research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, PIXEL calculations of inter­molecular inter­action energies and solid-state characterization of the herbicide isoxaflutole

crossmark logo

aUniversity of Innsbruck, Institute of Pharmacy, Innrain 52, 6020 Innsbruck, Austria
*Correspondence e-mail: thomas.gelbrich@uibk.ac.at

Edited by M. Weil, Vienna University of Technology, Austria (Received 4 August 2022; accepted 29 August 2022; online 6 September 2022)

In the isoxaflutole mol­ecule {systematic name: (5-cyclo­propyl-1,2-oxazol-4-yl)[2-(methyl­sulfon­yl)-4-(tri­fluoro­meth­yl)phen­yl]methanone; C15H12F3NO4S}, the 1,2-oxazole and methanone fragments form an almost coplanar unit, whereas the methanone and phenyl mean planes are inclined by an angle of more than 60°. This conformation differs fundamentally from all other known examples of the 1,2-oxazol-4-yl(phen­yl)methanone fragment and is ascribed to the presence of the bulky methyl­sulfonyl para substituent at the phenyl ring. PIXEL calculations reveal that the largest contributions to the stabilization of the crystal persist within a columnar arrangement of mol­ecules along the twofold screw axis and in inter­actions between adjacent columns related by an inversion operation. Both these intra-column and inter-column motifs are dominated by the dispersion energy term but also display additional significant stabilization effects as a result of three short inter­molecular C—H⋯O contacts involving the methane­sulfonyl-O atoms.

1. Chemical context

The title compound, (I)[link], belongs to the family of isoxazoles and was originally developed by Rhône-Poulenc Agriculture (Cain et al., 1992[Cain, P. A., Cramp, S. M., Little, G. M. & Luscombe, B. M. (1992). Patent EP0527036B1.]). Isoxaflutole is a preemergence herbicide that is used against grasses and broadleaf weeds (Luscombe et al., 1995[Luscombe, B. M., Pallett, K. E., Loubbiere, P., Millet, C. J., Melgarejo, J. & Vrabel, T. E. (1995). Brighton Crop Prot. Conf. Weeds, 35-42.]). This compound metabolizes briskly in soils and plants by opening the ring of the isoxazole group. A diketo­nitrile derivate is formed in this process, which acts as an inhibitor of 4-hy­droxy­phenyl­pyruvate di­oxy­genase (HPPD) (Pallett et al., 1997[Pallett, K. E., Little, J. P., Veerasekaran, P. & Viviani, F. (1997). Pestic. Sci. 50, 83-84.]; Roberts et al., 1999[Roberts, T. R., Hutson, D. H., Lee, P. W., Nicholls, P. H. & Plimmer, J. R. (1999). Metabolic Pathways of Agrochemicals Part I. Herbicides and Plant Growth Regulators. Cambridge: Royal Society of Chemistry.]). Isoxaflutole is marketed in the form of suspension concentrate formulations, water-dispersible granules and wettable powders where it is either the sole active ingredient or combined with other herbicides such as flufenacet.

[Scheme 1]

We have studied the solid-state properties of isoxaflutole as part of a wider investigation of herbicides and present the results in the present communication.

2. Structural commentary

The asymmetric unit of (I)[link] contains one mol­ecule (Fig. 1[link]). The cyclo­propyl substituent (C8, C9, C10) of the oxadazol ring is orientated such that its C8—C9 bond lies approximately parallel to the C5—O1 bond of the ring [torsion angle O1—C5—C8—C9 = −15.0 (3)°]. The methanone fragment (O7, C4, C6, C11) and the oxadazol ring (O1, N2, C3, C4, C5) form an almost planar unit. The angle between their respective mean planes is 4.4 (1)°, and the orientation of the methanone group relative to the cyclo­propyl substituent of the ring is cis. By contrast, the methanone mean plane forms an angle of 64.28 (5)° with the phenyl ring (C11–C16). The orientation of the methyl­sulfonyl substituent at the phenyl ring is such that its S17—C22 bond is almost perpendicular to the ring mean plane, which is illustrated by the value of the pseudo-torsion angle C15⋯C12—S17—C22 of −83.8°.

[Figure 1]
Figure 1
Mol­ecular structure of (I)[link] with displacement ellipsoids drawn at the 50% probability level and hydrogen atoms drawn as spheres of arbitrary size.

3. Database survey

The Cambridge Structural Database (version 5.43, June 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains 15 entries of structures displaying the 1,2-oxazol-4-yl(phen­yl)methanone structure fragment (see Table S1 of the supporting information). The conformation of this structure fragment can be rationalized in terms of the relative orientation of three planar units (see Fig. 2[link], inset), i.e. the methanone (P1), 1,2-oxazole (P2) and phenyl (P3) fragments. In each of the previous examples, the plane of the methanone fragment tends to approach coplanarity with the phenyl ring. The corresponding inter­planar angle (P1, P3) ranges between 1.6° and 28.7°. In turn, the methanone and 1,2-oxazole mean planes (P1, P2) form angles in the range from 42.3° to 86.9°. The diagram in Fig. 2[link] illustrates that for a given mol­ecule, a smaller (P1, P2) angle is generally correlated with a wider (P1, P3) angle and vice versa. Apart from (I)[link], ortho substituents at the phenyl ring are present only in DUHKOI (Cl and F; 28.7°/46.6°) and KOQGOM (—OH; 79.8°/2.4°), which displays an intra­molecular O—H⋯O(methanone) bond. The mol­ecules in the sample group have bulky substituents at both the 3- and 5-positions of the 1,2-oxazole ring, except for (I)[link], YELQAK and YELQEO, which have just one such substituent (supporting information, Table S1). The plot of (P1, P2) against (P1, P3) angles in Fig. 2[link] illustrates the uniqueness of the conformation of (I)[link] with almost coplanar methanone and 1,2-oxazole units (see previous section), whilst the methanone and phenyl rings planes form an angle (P1, P2) of 64.28 (5)°. This unusual conformation is probably due to the bulky methane­sulfonyl group as an ortho substituent of the phenyl ring of (I)[link].

[Figure 2]
Figure 2
Plot of the inter­planar angles (P1, P3) against (P1, P2), illustrating that the isoxaflutole mol­ecule (red circle) has an unusual 1,2-oxazol-4-yl(phen­yl)methanone conformation. Sixteen data points were obtained from 14 CSD structures (open circles) and isoxaflutole (filled red circle; see section 1 of the supporting information).

4. Supra­molecular features

The isoxaflutole mol­ecule does not contain any classical hydrogen-bond donor groups. However, two significant short inter­molecular C—H⋯O contacts are found between mol­ecules related by a twofold screw operation (Table 1[link]). The first of these, C16—H16⋯O21i involves a CH group of the phenyl ring and a methane­sulfonyl-O atom (H16⋯O21i = 2.33 Å). A somewhat longer C10—H10A⋯O18i contact is formed between the other methane­sulfonyl-O atom and the cyclo­propyl group (H10A⋯O18i = 2.63 Å). A column-like structure of mol­ecules linked by these contacts propagates parallel to the b axis (Fig. 3[link]). Moreover, columnar structures related by a glide mirror operation of this kind form a layer motif along the c axis with short (1,2-oxazol) C3—H3⋯O21ii(methane­sulfon­yl) contacts (H3⋯O21ii = 2.71 Å; Table 1[link]). Parallel stacking of the these supra­molecular bc layers in the a-axis direction results in multiple F⋯F and F⋯H inter­layer contacts.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O21i 0.95 2.35 3.214 (2) 151
C10—H10A⋯O18i 0.99 2.63 3.355 (2) 130
C3—H3⋯O21ii 0.95 2.71 3.522 (2) 144
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
Mol­ecules related by a twofold screw operation form two short C—H⋯O contacts, resulting in a columnar arrangement along the b axis (motif 1a,b).

5. Qu­anti­tative analysis of inter­molecular inter­actions

Inter­molecular inter­action energies were calculated with the semi-classical density sums (SCDS-PIXEL) method using the program OPiX (Gavezzotti, 2007[Gavezzotti, A. (2007). OPiX: A computer program package for the calculation of intermolecular interactions and crystal energies. University of Milan, Italy.], 2011[Gavezzotti, A. (2011). New J. Chem. 35, 1360-1368.]). C—H distances were recalculated to standard lengths and an electron-density map was calculated at the MP2/6-31G(d,p) level using Gaussian09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, \"O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc. Wallingford, CT, USA.]). The obtained lattice energy of −140 kJ mol−1 can be partitioned into contributions from Coulombic (ECol = −56.6 kJ mol−1), polarization (Epol = −20.7 kJ mol−1), dispersion (Edis = −151.2 kJ mol−1) and repulsion (Erep = 88.2 kJ mol−1) terms. Their relative values indicate that dispersion energy and electrostatic (Coulombic + polarization) energy contribute with 66% and 34%, respectively, to the stabilization of the crystal structure.

Considering the individual inter­action energies computed for pairs of mol­ecules, the largest absolute total contribution by far (Etot = −57.2 kJ mol−1) is obtained for two symmetry-equivalent inter­actions between a central and two neighbouring mol­ecules related to each other by twofold screw operations (denoted as 1a,b in Table 2[link] and Figs. 3[link], 4[link]). The sum of total energies of all mol­ecule/mol­ecule inter­actions in the crystal Etot,S is −144.8 kJ mol−1, which means that this columnar motif parallel to the b axis (see above) alone accounts for approximately 40% of the stabilization of the structure. This arrangement is associated with a large contact area of van der Waals surfaces (Edis = −58.7 kJ mol−1) and also with significant Coulombic and polarization terms (ECol = −28.5 kJ mol−1 and Epol = −10.1 kJ mol−1), which may confirm the attractive nature of the short inter­molecular C16—H16⋯O21i and C10—H10A⋯O18i contacts discussed in the previous section (Table 1[link], Fig. 3[link]).

Table 2
PIXEL energies (kJ mol−1) for mol­ecule/mol­ecule inter­actions

Index Symmetry operations Symmetry element d (Å) ECol Epol Eenergy-dispersive Erep Etot Motif Inter­actions
1a,b 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z; 1 − x, [{1\over 2}] + y, [{1\over 2}] − z, 21 5.367 –28.5 –10.1 –58.7 40.0 –57.2 column C16—H16⋯O21i; C10—H10A⋯O18i
3a,b x, [{3\over 2}] − y, −[{1\over 2}] + z; x, [{3\over 2}] − y, [{1\over 2}] + z c 7.002 –15.9 –7.1 –33.4 18.7 –37.6 layer C3—H3⋯O21ii
5 1 − x, 1 − y, −z [\overline{1}] 7.261 –9.8 –6.3 –26.0 17.0 –25.2 layer  
6 1 − x, 1 − y, 1 − z [\overline{1}] 8.141 –6.3 –2.5 –21.5 10.3 –19.9 layer  
7 2 − x, 1 − y, 1 − z [\overline{1}] 9.686 –5.8 –1.2 –14.5 8.1 –13.4 stack  
8a,b x − 1, [{3\over 2}] − y, −[{1\over 2}] + z; 1 + x, [{3\over 2}] − y, [{1\over 2}] + z c 12.086 –0.6 –1.0 –9.7 3.2 –8.1 stack  
10a,b x − 1, y, z; x + 1, y, z 1 13.569 –2.2 –0.8 –6.4 5.0 –4.3 stack  
12 x, 1 − y, −z [\overline{1}] 14.807 –1.8 –0.8 –7.4 5.9 –4.1 stack  
[Figure 4]
Figure 4
Cluster consisting of a central mol­ecule (orange) and neighbouring mol­ecules representing the twelve most important mol­ecule/mol­ecule inter­actions (see Table 3[link]). The inter­actions 1a,b (blue mol­ecules) constitute a column along the twofold screw axis, whilst 3a,b, 5 and 6 are inter­actions between adjacent columns related by a c glide mirror operation.

Another set of two symmetry-equivalent inter­actions (denoted as 3a,b; Etot = −36.7 kJ mol−1) are associated with glide mirror operations, i.e. the assembly of neighbouring column motifs into a layer structure along the c axis. Significant Coulombic (ECol = −15.9 kJ mol−1) and polarization (Epol= −7.3 kJ mol−1) terms, coinciding with the short C3—H3⋯O21ii contact mentioned in the previous section (Table 1[link]), are observed in addition to the dominant dispersion energy contributions (Edis = −33.4 kJ mol−1). The diagram in Fig. 4[link] shows a central mol­ecule and its twelve most important mol­ecular neighbours, which together account for approximately 96% of the sum of pairwise PIXEL energies (see section 2 of the supporting information). Altogether, intra-column (along the b axis) inter­actions and inter­action between neighbouring columns (along the c axis) contribute approximately with 42% and 43%, respectively, to the stabilization of the crystal structure. The rest (15%) originates from the stacking of mol­ecular bc layers in the a-axis direction.

6. Synthesis and crystallization

Isoxaflutole (technical quality) was recrystallized from a hot saturated aceto­nitrile (p.a.) solution yielding a colourless crystalline product used for further characterization. The reported form was also the only crystalline phase encountered in systematic crystallization experiments using a series of solvents (methanol, ethanol, di­chloro­methane, aceto­nitrile, ethyl acetate, acetone, methyl ethyl ketone, tetra­hydro­furan and toluene). Results of further investigations of the crystalline form of (I)[link] comprising hot-stage microscopy, DSC, TGA, ATR–FTIR, Raman spectroscopy and powder X-ray diffraction methods are reported in sections 3 to 7 of the supporting information. In addition, selected data are reported for the amorphous form of (I)[link] obtained by quench cooling the melt to room temperature.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were identified in difference-Fourier maps. Methyl H atoms were idealized and included as rigid groups allowed to rotate but not tip (C—H = 0.98 Å). H atoms bonded to aromatic CH (C—H = 0.95 Å), secondary CH2 and tertiary CH carbon atoms (C—H = 0.99 Å) were positioned geometrically. The Uiso parameters of all H atoms were refined freely. Two outlier reflections (102, 202) were omitted from the final refinement.

Table 3
Experimental details

Crystal data
Chemical formula C15H12F3NO4S
Mr 359.32
Crystal system, space group Monoclinic, P21/c
Temperature (K) 193
a, b, c (Å) 13.5689 (16), 9.2906 (8), 13.4358 (15)
β (°) 118.530 (15)
V3) 1488.1 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.27
Crystal size (mm) 0.25 × 0.10 × 0.08
 
Data collection
Diffractometer Xcalibur, Ruby, Gemini ultra
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.925, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9962, 3275, 2667
Rint 0.036
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.097, 1.02
No. of reflections 3275
No. of parameters 231
H-atom treatment Only H-atom displacement parameters refined
Δρmax, Δρmin (e Å−3) 0.31, −0.35
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP (Bruker, 1998[Bruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF Westrip (2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2020); cell refinement: CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: XP (Bruker, 1998) and Mercury (Macrae et al., 2020); software used to prepare material for publication: PLATON (Spek, 2020) and publCIF Westrip (2010).

(5-Cyclopropyl-1,2-oxazol-4-yl)[2-(methylsulfonyl)-4-(trifluoromethyl)\ phenyl]methanone top
Crystal data top
C15H12F3NO4SF(000) = 736
Mr = 359.32Dx = 1.604 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.5689 (16) ÅCell parameters from 2902 reflections
b = 9.2906 (8) Åθ = 5.0–29.8°
c = 13.4358 (15) ŵ = 0.27 mm1
β = 118.530 (15)°T = 193 K
V = 1488.1 (3) Å3Prism, colourless
Z = 40.25 × 0.10 × 0.08 mm
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
3275 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2667 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 10.3575 pixels mm-1θmax = 27.1°, θmin = 2.8°
ω scansh = 1716
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
k = 119
Tmin = 0.925, Tmax = 1.000l = 1717
9962 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038Only H-atom displacement parameters refined
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.6729P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3275 reflectionsΔρmax = 0.31 e Å3
231 parametersΔρmin = 0.35 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0203 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24820 (10)0.73141 (14)0.02968 (10)0.0294 (3)
N20.32693 (13)0.75772 (18)0.01032 (12)0.0306 (4)
C30.42144 (15)0.7107 (2)0.06926 (14)0.0258 (4)
H30.48980.71580.06620.033 (5)*
C40.41253 (14)0.65039 (18)0.16220 (13)0.0217 (4)
C50.30138 (14)0.66771 (19)0.13150 (13)0.0225 (4)
C60.49824 (14)0.58226 (19)0.26500 (14)0.0242 (4)
O70.47773 (11)0.52442 (17)0.33418 (11)0.0398 (4)
C80.23389 (15)0.6311 (2)0.18562 (15)0.0283 (4)
H80.27630.61210.26890.051 (6)*
C90.11929 (16)0.6956 (2)0.14281 (18)0.0364 (5)
H9A0.09410.71830.19910.047 (6)*
H9B0.09300.76370.07850.061 (8)*
C100.12928 (17)0.5426 (2)0.11990 (19)0.0381 (5)
H10A0.10940.51520.04130.050 (7)*
H10B0.11050.46980.16200.059 (7)*
C110.61644 (14)0.58208 (18)0.28108 (13)0.0216 (4)
C120.70654 (13)0.65149 (18)0.37110 (13)0.0193 (3)
C130.81286 (13)0.64965 (18)0.38042 (13)0.0203 (3)
H130.87290.69920.44080.024 (5)*
C140.83109 (14)0.57524 (18)0.30129 (13)0.0206 (3)
C150.74423 (14)0.50231 (18)0.21388 (14)0.0234 (4)
H150.75740.44910.16100.035 (5)*
C160.63762 (14)0.50723 (19)0.20371 (14)0.0255 (4)
H160.57780.45840.14260.031 (5)*
S170.69237 (4)0.74778 (5)0.47805 (3)0.02312 (14)
O180.78878 (12)0.83833 (16)0.53321 (11)0.0387 (4)
C190.94598 (15)0.5802 (2)0.31081 (14)0.0258 (4)
F201.02531 (9)0.53642 (16)0.41237 (10)0.0490 (4)
O210.58332 (12)0.81258 (15)0.42868 (11)0.0375 (4)
C220.69982 (18)0.6145 (2)0.57370 (15)0.0336 (4)
H22A0.77140.56320.60260.048 (7)*
H22B0.63780.54650.53510.057 (7)*
H22C0.69450.65940.63700.046 (6)*
F230.95559 (9)0.49764 (13)0.23536 (10)0.0394 (3)
F240.97390 (10)0.71318 (13)0.29720 (12)0.0467 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0211 (7)0.0400 (8)0.0249 (6)0.0034 (5)0.0093 (5)0.0067 (5)
N20.0295 (9)0.0387 (10)0.0257 (7)0.0010 (7)0.0150 (7)0.0041 (6)
C30.0232 (9)0.0302 (10)0.0261 (8)0.0031 (7)0.0133 (7)0.0004 (7)
C40.0185 (8)0.0246 (9)0.0229 (8)0.0039 (7)0.0106 (7)0.0007 (7)
C50.0198 (8)0.0243 (9)0.0214 (8)0.0009 (7)0.0081 (7)0.0002 (7)
C60.0188 (8)0.0295 (10)0.0249 (8)0.0023 (7)0.0110 (7)0.0016 (7)
O70.0245 (7)0.0600 (10)0.0369 (7)0.0013 (7)0.0162 (6)0.0207 (7)
C80.0191 (9)0.0374 (11)0.0299 (9)0.0001 (8)0.0129 (7)0.0032 (8)
C90.0270 (10)0.0378 (11)0.0528 (12)0.0047 (9)0.0259 (9)0.0006 (9)
C100.0296 (11)0.0376 (11)0.0547 (12)0.0076 (9)0.0263 (10)0.0072 (9)
C110.0176 (8)0.0243 (9)0.0230 (8)0.0003 (7)0.0099 (7)0.0054 (6)
C120.0181 (8)0.0202 (8)0.0207 (7)0.0016 (6)0.0100 (6)0.0020 (6)
C130.0171 (8)0.0213 (8)0.0207 (8)0.0003 (6)0.0076 (6)0.0004 (6)
C140.0193 (8)0.0210 (8)0.0235 (8)0.0024 (6)0.0118 (7)0.0042 (6)
C150.0263 (9)0.0231 (9)0.0235 (8)0.0000 (7)0.0140 (7)0.0008 (7)
C160.0227 (9)0.0281 (10)0.0240 (8)0.0061 (7)0.0097 (7)0.0044 (7)
S170.0255 (3)0.0244 (2)0.0244 (2)0.00307 (17)0.01593 (19)0.00053 (16)
O180.0450 (9)0.0421 (8)0.0388 (7)0.0153 (7)0.0280 (7)0.0174 (6)
C190.0238 (9)0.0284 (10)0.0296 (9)0.0024 (7)0.0164 (7)0.0029 (7)
F200.0193 (6)0.0889 (10)0.0363 (6)0.0101 (6)0.0112 (5)0.0143 (6)
O210.0378 (8)0.0411 (8)0.0414 (8)0.0201 (6)0.0252 (7)0.0109 (6)
C220.0411 (12)0.0370 (11)0.0263 (9)0.0069 (9)0.0191 (9)0.0082 (8)
F230.0358 (7)0.0455 (7)0.0497 (7)0.0046 (5)0.0306 (6)0.0083 (5)
F240.0436 (7)0.0327 (7)0.0844 (9)0.0068 (6)0.0471 (7)0.0000 (6)
Geometric parameters (Å, º) top
O1—C51.341 (2)C11—C121.400 (2)
O1—N21.4276 (19)C12—C131.387 (2)
N2—C31.292 (2)C12—S171.7794 (16)
C3—C41.426 (2)C13—C141.386 (2)
C3—H30.9500C13—H130.9500
C4—C51.370 (2)C14—C151.380 (2)
C4—C61.458 (2)C14—C191.503 (2)
C5—C81.456 (2)C15—C161.387 (2)
C6—O71.215 (2)C15—H150.9500
C6—C111.513 (2)C16—H160.9500
C8—C91.501 (3)S17—O181.4291 (14)
C8—C101.508 (3)S17—O211.4333 (14)
C8—H81.0000S17—C221.7521 (18)
C9—C101.474 (3)C19—F231.326 (2)
C9—H9A0.9900C19—F241.330 (2)
C9—H9B0.9900C19—F201.335 (2)
C10—H10A0.9900C22—H22A0.9800
C10—H10B0.9900C22—H22B0.9800
C11—C161.390 (2)C22—H22C0.9800
C5—O1—N2108.95 (12)C12—C11—C6123.48 (15)
C3—N2—O1104.84 (13)C13—C12—C11120.91 (14)
N2—C3—C4113.07 (16)C13—C12—S17116.24 (12)
N2—C3—H3123.5C11—C12—S17122.85 (12)
C4—C3—H3123.5C14—C13—C12119.72 (15)
C5—C4—C3103.41 (14)C14—C13—H13120.1
C5—C4—C6126.98 (15)C12—C13—H13120.1
C3—C4—C6129.59 (15)C15—C14—C13120.32 (15)
O1—C5—C4109.72 (14)C15—C14—C19121.13 (15)
O1—C5—C8116.89 (15)C13—C14—C19118.51 (15)
C4—C5—C8133.39 (15)C14—C15—C16119.61 (15)
O7—C6—C4123.08 (16)C14—C15—H15120.2
O7—C6—C11120.32 (15)C16—C15—H15120.2
C4—C6—C11116.57 (13)C15—C16—C11121.41 (15)
C5—C8—C9119.94 (16)C15—C16—H16119.3
C5—C8—C10118.40 (16)C11—C16—H16119.3
C9—C8—C1058.67 (13)O18—S17—O21118.66 (9)
C5—C8—H8115.9O18—S17—C22108.52 (10)
C9—C8—H8115.9O21—S17—C22108.75 (9)
C10—C8—H8115.9O18—S17—C12106.83 (8)
C10—C9—C860.89 (13)O21—S17—C12108.86 (8)
C10—C9—H9A117.7C22—S17—C12104.27 (9)
C8—C9—H9A117.7F23—C19—F24107.07 (14)
C10—C9—H9B117.7F23—C19—F20106.22 (14)
C8—C9—H9B117.7F24—C19—F20106.25 (16)
H9A—C9—H9B114.8F23—C19—C14113.20 (15)
C9—C10—C860.44 (13)F24—C19—C14111.64 (14)
C9—C10—H10A117.7F20—C19—C14112.02 (13)
C8—C10—H10A117.7S17—C22—H22A109.5
C9—C10—H10B117.7S17—C22—H22B109.5
C8—C10—H10B117.7H22A—C22—H22B109.5
H10A—C10—H10B114.8S17—C22—H22C109.5
C16—C11—C12117.98 (15)H22A—C22—H22C109.5
C16—C11—C6118.53 (15)H22B—C22—H22C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O21i0.952.353.214 (2)151
C10—H10A···O18i0.992.633.355 (2)130
C3—H3···O21ii0.952.713.522 (2)144
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+3/2, z1/2.
PIXEL energies (kJ mol–1) for molecule/molecule interactions top
IndexSymmetry operationsSymmetry elementd (Å)EColEpolEdispErepEtotMotifInteractions
1a,b1 - x, -1/2 + y, 1/2 - z; 1 - x, 1/2 + y, 1/2 - z,215.367–28.5–10.1–58.740.0–57.2columnC16—H16···O21i; C10—H10A···O18i
3a,bx, 3/2 - y, -1/2 + z; x, 3/2 - y, 1/2 + zc7.002–15.9–7.1–33.418.7–37.6layerC3—H3···O21ii
51 - x, 1 - y, -z17.261–9.8–6.3–26.017.0–25.2layer
61 - x, 1 - y, 1 - z18.141–6.3–2.5–21.510.3–19.9layer
72 - x, 1 - y, 1 - z19.686–5.8–1.2–14.58.1–13.4stack
8a,bx - 1, 3/2 - y, -1/2 + z; 1 + x, 3/2 - y, 1/2 + zc12.086–0.6–1.0–9.73.2–8.1stack
10a,bx - 1, y, z; x + 1, y, z113.569–2.2–0.8–6.45.0–4.3stack
12-x, 1 - y, -z114.807–1.8–0.8–7.45.9–4.1stack
 

References

First citationBruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCain, P. A., Cramp, S. M., Little, G. M. & Luscombe, B. M. (1992). Patent EP0527036B1.  Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, \"O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc. Wallingford, CT, USA.  Google Scholar
First citationGavezzotti, A. (2007). OPiX: A computer program package for the calculation of intermolecular interactions and crystal energies. University of Milan, Italy.  Google Scholar
First citationGavezzotti, A. (2011). New J. Chem. 35, 1360–1368.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLuscombe, B. M., Pallett, K. E., Loubbiere, P., Millet, C. J., Melgarejo, J. & Vrabel, T. E. (1995). Brighton Crop Prot. Conf. Weeds, 35–42.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPallett, K. E., Little, J. P., Veerasekaran, P. & Viviani, F. (1997). Pestic. Sci. 50, 83–84.  CrossRef CAS Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRoberts, T. R., Hutson, D. H., Lee, P. W., Nicholls, P. H. & Plimmer, J. R. (1999). Metabolic Pathways of Agrochemicals Part I. Herbicides and Plant Growth Regulators. Cambridge: Royal Society of Chemistry.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds