C1A—H1AB | 109.6 | N1B—C1B—H1BB | 109.5 |
C2A—C1A—H1AB | 109.6 | C2B—C1B—H1BB | 109.5 |
H1AA—C1A—H1AB | 108.1 | H1BA—C1B—H1BB | 108.1 |
N2A—C2A—C1A | 111.44 (16) | N2B—C2B—C1B | 110.58 (16) |
N2A—C2A—H2AA | 109.3 | N2B—C2B—H2BA | 109.5 |
C1A—C2A—H2AA | 109.3 | C1B—C2B—H2BA | 109.5 |
N2A—C2A—H2AB | 109.3 | N2B—C2B—H2BB | 109.5 |
C1A—C2A—H2AB | 109.3 | C1B—C2B—H2BB | 109.5 |
H2AA—C2A—H2AB | 108.0 | H2BA—C2B—H2BB | 108.1 |
N2A—C3A—C4A | 109.37 (16) | N2B—C3B—C4B | 111.59 (17) |
N2A—C3A—H3AA | 109.8 | N2B—C3B—H3BA | 109.3 |
C4A—C3A—H3AA | 109.8 | C4B—C3B—H3BA | 109.3 |
N2A—C3A—H3AB | 109.8 | N2B—C3B—H3BB | 109.3 |
C4A—C3A—H3AB | 109.8 | C4B—C3B—H3BB | 109.3 |
H3AA—C3A—H3AB | 108.2 | H3BA—C3B—H3BB | 108.0 |
N1A—C4A—C3A | 111.81 (15) | N1B—C4B—C3B | 110.14 (16) |
N1A—C4A—H4AA | 109.3 | N1B—C4B—H4BA | 109.6 |
C3A—C4A—H4AA | 109.3 | C3B—C4B—H4BA | 109.6 |
N1A—C4A—H4AB | 109.3 | N1B—C4B—H4BB | 109.6 |
C3A—C4A—H4AB | 109.3 | C3B—C4B—H4BB | 109.6 |
H4AA—C4A—H4AB | 107.9 | H4BA—C4B—H4BB | 108.1 |
N2A—C5A—C6A | 121.83 (17) | N2B—C5B—C10B | 121.57 (18) |
N2A—C5A—C10A | 119.99 (17) | N2B—C5B—C6B | 121.25 (16) |
C6A—C5A—C10A | 118.13 (17) | C10B—C5B—C6B | 117.15 (18) |
C7A—C6A—C5A | 120.95 (17) | C7B—C6B—C5B | 121.61 (17) |
C7A—C6A—H6A | 119.5 | C7B—C6B—H6B | 119.2 |
C5A—C6A—H6A | 119.5 | C5B—C6B—H6B | 119.2 |
C6A—C7A—C8A | 119.36 (19) | C6B—C7B—C8B | 119.45 (18) |
C6A—C7A—H7A | 120.3 | C6B—C7B—H7B | 120.3 |
C8A—C7A—H7A | 120.3 | C8B—C7B—H7B | 120.3 |
C7A—C8A—C9A | 121.29 (19) | C9B—C8B—C7B | 120.44 (19) |
C7A—C8A—N3A | 119.65 (18) | C9B—C8B—N3B | 119.34 (17) |
C9A—C8A—N3A | 119.06 (17) | C7B—C8B—N3B | 120.22 (17) |
C10A—C9A—C8A | 119.21 (17) | C10B—C9B—C8B | 119.97 (18) |
C10A—C9A—H9A | 120.4 | C10B—C9B—H9B | 120.0 |
C8A—C9A—H9A | 120.4 | C8B—C9B—H9B | 120.0 |
C9A—C10A—C5A | 121.06 (18) | C9B—C10B—C5B | 121.08 (19) |
C9A—C10A—H10A | 119.5 | C9B—C10B—H10B | 119.5 |
C5A—C10A—H10A | 119.5 | C5B—C10B—H10B | 119.5 |
O1A—C11A—N1A | 121.61 (18) | O1B—C11B—N1B | 121.63 (19) |
O1A—C11A—C12A | 119.32 (17) | O1B—C11B—C12B | 118.80 (18) |
N1A—C11A—C12A | 119.05 (16) | N1B—C11B—C12B | 119.51 (17) |
C13A—C12A—C17A | 119.19 (18) | C17B—C12B—C13B | 118.9 (2) |
C13A—C12A—C11A | 122.26 (17) | C17B—C12B—C11B | 117.66 (17) |
C17A—C12A—C11A | 118.19 (16) | C13B—C12B—C11B | 123.07 (18) |
C12A—C13A—C14A | 120.40 (18) | C14B—C13B—C12B | 120.0 (2) |
C12A—C13A—H13A | 119.8 | C14B—C13B—H13B | 120.0 |
C14A—C13A—H13A | 119.8 | C12B—C13B—H13B | 120.0 |
C15A—C14A—C13A | 119.89 (19) | C15B—C14B—C13B | 120.76 (19) |
C15A—C14A—H14A | 120.1 | C15B—C14B—H14B | 119.6 |
C13A—C14A—H14A | 120.1 | C13B—C14B—H14B | 119.6 |
C16A—C15A—C14A | 120.00 (18) | C14B—C15B—C16B | 119.8 (2) |
C16A—C15A—H15A | 120.0 | C14B—C15B—H15B | 120.1 |
C14A—C15A—H15A | 120.0 | C16B—C15B—H15B | 120.1 |
C15A—C16A—C17A | 120.16 (18) | C17B—C16B—C15B | 119.8 (2) |
C15A—C16A—H16A | 119.9 | C17B—C16B—H16B | 120.1 |
C17A—C16A—H16A | 119.9 | C15B—C16B—H16B | 120.1 |
C16A—C17A—C12A | 120.32 (18) | C16B—C17B—C12B | 120.77 (19) |
C16A—C17A—H17A | 119.8 | C16B—C17B—H17B | 119.6 |
C12A—C17A—H17A | 119.8 | C12B—C17B—H17B | 119.6 |
C11A—N1A—C1A—C2A | −129.76 (19) | C11B—N1B—C1B—C2B | −132.2 (2) |
C4A—N1A—C1A—C2A | 51.1 (2) | C4B—N1B—C1B—C2B | 58.7 (2) |
C5A—N2A—C2A—C1A | −155.27 (17) | C5B—N2B—C2B—C1B | −154.05 (17) |
C3A—N2A—C2A—C1A | 58.7 (2) | C3B—N2B—C2B—C1B | 53.5 (2) |
N1A—C1A—C2A—N2A | −53.4 (2) | N1B—C1B—C2B—N2B | −55.6 (2) |
C5A—N2A—C3A—C4A | 155.04 (17) | C5B—N2B—C3B—C4B | 154.12 (18) |
C2A—N2A—C3A—C4A | −59.0 (2) | C2B—N2B—C3B—C4B | −53.3 (2) |
C11A—N1A—C4A—C3A | 127.48 (18) | C11B—N1B—C4B—C3B | 132.20 (19) |
C1A—N1A—C4A—C3A | −53.3 (2) | C1B—N1B—C4B—C3B | −57.7 (2) |
N2A—C3A—C4A—N1A | 56.2 (2) | N2B—C3B—C4B—N1B | 54.6 (2) |
C3A—N2A—C5A—C6A | 4.6 (3) | C2B—N2B—C5B—C10B | 9.5 (3) |
C2A—N2A—C5A—C6A | −138.34 (19) | C3B—N2B—C5B—C10B | 159.88 (19) |
C3A—N2A—C5A—C10A | −172.59 (16) | C2B—N2B—C5B—C6B | −172.66 (17) |
C2A—N2A—C5A—C10A | 44.4 (3) | C3B—N2B—C5B—C6B | −22.3 (3) |
N2A—C5A—C6A—C7A | −176.91 (18) | N2B—C5B—C6B—C7B | −172.84 (18) |
C10A—C5A—C6A—C7A | 0.4 (3) | C10B—C5B—C6B—C7B | 5.0 (3) |
C5A—C6A—C7A—C8A | 0.2 (3) | C5B—C6B—C7B—C8B | −0.9 (3) |
C6A—C7A—C8A—C9A | −0.3 (3) | C6B—C7B—C8B—C9B | −3.6 (3) |
C6A—C7A—C8A—N3A | −179.79 (17) | C6B—C7B—C8B—N3B | 176.42 (17) |
O2A—N3A—C8A—C7A | −4.2 (3) | O2B—N3B—C8B—C9B | −173.79 (18) |
O3A—N3A—C8A—C7A | 174.95 (19) | O3B—N3B—C8B—C9B | 5.5 (3) |
O2A—N3A—C8A—C9A | 176.25 (18) | O2B—N3B—C8B—C7B | 6.2 (3) |
O3A—N3A—C8A—C9A | −4.6 (3) | O3B—N3B—C8B—C7B | −174.52 (18) |
C7A—C8A—C9A—C10A | −0.1 (3) | C7B—C8B—C9B—C10B | 3.9 (3) |
N3A—C8A—C9A—C10A | 179.36 (17) | N3B—C8B—C9B—C10B | −176.2 (2) |
C8A—C9A—C10A—C5A | 0.7 (3) | C8B—C9B—C10B—C5B | 0.4 (3) |
N2A—C5A—C10A—C9A | 176.52 (17) | N2B—C5B—C10B—C9B | 173.1 (2) |
C6A—C5A—C10A—C9A | −0.8 (3) | C6B—C5B—C10B—C9B | −4.8 (3) |
C4A—N1A—C11A—O1A | −12.0 (3) | C4B—N1B—C11B—O1B | 0.7 (3) |
C1A—N1A—C11A—O1A | 168.91 (18) | C1B—N1B—C11B—O1B | −167.5 (2) |
C4A—N1A—C11A—C12A | 166.20 (16) | C4B—N1B—C11B—C12B | −176.48 (16) |
C1A—N1A—C11A—C12A | −12.9 (3) | C1B—N1B—C11B—C12B | 15.3 (3) |
O1A—C11A—C12A—C13A | 131.5 (2) | O1B—C11B—C12B—C17B | 40.6 (3) |
N1A—C11A—C12A—C13A | −46.8 (3) | N1B—C11B—C12B—C17B | −142.11 (18) |
O1A—C11A—C12A—C17A | −41.6 (2) | O1B—C11B—C12B—C13B | −131.9 (2) |
N1A—C11A—C12A—C17A | 140.11 (18) | N1B—C11B—C12B—C13B | 45.4 (3) |
C17A—C12A—C13A—C14A | −1.3 (3) | C17B—C12B—C13B—C14B | 0.6 (3) |
C11A—C12A—C13A—C14A | −174.32 (17) | C11B—C12B—C13B—C14B | 173.05 (18) |
C12A—C13A—C14A—C15A | 0.0 (3) | C12B—C13B—C14B—C15B | −0.7 (3) |
C13A—C14A—C15A—C16A | 0.7 (3) | C13B—C14B—C15B—C16B | 0.3 (3) |
C14A—C15A—C16A—C17A | −0.1 (3) | C14B—C15B—C16B—C17B | 0.2 (3) |
C15A—C16A—C17A—C12A | −1.2 (3) | C15B—C16B—C17B—C12B | −0.3 (3) |
C13A—C12A—C17A—C16A | 1.9 (3) | C13B—C12B—C17B—C16B | −0.2 (3) |
C11A—C12A—C17A—C16A | 175.23 (16) | C11B—C12B—C17B—C16B | −172.98 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
C6B—H6B···O1A | 0.95 | 2.50 | 3.140 (2) | 125 |
C7B—H7B···O1A | 0.95 | 2.58 | 3.171 (2) | 120 |
C6A—H6A···O1Bi | 0.95 | 2.47 | 3.173 (2) | 131 |
C7A—H7A···O1Bi | 0.95 | 2.78 | 3.317 (2) | 117 |
Symmetry code: (i) x, y, z+1. |
C17H17BrN2O | F(000) = 352 |
Mr = 345.23 | Dx = 1.605 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.5162 (3) Å | Cell parameters from 9856 reflections |
b = 6.1125 (2) Å | θ = 2.6–27.5° |
c = 15.7249 (5) Å | µ = 2.88 mm−1 |
β = 98.625 (1)° | T = 90 K |
V = 714.28 (4) Å3 | Slab cut from lath, colourless |
Z = 2 | 0.35 × 0.20 × 0.06 mm |
Bruker D8 Venture dual source diffractometer | 6918 independent reflections |
Radiation source: microsource | 6410 reflections with I > 2σ(I) |
Detector resolution: 7.41 pixels mm-1 | Rint = 0.065 |
φ and ω scans | θmax = 27.5°, θmin = 2.6° |
Absorption correction: multi-scan (TWINABS; Sheldrick, 2012) | h = −9→9 |
Tmin = 0.568, Tmax = 0.806 | k = −7→7 |
6918 measured reflections | l = −20→20 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | H-atom parameters constrained |
wR(F2) = 0.049 | w = 1/[σ2(Fo2) + (0.0158P)2 + 0.0999P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
6918 reflections | Δρmax = 0.29 e Å−3 |
191 parameters | Δρmin = −0.22 e Å−3 |
1 restraint | Absolute structure: Flack x determined using 1306 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.012 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement progress was checked using Platon (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF. Refined as a 2-component aggregate. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.09055 (3) | 0.11286 (6) | 0.95039 (2) | 0.01878 (8) | |
O1 | 0.6730 (3) | 0.8844 (4) | 0.83992 (15) | 0.0238 (5) | |
N1 | 0.7763 (3) | 0.6022 (7) | 0.76896 (13) | 0.0138 (4) | |
N2 | 0.8022 (3) | 0.5773 (4) | 0.58908 (14) | 0.0128 (6) | |
C1 | 0.7544 (4) | 0.3913 (5) | 0.72408 (19) | 0.0170 (6) | |
H1A | 0.666366 | 0.300535 | 0.749181 | 0.020* | |
H1B | 0.870892 | 0.312654 | 0.731847 | 0.020* | |
C2 | 0.6896 (4) | 0.4248 (5) | 0.62881 (19) | 0.0170 (6) | |
H2A | 0.688355 | 0.281887 | 0.599077 | 0.020* | |
H2B | 0.564666 | 0.480861 | 0.621072 | 0.020* | |
C3 | 0.8331 (4) | 0.7843 (5) | 0.63607 (18) | 0.0151 (6) | |
H3A | 0.719803 | 0.869390 | 0.629414 | 0.018* | |
H3B | 0.923829 | 0.871335 | 0.611219 | 0.018* | |
C4 | 0.8985 (4) | 0.7459 (5) | 0.73118 (19) | 0.0153 (6) | |
H4A | 1.019905 | 0.679267 | 0.738344 | 0.018* | |
H4B | 0.907757 | 0.887866 | 0.761819 | 0.018* | |
C5 | 0.7688 (3) | 0.5918 (7) | 0.49830 (16) | 0.0139 (6) | |
C6 | 0.8200 (4) | 0.7753 (5) | 0.4548 (2) | 0.0187 (6) | |
H6 | 0.874536 | 0.895931 | 0.486795 | 0.022* | |
C7 | 0.7922 (5) | 0.7840 (5) | 0.3655 (2) | 0.0211 (7) | |
H7 | 0.828030 | 0.910876 | 0.337573 | 0.025* | |
C8 | 0.7134 (3) | 0.6116 (10) | 0.31631 (16) | 0.0204 (5) | |
H8 | 0.694672 | 0.618576 | 0.255269 | 0.024* | |
C9 | 0.6633 (5) | 0.4301 (6) | 0.3587 (2) | 0.0234 (7) | |
H9 | 0.610006 | 0.309579 | 0.326239 | 0.028* | |
C10 | 0.6889 (5) | 0.4190 (5) | 0.4478 (2) | 0.0218 (7) | |
H10 | 0.651625 | 0.291940 | 0.475097 | 0.026* | |
C11 | 0.6668 (4) | 0.6894 (5) | 0.82122 (18) | 0.0146 (6) | |
C12 | 0.5338 (4) | 0.5444 (4) | 0.85605 (17) | 0.0135 (6) | |
C13 | 0.5770 (4) | 0.3395 (5) | 0.89205 (18) | 0.0128 (6) | |
H13 | 0.696220 | 0.285267 | 0.894978 | 0.015* | |
C14 | 0.4476 (4) | 0.2132 (5) | 0.92378 (17) | 0.0134 (6) | |
H14 | 0.477362 | 0.073859 | 0.948719 | 0.016* | |
C15 | 0.2748 (4) | 0.2952 (5) | 0.91818 (18) | 0.0138 (6) | |
C16 | 0.2290 (4) | 0.5014 (5) | 0.88668 (18) | 0.0148 (6) | |
H16 | 0.110701 | 0.556801 | 0.885896 | 0.018* | |
C17 | 0.3610 (3) | 0.6267 (8) | 0.85598 (15) | 0.0153 (5) | |
H17 | 0.332668 | 0.769940 | 0.834754 | 0.018* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.01541 (13) | 0.01942 (13) | 0.02254 (13) | −0.0012 (2) | 0.00626 (9) | 0.00283 (19) |
O1 | 0.0269 (12) | 0.0140 (11) | 0.0336 (13) | −0.0023 (9) | 0.0145 (11) | −0.0065 (9) |
N1 | 0.0159 (10) | 0.0124 (10) | 0.0136 (9) | −0.0026 (16) | 0.0042 (8) | −0.0007 (16) |
N2 | 0.0162 (11) | 0.0102 (17) | 0.0123 (10) | −0.0017 (9) | 0.0032 (8) | −0.0013 (10) |
C1 | 0.0258 (17) | 0.0119 (14) | 0.0149 (15) | −0.0002 (12) | 0.0081 (13) | −0.0008 (12) |
C2 | 0.0255 (17) | 0.0119 (14) | 0.0140 (15) | −0.0060 (12) | 0.0050 (12) | −0.0023 (11) |
C3 | 0.0161 (16) | 0.0129 (14) | 0.0159 (15) | −0.0020 (11) | 0.0016 (12) | 0.0001 (12) |
C4 | 0.0141 (15) | 0.0179 (15) | 0.0146 (14) | −0.0037 (11) | 0.0044 (12) | 0.0001 (11) |
C5 | 0.0101 (11) | 0.0178 (17) | 0.0136 (11) | 0.0018 (15) | 0.0010 (9) | 0.0042 (15) |
C6 | 0.0194 (17) | 0.0190 (16) | 0.0179 (16) | −0.0020 (13) | 0.0030 (13) | 0.0020 (12) |
C7 | 0.0218 (18) | 0.0223 (17) | 0.0202 (16) | −0.0008 (13) | 0.0066 (13) | 0.0074 (13) |
C8 | 0.0167 (12) | 0.0307 (14) | 0.0134 (11) | 0.004 (2) | 0.0013 (9) | 0.002 (2) |
C9 | 0.0257 (19) | 0.0272 (18) | 0.0167 (16) | −0.0065 (14) | 0.0010 (13) | −0.0038 (13) |
C10 | 0.0264 (19) | 0.0216 (17) | 0.0166 (16) | −0.0074 (13) | 0.0009 (13) | 0.0012 (13) |
C11 | 0.0146 (14) | 0.0155 (13) | 0.0130 (13) | 0.002 (1) | 0.0001 (11) | 0.0007 (10) |
C12 | 0.0154 (14) | 0.0151 (15) | 0.0097 (13) | −0.0001 (10) | 0.0007 (11) | −0.0019 (9) |
C13 | 0.0127 (14) | 0.0143 (14) | 0.0115 (13) | 0.0026 (11) | 0.0017 (11) | −0.0019 (11) |
C14 | 0.0173 (15) | 0.0132 (14) | 0.0095 (13) | 0.0011 (11) | 0.0010 (11) | −0.0014 (11) |
C15 | 0.0135 (14) | 0.0174 (15) | 0.0110 (14) | −0.0032 (11) | 0.0035 (11) | −0.0015 (11) |
C16 | 0.0122 (14) | 0.0186 (15) | 0.0138 (14) | 0.0029 (11) | 0.0029 (11) | 0.0007 (12) |
C17 | 0.0194 (12) | 0.0145 (14) | 0.0117 (11) | 0.0030 (19) | 0.0012 (9) | 0.0014 (16) |
Br1—C15 | 1.904 (3) | C6—C7 | 1.389 (4) |
O1—C11 | 1.227 (4) | C6—H6 | 0.9500 |
N1—C11 | 1.356 (4) | C7—C8 | 1.387 (6) |
N1—C4 | 1.460 (4) | C7—H7 | 0.9500 |
N1—C1 | 1.467 (4) | C8—C9 | 1.376 (6) |
N2—C5 | 1.415 (3) | C8—H8 | 0.9500 |
N2—C2 | 1.461 (4) | C9—C10 | 1.387 (4) |
N2—C3 | 1.466 (4) | C9—H9 | 0.9500 |
C1—C2 | 1.518 (4) | C10—H10 | 0.9500 |
C1—H1A | 0.9900 | C11—C12 | 1.500 (4) |
C1—H1B | 0.9900 | C12—C17 | 1.393 (4) |
C2—H2A | 0.9900 | C12—C13 | 1.393 (4) |
C2—H2B | 0.9900 | C13—C14 | 1.391 (4) |
C3—C4 | 1.521 (4) | C13—H13 | 0.9500 |
C3—H3A | 0.9900 | C14—C15 | 1.383 (4) |
C3—H3B | 0.9900 | C14—H14 | 0.9500 |
C4—H4A | 0.9900 | C15—C16 | 1.379 (4) |
C4—H4B | 0.9900 | C16—C17 | 1.395 (5) |
C5—C6 | 1.397 (5) | C16—H16 | 0.9500 |
C5—C10 | 1.401 (5) | C17—H17 | 0.9500 |
C11—N1—C4 | 119.1 (3) | C5—C6—H6 | 119.5 |
C11—N1—C1 | 127.0 (3) | C8—C7—C6 | 121.5 (3) |
C4—N1—C1 | 111.4 (2) | C8—C7—H7 | 119.3 |
C5—N2—C2 | 116.4 (2) | C6—C7—H7 | 119.3 |
C5—N2—C3 | 116.4 (3) | C9—C8—C7 | 117.9 (2) |
C2—N2—C3 | 113.2 (2) | C9—C8—H8 | 121.1 |
N1—C1—C2 | 110.6 (2) | C7—C8—H8 | 121.1 |
N1—C1—H1A | 109.5 | C8—C9—C10 | 121.5 (3) |
C2—C1—H1A | 109.5 | C8—C9—H9 | 119.3 |
N1—C1—H1B | 109.5 | C10—C9—H9 | 119.3 |
C2—C1—H1B | 109.5 | C9—C10—C5 | 121.2 (3) |
H1A—C1—H1B | 108.1 | C9—C10—H10 | 119.4 |
N2—C2—C1 | 112.8 (2) | C5—C10—H10 | 119.4 |
N2—C2—H2A | 109.0 | O1—C11—N1 | 121.5 (3) |
C1—C2—H2A | 109.0 | O1—C11—C12 | 119.4 (3) |
N2—C2—H2B | 109.0 | N1—C11—C12 | 119.1 (3) |
C1—C2—H2B | 109.0 | C17—C12—C13 | 119.1 (3) |
H2A—C2—H2B | 107.8 | C17—C12—C11 | 117.3 (3) |
N2—C3—C4 | 111.4 (2) | C13—C12—C11 | 123.6 (3) |
N2—C3—H3A | 109.3 | C14—C13—C12 | 120.8 (3) |
C4—C3—H3A | 109.3 | C14—C13—H13 | 119.6 |
N2—C3—H3B | 109.3 | C12—C13—H13 | 119.6 |
C4—C3—H3B | 109.3 | C15—C14—C13 | 118.5 (3) |
H3A—C3—H3B | 108.0 | C15—C14—H14 | 120.8 |
N1—C4—C3 | 111.3 (2) | C13—C14—H14 | 120.8 |
N1—C4—H4A | 109.4 | C16—C15—C14 | 122.4 (3) |
C3—C4—H4A | 109.4 | C16—C15—Br1 | 118.6 (2) |
N1—C4—H4B | 109.4 | C14—C15—Br1 | 119.0 (2) |
C3—C4—H4B | 109.4 | C15—C16—C17 | 118.3 (3) |
H4A—C4—H4B | 108.0 | C15—C16—H16 | 120.9 |
C6—C5—C10 | 117.0 (2) | C17—C16—H16 | 120.9 |
C6—C5—N2 | 121.6 (3) | C12—C17—C16 | 120.9 (4) |
C10—C5—N2 | 121.4 (3) | C12—C17—H17 | 119.6 |
C7—C6—C5 | 121.0 (3) | C16—C17—H17 | 119.6 |
C7—C6—H6 | 119.5 | ||
C11—N1—C1—C2 | 105.4 (3) | C6—C5—C10—C9 | 0.4 (5) |
C4—N1—C1—C2 | −56.4 (3) | N2—C5—C10—C9 | −177.2 (3) |
C5—N2—C2—C1 | 170.4 (3) | C4—N1—C11—O1 | −2.8 (4) |
C3—N2—C2—C1 | −50.7 (3) | C1—N1—C11—O1 | −163.3 (3) |
N1—C1—C2—N2 | 52.8 (3) | C4—N1—C11—C12 | 176.5 (2) |
C5—N2—C3—C4 | −170.3 (2) | C1—N1—C11—C12 | 16.0 (4) |
C2—N2—C3—C4 | 50.8 (3) | O1—C11—C12—C17 | 42.2 (4) |
C11—N1—C4—C3 | −105.9 (3) | N1—C11—C12—C17 | −137.1 (3) |
C1—N1—C4—C3 | 57.5 (3) | O1—C11—C12—C13 | −134.3 (3) |
N2—C3—C4—N1 | −54.1 (3) | N1—C11—C12—C13 | 46.4 (4) |
C2—N2—C5—C6 | 158.2 (3) | C17—C12—C13—C14 | 3.2 (4) |
C3—N2—C5—C6 | 20.7 (4) | C11—C12—C13—C14 | 179.6 (3) |
C2—N2—C5—C10 | −24.3 (4) | C12—C13—C14—C15 | 0.5 (4) |
C3—N2—C5—C10 | −161.8 (3) | C13—C14—C15—C16 | −3.6 (4) |
C10—C5—C6—C7 | 0.0 (5) | C13—C14—C15—Br1 | 173.6 (2) |
N2—C5—C6—C7 | 177.6 (3) | C14—C15—C16—C17 | 2.9 (4) |
C5—C6—C7—C8 | −0.2 (5) | Br1—C15—C16—C17 | −174.3 (2) |
C6—C7—C8—C9 | −0.1 (5) | C13—C12—C17—C16 | −3.8 (4) |
C7—C8—C9—C10 | 0.5 (5) | C11—C12—C17—C16 | 179.5 (3) |
C8—C9—C10—C5 | −0.7 (5) | C15—C16—C17—C12 | 0.9 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···O1i | 0.95 | 2.60 | 3.018 (4) | 107 |
C14—H14···O1i | 0.95 | 2.68 | 3.052 (4) | 104 |
Symmetry code: (i) x, y−1, z. |
I | ||||
D—H···A | D—H | H···A | D···A | D—H···A |
C6B—H6B···O1A | 0.95 | 2.50 | 3.140 (2) | 124.5 |
C7B—H7B···O1A | 0.95 | 2.58 | 3.171 (2) | 120.3 |
C6A—H6A···O1Bi | 0.95 | 2.47 | 3.173 (2) | 131.0 |
C7A—H7A···O1Bi | 0.95 | 2.78 | 3.317 (2) | 116.8 |
II | ||||
C13—H13···O1ii | 0.95 | 2.60 | 3.018 (4) | 107.3 |
C14—H14···O1ii | 0.95 | 2.68 | 3.052 (4) | 104.0 |
Symmetry codes: (i) x, y, z + 1; (ii) x, y - 1, z |
Acknowledgements
One of the authors (SDA) is grateful to the University of Mysore for research facilities.
Funding information
Funding for this research was provided by: NSF (MRI CHE1625732) and the University of Kentucky (Bruker D8 182 Venture diffractometer). HSY thanks the UGC for a BSR Faculty fellowship for three years.
References
Berkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Hiemstra, H., Iwema Bakker, W. I., van den Hoogenband, A. & van Maarseveen, J. H. (2005). Tetrahedron Lett. 46, 2369–2371. Web of Science CrossRef CAS Google Scholar
Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048. Web of Science CrossRef PubMed CAS Google Scholar
Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chaudhary, P., Kumar, R., Verma, K., Singh, D., Yadav, V., Chhillar, A. K., Sharma, G. L. & Chandra, R. (2006). Bioorg. Med. Chem. 14, 1819–1826. Web of Science CrossRef PubMed CAS Google Scholar
Chu, J.-C., Shang, Z.-H., Zhou, X.-Q. & Liu, D.-Z. (2006). Acta Cryst. E62, o1042–o1043. CSD CrossRef IUCr Journals Google Scholar
Cohen, M. R., Hinsch, E., Palkoski, Z., Vergona, R., Urbano, S. & Sztokalo, J. (1982). J. Pharmacol. Exp. Ther. 223, 110–119. CAS PubMed Web of Science Google Scholar
Conrado, D. J., Verli, H., Neves, G., Fraga, C. A., Barreiro, E. J., Rates, S. M. & Dalla-Costa, T. (2008). J. Pharm. Pharmacol. 60, 699–707. Web of Science CrossRef PubMed CAS Google Scholar
Demirci, S., Hayal, T. B., Kıratlı, B., Şişli, H. B., Demirci, S., Şahin, F. & Doğan, A. (2019). Chem. Biol. Drug Des. 94, 1584–1595. Web of Science CrossRef CAS PubMed Google Scholar
Elliott, S. (2011). Drug Test. Anal. 3, 430–438. Web of Science CrossRef CAS PubMed Google Scholar
Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908–915. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gupta, S., Pandey, D., Mandalapu, D., Bala, V., Sharma, V., Shukla, M., Yadav, S. K., Singh, N., Jaiswal, S., Maikhuri, J. P., Lal, J., Siddiqi, M. I., Gupta, G. & Sharma, V. L. (2016). MedChemComm, 7, 2111–2121. CrossRef CAS Google Scholar
Hanano, T., Adachi, K., Aoki, Y., Morimoto, H., Naka, Y., Hisadome, M., Fukuda, T. & Sumichika, H. (2000). Bioorg. Med. Chem. Lett. 10, 875–879. Web of Science CrossRef PubMed CAS Google Scholar
Harish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S. & Glidewell, C. (2020). IUCrData, 5, x201523. Google Scholar
Harish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S. & Glidewell, C. (2021). Acta Cryst. E77, 5–13. CSD CrossRef IUCr Journals Google Scholar
Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kaya, B., Özkay, Y., Temel, H. E. & Kaplancikli, Z. A. (2016). J. Chem. Article ID 5878410. Google Scholar
Kharb, R., Bansal, K. & Sharma, A. K. (2012). Pharma Chem. 4, 2470–2488. CAS Google Scholar
Kiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1253–1260. Web of Science CSD CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kumari, S., Mishra, C. B. & Tiwari, M. (2015). Bioorg. Med. Chem. Lett. 25, 1092–1099. Web of Science CrossRef CAS PubMed Google Scholar
Li, A.-J., Tao, M.-L., Ma, J., Zhou, X.-Q. & Liu, D.-Z. (2006). Acta Cryst. E62, o158–o159. CSD CrossRef IUCr Journals Google Scholar
Lu, Y.-X. (2007). Acta Cryst. E63, o3611. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Neves, G., Fenner, R., Heckler, A. P., Viana, A. F., Tasso, L., Menegatti, R., Fraga, C. A. M., Barreiro, E. J., Dalla-Costa, T. & Rates, S. M. K. (2003). Braz. J. Med. Biol. Res. 36, 625–629. Web of Science CrossRef PubMed CAS Google Scholar
Parkin, S. R. (2021). Acta Cryst. E77, 452–465. Web of Science CrossRef IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2012). TWINABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Upadhayaya, P. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225–2238. Web of Science CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wodtke, R., Steinberg, J., Köckerling, M., Löser, R. & Mamat, C. (2018). RSC Adv. 8, 40921–40933. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zhang, Y., Chao, J., Zhao, S., Xu, P., Wang, H., Guo, Z. & Liu, D. (2014). Spectrochim. Acta Part A. 132, 44–51. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.