research communications
catena-poly[[[bis(1-benzylimidazole-κN)copper(II)]-μ-sulfato-κ2O:O′-[tetrakis(1-benzylimidazole-κN)copper(II)]-μ-sulfato-κ2O:O′] N,N-dimethylformamide disolvate dihydrate]
ofaDepartment of Chemistry, Faculty of Science and Technology, Thammasat University, Klong Luang, Pathum Thani 12121, Thailand, bThammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Klong Luang, Pathum Thani 12121, Thailand, and cNuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok 26120, Thailand
*Correspondence e-mail: nwan0110@tu.ac.th
The title one-dimensional copper(II) coordination polymer, {[Cu(SO4)(C10H10N2)3]·C3H7NO·H2O}n or {[Cu(bzi)3(μ-O2SO2)]·H2O·DMF}n (bzi = 1-benzylimidazole, C10H10N2; DMF = N,N-dimethylformamide, C3H7NO), is constructed by monodentate bzi ligands and bridging sulfate anions, leading to chains propagating parallel to the c axis. Within a chain, there are two crystallographic independent CuII ions, each with , which form [CuN2O2] and [CuN4O2] polyhedra alternating along the chain direction. The is consolidated by weak hydrogen-bonding, C—H⋯π and π–π interactions, leading to the formation of a three-dimensional supramolecular network.
Keywords: crystal structure; copper(II); 1-benzylimidazole; bridging sulfate ligand; chain structure.
CCDC reference: 2204358
1. Chemical context
The exploration of new transition-metal coordination polymers (CPs) is still an ongoing process since this class of molecular materials presents interesting properties and potential applications in adsorption, catalysis, storage, and photoluminescent sensing (Engel & Scott, 2020; Liu et al., 2021; Baruah, 2022; Ma & Horike, 2022). For the design and synthesis of new CPs, metal ions and bridging ligands play an important role, because they influence structural topologies, dimensionalities, and possible functions (Du et al., 2013). In this context, we focused on the copper(II) ion and O-donor sulfate (SO42–) and N-donor heterocyclic aromatic ligands for the current study. Copper(II) compounds show interesting electronic and magnetic properties, accompanied by various structural topologies, physical properties and applications (Das & Pal, 2001; Gao & Liu, 2022). The sulfate anion can act as a bridging ligand due to its versatile coordination modes supporting the increase of structural dimensionalities of the CPs (Yotnoi et al., 2014). The presence of mono- and/or bidentate N-donor heterocyclic aromatic imidazole derivatives as ligands in CPs is generally found to increase the extended structures and the stability of the crystal structures through supramolecular interactions such as π–π stacking and C—H⋯π bonding (Krinchampa et al., 2016; Assavajamroon et al., 2019). As previous studies suggest, there is limited research reported for CuII CPs constructed from mixed sulfate and N-donor imidazole derivatives, for example [Cu(L)2(μ-O2SO2)]n where L = imidazole (Fransson & Lundberg, 1972; Kumar et al., 2014) and L = N-methylimidazole (Liu et al., 2003). During the current study, we used the imidazole derivative, 1-benzylimidazole (bzi), to investigate its influence on supramolecular interactions in the resulting network.
In the present communication, we report the 3(μ-O2SO2)]·H2O·DMF}n (bzi = 1-benzylimidazole; DMF = N,N-dimethylformamide).
spectroscopic characteristics and some physical properties of {[Cu(bzi)2. Structural commentary
The 3(μ-O2SO2)]·H2O·DMF}n comprises two CuII ions with (Wyckoff letters b and d), three bzi molecules (see Fig. S1 in the supporting information), a coordinating sulfate anion, one water and one DMF solvent molecule (Fig. 1). The environments of the two CuII cations are different. Cu1 is surrounded by two nitrogen donor atoms from two monodentate bzi ligands and two oxygen donor atoms of two different sulfate bridging ligands, resulting in an [N2O2] coordination set with a square-planar shape and Cu1—N1 and Cu1—O1 bond lengths of 1.9951 (14) and 1.9564 (12) Å, respectively; the bite angles around Cu1 are in the range 89.25 (6)–90.75 (6)°. Cu2 is coordinated by four nitrogen donor atoms from four monodentate bzi ligands and two oxygen donor atoms of two different sulfate bridging ligands, resulting in an [N4O2] coordination set with a typically Jahn–Teller-distorted octahedral shape with bond lengths of Cu2—N3 = 2.0210 (15), Cu2—N5 = 2.013 (15) Å, and Cu2—O2 = 2.4912 (12) Å. Both CuII sites are alternatively connected by bis-monodentately binding and bridging sulfate ligands, μ-κ2O,O′, leading to a chain-like structure extending parallel to the c axis, as shown in Fig. 2. The Cu1⋯Cu2 distance within a chain is 6.1119 (4) Å.
of the solvated coordination polymer {[Cu(bzi)3. Supramolecular features
The π and π–π interactions. Non-classical C—H⋯O hydrogen-bonding interactions are found between the C—H donor groups of the bzi imidazole rings to three different oxygen acceptor atoms (O1, O2 and O3) of a sulfate bridging ligand, together with a weak hydrogen bond within a bzi molecule, C10—H10⋯N2 (Table 1; Fig. S2 in the supporting information). Moreover, O—H⋯O hydrogen-bonding interactions between the bridging sulfate ion in the chain and the solvate water and DMF molecules are found (Table 1; Fig. S3 in the supporting information). Intermolecular interactions between adjacent chains (Fig. 3a) exist through hydrogen-bonding interactions between a methylene group and a sulfate ligand, C4—H4⋯O3ii and C24—H24B⋯O4ii (Table 1; Fig. 3b) and by C—H⋯π interactions, C13—H13⋯Cg4iv and C14—H14B⋯Cg4iv (Table 1; Fig. 3c), leading to a two-dimensional supramolecular network extending parallel to the bc plane, as shown in Figs. S3 and S4 in the supporting information. Furthermore, π–π stacking interactions are present between the phenyl rings of bzi ligands (Fig. 4) with a centroid-to-centroid distance Cg5⋯Cg5v of 3.7099 (18) Å along the a-axis direction [Cg5 is the centroid of the C15–C20 phenyl ring; symmetry code: (v) −x, −y + 1, −z + 1], eventually leading to a three-dimensional supramolecular framework of the title compound, as shown in Fig. 5.
of the title compound is consolidated by weak interactions such as hydrogen-bonding, C—H⋯4. Spectroscopic characterization
The FT–IR spectrum of the title compound (Fig. S5 in the supporting information) exhibits the characteristic broad bands (centered at 3454 cm−1) assigned to the O—H stretching vibration of the solvent water molecule hydrogen-bonded to the DMF solvent molecule. Characteristic bands of the bzi ligand are observed at 3142 cm−1 for the aromatic C—H stretching, at 1523 and 1453 cm−1 and in the range of 700–500 cm−1 for the C=C, C—N stretching and C—H bending, respectively (Assavajamroon et al., 2019). The strong bands at 1675, 1116 and 713 cm−1 are due to the asymmetric stretching of the bridging sulfate ligand (Wang et al., 2014).
The solid-state diffuse reflectance spectrum of the title compound (Fig. S6 in the supporting information) shows a broad asymmetric band with λmax at 602 nm (16.60 kK) and a shoulder at about 756 nm (13.24 kK). These bands might be assigned to electronic d → d transitions, (dxy, dxz, dyz) → dx2–y2 and dz2→ dx2–y2, corresponding to a distorted octahedral conformation.
5. PXRD and thermal analysis
The plots of the experimental and simulated powder X-ray diffraction (PXRD) patterns of the title compound (Fig. S7 in the supporting information) show a good match, confirming reproducibility and phase purity.
The thermal stability of the title compound has been investigated by means of thermogravimetric analysis with the temperature in the range 303–1073 K under a nitrogen atmosphere. Based on the results (Fig. S8 in the supporting information), the title compound is stable to about 371 K. Above this temperature, the compound starts to decompose by a mass loss of 13%, which corresponds to the loss of solvent water and DMF molecules. The second step of mass loss (65%) corresponds to the release of the remaining coordinating bzi and sulfate ligands. Further increasing the temperature leads to another mass loss (22%) until CuO forms as the final product.
6. Database survey
According to a search of the Cambridge Structural Database (CSD; version 5.41, November 2019 update; Groom et al., 2016), there are some one-dimensional CuII coordination polymers containing the sulfate anion as a bridging ligand together with N-donor imidazole-based ligands. The ones most closely related to the title compound are [Cu(imidazole)4SO4] (TIMZCU02; Kumar et al., 2014) and [Cu(N-methylimidazole)4(SO4)] (IJEBII; Liu et al., 2003). These two CuII coordination polymers have the same octahedral [N4O2] coordination set around the CuII ion, while those of the title compound contain alternatively two different CuII polyhedra, as discussed in the Structural commentary.
7. Synthesis and crystallization
A methanolic solution (5 ml) of bzi (0.6329 g, 4.0 mmol) was dropped slowly into a methanolic solution (5 ml) of CuSO4·5H2O (0.2491 g, 1.0 mmol) under continuous stirring at 333 K over a period of 10 min, resulting in a blue solution. The solution was then filtered and allowed to evaporate slowly under atmospheric conditions at room temperature. After seven days, the solution became viscous, and 10 ml of DMF were added to the solution under continuous stirring at 333 K over a period of 5 min. Stirring was continued until the solution became clear. Finally, the solution was filtered and allowed to evaporate slowly in air at room temperature. Blue crystals of the title compound were obtained within a day (yield 38%, 93.4 mg, based on the CuII salt).
8. Refinement
Crystal data, data collection and structure . All C-bound H atoms were calculated and refined using a riding model, with C—H = 0.93 Å for aromatic H atoms (0.97 Å for methyl H atoms), and Uiso(H) = 1.2Ueq(C) [Uiso(H) = 1.5Ueq(C)]. The O-bound H atoms of the water molecule were located in a difference-Fourier map, and were refined with an O—H bond length of 0.85 Å, and with Uiso(H) = 1.5Ueq(O).
details are summarized in Table 2
|
Supporting information
CCDC reference: 2204358
https://doi.org/10.1107/S2056989022008714/wm5658sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022008714/wm5658Isup2.hkl
The supporting information about crystal structures and characterization has been presented in the pdf file. DOI: https://doi.org/10.1107/S2056989022008714/wm5658sup3.pdf
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).[Cu(SO4)(C10H10N2)3]·C3H7NO·H2O | F(000) = 1516 |
Mr = 725.31 | Dx = 1.373 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 15.8896 (10) Å | Cell parameters from 9903 reflections |
b = 18.1195 (11) Å | θ = 2.3–29.9° |
c = 12.2238 (7) Å | µ = 0.74 mm−1 |
β = 94.239 (2)° | T = 296 K |
V = 3509.7 (4) Å3 | Block, dark blue |
Z = 4 | 0.38 × 0.35 × 0.32 mm |
BRUKER D8 QUEST CMOS PHOTON II diffractometer | 10697 independent reflections |
Radiation source: sealed x-ray tube, Mo | 7310 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
Detector resolution: 7.39 pixels mm-1 | θmax = 30.5°, θmin = 2.3° |
ω and φ scans | h = −22→22 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015). | k = −25→21 |
Tmin = 0.640, Tmax = 0.746 | l = −14→17 |
50998 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.117 | w = 1/[σ2(Fo2) + (0.049P)2 + 1.1168P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
10697 reflections | Δρmax = 0.39 e Å−3 |
441 parameters | Δρmin = −0.35 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.500000 | 0.500000 | 1.000000 | 0.02929 (8) | |
Cu2 | 0.500000 | 0.500000 | 0.500000 | 0.03313 (8) | |
S1 | 0.45600 (3) | 0.57757 (2) | 0.78307 (3) | 0.03415 (10) | |
O1 | 0.52363 (8) | 0.53965 (7) | 0.85659 (10) | 0.0390 (3) | |
O2 | 0.44811 (9) | 0.53635 (7) | 0.67969 (10) | 0.0422 (3) | |
O3 | 0.48237 (10) | 0.65349 (8) | 0.76450 (11) | 0.0478 (3) | |
O4 | 0.37859 (10) | 0.57424 (9) | 0.83974 (13) | 0.0548 (4) | |
N1 | 0.45657 (10) | 0.40654 (8) | 0.93045 (12) | 0.0348 (3) | |
N2 | 0.40670 (10) | 0.32616 (8) | 0.80834 (12) | 0.0371 (3) | |
N3 | 0.38640 (9) | 0.45109 (8) | 0.46926 (12) | 0.0360 (3) | |
N4 | 0.25298 (9) | 0.42410 (10) | 0.48218 (13) | 0.0421 (4) | |
N5 | 0.55242 (10) | 0.40576 (8) | 0.55904 (12) | 0.0360 (3) | |
N6 | 0.61544 (11) | 0.29797 (9) | 0.55906 (14) | 0.0452 (4) | |
C1 | 0.43083 (13) | 0.39607 (10) | 0.82595 (14) | 0.0386 (4) | |
H1 | 0.429704 | 0.432455 | 0.772195 | 0.046* | |
C2 | 0.44734 (13) | 0.33958 (10) | 0.98116 (16) | 0.0423 (4) | |
H2 | 0.460152 | 0.330123 | 1.055305 | 0.051* | |
C3 | 0.41682 (14) | 0.28984 (11) | 0.90649 (16) | 0.0461 (5) | |
H3 | 0.404953 | 0.240457 | 0.919213 | 0.055* | |
C4 | 0.37274 (13) | 0.29476 (12) | 0.70396 (15) | 0.0448 (5) | |
H4A | 0.403354 | 0.249878 | 0.689678 | 0.054* | |
H4B | 0.381868 | 0.329382 | 0.645483 | 0.054* | |
C5 | 0.28021 (14) | 0.27738 (11) | 0.70233 (16) | 0.0431 (4) | |
C6 | 0.24550 (18) | 0.22769 (15) | 0.6250 (2) | 0.0642 (7) | |
H6 | 0.279780 | 0.205532 | 0.575961 | 0.077* | |
C7 | 0.1604 (2) | 0.21093 (19) | 0.6203 (3) | 0.0835 (9) | |
H7 | 0.137660 | 0.178043 | 0.567717 | 0.100* | |
C8 | 0.1095 (2) | 0.24268 (19) | 0.6930 (3) | 0.0829 (9) | |
H8 | 0.052397 | 0.230936 | 0.690094 | 0.099* | |
C9 | 0.14248 (17) | 0.29133 (18) | 0.7694 (2) | 0.0735 (8) | |
H9 | 0.107963 | 0.312823 | 0.818691 | 0.088* | |
C10 | 0.22742 (15) | 0.30879 (13) | 0.77361 (19) | 0.0560 (6) | |
H10 | 0.249295 | 0.342443 | 0.825678 | 0.067* | |
C11 | 0.31994 (12) | 0.46172 (12) | 0.52597 (16) | 0.0418 (4) | |
H11 | 0.319568 | 0.491353 | 0.588053 | 0.050* | |
C12 | 0.35995 (12) | 0.40518 (11) | 0.38466 (17) | 0.0433 (4) | |
H12 | 0.393428 | 0.388213 | 0.330678 | 0.052* | |
C13 | 0.27752 (13) | 0.38826 (12) | 0.39170 (19) | 0.0497 (5) | |
H13 | 0.244297 | 0.358230 | 0.344333 | 0.060* | |
C14 | 0.16745 (13) | 0.42591 (15) | 0.52061 (19) | 0.0547 (6) | |
H14A | 0.169174 | 0.449836 | 0.591730 | 0.066* | |
H14B | 0.147524 | 0.375799 | 0.529264 | 0.066* | |
C15 | 0.10724 (13) | 0.46645 (15) | 0.44190 (18) | 0.0512 (5) | |
C16 | 0.05359 (16) | 0.42953 (19) | 0.3673 (2) | 0.0764 (8) | |
H16 | 0.054466 | 0.378218 | 0.366189 | 0.092* | |
C17 | −0.00141 (19) | 0.4666 (3) | 0.2943 (3) | 0.0967 (11) | |
H17 | −0.036817 | 0.440720 | 0.243896 | 0.116* | |
C18 | −0.0031 (2) | 0.5408 (3) | 0.2970 (3) | 0.0937 (11) | |
H18 | −0.040304 | 0.566072 | 0.248004 | 0.112* | |
C19 | 0.0481 (2) | 0.5794 (2) | 0.3696 (3) | 0.0999 (11) | |
H19 | 0.045884 | 0.630676 | 0.370829 | 0.120* | |
C20 | 0.1044 (2) | 0.54141 (18) | 0.4426 (2) | 0.0764 (8) | |
H20 | 0.140257 | 0.567632 | 0.492089 | 0.092* | |
C21 | 0.56890 (12) | 0.34753 (10) | 0.49988 (16) | 0.0398 (4) | |
H21 | 0.550585 | 0.341533 | 0.426391 | 0.048* | |
C22 | 0.59092 (14) | 0.39326 (13) | 0.66186 (16) | 0.0494 (5) | |
H22 | 0.590355 | 0.425125 | 0.721445 | 0.059* | |
C23 | 0.62978 (16) | 0.32677 (14) | 0.66178 (18) | 0.0596 (6) | |
H23 | 0.660522 | 0.304825 | 0.720784 | 0.072* | |
C24 | 0.64896 (16) | 0.22883 (12) | 0.5175 (2) | 0.0573 (6) | |
H24A | 0.615387 | 0.214479 | 0.451417 | 0.069* | |
H24B | 0.643667 | 0.190319 | 0.571681 | 0.069* | |
C25 | 0.73985 (16) | 0.23489 (12) | 0.4922 (2) | 0.0534 (5) | |
C26 | 0.7648 (2) | 0.28263 (17) | 0.4128 (2) | 0.0751 (8) | |
H26 | 0.725232 | 0.313005 | 0.375349 | 0.090* | |
C27 | 0.8488 (3) | 0.2855 (2) | 0.3887 (3) | 0.1061 (13) | |
H27 | 0.865192 | 0.317801 | 0.335160 | 0.127* | |
C28 | 0.9074 (3) | 0.2412 (3) | 0.4429 (5) | 0.1199 (16) | |
H28 | 0.963483 | 0.243075 | 0.425907 | 0.144* | |
C29 | 0.8836 (2) | 0.1941 (3) | 0.5221 (4) | 0.1134 (14) | |
H29 | 0.923590 | 0.164019 | 0.559236 | 0.136* | |
C30 | 0.80019 (19) | 0.19079 (17) | 0.5476 (3) | 0.0774 (8) | |
H30 | 0.784610 | 0.158837 | 0.602104 | 0.093* | |
O5 | 0.22185 (17) | 0.5284 (2) | 0.7504 (2) | 0.1226 (10) | |
H5A | 0.267379 | 0.551864 | 0.766519 | 0.184* | |
H5B | 0.206889 | 0.512904 | 0.811700 | 0.184* | |
O6 | 0.1289 (3) | 0.4550 (2) | 0.9369 (3) | 0.1648 (15) | |
N7 | 0.20211 (14) | 0.50470 (13) | 1.07952 (19) | 0.0669 (6) | |
C31 | 0.1313 (2) | 0.4916 (2) | 1.0252 (3) | 0.0986 (11) | |
H31 | 0.081506 | 0.509183 | 1.051085 | 0.118* | |
C32 | 0.2811 (3) | 0.4808 (3) | 1.0442 (4) | 0.1303 (17) | |
H32A | 0.271751 | 0.451665 | 0.978836 | 0.195* | |
H32B | 0.309898 | 0.451514 | 1.100831 | 0.195* | |
H32C | 0.314949 | 0.522959 | 1.029282 | 0.195* | |
C33 | 0.2076 (3) | 0.5490 (3) | 1.1787 (3) | 0.1280 (15) | |
H33A | 0.153125 | 0.569099 | 1.190220 | 0.192* | |
H33B | 0.247100 | 0.588469 | 1.171281 | 0.192* | |
H33C | 0.226384 | 0.518652 | 1.240114 | 0.192* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.03603 (16) | 0.02569 (14) | 0.02567 (14) | −0.00356 (12) | −0.00096 (10) | −0.00254 (10) |
Cu2 | 0.02823 (15) | 0.02747 (15) | 0.04268 (17) | −0.00080 (12) | −0.00426 (12) | 0.00424 (12) |
S1 | 0.0459 (3) | 0.0306 (2) | 0.02570 (19) | −0.00432 (19) | 0.00091 (16) | −0.00219 (16) |
O1 | 0.0489 (8) | 0.0388 (7) | 0.0286 (6) | −0.0049 (6) | −0.0020 (5) | 0.0017 (5) |
O2 | 0.0630 (9) | 0.0373 (7) | 0.0259 (6) | −0.0068 (6) | 0.0003 (6) | −0.0048 (5) |
O3 | 0.0747 (10) | 0.0305 (7) | 0.0370 (7) | −0.0090 (7) | −0.0045 (6) | 0.0008 (5) |
O4 | 0.0518 (9) | 0.0589 (10) | 0.0553 (9) | −0.0014 (8) | 0.0141 (7) | −0.0097 (7) |
N1 | 0.0442 (9) | 0.0290 (7) | 0.0308 (7) | −0.0054 (6) | 0.0001 (6) | −0.0032 (6) |
N2 | 0.0465 (9) | 0.0310 (8) | 0.0330 (8) | −0.0052 (7) | −0.0022 (6) | −0.0068 (6) |
N3 | 0.0316 (8) | 0.0333 (8) | 0.0425 (8) | −0.0007 (6) | −0.0027 (6) | 0.0010 (6) |
N4 | 0.0295 (8) | 0.0479 (9) | 0.0482 (9) | −0.0023 (7) | −0.0026 (6) | 0.0014 (7) |
N5 | 0.0375 (8) | 0.0316 (8) | 0.0379 (8) | 0.0011 (6) | −0.0037 (6) | 0.0031 (6) |
N6 | 0.0533 (10) | 0.0346 (8) | 0.0474 (9) | 0.0085 (8) | 0.0022 (7) | 0.0087 (7) |
C1 | 0.0544 (11) | 0.0304 (9) | 0.0307 (9) | −0.0062 (8) | 0.0018 (8) | −0.0022 (7) |
C2 | 0.0549 (12) | 0.0320 (9) | 0.0383 (10) | −0.0076 (9) | −0.0090 (8) | 0.0025 (7) |
C3 | 0.0626 (13) | 0.0283 (9) | 0.0452 (11) | −0.0068 (9) | −0.0114 (9) | 0.0005 (8) |
C4 | 0.0595 (13) | 0.0415 (10) | 0.0325 (9) | −0.0064 (9) | −0.0021 (8) | −0.0120 (8) |
C5 | 0.0552 (12) | 0.0354 (10) | 0.0370 (10) | −0.0037 (9) | −0.0086 (8) | 0.0009 (8) |
C6 | 0.0745 (17) | 0.0597 (14) | 0.0563 (14) | −0.0149 (13) | −0.0090 (12) | −0.0150 (12) |
C7 | 0.080 (2) | 0.083 (2) | 0.083 (2) | −0.0319 (18) | −0.0231 (16) | −0.0080 (17) |
C8 | 0.0575 (16) | 0.094 (2) | 0.094 (2) | −0.0167 (16) | −0.0151 (16) | 0.0204 (18) |
C9 | 0.0572 (16) | 0.086 (2) | 0.0769 (18) | 0.0080 (15) | −0.0006 (13) | 0.0101 (15) |
C10 | 0.0585 (14) | 0.0544 (13) | 0.0533 (13) | 0.0036 (11) | −0.0082 (10) | −0.0055 (10) |
C11 | 0.0338 (9) | 0.0503 (12) | 0.0404 (10) | −0.0012 (9) | −0.0030 (7) | −0.0024 (8) |
C12 | 0.0384 (10) | 0.0371 (10) | 0.0542 (12) | 0.0016 (8) | 0.0018 (8) | −0.0109 (8) |
C13 | 0.0376 (10) | 0.0459 (12) | 0.0644 (13) | −0.0046 (9) | −0.0037 (9) | −0.0163 (10) |
C14 | 0.0331 (10) | 0.0757 (16) | 0.0555 (13) | −0.0050 (11) | 0.0040 (9) | 0.0079 (11) |
C15 | 0.0326 (10) | 0.0720 (16) | 0.0493 (12) | 0.0029 (10) | 0.0054 (8) | −0.0023 (11) |
C16 | 0.0492 (14) | 0.094 (2) | 0.0830 (19) | −0.0083 (14) | −0.0131 (13) | −0.0027 (16) |
C17 | 0.0540 (17) | 0.150 (4) | 0.082 (2) | 0.000 (2) | −0.0196 (14) | −0.007 (2) |
C18 | 0.071 (2) | 0.137 (4) | 0.074 (2) | 0.039 (2) | 0.0059 (16) | 0.010 (2) |
C19 | 0.107 (3) | 0.086 (2) | 0.108 (3) | 0.039 (2) | 0.017 (2) | 0.001 (2) |
C20 | 0.0769 (19) | 0.079 (2) | 0.0731 (18) | 0.0134 (16) | 0.0012 (14) | −0.0134 (15) |
C21 | 0.0464 (11) | 0.0326 (9) | 0.0390 (10) | 0.0001 (8) | −0.0055 (8) | 0.0051 (7) |
C22 | 0.0575 (13) | 0.0541 (13) | 0.0356 (10) | 0.0108 (10) | −0.0028 (9) | 0.0034 (9) |
C23 | 0.0733 (16) | 0.0623 (15) | 0.0419 (12) | 0.0227 (12) | −0.0052 (10) | 0.0143 (10) |
C24 | 0.0644 (15) | 0.0319 (10) | 0.0764 (16) | 0.0059 (10) | 0.0105 (12) | 0.0048 (10) |
C25 | 0.0597 (14) | 0.0374 (11) | 0.0635 (14) | 0.0041 (10) | 0.0076 (11) | −0.0038 (10) |
C26 | 0.082 (2) | 0.0669 (18) | 0.0775 (19) | −0.0057 (15) | 0.0153 (15) | 0.0040 (15) |
C27 | 0.105 (3) | 0.107 (3) | 0.112 (3) | −0.034 (3) | 0.047 (2) | −0.012 (2) |
C28 | 0.070 (2) | 0.127 (4) | 0.167 (5) | −0.008 (2) | 0.031 (3) | −0.035 (3) |
C29 | 0.062 (2) | 0.112 (3) | 0.163 (4) | 0.018 (2) | −0.016 (2) | −0.018 (3) |
C30 | 0.0710 (19) | 0.0675 (18) | 0.092 (2) | 0.0128 (15) | −0.0051 (15) | 0.0025 (15) |
O5 | 0.0773 (16) | 0.200 (3) | 0.0881 (17) | −0.0242 (18) | −0.0116 (13) | −0.028 (2) |
O6 | 0.211 (4) | 0.168 (3) | 0.105 (2) | −0.027 (3) | −0.061 (2) | −0.021 (2) |
N7 | 0.0562 (13) | 0.0857 (17) | 0.0590 (13) | 0.0047 (11) | 0.0061 (10) | 0.0064 (11) |
C31 | 0.080 (2) | 0.117 (3) | 0.095 (3) | −0.005 (2) | −0.0134 (19) | 0.013 (2) |
C32 | 0.089 (3) | 0.170 (4) | 0.135 (4) | 0.038 (3) | 0.036 (3) | 0.036 (3) |
C33 | 0.133 (4) | 0.161 (4) | 0.088 (3) | −0.021 (3) | −0.004 (2) | −0.021 (3) |
Cu1—O1i | 1.9564 (12) | C12—C13 | 1.354 (3) |
Cu1—O1 | 1.9564 (12) | C13—H13 | 0.9300 |
Cu1—N1i | 1.9951 (14) | C14—H14A | 0.9700 |
Cu1—N1 | 1.9951 (14) | C14—H14B | 0.9700 |
Cu2—O2 | 2.4912 (12) | C14—C15 | 1.498 (3) |
Cu2—N3ii | 2.0210 (15) | C15—C16 | 1.375 (3) |
Cu2—N3 | 2.0210 (15) | C15—C20 | 1.359 (4) |
Cu2—N5 | 2.0103 (15) | C16—H16 | 0.9300 |
Cu2—N5ii | 2.0103 (15) | C16—C17 | 1.377 (4) |
S1—O1 | 1.5139 (13) | C17—H17 | 0.9300 |
S1—O2 | 1.4653 (13) | C17—C18 | 1.345 (6) |
S1—O3 | 1.4608 (14) | C18—H18 | 0.9300 |
S1—O4 | 1.4567 (15) | C18—C19 | 1.354 (5) |
N1—C1 | 1.326 (2) | C19—H19 | 0.9300 |
N1—C2 | 1.375 (2) | C19—C20 | 1.398 (4) |
N2—C1 | 1.336 (2) | C20—H20 | 0.9300 |
N2—C3 | 1.367 (2) | C21—H21 | 0.9300 |
N2—C4 | 1.463 (2) | C22—H22 | 0.9300 |
N3—C11 | 1.320 (2) | C22—C23 | 1.354 (3) |
N3—C12 | 1.369 (2) | C23—H23 | 0.9300 |
N4—C11 | 1.341 (2) | C24—H24A | 0.9700 |
N4—C13 | 1.364 (3) | C24—H24B | 0.9700 |
N4—C14 | 1.471 (3) | C24—C25 | 1.503 (3) |
N5—C21 | 1.316 (2) | C25—C26 | 1.380 (4) |
N5—C22 | 1.375 (2) | C25—C30 | 1.386 (4) |
N6—C21 | 1.341 (2) | C26—H26 | 0.9300 |
N6—C23 | 1.363 (3) | C26—C27 | 1.389 (4) |
N6—C24 | 1.467 (3) | C27—H27 | 0.9300 |
C1—H1 | 0.9300 | C27—C28 | 1.363 (6) |
C2—H2 | 0.9300 | C28—H28 | 0.9300 |
C2—C3 | 1.347 (3) | C28—C29 | 1.366 (6) |
C3—H3 | 0.9300 | C29—H29 | 0.9300 |
C4—H4A | 0.9700 | C29—C30 | 1.384 (5) |
C4—H4B | 0.9700 | C30—H30 | 0.9300 |
C4—C5 | 1.502 (3) | O5—H5A | 0.8500 |
C5—C6 | 1.390 (3) | O5—H5B | 0.8499 |
C5—C10 | 1.377 (3) | O6—C31 | 1.266 (5) |
C6—H6 | 0.9300 | N7—C31 | 1.285 (4) |
C6—C7 | 1.382 (4) | N7—C32 | 1.425 (4) |
C7—H7 | 0.9300 | N7—C33 | 1.451 (4) |
C7—C8 | 1.372 (5) | C31—H31 | 0.9300 |
C8—H8 | 0.9300 | C32—H32A | 0.9600 |
C8—C9 | 1.360 (4) | C32—H32B | 0.9600 |
C9—H9 | 0.9300 | C32—H32C | 0.9600 |
C9—C10 | 1.383 (4) | C33—H33A | 0.9600 |
C10—H10 | 0.9300 | C33—H33B | 0.9600 |
C11—H11 | 0.9300 | C33—H33C | 0.9600 |
C12—H12 | 0.9300 | ||
O1i—Cu1—O1 | 180.0 | C13—C12—H12 | 125.2 |
O1—Cu1—N1i | 89.25 (6) | N4—C13—H13 | 126.9 |
O1—Cu1—N1 | 90.75 (6) | C12—C13—N4 | 106.24 (17) |
O1i—Cu1—N1i | 90.75 (6) | C12—C13—H13 | 126.9 |
O1i—Cu1—N1 | 89.25 (6) | N4—C14—H14A | 109.3 |
N1i—Cu1—N1 | 180.0 | N4—C14—H14B | 109.3 |
N3—Cu2—O2 | 86.02 (5) | N4—C14—C15 | 111.54 (18) |
N3ii—Cu2—O2 | 93.98 (5) | H14A—C14—H14B | 108.0 |
N3—Cu2—N3ii | 180.0 | C15—C14—H14A | 109.3 |
N5—Cu2—O2 | 93.63 (5) | C15—C14—H14B | 109.3 |
N5ii—Cu2—O2 | 86.36 (5) | C16—C15—C14 | 121.5 (3) |
N5—Cu2—N3ii | 88.00 (6) | C20—C15—C14 | 120.4 (2) |
N5—Cu2—N3 | 92.00 (6) | C20—C15—C16 | 118.1 (3) |
N5ii—Cu2—N3 | 87.99 (6) | C15—C16—H16 | 119.2 |
N5ii—Cu2—N3ii | 92.00 (6) | C15—C16—C17 | 121.7 (3) |
N5ii—Cu2—N5 | 180.00 (4) | C17—C16—H16 | 119.2 |
O2—S1—O1 | 106.99 (8) | C16—C17—H17 | 120.5 |
O3—S1—O1 | 108.69 (8) | C18—C17—C16 | 119.0 (3) |
O3—S1—O2 | 110.68 (8) | C18—C17—H17 | 120.5 |
O4—S1—O1 | 106.63 (9) | C17—C18—H18 | 119.3 |
O4—S1—O2 | 111.57 (9) | C17—C18—C19 | 121.3 (3) |
O4—S1—O3 | 112.02 (10) | C19—C18—H18 | 119.3 |
S1—O1—Cu1 | 121.58 (8) | C18—C19—H19 | 120.3 |
S1—O2—Cu2 | 151.93 (9) | C18—C19—C20 | 119.3 (4) |
C1—N1—Cu1 | 127.18 (13) | C20—C19—H19 | 120.3 |
C1—N1—C2 | 105.82 (15) | C15—C20—C19 | 120.5 (3) |
C2—N1—Cu1 | 127.00 (12) | C15—C20—H20 | 119.7 |
C1—N2—C3 | 107.53 (15) | C19—C20—H20 | 119.7 |
C1—N2—C4 | 126.30 (16) | N5—C21—N6 | 111.39 (17) |
C3—N2—C4 | 126.14 (16) | N5—C21—H21 | 124.3 |
C11—N3—Cu2 | 125.23 (13) | N6—C21—H21 | 124.3 |
C11—N3—C12 | 105.81 (16) | N5—C22—H22 | 125.7 |
C12—N3—Cu2 | 128.84 (13) | C23—C22—N5 | 108.54 (19) |
C11—N4—C13 | 107.44 (16) | C23—C22—H22 | 125.7 |
C11—N4—C14 | 125.85 (18) | N6—C23—H23 | 126.4 |
C13—N4—C14 | 126.58 (17) | C22—C23—N6 | 107.22 (18) |
C21—N5—Cu2 | 125.28 (12) | C22—C23—H23 | 126.4 |
C21—N5—C22 | 106.07 (16) | N6—C24—H24A | 109.0 |
C22—N5—Cu2 | 127.77 (14) | N6—C24—H24B | 109.0 |
C21—N6—C23 | 106.77 (17) | N6—C24—C25 | 112.82 (19) |
C21—N6—C24 | 125.82 (18) | H24A—C24—H24B | 107.8 |
C23—N6—C24 | 127.27 (18) | C25—C24—H24A | 109.0 |
N1—C1—N2 | 110.80 (16) | C25—C24—H24B | 109.0 |
N1—C1—H1 | 124.6 | C26—C25—C24 | 121.4 (2) |
N2—C1—H1 | 124.6 | C26—C25—C30 | 118.7 (3) |
N1—C2—H2 | 125.4 | C30—C25—C24 | 119.9 (2) |
C3—C2—N1 | 109.25 (16) | C25—C26—H26 | 119.9 |
C3—C2—H2 | 125.4 | C25—C26—C27 | 120.2 (3) |
N2—C3—H3 | 126.7 | C27—C26—H26 | 119.9 |
C2—C3—N2 | 106.60 (17) | C26—C27—H27 | 119.7 |
C2—C3—H3 | 126.7 | C28—C27—C26 | 120.5 (4) |
N2—C4—H4A | 109.0 | C28—C27—H27 | 119.7 |
N2—C4—H4B | 109.0 | C27—C28—H28 | 120.1 |
N2—C4—C5 | 112.99 (16) | C27—C28—C29 | 119.8 (4) |
H4A—C4—H4B | 107.8 | C29—C28—H28 | 120.1 |
C5—C4—H4A | 109.0 | C28—C29—H29 | 119.8 |
C5—C4—H4B | 109.0 | C28—C29—C30 | 120.5 (4) |
C6—C5—C4 | 118.9 (2) | C30—C29—H29 | 119.8 |
C10—C5—C4 | 123.13 (18) | C25—C30—H30 | 119.9 |
C10—C5—C6 | 118.0 (2) | C29—C30—C25 | 120.3 (3) |
C5—C6—H6 | 119.7 | C29—C30—H30 | 119.9 |
C7—C6—C5 | 120.5 (3) | H5A—O5—H5B | 104.5 |
C7—C6—H6 | 119.7 | C31—N7—C32 | 123.0 (4) |
C6—C7—H7 | 119.9 | C31—N7—C33 | 122.0 (3) |
C8—C7—C6 | 120.2 (3) | C32—N7—C33 | 114.9 (3) |
C8—C7—H7 | 119.9 | O6—C31—N7 | 120.5 (4) |
C7—C8—H8 | 120.0 | O6—C31—H31 | 119.7 |
C9—C8—C7 | 120.0 (3) | N7—C31—H31 | 119.7 |
C9—C8—H8 | 120.0 | N7—C32—H32A | 109.5 |
C8—C9—H9 | 120.0 | N7—C32—H32B | 109.5 |
C8—C9—C10 | 120.0 (3) | N7—C32—H32C | 109.5 |
C10—C9—H9 | 120.0 | H32A—C32—H32B | 109.5 |
C5—C10—C9 | 121.3 (2) | H32A—C32—H32C | 109.5 |
C5—C10—H10 | 119.3 | H32B—C32—H32C | 109.5 |
C9—C10—H10 | 119.3 | N7—C33—H33A | 109.5 |
N3—C11—N4 | 110.99 (18) | N7—C33—H33B | 109.5 |
N3—C11—H11 | 124.5 | N7—C33—H33C | 109.5 |
N4—C11—H11 | 124.5 | H33A—C33—H33B | 109.5 |
N3—C12—H12 | 125.2 | H33A—C33—H33C | 109.5 |
C13—C12—N3 | 109.52 (18) | H33B—C33—H33C | 109.5 |
Cu1—N1—C1—N2 | 179.36 (13) | C10—C5—C6—C7 | 0.2 (4) |
Cu1—N1—C2—C3 | −179.47 (15) | C11—N3—C12—C13 | −0.3 (2) |
Cu2—N3—C11—N4 | 177.06 (12) | C11—N4—C13—C12 | 0.6 (2) |
Cu2—N3—C12—C13 | −176.47 (14) | C11—N4—C14—C15 | 108.7 (2) |
Cu2—N5—C21—N6 | 170.35 (13) | C12—N3—C11—N4 | 0.7 (2) |
Cu2—N5—C22—C23 | −169.85 (16) | C13—N4—C11—N3 | −0.9 (2) |
O1—S1—O2—Cu2 | −74.37 (19) | C13—N4—C14—C15 | −66.4 (3) |
O2—S1—O1—Cu1 | −121.26 (9) | C14—N4—C11—N3 | −176.80 (18) |
O3—S1—O1—Cu1 | 119.19 (9) | C14—N4—C13—C12 | 176.5 (2) |
O3—S1—O2—Cu2 | 43.9 (2) | C14—C15—C16—C17 | −179.5 (3) |
O4—S1—O1—Cu1 | −1.75 (11) | C14—C15—C20—C19 | −179.8 (3) |
O4—S1—O2—Cu2 | 169.36 (16) | C15—C16—C17—C18 | −0.7 (5) |
N1—C2—C3—N2 | −0.2 (2) | C16—C15—C20—C19 | 0.3 (4) |
N2—C4—C5—C6 | −160.3 (2) | C16—C17—C18—C19 | 0.2 (5) |
N2—C4—C5—C10 | 20.2 (3) | C17—C18—C19—C20 | 0.5 (5) |
N3—C12—C13—N4 | −0.2 (2) | C18—C19—C20—C15 | −0.7 (5) |
N4—C14—C15—C16 | 99.3 (3) | C20—C15—C16—C17 | 0.5 (4) |
N4—C14—C15—C20 | −80.7 (3) | C21—N5—C22—C23 | −0.2 (3) |
N5—C22—C23—N6 | 0.0 (3) | C21—N6—C23—C22 | 0.2 (3) |
N6—C24—C25—C26 | −62.5 (3) | C21—N6—C24—C25 | 98.7 (3) |
N6—C24—C25—C30 | 118.9 (3) | C22—N5—C21—N6 | 0.4 (2) |
C1—N1—C2—C3 | 0.4 (2) | C23—N6—C21—N5 | −0.4 (2) |
C1—N2—C3—C2 | −0.2 (2) | C23—N6—C24—C25 | −76.5 (3) |
C1—N2—C4—C5 | −108.7 (2) | C24—N6—C21—N5 | −176.43 (19) |
C2—N1—C1—N2 | −0.5 (2) | C24—N6—C23—C22 | 176.2 (2) |
C3—N2—C1—N1 | 0.4 (2) | C24—C25—C26—C27 | −178.0 (3) |
C3—N2—C4—C5 | 68.9 (3) | C24—C25—C30—C29 | 177.7 (3) |
C4—N2—C1—N1 | 178.41 (17) | C25—C26—C27—C28 | 0.1 (6) |
C4—N2—C3—C2 | −178.14 (19) | C26—C25—C30—C29 | −1.0 (4) |
C4—C5—C6—C7 | −179.3 (2) | C26—C27—C28—C29 | −0.5 (7) |
C4—C5—C10—C9 | 180.0 (2) | C27—C28—C29—C30 | 0.2 (7) |
C5—C6—C7—C8 | −0.7 (5) | C28—C29—C30—C25 | 0.5 (6) |
C6—C5—C10—C9 | 0.4 (4) | C30—C25—C26—C27 | 0.7 (4) |
C6—C7—C8—C9 | 0.6 (5) | C32—N7—C31—O6 | 1.1 (6) |
C7—C8—C9—C10 | 0.0 (5) | C33—N7—C31—O6 | 177.5 (4) |
C8—C9—C10—C5 | −0.6 (4) |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y+1, −z+1. |
Cg is the centroid of the C5–C10 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O4 | 0.85 | 1.96 | 2.772 (3) | 159 |
O5—H5B···O6 | 0.85 | 2.29 | 3.106 (5) | 160 |
C1—H1···O2 | 0.93 | 2.23 | 3.131 (2) | 164 |
C2—H2···O1i | 0.93 | 2.60 | 2.966 (2) | 104 |
C2—H2···O3i | 0.93 | 2.34 | 3.227 (2) | 159 |
C4—H4A···O3iii | 0.97 | 2.55 | 3.445 (3) | 153 |
C10—H10···N2 | 0.93 | 2.54 | 2.866 (3) | 101 |
C11—H11···O2 | 0.93 | 2.40 | 2.990 (2) | 121 |
C12—H12···O3ii | 0.93 | 2.48 | 3.378 (2) | 162 |
C14—H14A···O5 | 0.97 | 2.50 | 3.425 (4) | 159 |
C21—H21···O2ii | 0.93 | 2.57 | 3.038 (2) | 112 |
C21—H21···O3ii | 0.93 | 2.36 | 3.274 (2) | 170 |
C24—H24B···O4iii | 0.97 | 2.40 | 3.346 (3) | 164 |
C32—H32A···O6 | 0.96 | 2.29 | 2.705 (7) | 105 |
C13—H13···Cg4iv | 0.93 | 2.87 | 3.759 (3) | 161 |
C14—H14B···Cg4iv | 0.97 | 2.99 | 3.711 (3) | 132 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y+1, −z+1; (iii) −x+1, y−1/2, −z+3/2; (iv) x, −y+1/2, z−1/2. |
Acknowledgements
The authors are grateful to the Faculty of Science and Technology, Thammasat University for funds to purchase the X-ray diffractometer. We also thank Professor Dr Sujittra Youngme, Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University for the TGA measurements.
Funding information
Funding for this research was provided by: Department of Chemistry, Faculty of Science and Technology, Thammasat University, Thailand; the TINT to University Project of Thailand Institute of Nuclear Technology (TINT) (grant to N. Wannarit, S. Laksee); the Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications Research Unit (TU-MCMA) (grant to K. Chainok, N. Wannarit).
References
Assavajamroon, P., Kielar, F., Chainok, K. & Wannarit, N. (2019). Acta Cryst. E75, 1748–1752. Web of Science CSD CrossRef IUCr Journals Google Scholar
Baruah, J. B. (2022). Coord. Chem. Rev. 470, 214694. Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Das, A. K. & Pal, A. K. (2001). J. Magn. Magn. Mater. 236, 77–82. Web of Science CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Du, M., Li, C.-P., Liu, C.-S. & Fang, S.-M. (2013). Coord. Chem. Rev. 257, 1282–1305. Web of Science CrossRef CAS Google Scholar
Engel, E. R. & Scott, J. L. (2020). Green Chem. 22, 3693–3715. Web of Science CrossRef CAS Google Scholar
Fransson, G. & Lundberg, B. K. S. (1972). Acta Chem. Scand. 26, 3969–3976. CSD CrossRef CAS Web of Science Google Scholar
Gao, P.-J. & Liu, J.-R. (2022). Des. Monomers Polym. 25, 148–154. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Krinchampa, P., Chainok, K., Phengthaisong, S., Youngme, S., Kielar, F. & Wannarit, N. (2016). Acta Cryst. C72, 960–965. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kumar, V., Kundu, A., Singh, M., Ramanujachary, K. V. & Ramanan, A. (2014). J. Chem. Sci. 126, 1433–1442. Web of Science CSD CrossRef CAS Google Scholar
Liu, L., Duraj, S., Fanwick, P. E., Andras, M. T. & Hepp, A. F. (2003). J. Coord. Chem. 56, 647–653. Web of Science CSD CrossRef CAS Google Scholar
Liu, S., Zhang, P., Fu, J., Wei, C. & Cai, G. (2021). Front. Energ. Res. 9, 620203. Web of Science CrossRef Google Scholar
Ma, N. & Horike, S. (2022). Chem. Rev. 122, 4163–4203. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wang, K., Luo, D., Xu, D., Guo, F., Liu, L. & Lin, Z. (2014). Dalton Trans. 43, 13476–13479. Web of Science CSD CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yotnoi, B., Meundaeng, N. & Rujiwatra, A. (2014). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 44, 1373–1379. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.