research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ethyl 4-[(4-methyl­benz­yl)­­oxy]benzoate

crossmark logo

aDepartment of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh, bCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan, cDepartment of Applied Science, Faculty of Science, Okayama University of Science, Japan, and dDepartment of Chemical and Pharmaceutical Sciences, University of Trieste, Italy
*Correspondence e-mail: ansary_chem@ru.ac.bd

Edited by M. Weil, Vienna University of Technology, Austria (Received 29 August 2022; accepted 25 September 2022; online 30 September 2022)

The title compound, C17H18O3, crystallizes with three mol­ecules in the asymmetric unit. The mol­ecules differ in the conformation related to the eth­oxy group and in the orientation of the two phenyl rings, one of which has the eth­oxy group disordered over two positions with refined occupancies of 0.735:0.265 (9). In the crystal packing, the mol­ecules are connected by weak C—H⋯π inter­actions.

1. Chemical context

Alkyl­benzoates are an important class of compounds with inter­esting physical properties and applications in industry. For example, 4-hy­droxy­benzoic acid and its esters are widely used as preservatives in cosmetic and pharmaceutical products known as parabens, for which the physical properties and crystal structures have been widely described (Giordano et al., 1999[Giordano, F., Bettini, R., Donini, C., Gazzaniga, A., Caira, M. R., Zhang, G. G. Z. & Grant, D. J. W. (1999). J. Pharm. Sci. 88, 1210-1216.]; Yang et al., 2014[Yang, H., Svärd, M., Zeglinski, J. & Rasmuson, C. (2014). Cryst. Growth Des. 14, 3890-3902.]).

Alkyl­benzoates of different properties have been designed, amongst other things, with the aim of preparing liquid crystalline compounds (Abser et al., 1993[Abser, M. N., Bellwood, M., Holmes, M. C. & McCabe, R. W. (1993). J. Chem. Soc. Chem. Commun. pp. 1062-1063.]), functionalized poly(benzyl ether) dendrimers with methyl ester decorations as efficient organogelators (Feng et al., 2009[Feng, Y., Liu, Z.-T., Liu, J., He, Y.-M., Zheng, Q.-Y. & Fan, Q.-H. (2009). J. Am. Chem. Soc. 131, 7950-7951.]), or non-linear optical materials (Perumal et al., 2002[Perumal, C. K. L., Arulchakkaravarthi, A., Santhanaraghavan, P. & Ramasamy, P. (2002). J. Cryst. Growth, 241, 200-205.]). Moreover, the ester bond has a prominent position in cell biology and medicinal chemistry (Lavis, 2008[Lavis, L. D. (2008). Chem. Biol. 3, 203-206.]), and carbohydrazones can be obtained by reacting corresponding esters with suitable hydrazine derivatives.

[Scheme 1]

We report here the synthesis and crystal structure of another example of a derivatized alkyl­benzoate with an ether group.

2. Structural commentary

Three mol­ecules, which slightly differ in their conformations, are present in the asymmetric unit of the title compound (Figs. 1[link]–3[link][link]). The main conformational differences of mol­ecules A, B and C are related to the eth­oxy group with C—O—CH2—CH3 torsion angles of 174.0 (6), 82.6 (6) and 89.6 (7)°, and in the orientation of the two phenyl rings that form a dihedral angle of 46.4 (1), 70.3 (1), and 62.2 (1)°, respectively. A side view of the mol­ecules displayed in Fig. 4[link] highlights these differences. All these features are indicative of the conformational freedom of this mol­ecule. Nevertheless, all bond lengths and angles in the three mol­ecules relating to the ether and the ester groups are similar within their standard uncertainties. In general, bond lengths (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) and angles are within normal ranges. In mol­ecule C, the eth­oxy group O9/C5/C51 is disordered over two sets of sites (Fig. 3[link]).

[Figure 1]
Figure 1
Mol­ecule A of the title compound, drawn with displacement ellipsoids at the 50% probability level.
[Figure 2]
Figure 2
Mol­ecule B of the title compound, drawn with displacement ellipsoids at the 50% probability level.
[Figure 3]
Figure 3
Mol­ecule C of the title compound, drawn with displacement ellipsoids at the 50% probability level. The eth­oxy group O9/C5/C51 is disordered over two sets of sites.
[Figure 4]
Figure 4
Side view of the three independent mol­ecules displaying the different conformations.

In the parent methyl 4-(benz­yloxy)-3-meth­oxy­benzoate compound, which is an important organic inter­mediate for the synthesis of the anti­neoplastic drug Cediranib (Wang et al., 2013[Wang, K., Ju, C. F., Xiao, J. & Chen, Q. (2013). Acta Cryst. E69, o1562.]), the two aromatic rings are almost normal to each other forming a dihedral angle of 85.81 (10)° and bond lengths are close comparable with those determined here.

3. Supra­molecular features

Despite the number of phenyl rings, the aromatic rings have rather distant centroid-to-centroid distances of between 4.727 (3) and 4.946 (3) Å, but with unsuitable orientations for efficient π-stacking inter­actions. On the other hand, the crystal packing indicates a series of C—H⋯π ring inter­actions in the range 2.65–2.94 Å (Table 1[link]), as derived with PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). A view of the unit cell is displayed in Fig. 5[link], showing these kinds of inter­actions. In addition, non-conventional C—H⋯O hydrogen bonds are observed in the crystal packing (Table 2[link]).

Table 1
Analysis of C—H⋯Cg(π-ring) inter­actions (Å, °)

C—H⋯π = angle of the X—H bond with the π-plane (perpendicular = 90°, parallel = 0°). Ring Cg1 = C35–C40; Cg2 = C43–C48; Cg3 = C1–C6; Cg4 = C9–C14; Cg6 = C26–C31

C—H Cg(J) Symmetry code (J) H⋯Cg C—H⋯Cg C⋯Cg C—H⋯π
C8—H8A Cg3 -x, [{1\over 2}] + y, −z 2.90 144 3.749 (5) 59
C20—H20 Cg1 x, y, z 2.81 147 3.653 (6) 62
C22—H22 Cg4 x, 1 + y, 1 + z 2.93 137 3.688 (6) 50
C25—H25A Cg2 x, 1 + y, z 2.81 143 3.654 (6) 50
C41—H41B Cg1 1 − x, [{1\over 2}] + y, 3 − z 2.67 156 3.590 (5) 75
C45—H45 Cg6 x, y, z 2.82 147 3.654 (4) 51
C47—H47 Cg2 1 − x, −[{1\over 2}] + y, 2 − z 2.77 148 3.615 (4) 65

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C42—H42A⋯O8i 0.99 2.65 3.269 (5) 121
C44—H44⋯O4 0.95 2.66 3.374 (5) 133
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+2].
[Figure 5]
Figure 5
Perspective view of the crystal packing of the title compound down the c axis with indication of the C—H⋯π-ring inter­actions. H atoms not involved in the inter­actions were omitted for clarity.

4. Database survey

The conformations of the three independent mol­ecules present in the crystal structure of the title compound agree with previous structurally characterized species containing the (benz­yloxy)phenyl fragment, where the two aromatic rings form dihedral angles of 64.5 (2)° (mean value of two independent mol­ecules; Bats & Canenbley, 1984[Bats, J. W. & Canenbley, R. (1984). Acta Cryst. C40, 993-995.]) and 69.19 (6)° (Qin et al., 2019[Qin, Y.-M., Zou, X., Long, D., Ji, C. & Zhao, C.-S. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1295-1296.]). However, a few structures exhibit almost coplanar orientations of the phenyl rings (Jasinski et al., 2008[Jasinski, J. P., Butcher, R. J., Swamy, M. T., Yathirajan, H. S., Mohana, K. N. & Narayana, B. (2008). Anal. Sci. 24, x274.]; Feng et al., 2009[Feng, Y., Liu, Z.-T., Liu, J., He, Y.-M., Zheng, Q.-Y. & Fan, Q.-H. (2009). J. Am. Chem. Soc. 131, 7950-7951.]), or small dihedral angles such as the 4.1 (2) and 10.9 (4)° reported for 3,5-bis­(benz­yloxy)benzoic acid (Moreno-Fuquen et al. 2012[Moreno-Fuquen, R., Grande, C., Advincula, R. C., Tenorio, J. C. & Ellena, J. (2012). Acta Cryst. E68, o3247-o3248.]). The latter conformations favour electron delocalization between the two rings, but packing requirements also play a role.

5. Synthesis and crystallization

A mixture of ethyl-4-hy­droxy­benzoate (8.75 g, 52.65 mmol) and 4-methyl­benzyl­bromide (9.75 g, 52.68 mmol) in acetone (100 ml) was refluxed for 14 h over anhydrous potassium carbonate (20 g). The solvent was removed in vacuo, and the remaining solid was dissolved in water and extracted with di­chloro­methane. Left overnight, colourless needle-shaped crystals were formed, filtered off, washed, and dried over silica gel in a desiccator. Yield: 12.58 g, 88% Melting point: 323 −324 K. FT–IR: 1706 ν (C=O), 1258, 1276 ν (C—Oester), 1106, 1102 ν (C—Oether). 1H NMR (CDCl3,600 MHz): δ = 1.37 (t, 3H, CH3CH2-, J = 10.5 Hz), 2.36 (s, 3H, C6H4–CH3),4.35 (q, 2H, CH3–CH2, J = 10.5 Hz), 5.07 (s, 2H, C6H4–CH2–), 6.98 (d, 2H, H-5,6, J =7.8 Hz), 7.20 (d, 2H, H-10,11, J = 11.4 Hz), 7.31 (d, 2H, H-8,9, J = 12 Hz), 7.99 (d, 2H, H-3,4, J = 6.6 Hz), ppm. 13C NMR (CDCl3, 600 MHz): 14.4 (C11), 21.3 (C7), 60.7 (C10), 70.1 (C8), 114.4 (C-3,5), 123.15 (C1), 127.73 (C-2′,6′), 129.1 (C-3′,5′), 131.6 (C-2,6), 133.31 (C1′),138.13 (C4), 162.5 (C4′), 166.4 (C9), ppm. LC–MS (ESI) m/z: [M + H]+. Calculated for C17H18O3 271.13; found 271.13.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The structure was refined as a two-component inversion twin. The –OCH2CH3 moiety of mol­ecule C was found to be disordered over two sets of sites with refined occupancies of 0.735 (9):0.265 (9). For modelling the minor disordered part, all atoms were refined with isotropic displacement parameters, and C—C and C—O bond lengths were restrained by using DFIX commands.

Table 3
Experimental details

Crystal data
Chemical formula C17H18O3
Mr 270.31
Crystal system, space group Monoclinic, P21
Temperature (K) 173
a, b, c (Å) 16.1906 (10), 7.5752 (4), 17.7591 (9)
β (°) 95.360 (7)
V3) 2168.6 (2)
Z 6
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.30 × 0.20 × 0.05
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.533, 0.996
No. of measured, independent and observed [I > 2σ(I)] reflections 16200, 7609, 5301
Rint 0.042
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.125, 0.97
No. of reflections 7609
No. of parameters 560
No. of restraints 5
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.17
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.6 (14)
Computer programs: CrystalStructure (Rigaku, 2018[Rigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrystalStructure (Rigaku, 2018); cell refinement: CrystalStructure (Rigaku, 2018); data reduction: CrystalStructure (Rigaku, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Ethyl 4-[(4-methylbenzyl)oxy]benzoate top
Crystal data top
C17H18O3F(000) = 864
Mr = 270.31Dx = 1.242 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71075 Å
a = 16.1906 (10) ÅCell parameters from 13948 reflections
b = 7.5752 (4) Åθ = 2.3–27.5°
c = 17.7591 (9) ŵ = 0.08 mm1
β = 95.360 (7)°T = 173 K
V = 2168.6 (2) Å3Prism, colorless
Z = 60.30 × 0.20 × 0.05 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5301 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.042
ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1919
Tmin = 0.533, Tmax = 0.996k = 99
16200 measured reflectionsl = 2121
7609 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.0667P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.125(Δ/σ)max = 0.001
S = 0.97Δρmax = 0.16 e Å3
7609 reflectionsΔρmin = 0.17 e Å3
560 parametersAbsolute structure: Refined as an inversion twin
5 restraintsAbsolute structure parameter: 0.6 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.10822 (15)0.3014 (4)0.12187 (14)0.0520 (7)
O20.19050 (18)0.4249 (6)0.47508 (17)0.0864 (12)
O30.06054 (17)0.3271 (5)0.47163 (14)0.0648 (8)
O40.24935 (14)0.7272 (4)1.05090 (15)0.0496 (7)
O50.14434 (17)0.5821 (4)0.70340 (16)0.0648 (8)
O60.26005 (16)0.7442 (4)0.69644 (15)0.0625 (8)
O70.40986 (15)0.2922 (3)1.18050 (15)0.0510 (7)
O80.44677 (16)0.0780 (4)0.83691 (16)0.0599 (8)
C10.0495 (2)0.2152 (5)0.0013 (2)0.0443 (9)
C20.0147 (2)0.2495 (5)0.0573 (2)0.0489 (10)
H20.0660490.2935420.0433620.059*
C30.0046 (2)0.2202 (6)0.1331 (2)0.0543 (11)
H30.0494290.2425040.1702990.065*
C40.0702 (2)0.1589 (6)0.1552 (2)0.0497 (10)
C50.1338 (2)0.1273 (6)0.0996 (2)0.0527 (10)
H50.1858170.0875330.1136260.063*
C60.1236 (2)0.1522 (6)0.0237 (2)0.0510 (10)
H60.1679890.1256240.0133920.061*
C70.0823 (3)0.1340 (7)0.2379 (2)0.0659 (13)
H7A0.0296180.0981810.2654250.079*
H7B0.1240860.0424280.2431640.079*
H7C0.1008680.2452900.2588740.079*
C80.0345 (2)0.2349 (6)0.0806 (2)0.0482 (10)
H8A0.0121310.3174250.0854430.058*
H8B0.0197110.1191540.1014480.058*
C90.1080 (2)0.3143 (6)0.1992 (2)0.0461 (9)
C100.1767 (2)0.3941 (6)0.2365 (2)0.0558 (11)
H100.2197760.4382590.2088930.067*
C110.1824 (2)0.4095 (6)0.3143 (2)0.0578 (11)
H110.2299860.4637830.3398510.069*
C120.1200 (2)0.3471 (6)0.3559 (2)0.0498 (10)
C130.0515 (2)0.2667 (5)0.3178 (2)0.0497 (10)
H130.0085070.2224750.3454920.060*
C140.0448 (2)0.2498 (5)0.2392 (2)0.0487 (10)
H140.0023830.1948270.2134320.058*
C150.1293 (2)0.3687 (7)0.4396 (2)0.0584 (12)
C160.0629 (3)0.3580 (9)0.5529 (2)0.0770 (15)
H16A0.0795500.4814060.5646820.092*
H16B0.1039320.2783300.5802440.092*
C170.0198 (3)0.3242 (9)0.5765 (3)0.0857 (16)
H17A0.0594610.4073510.5510130.103*
H17B0.0187330.3394270.6313860.103*
H17C0.0365520.2031290.5629450.103*
C180.3073 (2)0.8300 (5)1.1705 (2)0.0478 (10)
C190.3626 (2)0.7371 (6)1.2195 (2)0.0524 (10)
H190.4062740.6722211.2003020.063*
C200.3545 (2)0.7383 (6)1.2969 (2)0.0583 (11)
H200.3934750.6755921.3302040.070*
C210.2907 (3)0.8295 (6)1.3260 (2)0.0594 (11)
C220.2347 (3)0.9185 (6)1.2765 (3)0.0628 (12)
H220.1896260.9793021.2953210.075*
C230.2433 (2)0.9204 (6)1.1995 (2)0.0572 (11)
H230.2047920.9846111.1663460.069*
C240.2827 (3)0.8334 (8)1.4110 (2)0.0822 (16)
H24A0.3366080.8062621.4384160.099*
H24B0.2418270.7454221.4236100.099*
H24C0.2646740.9510111.4255940.099*
C250.3159 (2)0.8310 (6)1.0874 (2)0.0523 (10)
H25A0.3128220.9534941.0678970.063*
H25B0.3700480.7802041.0772180.063*
C260.2446 (2)0.7150 (5)0.9736 (2)0.0432 (9)
C270.1790 (2)0.6128 (5)0.9411 (2)0.0470 (10)
H270.1423580.5560820.9722000.056*
C280.1676 (2)0.5945 (5)0.8635 (2)0.0489 (10)
H280.1228100.5254180.8413350.059*
C290.2212 (2)0.6763 (5)0.8173 (2)0.0457 (9)
C300.2876 (2)0.7729 (5)0.8507 (2)0.0476 (10)
H300.3251510.8269940.8197240.057*
C310.3002 (2)0.7918 (5)0.9286 (2)0.0476 (10)
H310.3464400.8566770.9509380.057*
C320.2039 (2)0.6608 (6)0.7346 (2)0.0517 (10)
C330.2436 (3)0.7472 (8)0.6140 (2)0.0743 (15)
H33A0.2204280.6320460.5961840.089*
H33B0.2961510.7664050.5908660.089*
C340.1840 (3)0.8902 (10)0.5902 (3)0.0973 (19)
H34A0.1749830.8928920.5349050.117*
H34B0.2066331.0038310.6087040.117*
H34C0.1312140.8681110.6113670.117*
C350.4655 (2)0.2889 (5)1.3101 (2)0.0491 (10)
C360.5264 (2)0.3902 (6)1.3491 (2)0.0564 (11)
H360.5744690.4212031.3251780.068*
C370.5190 (3)0.4475 (6)1.4222 (3)0.0598 (11)
H370.5624570.5143441.4480320.072*
C380.4486 (3)0.4081 (6)1.4581 (2)0.0572 (11)
C390.3864 (3)0.3103 (6)1.4183 (2)0.0602 (11)
H390.3372650.2835731.4414090.072*
C400.3948 (2)0.2508 (6)1.3455 (2)0.0579 (11)
H400.3515760.1832681.3195940.070*
C410.4391 (3)0.4632 (7)1.5379 (2)0.0780 (14)
H41A0.3804840.4562451.5473400.094*
H41B0.4587060.5848501.5456430.094*
H41C0.4717990.3846211.5729230.094*
C420.4754 (2)0.2209 (6)1.2318 (2)0.0536 (10)
H42A0.5299130.2571741.2160280.064*
H42B0.4726920.0903381.2313590.064*
C430.4135 (2)0.2591 (5)1.1059 (2)0.0462 (10)
C440.3508 (2)0.3376 (5)1.0580 (2)0.0493 (10)
H440.3087060.4044101.0787430.059*
C450.3497 (2)0.3187 (5)0.9804 (2)0.0531 (10)
H450.3074180.3743120.9481150.064*
C460.4106 (2)0.2179 (5)0.9493 (2)0.0476 (10)
C470.4712 (2)0.1361 (5)0.9978 (2)0.0482 (10)
H470.5115330.0640160.9772670.058*
C480.4739 (2)0.1577 (5)1.0761 (2)0.0464 (9)
H480.5166010.1037091.1084830.056*
C490.4124 (2)0.1963 (6)0.8672 (3)0.0584 (11)
O90.3807 (3)0.3384 (6)0.8254 (2)0.0544 (16)0.735 (9)
C500.3807 (5)0.3379 (13)0.7433 (6)0.064 (2)0.735 (9)
H50A0.4324230.2825050.7290220.077*0.735 (9)
H50B0.3788680.4608690.7242600.077*0.735 (9)
C510.3068 (4)0.2372 (9)0.7079 (4)0.067 (2)0.735 (9)
H51A0.3073930.2376940.6527550.101*0.735 (9)
H51B0.3091760.1152230.7263150.101*0.735 (9)
H51C0.2557240.2932460.7215620.101*0.735 (9)
O9B0.3346 (8)0.2613 (17)0.8386 (6)0.056 (4)*0.265 (9)
C50B0.3182 (13)0.228 (3)0.7576 (11)0.078 (6)*0.265 (9)
H50C0.2606860.2630080.7402160.093*0.265 (9)
H50D0.3243820.1002180.7472930.093*0.265 (9)
C51B0.377 (2)0.330 (5)0.7170 (19)0.081 (12)*0.265 (9)
H51D0.3666150.3079890.6625360.122*0.265 (9)
H51E0.3704810.4558960.7271130.122*0.265 (9)
H51F0.4339940.2935730.7341690.122*0.265 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0389 (14)0.0603 (19)0.0572 (17)0.0066 (13)0.0069 (11)0.0051 (15)
O20.0544 (19)0.136 (4)0.069 (2)0.016 (2)0.0050 (15)0.028 (2)
O30.0547 (17)0.085 (2)0.0546 (17)0.0051 (17)0.0072 (13)0.0107 (17)
O40.0407 (14)0.0462 (16)0.0617 (18)0.0072 (13)0.0043 (12)0.0012 (14)
O50.0518 (17)0.072 (2)0.0698 (19)0.0104 (17)0.0028 (14)0.0147 (17)
O60.0508 (16)0.079 (2)0.0583 (18)0.0110 (16)0.0111 (13)0.0097 (16)
O70.0411 (14)0.0503 (17)0.0619 (18)0.0051 (13)0.0060 (12)0.0001 (15)
O80.0538 (16)0.0573 (19)0.0695 (19)0.0051 (15)0.0096 (13)0.0054 (16)
C10.039 (2)0.036 (2)0.058 (2)0.0038 (18)0.0085 (17)0.0015 (19)
C20.040 (2)0.045 (2)0.063 (3)0.0003 (18)0.0106 (18)0.002 (2)
C30.046 (2)0.056 (3)0.060 (3)0.007 (2)0.0004 (18)0.007 (2)
C40.051 (2)0.043 (2)0.056 (2)0.0052 (19)0.0115 (19)0.002 (2)
C50.042 (2)0.052 (3)0.066 (3)0.0035 (19)0.0130 (19)0.002 (2)
C60.041 (2)0.052 (2)0.061 (3)0.0001 (19)0.0054 (18)0.003 (2)
C70.078 (3)0.063 (3)0.058 (3)0.016 (3)0.014 (2)0.004 (2)
C80.040 (2)0.050 (2)0.055 (2)0.0056 (19)0.0085 (17)0.002 (2)
C90.040 (2)0.047 (2)0.052 (2)0.0026 (19)0.0081 (16)0.004 (2)
C100.044 (2)0.060 (3)0.066 (3)0.008 (2)0.0137 (19)0.008 (2)
C110.044 (2)0.059 (3)0.071 (3)0.009 (2)0.0030 (19)0.012 (2)
C120.041 (2)0.052 (3)0.056 (2)0.003 (2)0.0038 (17)0.006 (2)
C130.040 (2)0.050 (3)0.059 (3)0.0032 (19)0.0079 (17)0.003 (2)
C140.037 (2)0.052 (3)0.056 (3)0.0034 (19)0.0025 (17)0.008 (2)
C150.045 (2)0.069 (3)0.061 (3)0.003 (2)0.003 (2)0.012 (2)
C160.072 (3)0.112 (4)0.048 (3)0.004 (3)0.005 (2)0.010 (3)
C170.086 (4)0.111 (5)0.061 (3)0.012 (3)0.012 (2)0.002 (3)
C180.041 (2)0.039 (2)0.063 (3)0.0033 (19)0.0035 (18)0.001 (2)
C190.042 (2)0.049 (3)0.066 (3)0.004 (2)0.0088 (18)0.000 (2)
C200.049 (2)0.058 (3)0.067 (3)0.000 (2)0.0007 (19)0.011 (2)
C210.063 (3)0.053 (3)0.063 (3)0.011 (2)0.011 (2)0.001 (2)
C220.055 (3)0.058 (3)0.077 (3)0.008 (2)0.014 (2)0.009 (3)
C230.051 (2)0.053 (3)0.067 (3)0.006 (2)0.001 (2)0.004 (2)
C240.093 (4)0.088 (4)0.067 (3)0.011 (3)0.019 (3)0.003 (3)
C250.040 (2)0.055 (3)0.062 (3)0.007 (2)0.0046 (17)0.007 (2)
C260.0363 (19)0.038 (2)0.056 (2)0.0034 (18)0.0050 (16)0.0020 (19)
C270.033 (2)0.040 (2)0.069 (3)0.0010 (17)0.0104 (18)0.000 (2)
C280.0320 (19)0.041 (2)0.073 (3)0.0008 (18)0.0020 (18)0.005 (2)
C290.0339 (19)0.043 (2)0.060 (3)0.0045 (17)0.0030 (17)0.005 (2)
C300.039 (2)0.043 (2)0.062 (3)0.0006 (18)0.0115 (17)0.003 (2)
C310.036 (2)0.044 (2)0.062 (3)0.0045 (17)0.0033 (17)0.004 (2)
C320.039 (2)0.051 (3)0.065 (3)0.000 (2)0.0068 (19)0.013 (2)
C330.064 (3)0.105 (4)0.056 (3)0.018 (3)0.018 (2)0.022 (3)
C340.084 (4)0.141 (6)0.067 (3)0.000 (4)0.006 (3)0.009 (4)
C350.041 (2)0.043 (2)0.064 (3)0.0045 (18)0.0064 (18)0.006 (2)
C360.043 (2)0.050 (3)0.076 (3)0.003 (2)0.006 (2)0.007 (2)
C370.051 (2)0.050 (3)0.077 (3)0.007 (2)0.003 (2)0.000 (2)
C380.060 (3)0.048 (3)0.063 (3)0.000 (2)0.001 (2)0.000 (2)
C390.050 (2)0.063 (3)0.070 (3)0.005 (2)0.018 (2)0.000 (2)
C400.042 (2)0.057 (3)0.075 (3)0.009 (2)0.0052 (19)0.001 (2)
C410.093 (4)0.068 (3)0.073 (3)0.001 (3)0.009 (3)0.008 (3)
C420.039 (2)0.057 (3)0.065 (3)0.004 (2)0.0051 (18)0.006 (2)
C430.0341 (19)0.040 (2)0.066 (3)0.0026 (18)0.0103 (17)0.003 (2)
C440.036 (2)0.042 (2)0.070 (3)0.0046 (18)0.0045 (18)0.005 (2)
C450.040 (2)0.042 (2)0.075 (3)0.0058 (19)0.0065 (18)0.006 (2)
C460.039 (2)0.041 (2)0.061 (3)0.0001 (19)0.0004 (17)0.006 (2)
C470.037 (2)0.036 (2)0.073 (3)0.0008 (18)0.0074 (18)0.002 (2)
C480.0339 (19)0.042 (2)0.063 (3)0.0001 (18)0.0018 (17)0.003 (2)
C490.049 (2)0.052 (3)0.072 (3)0.009 (2)0.005 (2)0.011 (2)
O90.061 (3)0.046 (3)0.056 (3)0.008 (2)0.0020 (18)0.001 (2)
C500.058 (4)0.062 (5)0.074 (7)0.006 (3)0.012 (4)0.005 (5)
C510.052 (4)0.064 (4)0.084 (6)0.003 (3)0.002 (3)0.000 (4)
Geometric parameters (Å, º) top
O1—C91.377 (4)C25—H25B0.9900
O1—C81.432 (4)C26—C311.387 (5)
O2—C151.201 (5)C26—C271.395 (5)
O3—C151.335 (5)C27—C281.380 (5)
O3—C161.459 (4)C27—H270.9500
O4—C261.371 (4)C28—C291.393 (5)
O4—C251.438 (4)C28—H280.9500
O5—C321.222 (4)C29—C301.387 (5)
O6—C321.341 (5)C29—C321.475 (5)
O6—C331.463 (5)C30—C311.387 (5)
O7—C431.355 (4)C30—H300.9500
O7—C421.438 (4)C31—H310.9500
O8—C491.207 (5)C33—C341.485 (8)
C1—C61.383 (5)C33—H33A0.9900
C1—C21.393 (5)C33—H33B0.9900
C1—C81.505 (5)C34—H34A0.9800
C2—C31.390 (5)C34—H34B0.9800
C2—H20.9500C34—H34C0.9800
C3—C41.387 (5)C35—C361.384 (5)
C3—H30.9500C35—C401.387 (5)
C4—C51.379 (5)C35—C421.505 (5)
C4—C71.512 (5)C36—C371.384 (6)
C5—C61.386 (5)C36—H360.9500
C5—H50.9500C37—C381.389 (6)
C6—H60.9500C37—H370.9500
C7—H7A0.9800C38—C391.389 (6)
C7—H7B0.9800C38—C411.500 (6)
C7—H7C0.9800C39—C401.388 (6)
C8—H8A0.9900C39—H390.9500
C8—H8B0.9900C40—H400.9500
C9—C101.380 (5)C41—H41A0.9800
C9—C141.388 (5)C41—H41B0.9800
C10—C111.380 (5)C41—H41C0.9800
C10—H100.9500C42—H42A0.9900
C11—C121.389 (5)C42—H42B0.9900
C11—H110.9500C43—C481.387 (5)
C12—C131.386 (5)C43—C441.395 (5)
C12—C151.488 (5)C44—C451.384 (5)
C13—C141.395 (5)C44—H440.9500
C13—H130.9500C45—C461.401 (5)
C14—H140.9500C45—H450.9500
C16—C171.463 (6)C46—C471.389 (5)
C16—H16A0.9900C46—C491.471 (6)
C16—H16B0.9900C47—C481.397 (5)
C17—H17A0.9800C47—H470.9500
C17—H17B0.9800C48—H480.9500
C17—H17C0.9800C49—O91.379 (6)
C18—C231.381 (5)C49—O9B1.403 (12)
C18—C191.382 (5)O9—C501.458 (11)
C18—C251.495 (5)C50—C511.507 (10)
C19—C201.394 (5)C50—H50A0.9900
C19—H190.9500C50—H50B0.9900
C20—C211.383 (6)C51—H51A0.9800
C20—H200.9500C51—H51B0.9800
C21—C221.379 (6)C51—H51C0.9800
C21—C241.527 (5)O9B—C50B1.459 (19)
C22—C231.388 (5)C50B—C51B1.47 (2)
C22—H220.9500C50B—H50C0.9900
C23—H230.9500C50B—H50D0.9900
C24—H24A0.9800C51B—H51D0.9800
C24—H24B0.9800C51B—H51E0.9800
C24—H24C0.9800C51B—H51F0.9800
C25—H25A0.9900
C9—O1—C8117.1 (3)C27—C28—H28119.6
C15—O3—C16115.9 (3)C29—C28—H28119.6
C26—O4—C25117.3 (3)C30—C29—C28118.9 (4)
C32—O6—C33116.3 (3)C30—C29—C32122.4 (3)
C43—O7—C42117.0 (3)C28—C29—C32118.7 (3)
C6—C1—C2117.9 (4)C31—C30—C29121.1 (3)
C6—C1—C8122.3 (3)C31—C30—H30119.4
C2—C1—C8119.6 (3)C29—C30—H30119.4
C3—C2—C1120.9 (3)C26—C31—C30119.2 (4)
C3—C2—H2119.5C26—C31—H31120.4
C1—C2—H2119.5C30—C31—H31120.4
C4—C3—C2120.8 (4)O5—C32—O6123.0 (4)
C4—C3—H3119.6O5—C32—C29124.0 (4)
C2—C3—H3119.6O6—C32—C29113.0 (3)
C5—C4—C3117.9 (4)O6—C33—C34110.4 (4)
C5—C4—C7121.3 (4)O6—C33—H33A109.6
C3—C4—C7120.8 (4)C34—C33—H33A109.6
C4—C5—C6121.6 (4)O6—C33—H33B109.6
C4—C5—H5119.2C34—C33—H33B109.6
C6—C5—H5119.2H33A—C33—H33B108.1
C1—C6—C5120.7 (4)C33—C34—H34A109.5
C1—C6—H6119.6C33—C34—H34B109.5
C5—C6—H6119.6H34A—C34—H34B109.5
C4—C7—H7A109.5C33—C34—H34C109.5
C4—C7—H7B109.5H34A—C34—H34C109.5
H7A—C7—H7B109.5H34B—C34—H34C109.5
C4—C7—H7C109.5C36—C35—C40118.0 (4)
H7A—C7—H7C109.5C36—C35—C42121.3 (3)
H7B—C7—H7C109.5C40—C35—C42120.7 (4)
O1—C8—C1109.1 (3)C35—C36—C37121.5 (4)
O1—C8—H8A109.9C35—C36—H36119.2
C1—C8—H8A109.9C37—C36—H36119.2
O1—C8—H8B109.9C36—C37—C38120.7 (4)
C1—C8—H8B109.9C36—C37—H37119.7
H8A—C8—H8B108.3C38—C37—H37119.7
O1—C9—C10115.7 (3)C37—C38—C39118.0 (4)
O1—C9—C14123.8 (3)C37—C38—C41122.4 (4)
C10—C9—C14120.5 (4)C39—C38—C41119.6 (4)
C9—C10—C11119.6 (4)C40—C39—C38121.1 (4)
C9—C10—H10120.2C40—C39—H39119.4
C11—C10—H10120.2C38—C39—H39119.4
C10—C11—C12121.3 (4)C35—C40—C39120.8 (4)
C10—C11—H11119.3C35—C40—H40119.6
C12—C11—H11119.3C39—C40—H40119.6
C13—C12—C11118.6 (4)C38—C41—H41A109.5
C13—C12—C15122.5 (4)C38—C41—H41B109.5
C11—C12—C15118.9 (4)H41A—C41—H41B109.5
C12—C13—C14120.8 (4)C38—C41—H41C109.5
C12—C13—H13119.6H41A—C41—H41C109.5
C14—C13—H13119.6H41B—C41—H41C109.5
C9—C14—C13119.2 (3)O7—C42—C35108.7 (3)
C9—C14—H14120.4O7—C42—H42A109.9
C13—C14—H14120.4C35—C42—H42A109.9
O2—C15—O3122.7 (4)O7—C42—H42B109.9
O2—C15—C12124.3 (4)C35—C42—H42B109.9
O3—C15—C12112.9 (3)H42A—C42—H42B108.3
O3—C16—C17108.4 (4)O7—C43—C48124.9 (4)
O3—C16—H16A110.0O7—C43—C44114.9 (3)
C17—C16—H16A110.0C48—C43—C44120.2 (4)
O3—C16—H16B110.0C45—C44—C43120.2 (4)
C17—C16—H16B110.0C45—C44—H44119.9
H16A—C16—H16B108.4C43—C44—H44119.9
C16—C17—H17A109.5C44—C45—C46120.4 (4)
C16—C17—H17B109.5C44—C45—H45119.8
H17A—C17—H17B109.5C46—C45—H45119.8
C16—C17—H17C109.5C47—C46—C45118.7 (4)
H17A—C17—H17C109.5C47—C46—C49119.1 (4)
H17B—C17—H17C109.5C45—C46—C49122.2 (4)
C23—C18—C19118.9 (4)C46—C47—C48121.3 (3)
C23—C18—C25120.5 (4)C46—C47—H47119.3
C19—C18—C25120.6 (3)C48—C47—H47119.3
C18—C19—C20120.2 (4)C43—C48—C47119.1 (4)
C18—C19—H19119.9C43—C48—H48120.4
C20—C19—H19119.9C47—C48—H48120.4
C21—C20—C19120.9 (4)O8—C49—O9120.3 (4)
C21—C20—H20119.5O8—C49—O9B122.3 (6)
C19—C20—H20119.5O8—C49—C46125.2 (4)
C22—C21—C20118.4 (4)O9—C49—C46113.9 (4)
C22—C21—C24120.7 (4)O9B—C49—C46102.7 (5)
C20—C21—C24120.9 (4)C49—O9—C50120.1 (5)
C21—C22—C23120.9 (4)O9—C50—C51110.1 (7)
C21—C22—H22119.5O9—C50—H50A109.6
C23—C22—H22119.5C51—C50—H50A109.6
C18—C23—C22120.7 (4)O9—C50—H50B109.6
C18—C23—H23119.7C51—C50—H50B109.6
C22—C23—H23119.7H50A—C50—H50B108.2
C21—C24—H24A109.5C50—C51—H51A109.5
C21—C24—H24B109.5C50—C51—H51B109.5
H24A—C24—H24B109.5H51A—C51—H51B109.5
C21—C24—H24C109.5C50—C51—H51C109.5
H24A—C24—H24C109.5H51A—C51—H51C109.5
H24B—C24—H24C109.5H51B—C51—H51C109.5
O4—C25—C18107.9 (3)C49—O9B—C50B111.7 (11)
O4—C25—H25A110.1O9B—C50B—C51B109 (2)
C18—C25—H25A110.1O9B—C50B—H50C109.9
O4—C25—H25B110.1C51B—C50B—H50C109.9
C18—C25—H25B110.1O9B—C50B—H50D109.9
H25A—C25—H25B108.4C51B—C50B—H50D109.9
O4—C26—C31124.7 (3)H50C—C50B—H50D108.3
O4—C26—C27114.9 (3)C50B—C51B—H51D109.5
C31—C26—C27120.3 (4)C50B—C51B—H51E109.5
C28—C27—C26119.6 (3)H51D—C51B—H51E109.5
C28—C27—H27120.2C50B—C51B—H51F109.5
C26—C27—H27120.2H51D—C51B—H51F109.5
C27—C28—C29120.7 (4)H51E—C51B—H51F109.5
C6—C1—C2—C30.4 (6)C27—C28—C29—C32176.7 (3)
C8—C1—C2—C3175.3 (4)C28—C29—C30—C311.3 (5)
C1—C2—C3—C41.1 (6)C32—C29—C30—C31177.0 (4)
C2—C3—C4—C50.3 (6)O4—C26—C31—C30178.7 (3)
C2—C3—C4—C7177.6 (4)C27—C26—C31—C303.1 (6)
C3—C4—C5—C61.2 (6)C29—C30—C31—C261.0 (6)
C7—C4—C5—C6179.1 (4)C33—O6—C32—O54.1 (6)
C2—C1—C6—C51.2 (6)C33—O6—C32—C29175.2 (4)
C8—C1—C6—C5176.7 (4)C30—C29—C32—O5177.3 (4)
C4—C5—C6—C12.0 (6)C28—C29—C32—O51.0 (6)
C9—O1—C8—C1174.9 (3)C30—C29—C32—O62.0 (5)
C6—C1—C8—O140.1 (5)C28—C29—C32—O6179.6 (4)
C2—C1—C8—O1144.3 (4)C32—O6—C33—C3481.8 (5)
C8—O1—C9—C10174.1 (4)C40—C35—C36—C372.2 (6)
C8—O1—C9—C147.1 (6)C42—C35—C36—C37177.5 (4)
O1—C9—C10—C11178.7 (4)C35—C36—C37—C381.6 (7)
C14—C9—C10—C110.1 (6)C36—C37—C38—C390.1 (7)
C9—C10—C11—C120.4 (7)C36—C37—C38—C41178.3 (4)
C10—C11—C12—C130.6 (7)C37—C38—C39—C401.1 (7)
C10—C11—C12—C15179.5 (4)C41—C38—C39—C40177.3 (4)
C11—C12—C13—C140.5 (6)C36—C35—C40—C391.1 (6)
C15—C12—C13—C14179.6 (4)C42—C35—C40—C39178.6 (4)
O1—C9—C14—C13178.8 (4)C38—C39—C40—C350.5 (7)
C10—C9—C14—C130.0 (6)C43—O7—C42—C35173.7 (3)
C12—C13—C14—C90.2 (6)C36—C35—C42—O7118.9 (4)
C16—O3—C15—O21.5 (7)C40—C35—C42—O761.4 (5)
C16—O3—C15—C12175.5 (4)C42—O7—C43—C482.1 (5)
C13—C12—C15—O2173.9 (5)C42—O7—C43—C44177.2 (3)
C11—C12—C15—O26.0 (7)O7—C43—C44—C45177.6 (3)
C13—C12—C15—O39.3 (6)C48—C43—C44—C451.6 (6)
C11—C12—C15—O3170.9 (4)C43—C44—C45—C461.2 (6)
C15—O3—C16—C17173.7 (5)C44—C45—C46—C470.8 (6)
C23—C18—C19—C201.3 (6)C44—C45—C46—C49179.1 (4)
C25—C18—C19—C20179.4 (4)C45—C46—C47—C482.2 (6)
C18—C19—C20—C211.0 (7)C49—C46—C47—C48177.6 (4)
C19—C20—C21—C220.4 (7)O7—C43—C48—C47179.0 (3)
C19—C20—C21—C24178.9 (4)C44—C43—C48—C470.2 (5)
C20—C21—C22—C231.6 (7)C46—C47—C48—C431.8 (5)
C24—C21—C22—C23177.7 (4)C47—C46—C49—O821.5 (6)
C19—C18—C23—C220.1 (6)C45—C46—C49—O8158.6 (4)
C25—C18—C23—C22179.4 (4)C47—C46—C49—O9149.8 (4)
C21—C22—C23—C181.4 (7)C45—C46—C49—O930.1 (6)
C26—O4—C25—C18178.3 (3)C47—C46—C49—O9B167.6 (7)
C23—C18—C25—O470.6 (5)C45—C46—C49—O9B12.5 (8)
C19—C18—C25—O4108.7 (4)O8—C49—O9—C506.4 (8)
C25—O4—C26—C311.6 (5)C46—C49—O9—C50178.2 (5)
C25—O4—C26—C27180.0 (3)C49—O9—C50—C5182.8 (8)
O4—C26—C27—C28178.8 (3)O8—C49—O9B—C50B24.0 (16)
C31—C26—C27—C282.7 (6)C46—C49—O9B—C50B171.4 (12)
C26—C27—C28—C290.3 (6)C49—O9B—C50B—C51B66 (2)
C27—C28—C29—C301.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C42—H42A···O8i0.992.653.269 (5)121
C44—H44···O40.952.663.374 (5)133
Symmetry code: (i) x+1, y+1/2, z+2.
Analysis of C—H···Cg(π-ring) interactions (Å, °) top
C—H···π = angle of the X—H bond with the π-plane (perpendicular = 90°, parallel = 0°). Ring Cg1 = C35–C40; Cg2 = C43–C48; Cg3 = C1–C6; Cg4 = C9–C14; Cg6 = C26–C31
C—HCg(J)Symmetry code (J)H···CgC—H···CgC···CgC—H···π
C8—H8ACg3-x, 1/2 + y, -z2.901443.749 (5)59
C20—H20Cg1x, y, z2.811473.653 (6)62
C22—H22Cg4x, 1 + y, 1 + z2.931373.688 (6)50
C25—H25ACg2x, 1 + y, z2.811433.654 (6)50
C41—H41BCg11 - x, 1/2 + y, 3 - z2.671563.590 (5)75
C45—H45Cg6x, y, z2.821473.654 (4)51
C47—H47Cg21 - x, -1/2 + y, 2 - z2.771483.615 (4)65
 

Acknowledgements

The authors are grateful to the Department of Chemistry, University of Rajshahi for laboratory facilities. MCS thanks the Department of Applied Chemistry, Faculty of Engineering, University of Toyama for analytical facilities.

Funding information

Funding for this research was provided by: University Grants Commission Bangladesh.

References

First citationAbser, M. N., Bellwood, M., Holmes, M. C. & McCabe, R. W. (1993). J. Chem. Soc. Chem. Commun. pp. 1062–1063.  CrossRef Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBats, J. W. & Canenbley, R. (1984). Acta Cryst. C40, 993–995.  CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeng, Y., Liu, Z.-T., Liu, J., He, Y.-M., Zheng, Q.-Y. & Fan, Q.-H. (2009). J. Am. Chem. Soc. 131, 7950–7951.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGiordano, F., Bettini, R., Donini, C., Gazzaniga, A., Caira, M. R., Zhang, G. G. Z. & Grant, D. J. W. (1999). J. Pharm. Sci. 88, 1210–1216.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJasinski, J. P., Butcher, R. J., Swamy, M. T., Yathirajan, H. S., Mohana, K. N. & Narayana, B. (2008). Anal. Sci. 24, x274.  Google Scholar
First citationLavis, L. D. (2008). Chem. Biol. 3, 203–206.  CAS Google Scholar
First citationMoreno-Fuquen, R., Grande, C., Advincula, R. C., Tenorio, J. C. & Ellena, J. (2012). Acta Cryst. E68, o3247–o3248.  CrossRef IUCr Journals Google Scholar
First citationPerumal, C. K. L., Arulchakkaravarthi, A., Santhanaraghavan, P. & Ramasamy, P. (2002). J. Cryst. Growth, 241, 200–205.  CrossRef CAS Google Scholar
First citationQin, Y.-M., Zou, X., Long, D., Ji, C. & Zhao, C.-S. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1295–1296.  CrossRef CAS Google Scholar
First citationRigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, K., Ju, C. F., Xiao, J. & Chen, Q. (2013). Acta Cryst. E69, o1562.  CrossRef IUCr Journals Google Scholar
First citationYang, H., Svärd, M., Zeglinski, J. & Rasmuson, C. (2014). Cryst. Growth Des. 14, 3890–3902.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds