research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of catena-poly[[[bis­­(1-benzyl­imidazole-κN)copper(II)]-μ-sulfato-κ2O:O′-[tetra­kis­(1-benzyl­imidazole-κN)copper(II)]-μ-sulfato-κ2O:O′] N,N-di­methyl­formamide disolvate dihydrate]

crossmark logo

aDepartment of Chemistry, Faculty of Science and Technology, Thammasat University, Klong Luang, Pathum Thani 12121, Thailand, bThammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Klong Luang, Pathum Thani 12121, Thailand, and cNuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok 26120, Thailand
*Correspondence e-mail: nwan0110@tu.ac.th

Edited by M. Weil, Vienna University of Technology, Austria (Received 25 July 2022; accepted 30 August 2022; online 6 September 2022)

The title one-dimensional copper(II) coordination polymer, {[Cu(SO4)(C10H10N2)3]·C3H7NO·H2O}n or {[Cu(bzi)3(μ-O2SO2)]·H2O·DMF}n (bzi = 1-benz­yl­imidazole, C10H10N2; DMF = N,N-di­methyl­formamide, C3H7NO), is constructed by monodentate bzi ligands and bridging sulfate anions, leading to chains propagating parallel to the c axis. Within a chain, there are two crystallographic independent CuII ions, each with site symmetry [\overline{1}], which form [CuN2O2] and [CuN4O2] polyhedra alternating along the chain direction. The crystal structure is consolidated by weak hydrogen-bonding, C—H⋯π and ππ inter­actions, leading to the formation of a three-dimensional supra­molecular network.

1. Chemical context

The exploration of new transition-metal coordination polymers (CPs) is still an ongoing process since this class of mol­ecular materials presents inter­esting properties and potential applications in adsorption, catalysis, storage, and photoluminescent sensing (Engel & Scott, 2020[Engel, E. R. & Scott, J. L. (2020). Green Chem. 22, 3693-3715.]; Liu et al., 2021[Liu, S., Zhang, P., Fu, J., Wei, C. & Cai, G. (2021). Front. Energ. Res. 9, 620203.]; Baruah, 2022[Baruah, J. B. (2022). Coord. Chem. Rev. 470, 214694.]; Ma & Horike, 2022[Ma, N. & Horike, S. (2022). Chem. Rev. 122, 4163-4203.]). For the design and synthesis of new CPs, metal ions and bridging ligands play an important role, because they influence structural topologies, dimensionalities, and possible functions (Du et al., 2013[Du, M., Li, C.-P., Liu, C.-S. & Fang, S.-M. (2013). Coord. Chem. Rev. 257, 1282-1305.]). In this context, we focused on the copper(II) ion and O-donor sulfate (SO42–) and N-donor heterocyclic aromatic ligands for the current study. Copper(II) compounds show inter­esting electronic and magnetic properties, accompanied by various structural topologies, physical properties and applications (Das & Pal, 2001[Das, A. K. & Pal, A. K. (2001). J. Magn. Magn. Mater. 236, 77-82.]; Gao & Liu, 2022[Gao, P.-J. & Liu, J.-R. (2022). Des. Monomers Polym. 25, 148-154.]). The sulfate anion can act as a bridging ligand due to its versatile coordination modes supporting the increase of structural dimensionalities of the CPs (Yotnoi et al., 2014[Yotnoi, B., Meundaeng, N. & Rujiwatra, A. (2014). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 44, 1373-1379.]). The presence of mono- and/or bidentate N-donor heterocyclic aromatic imidazole derivatives as ligands in CPs is generally found to increase the extended structures and the stability of the crystal structures through supra­molecular inter­actions such as ππ stacking and C—H⋯π bonding (Krinchampa et al., 2016[Krinchampa, P., Chainok, K., Phengthaisong, S., Youngme, S., Kielar, F. & Wannarit, N. (2016). Acta Cryst. C72, 960-965.]; Assavajamroon et al., 2019[Assavajamroon, P., Kielar, F., Chainok, K. & Wannarit, N. (2019). Acta Cryst. E75, 1748-1752.]). As previous studies suggest, there is limited research reported for CuII CPs constructed from mixed sulfate and N-donor imidazole derivatives, for example [Cu(L)2(μ-O2SO2)]n where L = imidazole (Fransson & Lundberg, 1972[Fransson, G. & Lundberg, B. K. S. (1972). Acta Chem. Scand. 26, 3969-3976.]; Kumar et al., 2014[Kumar, V., Kundu, A., Singh, M., Ramanujachary, K. V. & Ramanan, A. (2014). J. Chem. Sci. 126, 1433-1442.]) and L = N-methyl­imidazole (Liu et al., 2003[Liu, L., Duraj, S., Fanwick, P. E., Andras, M. T. & Hepp, A. F. (2003). J. Coord. Chem. 56, 647-653.]). During the current study, we used the imidazole derivative, 1-benzyl­imidazole (bzi), to investigate its influence on supra­molecular inter­actions in the resulting network.

[Scheme 1]

In the present communication, we report the crystal structure, spectroscopic characteristics and some physical properties of {[Cu(bzi)3(μ-O2SO2)]·H2O·DMF}n (bzi = 1-benz­ylimidazole; DMF = N,N-di­methyl­formamide).

2. Structural commentary

The asymmetric unit of the solvated coordination polymer {[Cu(bzi)3(μ-O2SO2)]·H2O·DMF}n comprises two CuII ions with site symmetry [\overline{1}] (Wyckoff letters b and d), three bzi mol­ecules (see Fig. S1 in the supporting information), a coordinating sulfate anion, one water and one DMF solvent mol­ecule (Fig. 1[link]). The environments of the two CuII cations are different. Cu1 is surrounded by two nitro­gen donor atoms from two monodentate bzi ligands and two oxygen donor atoms of two different sulfate bridging ligands, resulting in an [N2O2] coordination set with a square-planar shape and Cu1—N1 and Cu1—O1 bond lengths of 1.9951 (14) and 1.9564 (12) Å, respectively; the bite angles around Cu1 are in the range 89.25 (6)–90.75 (6)°. Cu2 is coordinated by four nitro­gen donor atoms from four monodentate bzi ligands and two oxygen donor atoms of two different sulfate bridging ligands, resulting in an [N4O2] coordination set with a typically Jahn–Teller-distorted octa­hedral shape with bond lengths of Cu2—N3 = 2.0210 (15), Cu2—N5 = 2.013 (15) Å, and Cu2—O2 = 2.4912 (12) Å. Both CuII sites are alternatively connected by bis-monodentately binding and bridging sulfate ligands, μ-κ2O,O′, leading to a chain-like structure extending parallel to the c axis, as shown in Fig. 2[link]. The Cu1⋯Cu2 distance within a chain is 6.1119 (4) Å.

[Figure 1]
Figure 1
Asymmetric unit of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2]
Figure 2
Side (a) and top (b) views of the chain-like structure of the title compound extending parallel to the c axis. Hydrogen atoms bound to carbon atoms as well as solvent water and DMF mol­ecules were omitted for clarity.

3. Supra­molecular features

The crystal structure of the title compound is consolidated by weak inter­actions such as hydrogen-bonding, C—H⋯π and ππ inter­actions. Non-classical C—H⋯O hydrogen-bonding inter­actions are found between the C—H donor groups of the bzi imidazole rings to three different oxygen acceptor atoms (O1, O2 and O3) of a sulfate bridging ligand, together with a weak hydrogen bond within a bzi mol­ecule, C10—H10⋯N2 (Table 1[link]; Fig. S2 in the supporting information). Moreover, O—H⋯O hydrogen-bonding inter­actions between the bridging sulfate ion in the chain and the solvate water and DMF mol­ecules are found (Table 1[link]; Fig. S3 in the supporting information). Inter­molecular inter­actions between adjacent chains (Fig. 3[link]a) exist through hydrogen-bonding inter­actions between a methyl­ene group and a sulfate ligand, C4—H4⋯O3ii and C24—H24B⋯O4ii (Table 1[link]; Fig. 3[link]b) and by C—H⋯π inter­actions, C13—H13⋯Cg4iv and C14—H14BCg4iv (Table 1[link]; Fig. 3[link]c), leading to a two-dimensional supra­molecular network extending parallel to the bc plane, as shown in Figs. S3 and S4 in the supporting information. Furthermore, ππ stacking inter­actions are present between the phenyl rings of bzi ligands (Fig. 4[link]) with a centroid-to-centroid distance Cg5⋯Cg5v of 3.7099 (18) Å along the a-axis direction [Cg5 is the centroid of the C15–C20 phenyl ring; symmetry code: (v) −x, −y + 1, −z + 1], eventually leading to a three-dimensional supra­molecular framework of the title compound, as shown in Fig. 5[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O4 0.85 1.96 2.772 (3) 159
O5—H5B⋯O6 0.85 2.29 3.106 (5) 160
C1—H1⋯O2 0.93 2.23 3.131 (2) 164
C2—H2⋯O3i 0.93 2.34 3.227 (2) 159
C4—H4A⋯O3ii 0.97 2.55 3.445 (3) 153
C10—H10⋯N2 0.93 2.54 2.866 (3) 101
C11—H11⋯O2 0.93 2.40 2.990 (2) 121
C12—H12⋯O3iii 0.93 2.48 3.378 (2) 162
C14—H14A⋯O5 0.97 2.50 3.425 (4) 159
C21—H21⋯O2iii 0.93 2.57 3.038 (2) 112
C21—H21⋯O3iii 0.93 2.36 3.274 (2) 170
C24—H24B⋯O4ii 0.97 2.40 3.346 (3) 164
C32—H32A⋯O6 0.96 2.29 2.705 (7) 105
C13—H13⋯Cg4iv 0.93 2.87 3.759 (3) 161
C14—H14BCg4iv 0.97 2.99 3.711 (3) 132
Symmetry codes: (i) [-x+1, -y+1, -z+2]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, -y+1, -z+1]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
(a) View of the two-dimensional supra­molecular network of the title compound formed through (b) hydrogen bonding-inter­actions between methyl­ene groups and the sulfate ligand, and (c) C—H⋯π inter­actions between adjacent chains. [Symmetry codes: (ii) −x + 1, y − [{1\over 2}], −z + [{3\over 2}]; (iv) x, −y + [{1\over 2}], z − [{1\over 2}].]
[Figure 4]
Figure 4
View of inter­chain ππ inter­actions in the title compound along the a axis. [Symmetry code: (v) −x, −y + 1, −z + 1].
[Figure 5]
Figure 5
View of the three-dimensional supra­molecular network of the title compound. Solvent water and DMF mol­ecules are omitted for clarity.

4. Spectroscopic characterization

The FT–IR spectrum of the title compound (Fig. S5 in the supporting information) exhibits the characteristic broad bands (centered at 3454 cm−1) assigned to the O—H stretching vibration of the solvent water mol­ecule hydrogen-bonded to the DMF solvent mol­ecule. Characteristic bands of the bzi ligand are observed at 3142 cm−1 for the aromatic C—H stretching, at 1523 and 1453 cm−1 and in the range of 700–500 cm−1 for the C=C, C—N stretching and C—H bending, respectively (Assavajamroon et al., 2019[Assavajamroon, P., Kielar, F., Chainok, K. & Wannarit, N. (2019). Acta Cryst. E75, 1748-1752.]). The strong bands at 1675, 1116 and 713 cm−1 are due to the asymmetric stretching of the bridging sulfate ligand (Wang et al., 2014[Wang, K., Luo, D., Xu, D., Guo, F., Liu, L. & Lin, Z. (2014). Dalton Trans. 43, 13476-13479.]).

The solid-state diffuse reflectance spectrum of the title compound (Fig. S6 in the supporting information) shows a broad asymmetric band with λmax at 602 nm (16.60 kK) and a shoulder at about 756 nm (13.24 kK). These bands might be assigned to electronic dd transitions, (dxy, dxz, dyz) → dx2–y2 and dz2dx2y2, corresponding to a distorted octa­hedral conformation.

5. PXRD and thermal analysis

The plots of the experimental and simulated powder X-ray diffraction (PXRD) patterns of the title compound (Fig. S7 in the supporting information) show a good match, confirming reproducibility and phase purity.

The thermal stability of the title compound has been investigated by means of thermogravimetric analysis with the temperature in the range 303–1073 K under a nitro­gen atmosphere. Based on the results (Fig. S8 in the supporting information), the title compound is stable to about 371 K. Above this temperature, the compound starts to decompose by a mass loss of 13%, which corresponds to the loss of solvent water and DMF mol­ecules. The second step of mass loss (65%) corresponds to the release of the remaining coordinating bzi and sulfate ligands. Further increasing the temperature leads to another mass loss (22%) until CuO forms as the final product.

6. Database survey

According to a search of the Cambridge Structural Database (CSD; version 5.41, November 2019 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), there are some one-dimensional CuII coordination polymers containing the sulfate anion as a bridging ligand together with N-donor imidazole-based ligands. The ones most closely related to the title compound are [Cu(imida­zole)4SO4] (TIMZCU02; Kumar et al., 2014[Kumar, V., Kundu, A., Singh, M., Ramanujachary, K. V. & Ramanan, A. (2014). J. Chem. Sci. 126, 1433-1442.]) and [Cu(N-methyl­imidazole)4(SO4)] (IJEBII; Liu et al., 2003[Liu, L., Duraj, S., Fanwick, P. E., Andras, M. T. & Hepp, A. F. (2003). J. Coord. Chem. 56, 647-653.]). These two CuII coordination polymers have the same octa­hedral [N4O2] coordination set around the CuII ion, while those of the title compound contain alternatively two different CuII polyhedra, as discussed in the Structural commentary.

7. Synthesis and crystallization

A methano­lic solution (5 ml) of bzi (0.6329 g, 4.0 mmol) was dropped slowly into a methano­lic solution (5 ml) of CuSO4·5H2O (0.2491 g, 1.0 mmol) under continuous stirring at 333 K over a period of 10 min, resulting in a blue solution. The solution was then filtered and allowed to evaporate slowly under atmospheric conditions at room temperature. After seven days, the solution became viscous, and 10 ml of DMF were added to the solution under continuous stirring at 333 K over a period of 5 min. Stirring was continued until the solution became clear. Finally, the solution was filtered and allowed to evaporate slowly in air at room temperature. Blue crystals of the title compound were obtained within a day (yield 38%, 93.4 mg, based on the CuII salt).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All C-bound H atoms were calculated and refined using a riding model, with C—H = 0.93 Å for aromatic H atoms (0.97 Å for methyl H atoms), and Uiso(H) = 1.2Ueq(C) [Uiso(H) = 1.5Ueq(C)]. The O-bound H atoms of the water mol­ecule were located in a difference-Fourier map, and were refined with an O—H bond length of 0.85 Å, and with Uiso(H) = 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula [Cu(SO4)(C10H10N2)3]·C3H7NO·H2O
Mr 725.31
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 15.8896 (10), 18.1195 (11), 12.2238 (7)
β (°) 94.239 (2)
V3) 3509.7 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.74
Crystal size (mm) 0.38 × 0.35 × 0.32
 
Data collection
Diffractometer Bruker D8 QUEST CMOS PHOTON II
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]).
Tmin, Tmax 0.640, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 50998, 10697, 7310
Rint 0.054
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.117, 1.02
No. of reflections 10697
No. of parameters 441
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.35
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

catena-Poly[[[bis(1-benzylimidazole-κN)copper(II)]-µ-sulfato-κ2O:O'-[tetrakis(1-benzylimidazole-κN)copper(II)]-µ-sulfato-κ2O:O'] N,N-dimethylformamide disolvate dihydrate] top
Crystal data top
[Cu(SO4)(C10H10N2)3]·C3H7NO·H2OF(000) = 1516
Mr = 725.31Dx = 1.373 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.8896 (10) ÅCell parameters from 9903 reflections
b = 18.1195 (11) Åθ = 2.3–29.9°
c = 12.2238 (7) ŵ = 0.74 mm1
β = 94.239 (2)°T = 296 K
V = 3509.7 (4) Å3Block, dark blue
Z = 40.38 × 0.35 × 0.32 mm
Data collection top
BRUKER D8 QUEST CMOS PHOTON II
diffractometer
10697 independent reflections
Radiation source: sealed x-ray tube, Mo7310 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 7.39 pixels mm-1θmax = 30.5°, θmin = 2.3°
ω and φ scansh = 2222
Absorption correction: multi-scan
(SADABS; Krause et al., 2015).
k = 2521
Tmin = 0.640, Tmax = 0.746l = 1417
50998 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.049P)2 + 1.1168P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
10697 reflectionsΔρmax = 0.39 e Å3
441 parametersΔρmin = 0.35 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.5000000.5000001.0000000.02929 (8)
Cu20.5000000.5000000.5000000.03313 (8)
S10.45600 (3)0.57757 (2)0.78307 (3)0.03415 (10)
O10.52363 (8)0.53965 (7)0.85659 (10)0.0390 (3)
O20.44811 (9)0.53635 (7)0.67969 (10)0.0422 (3)
O30.48237 (10)0.65349 (8)0.76450 (11)0.0478 (3)
O40.37859 (10)0.57424 (9)0.83974 (13)0.0548 (4)
N10.45657 (10)0.40654 (8)0.93045 (12)0.0348 (3)
N20.40670 (10)0.32616 (8)0.80834 (12)0.0371 (3)
N30.38640 (9)0.45109 (8)0.46926 (12)0.0360 (3)
N40.25298 (9)0.42410 (10)0.48218 (13)0.0421 (4)
N50.55242 (10)0.40576 (8)0.55904 (12)0.0360 (3)
N60.61544 (11)0.29797 (9)0.55906 (14)0.0452 (4)
C10.43083 (13)0.39607 (10)0.82595 (14)0.0386 (4)
H10.4297040.4324550.7721950.046*
C20.44734 (13)0.33958 (10)0.98116 (16)0.0423 (4)
H20.4601520.3301231.0553050.051*
C30.41682 (14)0.28984 (11)0.90649 (16)0.0461 (5)
H30.4049530.2404570.9192130.055*
C40.37274 (13)0.29476 (12)0.70396 (15)0.0448 (5)
H4A0.4033540.2498780.6896780.054*
H4B0.3818680.3293820.6454830.054*
C50.28021 (14)0.27738 (11)0.70233 (16)0.0431 (4)
C60.24550 (18)0.22769 (15)0.6250 (2)0.0642 (7)
H60.2797800.2055320.5759610.077*
C70.1604 (2)0.21093 (19)0.6203 (3)0.0835 (9)
H70.1376600.1780430.5677170.100*
C80.1095 (2)0.24268 (19)0.6930 (3)0.0829 (9)
H80.0523970.2309360.6900940.099*
C90.14248 (17)0.29133 (18)0.7694 (2)0.0735 (8)
H90.1079630.3128230.8186910.088*
C100.22742 (15)0.30879 (13)0.77361 (19)0.0560 (6)
H100.2492950.3424430.8256780.067*
C110.31994 (12)0.46172 (12)0.52597 (16)0.0418 (4)
H110.3195680.4913530.5880530.050*
C120.35995 (12)0.40518 (11)0.38466 (17)0.0433 (4)
H120.3934280.3882130.3306780.052*
C130.27752 (13)0.38826 (12)0.39170 (19)0.0497 (5)
H130.2442970.3582300.3443330.060*
C140.16745 (13)0.42591 (15)0.52061 (19)0.0547 (6)
H14A0.1691740.4498360.5917300.066*
H14B0.1475240.3757990.5292640.066*
C150.10724 (13)0.46645 (15)0.44190 (18)0.0512 (5)
C160.05359 (16)0.42953 (19)0.3673 (2)0.0764 (8)
H160.0544660.3782180.3661890.092*
C170.00141 (19)0.4666 (3)0.2943 (3)0.0967 (11)
H170.0368170.4407200.2438960.116*
C180.0031 (2)0.5408 (3)0.2970 (3)0.0937 (11)
H180.0403040.5660720.2480040.112*
C190.0481 (2)0.5794 (2)0.3696 (3)0.0999 (11)
H190.0458840.6306760.3708290.120*
C200.1044 (2)0.54141 (18)0.4426 (2)0.0764 (8)
H200.1402570.5676320.4920890.092*
C210.56890 (12)0.34753 (10)0.49988 (16)0.0398 (4)
H210.5505850.3415330.4263910.048*
C220.59092 (14)0.39326 (13)0.66186 (16)0.0494 (5)
H220.5903550.4251250.7214450.059*
C230.62978 (16)0.32677 (14)0.66178 (18)0.0596 (6)
H230.6605220.3048250.7207840.072*
C240.64896 (16)0.22883 (12)0.5175 (2)0.0573 (6)
H24A0.6153870.2144790.4514170.069*
H24B0.6436670.1903190.5716810.069*
C250.73985 (16)0.23489 (12)0.4922 (2)0.0534 (5)
C260.7648 (2)0.28263 (17)0.4128 (2)0.0751 (8)
H260.7252320.3130050.3753490.090*
C270.8488 (3)0.2855 (2)0.3887 (3)0.1061 (13)
H270.8651920.3178010.3351600.127*
C280.9074 (3)0.2412 (3)0.4429 (5)0.1199 (16)
H280.9634830.2430750.4259070.144*
C290.8836 (2)0.1941 (3)0.5221 (4)0.1134 (14)
H290.9235900.1640190.5592360.136*
C300.80019 (19)0.19079 (17)0.5476 (3)0.0774 (8)
H300.7846100.1588370.6021040.093*
O50.22185 (17)0.5284 (2)0.7504 (2)0.1226 (10)
H5A0.2673790.5518640.7665190.184*
H5B0.2068890.5129040.8117000.184*
O60.1289 (3)0.4550 (2)0.9369 (3)0.1648 (15)
N70.20211 (14)0.50470 (13)1.07952 (19)0.0669 (6)
C310.1313 (2)0.4916 (2)1.0252 (3)0.0986 (11)
H310.0815060.5091831.0510850.118*
C320.2811 (3)0.4808 (3)1.0442 (4)0.1303 (17)
H32A0.2717510.4516650.9788360.195*
H32B0.3098980.4515141.1008310.195*
H32C0.3149490.5229591.0292820.195*
C330.2076 (3)0.5490 (3)1.1787 (3)0.1280 (15)
H33A0.1531250.5690991.1902200.192*
H33B0.2471000.5884691.1712810.192*
H33C0.2263840.5186521.2401140.192*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03603 (16)0.02569 (14)0.02567 (14)0.00356 (12)0.00096 (10)0.00254 (10)
Cu20.02823 (15)0.02747 (15)0.04268 (17)0.00080 (12)0.00426 (12)0.00424 (12)
S10.0459 (3)0.0306 (2)0.02570 (19)0.00432 (19)0.00091 (16)0.00219 (16)
O10.0489 (8)0.0388 (7)0.0286 (6)0.0049 (6)0.0020 (5)0.0017 (5)
O20.0630 (9)0.0373 (7)0.0259 (6)0.0068 (6)0.0003 (6)0.0048 (5)
O30.0747 (10)0.0305 (7)0.0370 (7)0.0090 (7)0.0045 (6)0.0008 (5)
O40.0518 (9)0.0589 (10)0.0553 (9)0.0014 (8)0.0141 (7)0.0097 (7)
N10.0442 (9)0.0290 (7)0.0308 (7)0.0054 (6)0.0001 (6)0.0032 (6)
N20.0465 (9)0.0310 (8)0.0330 (8)0.0052 (7)0.0022 (6)0.0068 (6)
N30.0316 (8)0.0333 (8)0.0425 (8)0.0007 (6)0.0027 (6)0.0010 (6)
N40.0295 (8)0.0479 (9)0.0482 (9)0.0023 (7)0.0026 (6)0.0014 (7)
N50.0375 (8)0.0316 (8)0.0379 (8)0.0011 (6)0.0037 (6)0.0031 (6)
N60.0533 (10)0.0346 (8)0.0474 (9)0.0085 (8)0.0022 (7)0.0087 (7)
C10.0544 (11)0.0304 (9)0.0307 (9)0.0062 (8)0.0018 (8)0.0022 (7)
C20.0549 (12)0.0320 (9)0.0383 (10)0.0076 (9)0.0090 (8)0.0025 (7)
C30.0626 (13)0.0283 (9)0.0452 (11)0.0068 (9)0.0114 (9)0.0005 (8)
C40.0595 (13)0.0415 (10)0.0325 (9)0.0064 (9)0.0021 (8)0.0120 (8)
C50.0552 (12)0.0354 (10)0.0370 (10)0.0037 (9)0.0086 (8)0.0009 (8)
C60.0745 (17)0.0597 (14)0.0563 (14)0.0149 (13)0.0090 (12)0.0150 (12)
C70.080 (2)0.083 (2)0.083 (2)0.0319 (18)0.0231 (16)0.0080 (17)
C80.0575 (16)0.094 (2)0.094 (2)0.0167 (16)0.0151 (16)0.0204 (18)
C90.0572 (16)0.086 (2)0.0769 (18)0.0080 (15)0.0006 (13)0.0101 (15)
C100.0585 (14)0.0544 (13)0.0533 (13)0.0036 (11)0.0082 (10)0.0055 (10)
C110.0338 (9)0.0503 (12)0.0404 (10)0.0012 (9)0.0030 (7)0.0024 (8)
C120.0384 (10)0.0371 (10)0.0542 (12)0.0016 (8)0.0018 (8)0.0109 (8)
C130.0376 (10)0.0459 (12)0.0644 (13)0.0046 (9)0.0037 (9)0.0163 (10)
C140.0331 (10)0.0757 (16)0.0555 (13)0.0050 (11)0.0040 (9)0.0079 (11)
C150.0326 (10)0.0720 (16)0.0493 (12)0.0029 (10)0.0054 (8)0.0023 (11)
C160.0492 (14)0.094 (2)0.0830 (19)0.0083 (14)0.0131 (13)0.0027 (16)
C170.0540 (17)0.150 (4)0.082 (2)0.000 (2)0.0196 (14)0.007 (2)
C180.071 (2)0.137 (4)0.074 (2)0.039 (2)0.0059 (16)0.010 (2)
C190.107 (3)0.086 (2)0.108 (3)0.039 (2)0.017 (2)0.001 (2)
C200.0769 (19)0.079 (2)0.0731 (18)0.0134 (16)0.0012 (14)0.0134 (15)
C210.0464 (11)0.0326 (9)0.0390 (10)0.0001 (8)0.0055 (8)0.0051 (7)
C220.0575 (13)0.0541 (13)0.0356 (10)0.0108 (10)0.0028 (9)0.0034 (9)
C230.0733 (16)0.0623 (15)0.0419 (12)0.0227 (12)0.0052 (10)0.0143 (10)
C240.0644 (15)0.0319 (10)0.0764 (16)0.0059 (10)0.0105 (12)0.0048 (10)
C250.0597 (14)0.0374 (11)0.0635 (14)0.0041 (10)0.0076 (11)0.0038 (10)
C260.082 (2)0.0669 (18)0.0775 (19)0.0057 (15)0.0153 (15)0.0040 (15)
C270.105 (3)0.107 (3)0.112 (3)0.034 (3)0.047 (2)0.012 (2)
C280.070 (2)0.127 (4)0.167 (5)0.008 (2)0.031 (3)0.035 (3)
C290.062 (2)0.112 (3)0.163 (4)0.018 (2)0.016 (2)0.018 (3)
C300.0710 (19)0.0675 (18)0.092 (2)0.0128 (15)0.0051 (15)0.0025 (15)
O50.0773 (16)0.200 (3)0.0881 (17)0.0242 (18)0.0116 (13)0.028 (2)
O60.211 (4)0.168 (3)0.105 (2)0.027 (3)0.061 (2)0.021 (2)
N70.0562 (13)0.0857 (17)0.0590 (13)0.0047 (11)0.0061 (10)0.0064 (11)
C310.080 (2)0.117 (3)0.095 (3)0.005 (2)0.0134 (19)0.013 (2)
C320.089 (3)0.170 (4)0.135 (4)0.038 (3)0.036 (3)0.036 (3)
C330.133 (4)0.161 (4)0.088 (3)0.021 (3)0.004 (2)0.021 (3)
Geometric parameters (Å, º) top
Cu1—O1i1.9564 (12)C12—C131.354 (3)
Cu1—O11.9564 (12)C13—H130.9300
Cu1—N1i1.9951 (14)C14—H14A0.9700
Cu1—N11.9951 (14)C14—H14B0.9700
Cu2—O22.4912 (12)C14—C151.498 (3)
Cu2—N3ii2.0210 (15)C15—C161.375 (3)
Cu2—N32.0210 (15)C15—C201.359 (4)
Cu2—N52.0103 (15)C16—H160.9300
Cu2—N5ii2.0103 (15)C16—C171.377 (4)
S1—O11.5139 (13)C17—H170.9300
S1—O21.4653 (13)C17—C181.345 (6)
S1—O31.4608 (14)C18—H180.9300
S1—O41.4567 (15)C18—C191.354 (5)
N1—C11.326 (2)C19—H190.9300
N1—C21.375 (2)C19—C201.398 (4)
N2—C11.336 (2)C20—H200.9300
N2—C31.367 (2)C21—H210.9300
N2—C41.463 (2)C22—H220.9300
N3—C111.320 (2)C22—C231.354 (3)
N3—C121.369 (2)C23—H230.9300
N4—C111.341 (2)C24—H24A0.9700
N4—C131.364 (3)C24—H24B0.9700
N4—C141.471 (3)C24—C251.503 (3)
N5—C211.316 (2)C25—C261.380 (4)
N5—C221.375 (2)C25—C301.386 (4)
N6—C211.341 (2)C26—H260.9300
N6—C231.363 (3)C26—C271.389 (4)
N6—C241.467 (3)C27—H270.9300
C1—H10.9300C27—C281.363 (6)
C2—H20.9300C28—H280.9300
C2—C31.347 (3)C28—C291.366 (6)
C3—H30.9300C29—H290.9300
C4—H4A0.9700C29—C301.384 (5)
C4—H4B0.9700C30—H300.9300
C4—C51.502 (3)O5—H5A0.8500
C5—C61.390 (3)O5—H5B0.8499
C5—C101.377 (3)O6—C311.266 (5)
C6—H60.9300N7—C311.285 (4)
C6—C71.382 (4)N7—C321.425 (4)
C7—H70.9300N7—C331.451 (4)
C7—C81.372 (5)C31—H310.9300
C8—H80.9300C32—H32A0.9600
C8—C91.360 (4)C32—H32B0.9600
C9—H90.9300C32—H32C0.9600
C9—C101.383 (4)C33—H33A0.9600
C10—H100.9300C33—H33B0.9600
C11—H110.9300C33—H33C0.9600
C12—H120.9300
O1i—Cu1—O1180.0C13—C12—H12125.2
O1—Cu1—N1i89.25 (6)N4—C13—H13126.9
O1—Cu1—N190.75 (6)C12—C13—N4106.24 (17)
O1i—Cu1—N1i90.75 (6)C12—C13—H13126.9
O1i—Cu1—N189.25 (6)N4—C14—H14A109.3
N1i—Cu1—N1180.0N4—C14—H14B109.3
N3—Cu2—O286.02 (5)N4—C14—C15111.54 (18)
N3ii—Cu2—O293.98 (5)H14A—C14—H14B108.0
N3—Cu2—N3ii180.0C15—C14—H14A109.3
N5—Cu2—O293.63 (5)C15—C14—H14B109.3
N5ii—Cu2—O286.36 (5)C16—C15—C14121.5 (3)
N5—Cu2—N3ii88.00 (6)C20—C15—C14120.4 (2)
N5—Cu2—N392.00 (6)C20—C15—C16118.1 (3)
N5ii—Cu2—N387.99 (6)C15—C16—H16119.2
N5ii—Cu2—N3ii92.00 (6)C15—C16—C17121.7 (3)
N5ii—Cu2—N5180.00 (4)C17—C16—H16119.2
O2—S1—O1106.99 (8)C16—C17—H17120.5
O3—S1—O1108.69 (8)C18—C17—C16119.0 (3)
O3—S1—O2110.68 (8)C18—C17—H17120.5
O4—S1—O1106.63 (9)C17—C18—H18119.3
O4—S1—O2111.57 (9)C17—C18—C19121.3 (3)
O4—S1—O3112.02 (10)C19—C18—H18119.3
S1—O1—Cu1121.58 (8)C18—C19—H19120.3
S1—O2—Cu2151.93 (9)C18—C19—C20119.3 (4)
C1—N1—Cu1127.18 (13)C20—C19—H19120.3
C1—N1—C2105.82 (15)C15—C20—C19120.5 (3)
C2—N1—Cu1127.00 (12)C15—C20—H20119.7
C1—N2—C3107.53 (15)C19—C20—H20119.7
C1—N2—C4126.30 (16)N5—C21—N6111.39 (17)
C3—N2—C4126.14 (16)N5—C21—H21124.3
C11—N3—Cu2125.23 (13)N6—C21—H21124.3
C11—N3—C12105.81 (16)N5—C22—H22125.7
C12—N3—Cu2128.84 (13)C23—C22—N5108.54 (19)
C11—N4—C13107.44 (16)C23—C22—H22125.7
C11—N4—C14125.85 (18)N6—C23—H23126.4
C13—N4—C14126.58 (17)C22—C23—N6107.22 (18)
C21—N5—Cu2125.28 (12)C22—C23—H23126.4
C21—N5—C22106.07 (16)N6—C24—H24A109.0
C22—N5—Cu2127.77 (14)N6—C24—H24B109.0
C21—N6—C23106.77 (17)N6—C24—C25112.82 (19)
C21—N6—C24125.82 (18)H24A—C24—H24B107.8
C23—N6—C24127.27 (18)C25—C24—H24A109.0
N1—C1—N2110.80 (16)C25—C24—H24B109.0
N1—C1—H1124.6C26—C25—C24121.4 (2)
N2—C1—H1124.6C26—C25—C30118.7 (3)
N1—C2—H2125.4C30—C25—C24119.9 (2)
C3—C2—N1109.25 (16)C25—C26—H26119.9
C3—C2—H2125.4C25—C26—C27120.2 (3)
N2—C3—H3126.7C27—C26—H26119.9
C2—C3—N2106.60 (17)C26—C27—H27119.7
C2—C3—H3126.7C28—C27—C26120.5 (4)
N2—C4—H4A109.0C28—C27—H27119.7
N2—C4—H4B109.0C27—C28—H28120.1
N2—C4—C5112.99 (16)C27—C28—C29119.8 (4)
H4A—C4—H4B107.8C29—C28—H28120.1
C5—C4—H4A109.0C28—C29—H29119.8
C5—C4—H4B109.0C28—C29—C30120.5 (4)
C6—C5—C4118.9 (2)C30—C29—H29119.8
C10—C5—C4123.13 (18)C25—C30—H30119.9
C10—C5—C6118.0 (2)C29—C30—C25120.3 (3)
C5—C6—H6119.7C29—C30—H30119.9
C7—C6—C5120.5 (3)H5A—O5—H5B104.5
C7—C6—H6119.7C31—N7—C32123.0 (4)
C6—C7—H7119.9C31—N7—C33122.0 (3)
C8—C7—C6120.2 (3)C32—N7—C33114.9 (3)
C8—C7—H7119.9O6—C31—N7120.5 (4)
C7—C8—H8120.0O6—C31—H31119.7
C9—C8—C7120.0 (3)N7—C31—H31119.7
C9—C8—H8120.0N7—C32—H32A109.5
C8—C9—H9120.0N7—C32—H32B109.5
C8—C9—C10120.0 (3)N7—C32—H32C109.5
C10—C9—H9120.0H32A—C32—H32B109.5
C5—C10—C9121.3 (2)H32A—C32—H32C109.5
C5—C10—H10119.3H32B—C32—H32C109.5
C9—C10—H10119.3N7—C33—H33A109.5
N3—C11—N4110.99 (18)N7—C33—H33B109.5
N3—C11—H11124.5N7—C33—H33C109.5
N4—C11—H11124.5H33A—C33—H33B109.5
N3—C12—H12125.2H33A—C33—H33C109.5
C13—C12—N3109.52 (18)H33B—C33—H33C109.5
Cu1—N1—C1—N2179.36 (13)C10—C5—C6—C70.2 (4)
Cu1—N1—C2—C3179.47 (15)C11—N3—C12—C130.3 (2)
Cu2—N3—C11—N4177.06 (12)C11—N4—C13—C120.6 (2)
Cu2—N3—C12—C13176.47 (14)C11—N4—C14—C15108.7 (2)
Cu2—N5—C21—N6170.35 (13)C12—N3—C11—N40.7 (2)
Cu2—N5—C22—C23169.85 (16)C13—N4—C11—N30.9 (2)
O1—S1—O2—Cu274.37 (19)C13—N4—C14—C1566.4 (3)
O2—S1—O1—Cu1121.26 (9)C14—N4—C11—N3176.80 (18)
O3—S1—O1—Cu1119.19 (9)C14—N4—C13—C12176.5 (2)
O3—S1—O2—Cu243.9 (2)C14—C15—C16—C17179.5 (3)
O4—S1—O1—Cu11.75 (11)C14—C15—C20—C19179.8 (3)
O4—S1—O2—Cu2169.36 (16)C15—C16—C17—C180.7 (5)
N1—C2—C3—N20.2 (2)C16—C15—C20—C190.3 (4)
N2—C4—C5—C6160.3 (2)C16—C17—C18—C190.2 (5)
N2—C4—C5—C1020.2 (3)C17—C18—C19—C200.5 (5)
N3—C12—C13—N40.2 (2)C18—C19—C20—C150.7 (5)
N4—C14—C15—C1699.3 (3)C20—C15—C16—C170.5 (4)
N4—C14—C15—C2080.7 (3)C21—N5—C22—C230.2 (3)
N5—C22—C23—N60.0 (3)C21—N6—C23—C220.2 (3)
N6—C24—C25—C2662.5 (3)C21—N6—C24—C2598.7 (3)
N6—C24—C25—C30118.9 (3)C22—N5—C21—N60.4 (2)
C1—N1—C2—C30.4 (2)C23—N6—C21—N50.4 (2)
C1—N2—C3—C20.2 (2)C23—N6—C24—C2576.5 (3)
C1—N2—C4—C5108.7 (2)C24—N6—C21—N5176.43 (19)
C2—N1—C1—N20.5 (2)C24—N6—C23—C22176.2 (2)
C3—N2—C1—N10.4 (2)C24—C25—C26—C27178.0 (3)
C3—N2—C4—C568.9 (3)C24—C25—C30—C29177.7 (3)
C4—N2—C1—N1178.41 (17)C25—C26—C27—C280.1 (6)
C4—N2—C3—C2178.14 (19)C26—C25—C30—C291.0 (4)
C4—C5—C6—C7179.3 (2)C26—C27—C28—C290.5 (7)
C4—C5—C10—C9180.0 (2)C27—C28—C29—C300.2 (7)
C5—C6—C7—C80.7 (5)C28—C29—C30—C250.5 (6)
C6—C5—C10—C90.4 (4)C30—C25—C26—C270.7 (4)
C6—C7—C8—C90.6 (5)C32—N7—C31—O61.1 (6)
C7—C8—C9—C100.0 (5)C33—N7—C31—O6177.5 (4)
C8—C9—C10—C50.6 (4)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
O5—H5A···O40.851.962.772 (3)159
O5—H5B···O60.852.293.106 (5)160
C1—H1···O20.932.233.131 (2)164
C2—H2···O1i0.932.602.966 (2)104
C2—H2···O3i0.932.343.227 (2)159
C4—H4A···O3iii0.972.553.445 (3)153
C10—H10···N20.932.542.866 (3)101
C11—H11···O20.932.402.990 (2)121
C12—H12···O3ii0.932.483.378 (2)162
C14—H14A···O50.972.503.425 (4)159
C21—H21···O2ii0.932.573.038 (2)112
C21—H21···O3ii0.932.363.274 (2)170
C24—H24B···O4iii0.972.403.346 (3)164
C32—H32A···O60.962.292.705 (7)105
C13—H13···Cg4iv0.932.873.759 (3)161
C14—H14B···Cg4iv0.972.993.711 (3)132
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y1/2, z+3/2; (iv) x, y+1/2, z1/2.
 

Acknowledgements

The authors are grateful to the Faculty of Science and Technology, Thammasat University for funds to purchase the X-ray diffractometer. We also thank Professor Dr Sujittra Youngme, Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University for the TGA measurements.

Funding information

Funding for this research was provided by: Department of Chemistry, Faculty of Science and Technology, Thammasat University, Thailand; the TINT to University Project of Thailand Institute of Nuclear Technology (TINT) (grant to N. Wannarit, S. Laksee); the Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications Research Unit (TU-MCMA) (grant to K. Chainok, N. Wannarit).

References

First citationAssavajamroon, P., Kielar, F., Chainok, K. & Wannarit, N. (2019). Acta Cryst. E75, 1748–1752.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBaruah, J. B. (2022). Coord. Chem. Rev. 470, 214694.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDas, A. K. & Pal, A. K. (2001). J. Magn. Magn. Mater. 236, 77–82.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDu, M., Li, C.-P., Liu, C.-S. & Fang, S.-M. (2013). Coord. Chem. Rev. 257, 1282–1305.  Web of Science CrossRef CAS Google Scholar
First citationEngel, E. R. & Scott, J. L. (2020). Green Chem. 22, 3693–3715.  Web of Science CrossRef CAS Google Scholar
First citationFransson, G. & Lundberg, B. K. S. (1972). Acta Chem. Scand. 26, 3969–3976.  CSD CrossRef CAS Web of Science Google Scholar
First citationGao, P.-J. & Liu, J.-R. (2022). Des. Monomers Polym. 25, 148–154.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKrinchampa, P., Chainok, K., Phengthaisong, S., Youngme, S., Kielar, F. & Wannarit, N. (2016). Acta Cryst. C72, 960–965.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumar, V., Kundu, A., Singh, M., Ramanujachary, K. V. & Ramanan, A. (2014). J. Chem. Sci. 126, 1433–1442.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, L., Duraj, S., Fanwick, P. E., Andras, M. T. & Hepp, A. F. (2003). J. Coord. Chem. 56, 647–653.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, S., Zhang, P., Fu, J., Wei, C. & Cai, G. (2021). Front. Energ. Res. 9, 620203.  Web of Science CrossRef Google Scholar
First citationMa, N. & Horike, S. (2022). Chem. Rev. 122, 4163–4203.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, K., Luo, D., Xu, D., Guo, F., Liu, L. & Lin, Z. (2014). Dalton Trans. 43, 13476–13479.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYotnoi, B., Meundaeng, N. & Rujiwatra, A. (2014). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 44, 1373–1379.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds