research communications
Synthesis, H-benzimidazol-2-yl)(morpholin-4-yl)methanethione
and Hirshfeld surface analysis of (1aInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str. 83, Tashkent 700125, Uzbekistan, bTurin Polytechnic University in Tashkent, Kichik Khalka yuli str. 17, 100095 Tashkent, Uzbekistan, and cS. Yunusov Institute of Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek str. 77, Tashkent 100170, Uzbekistan
*Correspondence e-mail: luqmonjohn@mail.ru
The title compound, C12H13N3OS, was synthesized via the Willgerodt–Kindler method. The benzimidozole moiety is essentially planar (r.m.s. deviation = 0.0084 Å). The thioamide group is inclined by 54.80 (14)° to the benzimidazole ring system. The morpholine ring is disordered over two sets of sites [ratio 0.841 (11):0.159 (11)], with chair conformations for both components. In the crystal, molecules are linked into N—H⋯N hydrogen-bonded chains running parallel to the c axis. Hirshfeld surface analysis was used to quantify the intermolecular interactions.
Keywords: (1H-benzimidazol-2-yl)(morpholin-4-yl)methanethione; crystal structure; Hirshfeld surface analysis; Wilgerodt–Kindler reaction.
CCDC reference: 2165380
1. Chemical context
Benzimidazole is a biologically important compound and a useful structural motif for designing molecules of biochemical and pharmacological relevance. Numerous studies have confirmed that these molecules are effective against various strains of microorganisms (El Ashry et al., 2016). Likewise, substituted benzimidazole derivatives possess various biological activities, including antibacterial (Kazimierczuk et al., 2002), antifungal (Ansari & Lal, 2009), antinematode (Mavrova et al., 2006), antiviral (Pandey & Shukla, 1999), anticancer (Hranjec et al., 2011) and antiprotozoal (Mavrova et al., 2010) properties. Similarly, the morpholine moiety is a versatile and readily accessible synthetic building block; it is easily introduced as an amine reagent or can be built according to a variety of available synthetic methodologies. This versatile scaffold, appropriately substituted, possesses a wide range of biological activities (Walia et al., 2011). Additionally, most drugs containing a morpholine moiety in their structure have been found to exhibit significant biological properties (Basavaraja et al., 2010).
In this context, the title compound with its bifunctional properties (benzimidazole and morpholine derivative, respectively) was synthesized and structurally characterized. The bifunctional properties predispose its potential biological activity, and the three nitrogen and one sulfur atoms can be used in reactions as electrophilic or nucleophilic sites for the formation of heterocyclic compounds.
2. Structural commentary
The title compound crystallizes with one molecule in the ). The benzimidazole ring system is essentially planar, with a maximum deviation of 0.013 (3) Å for C6 from the mean plane (r.m.s. deviation = 0.0084 Å). The length of the C1—N2 bond is 1.353 (3) Å, slightly shorter than an isolated single C—N bond (1.382 Å; Berno & Gambarotta, 1994), while that of the C1—N1 bond is 1.322 (3) Å, slightly longer than an isolated C=N double bond (1.281 Å; Schmaunz et al., 2014), and the N3—C8 bond length of 1.322 (3) Å is the same as that of C1—N1, indicating conjugation of the p-orbital electrons over the imidazole ring. The thioamide group makes a dihedral angle of 54.80 (14)° with the benzimidazole ring system. Both components of the disordered morpholine ring [occupancy ratio 0.841 (11):0.159 (11)] adopt chair conformations. The puckering parameters (Cremer & Pople, 1975) of the ring (main occupancy component) are Q = 0.521 (6) Å, θ = 176.8 (8)°, φ = 80 (8)°. Weak intramolecular C12—H12A⋯N1 and C9—H9B⋯S1 hydrogen bonds help to consolidate the conformation of the molecule (Table 1).
(Fig. 13. Supramolecular features
In the crystal, molecules are linked by N2—H2⋯N1 hydrogen bonds into chains running parallel to the c axis (Table 1, Fig. 2).
Analysis and calculations of the Hirshfeld surface were carried out with CrystalExplorer17.5 (Spackman et al., 2021). The dnorm plots were mapped with a colour scale between −0.182 a.u. (blue) and 1.195 a.u. (red) and are shown Fig. 3. The red spots indicate the contribution of N—H⋯N hydrogen bonds.
The expanded two-dimensional fingerprint plots (Seth, 2014; McKinnon et al., 2007) are displayed in Fig. 4 where de and di are the respective distances to the nearest nuclei outside and inside the surface from the Hirshfeld surface. The most important contributions to the crystal packing originate from H⋯H contacts (46.4%), followed by C⋯H/H⋯C contacts (21.0%) and S⋯H/H⋯S contacts (15.7%). Numerical data for other contributions are given in Fig. 4.
4. Database survey
A search in the Cambridge Structural Database (CSD, version 2022; Groom et al., 2016) gave one match for the benzimidazoyl-thiocarbonate moiety, CSD refcode FUTSOF (Ranskiy et al., 2016). In the latter compound, the N and S atoms are bound to a CuII cation. The corresponding N—C bond lengths within the benzimidazole ring exhibit little difference from those the of title compound, except that the C8—S1 bond length is slightly longer [1.708 (7) Å] than in the title compound [1.658 (3) Å]. Another search in the CSD for the morpholin-4-yl-thiocarbonate moiety gave 54 hits, with atomic coordinates not available for five of these structures. In all of the structures, the morpholine ring has a chair conformation, with three structures showing disorder of the morpholine ring [CSD refcodes: QOVVUT (Ramasamy et al., 2009), TACVIE (Bocheńska et al., 2010) and YABDAG (Pudovik et al., 1990)].
5. Synthesis and crystallization
1H-Benzimidazol-2-yl(morpholin-4-yl)methanethione was synthesized using a previously reported procedure with minor modifications (Klingele & Brooker, 2004; Okamoto et al., 2007), as shown in Fig. 5.
Method (i): A reaction mixture consisting of 1.32 g (10 mmol) of 2-methylbenzimidazole (1), 1.68 ml (1.7 g, d = 1.01 g ml−1, 20 mmol) of morpholine and 0.96 g (30 mmol) of sulfur was heated in a round-bottomed flask at 448–453 K for 18 h. The excess of morpholine was evaporated, and the residue was treated with methanol. The resulting solid was filtered off and recrystallized from benzene, resulting in 1.52 g (61%) of morpholide (2). Melting point 513–515 K, Rf = 0.25 (benzene:acetone 3:1 v:v).
Method (ii): 1.32 g (10 mmol) of 2-methylbenzimidazole, 0.92 ml (0.93 g, d = 1.01 g ml−1, 11.0 mmol) of morpholine, 0.96 g (30 mmol) of sulfur, 0.11 g (0.46 mmol) Na2S·9H2O and 5 ml of DMSO were mixed and heated in an oil bath at 403–408 K for 10 h. The reaction mixture was cooled to 343 K and extracted three times with 30 ml of a 5%wt NaOH solution. The extracts were combined and filtered. The filtrate was adjusted to pH 5–6 with H2SO4. The precipitate was filtered off and dried, then recrystallized from benzene and dried again. Yield 1.91 g (77.0%). Melting point 513–515 K, Rf = 0.25 (benzene:acetone 3:1 v:v).
1H NMR (400 MHz, DMSO-d6): 12.9 (1H, s, NH), 7.7 (1H, d, J = 8.0, H-4), 7.54 (1H, d, J = 7.9, H-7), 7.24–7.33 (2H, m, H-5,6), 4.37 (2H, br.t., J = 4.7, NCH2-morpholine), 4.22 (2H, br.t., J = 4.7, NCH2-morpholine), 3.82 (2H, br.t., J = 4.9, OCH2-morpholine), 3.71 (2H, br.t., J = 4.8, OCH2-morpholine). 13C NMR (400 MHz, DMSO-d6): 50.19 (NCH2-morpholine), 52.95 (NCH2-morpholine), 65.94 (OCH2-morpholine), 66.62 (OCH2-morpholine), 112.2 (C-3a), 120.06 (C-4), 121.3 (C-5), 122.6 (C-6), 124.0 (C-7), 133.9 (C-7a), 142.2 (C-2), 148.9 (C=S). IR (ν, cm−1): 1614 (C=N), 1377 (C=S).
A single crystal suitable for X-ray diffraction was selected from crystals obtained by method (ii).
6. Refinement
Crystal data, data collection and structure . of the structure with an ordered model gave remaining electron difference peaks about 0.5, 0.26 and 0.24 e− Å−3 near the morpholide ring, resulting in R1[Fo > 4σ(Fo)] = 0.039. Introduction of a disorder model including split positions for C9, C10, C11 and C12 of the morpholide ring resulted in a occupancy ratio of 0.841 (11):0.159 (11) for the major and minor components (atoms of the minor component denoted by the B). For atom pair C10/C10B, the SHELXL command EADP was used. All C-bound H atoms were positioned geometrically, with C—H = 0.96 Å (for methylene H atoms) and C—H = 0.93 Å (for aromatic H atoms), and were refined with Uiso(H) = 1.2Ueq(C). The H atom bound to N2 was located in a difference-Fourier map, and its coordinates and isotropic displacement parameter refined freely.
details are summarized in Table 2Supporting information
CCDC reference: 2165380
https://doi.org/10.1107/S2056989022008933/wm5654sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022008933/wm5654Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022008933/wm5654Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2020); cell
CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: XP (Siemens, 1994), Mercury (Macrae et al. 2020); software used to prepare material for publication: PLATON (Spek, 2020).C12H13N3OS | Dx = 1.361 Mg m−3 |
Mr = 247.31 | Melting point: 513(2) K |
Monoclinic, Ia | Cu Kα radiation, λ = 1.54184 Å |
a = 8.1644 (2) Å | Cell parameters from 4375 reflections |
b = 15.9237 (3) Å | θ = 5.5–71.1° |
c = 9.6936 (2) Å | µ = 2.28 mm−1 |
β = 106.661 (2)° | T = 293 K |
V = 1207.33 (5) Å3 | Needle, colourless |
Z = 4 | 0.30 × 0.25 × 0.14 mm |
F(000) = 520 |
XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer | 1724 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 1692 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.022 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 71.3°, θmin = 5.5° |
ω scans | h = −9→10 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) | k = −19→19 |
Tmin = 0.568, Tmax = 1.000 | l = −9→11 |
5160 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.030 | w = 1/[σ2(Fo2) + (0.0448P)2 + 0.2955P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.079 | (Δ/σ)max < 0.001 |
S = 1.10 | Δρmax = 0.17 e Å−3 |
1724 reflections | Δρmin = −0.19 e Å−3 |
189 parameters | Absolute structure: Flack x determined using 531 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
2 restraints | Absolute structure parameter: −0.001 (13) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.43314 (11) | 0.91597 (4) | 0.55516 (11) | 0.0555 (2) | |
O1 | 0.9333 (3) | 0.79690 (17) | 0.3720 (4) | 0.0726 (8) | |
N1 | 0.3522 (3) | 0.69924 (13) | 0.3950 (2) | 0.0334 (4) | |
N2 | 0.3362 (3) | 0.72781 (14) | 0.6169 (3) | 0.0354 (5) | |
H2 | 0.350 (4) | 0.754 (2) | 0.695 (4) | 0.038 (8)* | |
N3 | 0.6584 (3) | 0.81395 (16) | 0.4919 (4) | 0.0555 (8) | |
C1 | 0.3992 (3) | 0.74997 (16) | 0.5073 (3) | 0.0316 (5) | |
C2 | 0.1490 (4) | 0.6052 (2) | 0.6418 (4) | 0.0490 (7) | |
H2B | 0.1429 | 0.6168 | 0.7342 | 0.059* | |
C3 | 0.0676 (4) | 0.5366 (2) | 0.5648 (4) | 0.0540 (8) | |
H3A | 0.0048 | 0.5012 | 0.6066 | 0.065* | |
C4 | 0.0767 (4) | 0.51882 (19) | 0.4256 (4) | 0.0498 (7) | |
H4A | 0.0210 | 0.4716 | 0.3780 | 0.060* | |
C5 | 0.1663 (3) | 0.56963 (17) | 0.3576 (3) | 0.0397 (6) | |
H5A | 0.1708 | 0.5581 | 0.2647 | 0.048* | |
C6 | 0.2502 (3) | 0.63938 (15) | 0.4345 (3) | 0.0320 (5) | |
C7 | 0.2407 (3) | 0.65587 (16) | 0.5736 (3) | 0.0337 (5) | |
C8 | 0.5083 (3) | 0.82515 (16) | 0.5156 (3) | 0.0377 (6) | |
C9 | 0.7777 (7) | 0.8840 (3) | 0.4960 (9) | 0.0661 (16) | 0.841 (11) |
H9A | 0.8705 | 0.8823 | 0.5848 | 0.079* | 0.841 (11) |
H9B | 0.7187 | 0.9373 | 0.4916 | 0.079* | 0.841 (11) |
C10 | 0.8473 (9) | 0.8753 (4) | 0.3682 (10) | 0.078 (2) | 0.841 (11) |
H10A | 0.7541 | 0.8790 | 0.2799 | 0.093* | 0.841 (11) |
H10B | 0.9263 | 0.9209 | 0.3686 | 0.093* | 0.841 (11) |
C11 | 0.8153 (7) | 0.7297 (3) | 0.3658 (7) | 0.0530 (12) | 0.841 (11) |
H11A | 0.8722 | 0.6764 | 0.3637 | 0.064* | 0.841 (11) |
H11B | 0.7213 | 0.7343 | 0.2782 | 0.064* | 0.841 (11) |
C12 | 0.7468 (6) | 0.7322 (2) | 0.4947 (7) | 0.0466 (11) | 0.841 (11) |
H12A | 0.6675 | 0.6863 | 0.4903 | 0.056* | 0.841 (11) |
H12B | 0.8397 | 0.7270 | 0.5828 | 0.056* | 0.841 (11) |
C9B | 0.715 (5) | 0.8869 (14) | 0.398 (5) | 0.067 (10) | 0.159 (11) |
H9C | 0.6680 | 0.8780 | 0.2957 | 0.080* | 0.159 (11) |
H9D | 0.6840 | 0.9425 | 0.4236 | 0.080* | 0.159 (11) |
C10B | 0.901 (5) | 0.873 (2) | 0.447 (5) | 0.078 (2) | 0.159 (11) |
H10C | 0.9395 | 0.8654 | 0.5504 | 0.093* | 0.159 (11) |
H10D | 0.9605 | 0.9211 | 0.4221 | 0.093* | 0.159 (11) |
C11B | 0.872 (4) | 0.7315 (17) | 0.446 (4) | 0.057 (7) | 0.159 (11) |
H11C | 0.9141 | 0.7399 | 0.5495 | 0.069* | 0.159 (11) |
H11D | 0.9110 | 0.6772 | 0.4231 | 0.069* | 0.159 (11) |
C12B | 0.688 (4) | 0.7353 (11) | 0.400 (4) | 0.047 (7) | 0.159 (11) |
H12C | 0.6372 | 0.6845 | 0.4243 | 0.057* | 0.159 (11) |
H12D | 0.6445 | 0.7455 | 0.2971 | 0.057* | 0.159 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0713 (5) | 0.0311 (3) | 0.0723 (5) | 0.0025 (3) | 0.0340 (4) | −0.0069 (4) |
O1 | 0.0627 (14) | 0.0675 (16) | 0.104 (2) | −0.0080 (12) | 0.0499 (15) | −0.0086 (15) |
N1 | 0.0392 (10) | 0.0334 (10) | 0.0311 (11) | −0.0016 (8) | 0.0157 (9) | −0.0017 (8) |
N2 | 0.0419 (12) | 0.0381 (11) | 0.0294 (12) | −0.0055 (9) | 0.0151 (9) | −0.0052 (10) |
N3 | 0.0524 (15) | 0.0346 (13) | 0.092 (2) | −0.0092 (10) | 0.0407 (16) | −0.0091 (13) |
C1 | 0.0349 (13) | 0.0307 (11) | 0.0307 (12) | −0.0001 (9) | 0.0121 (10) | −0.0004 (9) |
C2 | 0.0532 (17) | 0.0567 (16) | 0.0425 (16) | −0.0104 (14) | 0.0226 (14) | 0.0030 (14) |
C3 | 0.0517 (17) | 0.0498 (16) | 0.064 (2) | −0.0166 (14) | 0.0231 (16) | 0.0053 (15) |
C4 | 0.0434 (15) | 0.0411 (15) | 0.065 (2) | −0.0097 (11) | 0.0154 (14) | −0.0078 (14) |
C5 | 0.0369 (12) | 0.0408 (13) | 0.0410 (15) | −0.0029 (10) | 0.0105 (11) | −0.0085 (12) |
C6 | 0.0314 (11) | 0.0330 (11) | 0.0325 (12) | 0.0012 (9) | 0.0107 (10) | −0.0017 (10) |
C7 | 0.0351 (11) | 0.0350 (11) | 0.0329 (13) | −0.0020 (10) | 0.0127 (10) | −0.0002 (10) |
C8 | 0.0460 (14) | 0.0318 (12) | 0.0375 (14) | −0.0042 (10) | 0.0153 (12) | −0.0009 (10) |
C9 | 0.066 (3) | 0.052 (2) | 0.094 (5) | −0.027 (2) | 0.045 (3) | −0.021 (3) |
C10 | 0.093 (4) | 0.057 (2) | 0.108 (5) | −0.012 (3) | 0.067 (5) | −0.003 (4) |
C11 | 0.047 (3) | 0.052 (2) | 0.061 (3) | 0.0026 (18) | 0.017 (2) | −0.007 (2) |
C12 | 0.0397 (19) | 0.0437 (19) | 0.059 (3) | 0.0014 (16) | 0.019 (2) | −0.0024 (19) |
C9B | 0.09 (2) | 0.030 (9) | 0.11 (3) | 0.002 (11) | 0.07 (2) | 0.009 (14) |
C10B | 0.093 (4) | 0.057 (2) | 0.108 (5) | −0.012 (3) | 0.067 (5) | −0.003 (4) |
C11B | 0.049 (14) | 0.062 (14) | 0.058 (17) | 0.015 (10) | 0.010 (12) | −0.002 (13) |
C12B | 0.050 (13) | 0.029 (8) | 0.08 (2) | −0.005 (8) | 0.040 (14) | 0.002 (10) |
S1—C8 | 1.658 (3) | C5—C6 | 1.402 (3) |
O1—C10 | 1.427 (7) | C5—H5A | 0.9300 |
O1—C11 | 1.430 (5) | C6—C7 | 1.399 (4) |
O1—C11B | 1.43 (3) | C9—C10 | 1.511 (10) |
O1—C10B | 1.48 (4) | C9—H9A | 0.9700 |
N1—C1 | 1.322 (3) | C9—H9B | 0.9700 |
N1—C6 | 1.390 (3) | C10—H10A | 0.9700 |
N2—C1 | 1.353 (3) | C10—H10B | 0.9700 |
N2—C7 | 1.382 (3) | C11—C12 | 1.508 (8) |
N2—H2 | 0.84 (4) | C11—H11A | 0.9700 |
N3—C8 | 1.322 (3) | C11—H11B | 0.9700 |
N3—C9 | 1.475 (5) | C12—H12A | 0.9700 |
N3—C12 | 1.485 (5) | C12—H12B | 0.9700 |
N3—C12B | 1.60 (2) | C9B—C10B | 1.47 (6) |
N3—C9B | 1.62 (2) | C9B—H9C | 0.9700 |
C1—C8 | 1.480 (3) | C9B—H9D | 0.9700 |
C2—C3 | 1.380 (5) | C10B—H10C | 0.9700 |
C2—C7 | 1.390 (4) | C10B—H10D | 0.9700 |
C2—H2B | 0.9300 | C11B—C12B | 1.44 (4) |
C3—C4 | 1.401 (5) | C11B—H11C | 0.9700 |
C3—H3A | 0.9300 | C11B—H11D | 0.9700 |
C4—C5 | 1.379 (4) | C12B—H12C | 0.9700 |
C4—H4A | 0.9300 | C12B—H12D | 0.9700 |
C10—O1—C11 | 109.5 (4) | O1—C10—C9 | 110.9 (6) |
C11B—O1—C10B | 102 (2) | O1—C10—H10A | 109.5 |
C1—N1—C6 | 104.3 (2) | C9—C10—H10A | 109.5 |
C1—N2—C7 | 106.6 (2) | O1—C10—H10B | 109.5 |
C1—N2—H2 | 127 (2) | C9—C10—H10B | 109.5 |
C7—N2—H2 | 127 (2) | H10A—C10—H10B | 108.0 |
C8—N3—C9 | 122.1 (3) | O1—C11—C12 | 110.5 (4) |
C8—N3—C12 | 125.8 (3) | O1—C11—H11A | 109.5 |
C9—N3—C12 | 110.4 (3) | C12—C11—H11A | 109.5 |
C8—N3—C12B | 120.0 (9) | O1—C11—H11B | 109.5 |
C8—N3—C9B | 115.3 (10) | C12—C11—H11B | 109.5 |
C12B—N3—C9B | 97.8 (16) | H11A—C11—H11B | 108.1 |
N1—C1—N2 | 113.7 (2) | N3—C12—C11 | 107.6 (4) |
N1—C1—C8 | 124.5 (2) | N3—C12—H12A | 110.2 |
N2—C1—C8 | 121.8 (2) | C11—C12—H12A | 110.2 |
C3—C2—C7 | 116.4 (3) | N3—C12—H12B | 110.2 |
C3—C2—H2B | 121.8 | C11—C12—H12B | 110.2 |
C7—C2—H2B | 121.8 | H12A—C12—H12B | 108.5 |
C2—C3—C4 | 122.0 (3) | C10B—C9B—N3 | 99 (3) |
C2—C3—H3A | 119.0 | C10B—C9B—H9C | 112.1 |
C4—C3—H3A | 119.0 | N3—C9B—H9C | 112.1 |
C5—C4—C3 | 121.6 (3) | C10B—C9B—H9D | 112.1 |
C5—C4—H4A | 119.2 | N3—C9B—H9D | 112.1 |
C3—C4—H4A | 119.2 | H9C—C9B—H9D | 109.7 |
C4—C5—C6 | 117.2 (3) | C9B—C10B—O1 | 106 (3) |
C4—C5—H5A | 121.4 | C9B—C10B—H10C | 110.5 |
C6—C5—H5A | 121.4 | O1—C10B—H10C | 110.5 |
N1—C6—C7 | 109.9 (2) | C9B—C10B—H10D | 110.5 |
N1—C6—C5 | 129.6 (2) | O1—C10B—H10D | 110.5 |
C7—C6—C5 | 120.5 (2) | H10C—C10B—H10D | 108.7 |
N2—C7—C2 | 132.2 (3) | O1—C11B—C12B | 107 (2) |
N2—C7—C6 | 105.4 (2) | O1—C11B—H11C | 110.3 |
C2—C7—C6 | 122.4 (2) | C12B—C11B—H11C | 110.3 |
N3—C8—C1 | 117.1 (2) | O1—C11B—H11D | 110.3 |
N3—C8—S1 | 125.5 (2) | C12B—C11B—H11D | 110.3 |
C1—C8—S1 | 117.5 (2) | H11C—C11B—H11D | 108.5 |
N3—C9—C10 | 108.0 (5) | C11B—C12B—N3 | 100 (3) |
N3—C9—H9A | 110.1 | C11B—C12B—H12C | 111.8 |
C10—C9—H9A | 110.1 | N3—C12B—H12C | 111.8 |
N3—C9—H9B | 110.1 | C11B—C12B—H12D | 111.8 |
C10—C9—H9B | 110.1 | N3—C12B—H12D | 111.8 |
H9A—C9—H9B | 108.4 | H12C—C12B—H12D | 109.5 |
C6—N1—C1—N2 | 0.1 (3) | C12—N3—C8—S1 | 162.8 (4) |
C6—N1—C1—C8 | −179.1 (2) | C12B—N3—C8—S1 | −156.9 (15) |
C7—N2—C1—N1 | 0.6 (3) | C9B—N3—C8—S1 | −40.3 (19) |
C7—N2—C1—C8 | 179.8 (2) | N1—C1—C8—N3 | −55.2 (4) |
C7—C2—C3—C4 | 0.1 (5) | N2—C1—C8—N3 | 125.7 (3) |
C2—C3—C4—C5 | −0.7 (5) | N1—C1—C8—S1 | 125.4 (2) |
C3—C4—C5—C6 | 0.9 (4) | N2—C1—C8—S1 | −53.7 (3) |
C1—N1—C6—C7 | −0.7 (3) | C8—N3—C9—C10 | −135.7 (5) |
C1—N1—C6—C5 | −179.5 (3) | C12—N3—C9—C10 | 58.2 (9) |
C4—C5—C6—N1 | 178.1 (3) | C11—O1—C10—C9 | 61.3 (8) |
C4—C5—C6—C7 | −0.5 (4) | N3—C9—C10—O1 | −59.2 (9) |
C1—N2—C7—C2 | 179.1 (3) | C10—O1—C11—C12 | −62.0 (8) |
C1—N2—C7—C6 | −1.0 (3) | C8—N3—C12—C11 | 135.6 (4) |
C3—C2—C7—N2 | −179.8 (3) | C9—N3—C12—C11 | −58.9 (7) |
C3—C2—C7—C6 | 0.3 (5) | O1—C11—C12—N3 | 60.2 (6) |
N1—C6—C7—N2 | 1.1 (3) | C8—N3—C9B—C10B | 157 (2) |
C5—C6—C7—N2 | 180.0 (2) | C12B—N3—C9B—C10B | −74 (3) |
N1—C6—C7—C2 | −179.0 (3) | N3—C9B—C10B—O1 | 76 (3) |
C5—C6—C7—C2 | −0.1 (4) | C11B—O1—C10B—C9B | −73 (4) |
C9—N3—C8—C1 | 179.5 (5) | C10B—O1—C11B—C12B | 74 (4) |
C12—N3—C8—C1 | −16.6 (5) | O1—C11B—C12B—N3 | −77 (3) |
C12B—N3—C8—C1 | 23.7 (15) | C8—N3—C12B—C11B | −160.0 (16) |
C9B—N3—C8—C1 | 140.3 (19) | C9B—N3—C12B—C11B | 75 (3) |
C9—N3—C8—S1 | −1.1 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···N1i | 0.84 (4) | 2.07 (4) | 2.903 (3) | 169 (3) |
C9—H9B···S1 | 0.97 | 2.60 | 3.070 (5) | 110 |
C12—H12A···N1 | 0.97 | 2.48 | 3.131 (5) | 124 |
Symmetry code: (i) x, −y+3/2, z+1/2. |
Acknowledgements
The authors are grateful to the Institute of Bioorganic Chemistry, Academy Sciences of Uzbekistan, for providing laboratory facilities.
Funding information
This work was supported financially by the Ministry of Innovative Development of Uzbekistan (grant No. F-FA-2021-408 `Study of the laws of the introduction of pharmacophore fragments into the molecule on the basis of modern cross-coupling and heterocyclization reactions').
References
Ansari, K. F. & Lal, C. (2009). Eur. J. Med. Chem. 44, 2294–2299. Web of Science CrossRef PubMed CAS Google Scholar
Basavaraja, H. S., Jayadevaiah, K. V., Mumtaz, M. H., Vijay Kumar, M. M. J. & Basavaraj, P. (2010). J. Pharm. Sci. Res. 2, 5–12. CAS Google Scholar
Berno, P. & Gambarotta, S. (1994). Organometallics, 13, 2569–2571. CSD CrossRef CAS Web of Science Google Scholar
Bocheńska, M., Kulesza, J., Chojnacki, J., Arnaud-Neu, F. & Hubscher-Bruder, V. (2010). J. Incl Phenom. Macrocycl Chem. 68, 75–83. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
El Ashry, E. S., El Kilany, Y., Nahas, N. M., Barakat, A., Al-Qurashi, N., Ghabbour, H. A. & Fun, H. K. (2016). Molecules, 21, 12. https://doi.org/10.3390/molecules21010012 Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hranjec, M., Starčević, K., Pavelić, S. K., Lučin, P., Pavelić, K. & Zamola, G. K. (2011). Eur. J. Med. Chem. 46, 2274–2279. Web of Science CrossRef CAS PubMed Google Scholar
Kazimierczuk, Z., Upcroft, J. A., Upcroft, P., Górska, A., Starościak, B. & Laudy, A. (2002). Acta Biochim. Pol. 49, 185–195. CrossRef PubMed CAS Google Scholar
Klingele, M. H. & Brooker, S. (2004). Eur. J. Org. Chem. pp. 3422–3434. Web of Science CSD CrossRef Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mavrova, A. T., Anichina, K. K., Vuchev, D. I., Tsenov, J. A., Denkova, P. S., Kondeva, M. S. & Micheva, M. K. (2006). Eur. J. Med. Chem. 41, 1412–1420. Web of Science CrossRef PubMed CAS Google Scholar
Mavrova, A. T., Vuchev, D., Anichina, K. & Vassilev, N. (2010). Eur. J. Med. Chem. 45, 5856–5861. Web of Science CrossRef CAS PubMed Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Okamoto, K., Yamamoto, T. & Kanbara, T. (2007). Synlett, pp. 2687–2690. Google Scholar
Pandey, V. K. & Shukla, A. (1999). Indian J. Chem. 38, 1381–1383. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pudovik, A. N., Khairullin, V. K., Vasyanina, M. A., Pokrovskaya, I. K., Kataeva, O. N., Litvinov, I. A. & Naumov, V. A. (1990). Izv. Akad. Nauk SSSR Ser. Khim. p. 2590. Google Scholar
Ramasamy, K., Malik, M. A., O'Brien, P. & Raftery, J. (2009). Dalton Trans. p. 2196–2200 . Web of Science CSD CrossRef Google Scholar
Ranskiy, A. P., Didenko, N. O. & Gordienko, O. A. (2016). Ukrain. J. Chem, 82, 117–125. CAS Google Scholar
Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Schmaunz, C. E., Mayer, P. & Wanner, K. T. (2014). Synthesis, 46, 1630–1638. Google Scholar
Seth, S. K. (2014). J. Mol. Struct. 1064, 70–75. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siemens (1994). XP. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Walia, R., Hedaitullah, M., Naaz, S. F., Iqbal, K. & Lamba, H. S. (2011). Int. J. Res. Pharm. Chem, 1, 565–574. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.