research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and crystal structures of benzyl N′-[(E)-2-hydroxybenzyl­idene]hydrazine­carboxylate and benzyl N′-[(E)-5-bromo-2-hydroxybenzyl­idene]hydrazine­carboxylate

crossmark logo

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, and bDepartment of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA
*Correspondence e-mail: yathirajan@hotmail.com

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 31 August 2022; accepted 13 September 2022; online 22 September 2022)

Benzyl N′-[(E)-2-hydroxybenzylidene]hydrazinecarboxylate, C15H14N2O3 (I) and benzyl N′-[(E)-5-bromo-2-hydroxybenzylidene]hydrazinecarboxylate (II), C15H13BrN2O3, have been synthesized by the reaction of either 2-hy­droxy­benzaldehyde or 5-bromo-2-hy­droxy­benzaldehyde with benzyl carbazate, respectively. Both the compounds crystallize in the monoclinic crystal system with space groups Pn (Z′ = 1, I) and P21/c (Z′ = 2, II). Mol­ecular conformations in each structure are similar, and both structures feature strong intra­molecular O—H⋯N hydrogen bonds, which form S(6) ring motifs. There are also strong N—H⋯O and weak C—H⋯O hydrogen bonds in both structures, but their modes of packing within their respective crystals are markedly different. Some comparisons are made with the structures of a few related compounds.

1. Chemical context

Hy­droxy­benzyl­idene hydrazines exhibit a wide spectrum of biological activities (Sersen et al., 2017[Sersen, F., Gregan, F., Kotora, P., Kmetova, J., Filo, J., Loos, D. & Gregan, J. (2017). Molecules, 22, 894.]). Benzaldehyde­hydrazone derivatives have received considerable attention for several decades as a result of their pharmacological activity (Parashar et al., 1988[Parashar, R. K., Sharma, R. C., Kumar, A. & Mohan, G. (1988). Inorg. Chim. Acta, 151, 201-208.]) and photochromic properties (Hadjoudis et al., 1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345-1360.]). Benzaldehyde­hydrazone derivatives are also important inter­mediates in the synthesis of 1,3,4-oxa­diazo­les, which are versatile compounds with many useful properties (Borg et al., 1999[Borg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331-4342.]). Synthesis and biological activities of new hydrazide derivatives (Özdemir et al., 2009[Özdemir, A., Turan-Zitouni, G., Kaplancikli, Z. A. & Tunali, Y. (2009). J. Enzyme Inhib. Med. Chem. 24, 825-831.]) and biological activities of hydrazone derivatives (Rollas & Küçükgüzel, 2007[Rollas, S. & Küçükgüzel, S. G. (2007). Molecules, 12, 1910-1939.]) have been reported. In view of the importance of benzyl­idene hydrazines and benzaldehyde­hydrazone derivatives in general, this paper reports the crystal structures of the title compounds, C15H14N2O3 (I), and C15H13BrN2O3 (II).

[Scheme 1]

2. Structural commentary

The mol­ecular structures of benzyl N′-[(E)-2-hydroxyben­zylidene]hydrazinecarboxylate (I) (Fig. 1[link]) and benzyl N′-[(E)-5-bromo-2-hydroxybenzylidene]hydrazinecarboxylate (II) (Fig. 2[link]) each consist of a central N′-methyl­idene­meth­oxy­carboxyl core flanked by a benzyl group attached to the singly bonded oxygen and a 2-hy­droxy­phenyl (I) or 5-bromo-2-hy­droxy­phenyl (II) attached to the methyl­idene. There are no unusual bond lengths or angles in either structure. The mol­ecules have strong intra­molecular O—H⋯N hydrogen bonds (Tables 1[link] and 2[link]), forming S(6) ring motifs (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). The asymmetric unit of I contains a single mol­ecule while that of II contains two (labelled A and B in Fig. 2[link]). In each case, the [(hy­droxy­phen­yl)methyl­idene]carbohydrazide moieties are essentially planar [r.m.s. deviations 0.0429 Å (I), 0.0905 Å (IIA), 0.0692 (IIB)]. These form dihedral angles of 79.92 (3)°, 79.74 (4)°, and 74.27 (4)° to the benzyl groups of I, IIA, and IIB, respectively. Indeed, the V-shaped conformations of IIA, and IIB are strikingly similar, with I only deviating to any appreciable degree at the benzyl group, as evidenced by an overlay of the three mol­ecules (Fig. 3[link]). The conformation of I differs from IIA and IIB primarily by the torsion angles about bonds O2—C9 and C9—C10 (Table 3[link]).

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1 0.90 (3) 1.73 (3) 2.546 (2) 148 (2)
N2—H2N⋯O1i 0.87 (2) 1.97 (2) 2.8225 (19) 168 (2)
C7—H7⋯O3ii 0.95 2.43 3.271 (2) 147
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1AO⋯N1A 0.82 (2) 1.81 (2) 2.565 (2) 151 (2)
N2A—H2AN⋯O1Ai 0.87 (2) 2.04 (2) 2.902 (2) 171 (2)
C3A—H3A⋯O2Aii 0.95 2.50 3.392 (2) 156
C6A—H6A⋯O3Ai 0.95 2.38 3.296 (2) 161
O1B—H1BO⋯N1B 0.80 (2) 1.84 (2) 2.558 (2) 148 (2)
N2B—H2BN⋯O1Biii 0.88 (2) 2.04 (2) 2.915 (2) 171 (2)
C3B—H3B⋯O2Biv 0.95 2.44 3.360 (2) 164
C6B—H6B⋯O3Biii 0.95 2.39 3.297 (2) 159
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 3
Selected torsion angles (°) for I, IIA and IIB

I      
C8—O2—C9—C10 −78.01 (18) O2—C9—C10—C11 −59.9 (2)
II      
C8A—O2A—C9A—C10A −98.12 (19) O2A—C9A—C10A—C11A −88.3 (2)
C8B—O2B—C9B—C10B −98.0 (2) O2B—C9B—C10B—C11B −84.5 (2)
The above torsion angles qu­antify the most substantive differences between the conformations of I, IIA and IIB.
[Figure 1]
Figure 1
An ellipsoid plot (50% probability) of I, showing the intra­molecular hydrogen bond (O1—H1O⋯N1) as a dashed line.
[Figure 2]
Figure 2
An ellipsoid plot of the asymmetric unit of II, showing the intra­molecular hydrogen bonds (O1A—H1AO⋯N1A and O1B—H1BO⋯N1B) as dashed lines.
[Figure 3]
Figure 3
A least-squares fit overlay of I, IIA, and IIB showing the similarity of their conformations. That of I (blue) differs primarily in the orientation of the benzyl group (right). Diagram generated using Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

3. Supra­molecular features

In addition to the strong O—H⋯N intramol­ecular hydrogen bonds in I and II, the structures both feature strong N—H⋯O and weaker C—H⋯O intermol­ecular hydrogen bonds. These inter­actions are summarized in Tables 1[link] and 2[link]. The packing modes are, however, quite different.

In I, the V-shaped (Fig. 3[link]) mol­ecules stack into columns along [100] (Fig. 4[link]). These columns inter­act with n-glide-related columns via the strong N2—H2N⋯O1i (symmetry codes as per Table 1[link]) hydrogen bonds to give C(7) chains (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]) and with different n-glide-related columns via the bifurcated C6—H6⋯O3ii and C7—H7⋯O3ii (Table 1[link]) hydrogen bonds. In combination, these inter­actions produce layers that extend in the ac plane (Fig. 5[link]), which in turn stack along [010].

[Figure 4]
Figure 4
V-shaped mol­ecules of I stack into columns parallel to the a-axis direction.
[Figure 5]
Figure 5
A partial packing plot of I showing hydrogen bonding as dashed lines. N—H⋯O and a pair of C—H⋯O (bifurcated) hydrogen bonds link n-glide-related mol­ecules into layers parallel to ac.

In II, the independent mol­ecules (A and B) make hydrogen bonds to 21-screw-related copies of themselves via strong (N2—H2N⋯O1) and weak (C3—H3⋯O2 and C6—H6⋯O3) hydrogen bonds (Table 2[link]), forming R22(8) and R33(13) ring motifs (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]), leading to adjacent pairs of ribbons that extend along [010] (Fig. 6[link]). The 5-bromo-2-hy­droxy­phenyl and benzyl groups of IIA and IIB have notably different environments. For example, inversion-related (−x, −y, −z) pairs of IIA mol­ecules have close contacts of 3.3379 (9) Å between their Br1A atoms and the centroid of the inversion-related C10A–C15A ring. There is no corresponding close contact for the IIB mol­ecule (Fig. 7[link]).

[Figure 6]
Figure 6
A partial packing plot of II showing N—H⋯O and C—H⋯O hydrogen-bonded ribbons along [010] of IIA (upper) and IIB (lower) mol­ecules.
[Figure 7]
Figure 7
In spite of their similar conformations, inversion-related pairs of IIA mol­ecules (upper) are different from inversion-related pairs of IIB mol­ecules (lower). For IIA there are close contacts between bromine and the inversion-related benzene ring, as shown by the dotted line. No such inter­action exists for IIB.

The differences in packing are also apparent in the atom–atom contact coverages, as qu­anti­fied by CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) fingerprint diagrams (Figs. 8[link] and 9[link]).

[Figure 8]
Figure 8
Fingerprint plots obtained from a Hirshfeld surface analysis for I using CrystalExplorer, separated into (a) H⋯H (47.4% coverage), (b) C⋯H/H⋯C (24.4%), (c) O⋯H/H⋯O (17.5%), (d) C⋯C (4.2%). All other contacts are negligible.
[Figure 9]
Figure 9
Fingerprint plots obtained from a Hirshfeld surface analysis for II using CrystalExplorer, separated into (a) H⋯H (33.8% coverage), (b) C⋯H/H⋯C (23.8%), (c) O⋯H/H⋯O (15.4%), (d) Br⋯H/H⋯Br (12.6%). All other contacts are negligible.

4. Database survey

A search of the Cambridge Structure Database (CSD, v5.43 with updates as of June 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for a search fragment consisting of the structure of I, but with the two aromatic rings replaced by `any group' gave 340 hits. A fragment including the benzyl group attached to the equivalent of O2 in I/II gave 105 hits, while a fragment including a phenyl ring at C7 gave 37 hits. A fragment consisting of I but without the phenolic OH group gave just four hits: HIXQIQ (Dong & Wang, 2014[Dong, K. & Wang, Y. (2014). Acta Cryst. E70, o527.]), QAVFAY (Shen et al., 2022[Shen, L.-W., Wang, Z.-H., You, Y., Zhao, J.-Q., Zhou, M.-Q. & Yuan, W.-C. (2022). Org. Lett. 24, 1094-1099.]), GEZTUD (Chang et al., 2018[Chang, B.-B., Su, Y.-P., Huang, D.-F., Wang, K.-H., Zhang, W.-G., Shi, Y., Zhang, X.-H. & Hu, Y.-L. (2018). J. Org. Chem. 83, 4365-4374.]) and PIVKUD (Zhang et al., 2019[Zhang, Y.-L., Li, B.-Y., Yang, R., Xia, L.-Y., Fan, A.-L., Chu, Y.-C., Wang, L.-J., Wang, Z.-C., Jiang, A.-Q. & Zhu, H.-L. (2019). Eur. J. Med. Chem. 163, 896-910.]). In HIXQIQ, a 5-chloro-2-hy­droxy-2-(meth­oxy­carbon­yl)-2,3-di­hydro-1H-in­den-1-yl­idene) group is attached to the hydrazine. QAVFAY features a four-membered 1,2-diazete ring, with the phenyl group fluorinated at its 4-position. Structures GEZTUD and PIVKUD each feature pyrazole rings; the former having a 2,2,2-tri­fluoro­ethyl group attached to the pyrazole and a methyl at the 4-position of the phenyl ring, and the latter having a 3,4,5-tri­meth­oxy­phenyl attached to its pyrazole ring.

New Schiff bases derived from benzyl carbazate with alkyl and heteroaryl ketones and crystal structures of benzyl 2-cyclo­pentyl­idenehydrazine­carboxyl­ate (JENFAM, (E)-benzyl 2-[1-(pyridin-3-yl)ethyl­idene]hydrazine-1-carboxyl­ate (JENFEQ), (E)-benzyl2-[1-(pyridin-4-yl)ethyl­idene]hydrazine­carboxyl­ate (JENFIU) (Nithya et al., 2017[Nithya, P., Simpson, J., Helena, S., Rajamanikandan, R. & Govindarajan, S. (2017). J. Therm. Anal. Calorim. 129, 1001-1019.]) have also been reported. A selection of other structures similar to I and II deposited in the CSD are listed in Table 4[link].

Table 4
A sample of structures similar to I and II in the CSD

R and R′ represent groups attached at the equivalent of C4 and R′′ represents the group attached at the equivalent of O3.

CSD refcode R R R′′ Reference
HODLOC 2-hy­droxy­phen­yl H meth­yl Sun & Cheng (2008[Sun, R. & Cheng, X.-W. (2008). Acta Cryst. E64, o1563.])
QOFLAZ 2-hy­droxy­phen­yl H eth­yl Gao (2008[Gao, B. (2008). Acta Cryst. E64, o1547.])
KODVUV 4-hy­droxy­phen­yl H meth­yl Cheng (2008a[Cheng, X.-W. (2008a). Acta Cryst. E64, o1302.])
XOGVEV phen­yl meth­yl meth­yl Cheng (2008b[Cheng, X.-W. (2008b). Acta Cryst. E64, o1384.])
XOGXEX 4-hy­droxy­phen­yl H eth­yl Cheng (2008c[Cheng, X.-W. (2008c). Acta Cryst. E64, o1396.])
XOGXIB 3-meth­oxy-4-hy­droxy­phen­yl H meth­yl Cheng (2008d[Cheng, X.-W. (2008d). Acta Cryst. E64, o1397.])
AZOTAL 3-hy­droxy­phen­yl H meth­yl Li et al. (2011[Li, W.-W., Yu, T.-M., Lv, L.-P. & Hu, X.-C. (2011). Acta Cryst. E67, o2584.])
AWUJAE 3-hy­droxy­phen­yl H eth­yl Hu et al. (2011[Hu, X.-C., Zhang, J., Yang, D.-Y. & Lv, L.-P. (2011). Acta Cryst. E67, o1884.])
WEFRUX 4-di­ethyl­amino-2-hy­droxy­phen­yl H meth­yl Lv et al. (2017[Lv, L.-P., Lv, W.-D., Rao, J.-F. & Chen, J.-Y. (2017). Z. Kristallogr. New Cryst. Struct. 232, 667-668.])

5. Synthesis and crystallization

Preparation of I and II followed similar synthetic routes. Either 2-hy­droxy­benzaldehyde (1.2 g, 0.01 mol) (for I) or 5-bromo-2-hy­droxy­benzaldehyde (2.0 g, 0.01 mol) (for II) and benzyl carbazate (1.66 g, 0.01 mol) were dissolved in methanol (25 ml) and stirred for 3 h at room temperature. The resulting solids were filtered off and recrystallized from ethanol to give I and II with yields of 80% in both cases. The general reaction scheme is summarized in Fig. 10[link]. Single crystals suitable for X-ray analysis for both I and II were obtained by slow evaporation of methano­lic solutions at room temperature (m.p.: 400–402 K for I and 468–470 K for II).

[Figure 10]
Figure 10
Reaction scheme for the synthesis of I and II.

6. Crystal handling, data collection, and refinement

Crystals of I and II were each secured on the tips of fine glass fibres held in copper mounting pins. The crystal of I was mounted from a shallow liquid-nitro­gen dewar using tongs first developed for protein cryocrystallography (Parkin & Hope, 1998[Parkin, S. & Hope, H. (1998). J. Appl. Cryst. 31, 945-953.]), while the crystal of II was mounted directly into a cold-nitro­gen stream. Data for both samples (Cu Kα for I and Mo Kα for II) were collected with the crystals held at 90.0 (2) K. Determination of the absolute structure for I was inconclusive via traditional full-matrix refinement of Flack's parameter [x = −0.08 (18); Flack & Bernardinelli, 1999[Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908-915.]], but Hooft's Bayesian approach [y = 0.00 (8); Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]), as calculated using PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.])] and Parsons' quotient method [z = 0.04 (10); Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]] give credence to the assignment. Refinement progress was checked using PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and by an R-tensor (Parkin, 2000[Parkin, S. (2000). Acta Cryst. A56, 157-162.]). Crystal data, data collection, and refinement statistics are summarized in Table 5[link]. Carbon-bound hydrogen atoms were included using riding models, with C—H distances constrained to 0.95 Å for Csp2H and 0.99 Å for R2CH2. N—H and O—H hydrogen-atom coord­inates were refined. Uiso(H) parameters were set to values of either 1.2Ueq (C—H, N—H) or 1.5Ueq (O—H) of the attached atom.

Table 5
Experimental details

  I II
Crystal data
Chemical formula C15H14N2O3 C15H13BrN2O3
Mr 270.28 349.18
Crystal system, space group Monoclinic, Pn Monoclinic, P21/c
Temperature (K) 90 90
a, b, c (Å) 4.5017 (12), 14.047 (4), 10.567 (3) 27.904 (2), 11.1207 (6), 9.0648 (7)
β (°) 96.300 (15) 94.485 (2)
V3) 664.2 (3) 2804.3 (3)
Z 2 8
Radiation type Cu Kα Mo Kα
μ (mm−1) 0.79 2.94
Crystal size (mm) 0.41 × 0.23 × 0.02 0.24 × 0.22 × 0.05
 
Data collection
Diffractometer Bruker D8 Venture dual source Bruker D8 Venture dual source
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.589, 0.958 0.598, 0.862
No. of measured, independent and observed [I > 2σ(I)] reflections 7271, 2511, 2425 36145, 6401, 5004
Rint 0.028 0.047
(sin θ/λ)max−1) 0.625 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.063, 1.04 0.028, 0.064, 1.03
No. of reflections 2511 6401
No. of parameters 187 391
No. of restraints 2 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.13, −0.13 0.36, −0.39
Absolute structure Flack x determined using 1054 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.04 (10)
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), CIFFIX (Parkin, 2013[Parkin, S. (2013). CIFFIX. https://xray.uky.edu/Resources/scripts/ciffix]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2016); cell refinement: APEX3 (Bruker, 2016); data reduction: APEX3 (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CIFFIX (Parkin, 2013) and publCIF (Westrip, 2010).

Benzyl N'-[(E)-2-hydroxybenzylidene]hydrazinecarboxylate (I) top
Crystal data top
C15H14N2O3F(000) = 284
Mr = 270.28Dx = 1.351 Mg m3
Monoclinic, PnCu Kα radiation, λ = 1.54184 Å
a = 4.5017 (12) ÅCell parameters from 6841 reflections
b = 14.047 (4) Åθ = 3.1–74.4°
c = 10.567 (3) ŵ = 0.79 mm1
β = 96.300 (15)°T = 90 K
V = 664.2 (3) Å3Plate, colourless
Z = 20.41 × 0.23 × 0.02 mm
Data collection top
Bruker D8 Venture dual source
diffractometer
2511 independent reflections
Radiation source: microsource2425 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.028
φ and ω scansθmax = 74.6°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 55
Tmin = 0.589, Tmax = 0.958k = 1716
7271 measured reflectionsl = 1312
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0283P)2 + 0.0531P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2511 reflectionsΔρmax = 0.13 e Å3
187 parametersΔρmin = 0.13 e Å3
2 restraintsAbsolute structure: Flack x determined using 1054 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (10)
Special details top

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was flash-cooled in liquid nitrogen and mounted into the cold gas stream of a liquid-nitrogen based cryostat using specially designed tongs (Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 90K, which is standard practice in this laboratory for the majority of flash-cooled crystals.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using Platon (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7525 (3)0.44387 (9)0.34649 (11)0.0268 (3)
H1O0.631 (6)0.4786 (18)0.391 (3)0.040*
O20.0407 (3)0.67535 (9)0.56997 (11)0.0243 (3)
O30.2021 (3)0.64243 (9)0.39780 (11)0.0248 (3)
N10.4688 (3)0.49495 (10)0.53076 (13)0.0202 (3)
N20.2728 (3)0.55477 (11)0.58048 (13)0.0214 (3)
H2N0.242 (5)0.5508 (15)0.660 (2)0.026*
C10.7887 (3)0.36137 (13)0.54751 (15)0.0205 (3)
C20.8612 (4)0.37060 (12)0.42217 (16)0.0221 (4)
C31.0493 (4)0.30492 (14)0.37311 (16)0.0275 (4)
H31.1016030.3121600.2889590.033*
C41.1602 (4)0.22882 (14)0.44739 (19)0.0300 (4)
H41.2848950.1831550.4130920.036*
C51.0907 (4)0.21882 (14)0.57132 (18)0.0289 (4)
H51.1683890.1666810.6218160.035*
C60.9082 (4)0.28486 (13)0.62116 (15)0.0244 (4)
H60.8632340.2782540.7064800.029*
C70.5866 (4)0.42754 (12)0.60123 (15)0.0204 (3)
H70.5429930.4208440.6867340.025*
C80.1509 (4)0.62582 (12)0.50506 (15)0.0196 (3)
C90.1607 (4)0.76046 (13)0.50546 (17)0.0251 (4)
H9A0.3439440.7804640.5421880.030*
H9B0.2156200.7463170.4141030.030*
C100.0630 (4)0.83981 (12)0.51860 (17)0.0231 (4)
C110.1698 (4)0.87256 (14)0.63955 (19)0.0311 (4)
H110.1006700.8445540.7127310.037*
C120.3763 (5)0.94578 (15)0.6533 (2)0.0401 (5)
H120.4483100.9676980.7360240.048*
C130.4787 (5)0.98720 (14)0.5483 (3)0.0418 (6)
H130.6197781.0376610.5583670.050*
C140.3742 (5)0.95472 (15)0.4275 (2)0.0390 (5)
H140.4443400.9828440.3545780.047*
C150.1674 (4)0.88122 (13)0.41314 (18)0.0285 (4)
H150.0969560.8591210.3302950.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0369 (8)0.0313 (7)0.0138 (5)0.0058 (5)0.0090 (5)0.0020 (5)
O20.0269 (6)0.0267 (6)0.0202 (6)0.0045 (5)0.0066 (5)0.0022 (5)
O30.0317 (6)0.0292 (6)0.0137 (5)0.0005 (5)0.0040 (4)0.0007 (5)
N10.0235 (7)0.0242 (7)0.0132 (6)0.0005 (5)0.0041 (5)0.0019 (5)
N20.0259 (8)0.0276 (8)0.0117 (6)0.0044 (6)0.0064 (5)0.0001 (5)
C10.0217 (8)0.0251 (8)0.0148 (7)0.0008 (6)0.0029 (6)0.0008 (6)
C20.0246 (8)0.0262 (9)0.0154 (7)0.0010 (7)0.0025 (6)0.0011 (7)
C30.0322 (10)0.0338 (10)0.0172 (8)0.0015 (7)0.0062 (7)0.0041 (7)
C40.0304 (10)0.0316 (10)0.0285 (9)0.0069 (8)0.0053 (7)0.0079 (8)
C50.0313 (9)0.0284 (9)0.0265 (9)0.0061 (7)0.0009 (7)0.0018 (7)
C60.0268 (8)0.0290 (9)0.0174 (8)0.0020 (7)0.0024 (7)0.0011 (6)
C70.0233 (8)0.0269 (8)0.0114 (7)0.0004 (6)0.0035 (6)0.0001 (6)
C80.0212 (8)0.0231 (8)0.0144 (8)0.0021 (6)0.0019 (6)0.0019 (6)
C90.0216 (8)0.0278 (9)0.0256 (8)0.0037 (7)0.0009 (7)0.0018 (7)
C100.0194 (7)0.0252 (9)0.0243 (8)0.0063 (6)0.0009 (6)0.0018 (7)
C110.0254 (9)0.0386 (11)0.0290 (9)0.0068 (8)0.0010 (7)0.0067 (8)
C120.0287 (10)0.0389 (11)0.0503 (13)0.0061 (8)0.0067 (9)0.0187 (9)
C130.0240 (9)0.0252 (10)0.0741 (16)0.0034 (8)0.0039 (10)0.0034 (10)
C140.0279 (10)0.0339 (11)0.0552 (12)0.0039 (8)0.0042 (9)0.0155 (10)
C150.0251 (9)0.031 (1)0.0290 (9)0.0055 (7)0.0012 (7)0.0053 (7)
Geometric parameters (Å, º) top
O1—C21.361 (2)C5—H50.9500
O1—H1O0.90 (3)C6—H60.9500
O2—C81.352 (2)C7—H70.9500
O2—C91.451 (2)C9—C101.498 (2)
O3—C81.204 (2)C9—H9A0.9900
N1—C71.283 (2)C9—H9B0.9900
N1—N21.365 (2)C10—C151.384 (3)
N2—C81.355 (2)C10—C111.393 (3)
N2—H2N0.87 (2)C11—C121.383 (3)
C1—C61.399 (2)C11—H110.9500
C1—C21.405 (2)C12—C131.376 (4)
C1—C71.459 (2)C12—H120.9500
C2—C31.390 (3)C13—C141.388 (4)
C3—C41.386 (3)C13—H130.9500
C3—H30.9500C14—C151.387 (3)
C4—C51.387 (3)C14—H140.9500
C4—H40.9500C15—H150.9500
C5—C61.381 (3)
C2—O1—H1O107.5 (17)O3—C8—O2125.21 (16)
C8—O2—C9114.27 (13)O3—C8—N2126.12 (17)
C7—N1—N2118.33 (14)O2—C8—N2108.67 (14)
C8—N2—N1117.65 (14)O2—C9—C10110.94 (13)
C8—N2—H2N121.3 (14)O2—C9—H9A109.5
N1—N2—H2N120.8 (15)C10—C9—H9A109.5
C6—C1—C2118.71 (16)O2—C9—H9B109.5
C6—C1—C7119.42 (15)C10—C9—H9B109.5
C2—C1—C7121.85 (15)H9A—C9—H9B108.0
O1—C2—C3118.50 (16)C15—C10—C11119.09 (18)
O1—C2—C1121.20 (16)C15—C10—C9121.48 (16)
C3—C2—C1120.30 (16)C11—C10—C9119.43 (17)
C4—C3—C2119.79 (17)C12—C11—C10120.1 (2)
C4—C3—H3120.1C12—C11—H11119.9
C2—C3—H3120.1C10—C11—H11119.9
C3—C4—C5120.55 (17)C13—C12—C11120.7 (2)
C3—C4—H4119.7C13—C12—H12119.7
C5—C4—H4119.7C11—C12—H12119.7
C6—C5—C4119.83 (17)C12—C13—C14119.5 (2)
C6—C5—H5120.1C12—C13—H13120.2
C4—C5—H5120.1C14—C13—H13120.2
C5—C6—C1120.81 (16)C15—C14—C13120.0 (2)
C5—C6—H6119.6C15—C14—H14120.0
C1—C6—H6119.6C13—C14—H14120.0
N1—C7—C1118.70 (14)C10—C15—C14120.53 (19)
N1—C7—H7120.7C10—C15—H15119.7
C1—C7—H7120.7C14—C15—H15119.7
C7—N1—N2—C8179.79 (15)C9—O2—C8—O37.2 (2)
C6—C1—C2—O1179.68 (16)C9—O2—C8—N2173.15 (13)
C7—C1—C2—O12.1 (2)N1—N2—C8—O31.1 (3)
C6—C1—C2—C30.3 (2)N1—N2—C8—O2178.58 (13)
C7—C1—C2—C3178.51 (16)C8—O2—C9—C1078.01 (18)
O1—C2—C3—C4179.13 (17)O2—C9—C10—C15119.80 (18)
C1—C2—C3—C41.4 (3)O2—C9—C10—C1159.9 (2)
C2—C3—C4—C51.5 (3)C15—C10—C11—C120.3 (3)
C3—C4—C5—C60.3 (3)C9—C10—C11—C12179.98 (17)
C4—C5—C6—C10.9 (3)C10—C11—C12—C130.1 (3)
C2—C1—C6—C50.9 (3)C11—C12—C13—C140.3 (3)
C7—C1—C6—C5177.40 (16)C12—C13—C14—C150.2 (3)
N2—N1—C7—C1178.01 (14)C11—C10—C15—C140.4 (3)
C6—C1—C7—N1177.06 (15)C9—C10—C15—C14179.89 (17)
C2—C1—C7—N11.2 (2)C13—C14—C15—C100.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.90 (3)1.73 (3)2.546 (2)148 (2)
N2—H2N···O1i0.87 (2)1.97 (2)2.8225 (19)168 (2)
C7—H7···O3ii0.952.433.271 (2)147
Symmetry codes: (i) x1/2, y+1, z+1/2; (ii) x+1/2, y+1, z+1/2.
Benzyl N'-[(E)-5-bromo-2-hydroxybenzylidene]hydrazinecarboxylate (II) top
Crystal data top
C15H13BrN2O3F(000) = 1408
Mr = 349.18Dx = 1.654 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 27.904 (2) ÅCell parameters from 9936 reflections
b = 11.1207 (6) Åθ = 2.3–27.5°
c = 9.0648 (7) ŵ = 2.94 mm1
β = 94.485 (2)°T = 90 K
V = 2804.3 (3) Å3Plate, colourless
Z = 80.24 × 0.22 × 0.05 mm
Data collection top
Bruker D8 Venture dual source
diffractometer
6401 independent reflections
Radiation source: microsource5004 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.047
φ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 3636
Tmin = 0.598, Tmax = 0.862k = 1314
36145 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: mixed
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.024P)2 + 0.4336P]
where P = (Fo2 + 2Fc2)/3
6401 reflections(Δ/σ)max = 0.001
391 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.39 e Å3
Special details top

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 90K, which is standard practice in this laboratory for the majority of flash-cooled crystals.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using Platon (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1A0.15724 (2)0.00040 (2)0.27291 (2)0.01837 (6)
O1A0.03689 (5)0.32791 (12)0.13515 (17)0.0155 (3)
H1AO0.0212 (8)0.285 (2)0.195 (3)0.023*
O2A0.07623 (4)0.09899 (12)0.57652 (16)0.0147 (3)
O3A0.05320 (5)0.27304 (12)0.45841 (16)0.0164 (3)
N1A0.00001 (5)0.13879 (14)0.25999 (19)0.0131 (4)
N2A0.03016 (6)0.08825 (15)0.3687 (2)0.0144 (4)
H2AN0.0326 (8)0.011 (2)0.378 (3)0.022*
C1A0.05776 (6)0.12521 (17)0.0571 (2)0.0123 (4)
C2A0.06384 (6)0.25104 (17)0.0464 (2)0.0128 (4)
C3A0.09807 (7)0.29968 (17)0.0559 (2)0.0151 (4)
H3A0.1023220.3843780.0610720.018*
C4A0.12600 (7)0.22594 (18)0.1503 (2)0.0161 (4)
H4A0.1493930.2594720.2202540.019*
C5A0.11949 (6)0.10144 (17)0.1417 (2)0.0135 (4)
C6A0.08603 (7)0.05145 (17)0.0399 (2)0.0133 (4)
H6A0.0821370.0333750.0353970.016*
C7A0.02400 (7)0.07044 (17)0.1679 (2)0.0135 (4)
H7A0.0198970.0143310.1717900.016*
C8A0.05341 (7)0.16443 (17)0.4676 (2)0.0134 (4)
C9A0.11033 (7)0.16320 (18)0.6787 (2)0.0159 (4)
H9A10.1080340.1327460.7805270.019*
H9A20.1024620.2500180.6776250.019*
C10A0.16046 (7)0.14533 (18)0.6338 (2)0.0152 (4)
C11A0.18757 (7)0.04758 (18)0.6867 (3)0.0199 (5)
H11A0.1752240.0046770.7574680.024*
C12A0.23246 (7)0.0256 (2)0.6372 (3)0.0244 (5)
H12A0.2508020.0414790.6738970.029*
C13A0.25050 (7)0.1014 (2)0.5344 (3)0.0236 (5)
H13A0.2809110.0849870.4984590.028*
C14A0.22449 (7)0.2012 (2)0.4832 (3)0.0234 (5)
H14A0.2373910.2544130.4145560.028*
C15A0.17947 (7)0.22296 (18)0.5330 (2)0.0184 (5)
H15A0.1615410.2912330.4980070.022*
Br1B0.33187 (2)0.24274 (2)0.24668 (2)0.01864 (6)
O1B0.46666 (5)0.56485 (12)0.12357 (18)0.0175 (3)
H1BO0.4824 (8)0.526 (2)0.183 (3)0.026*
O2B0.58093 (5)0.33767 (12)0.56327 (17)0.0200 (3)
O3B0.55787 (5)0.51149 (12)0.44468 (17)0.0213 (3)
N1B0.50017 (6)0.37664 (15)0.2571 (2)0.0163 (4)
N2B0.53006 (6)0.32678 (15)0.3664 (2)0.0177 (4)
H2BN0.5316 (8)0.248 (2)0.381 (3)0.027*
C1B0.44047 (7)0.36259 (17)0.0590 (2)0.0144 (4)
C2B0.43755 (7)0.48817 (17)0.0413 (2)0.0155 (4)
C3B0.40395 (7)0.53794 (18)0.0621 (2)0.0187 (5)
H3B0.4022070.6227590.0737660.022*
C4B0.37308 (7)0.46506 (18)0.1480 (2)0.0186 (5)
H4B0.3498930.4994540.2179090.022*
C5B0.37609 (7)0.34063 (18)0.1317 (2)0.0157 (4)
C6B0.40953 (7)0.28942 (18)0.0301 (2)0.0153 (4)
H6B0.4114930.2044310.0209340.018*
C7B0.47346 (7)0.30758 (17)0.1725 (2)0.0159 (5)
H7B0.4750810.2226860.1834730.019*
C8B0.55672 (7)0.40391 (18)0.4573 (2)0.0164 (4)
C9B0.61708 (7)0.40024 (19)0.6607 (3)0.0199 (5)
H9B10.6162910.3696120.7629830.024*
H9B20.6098110.4873670.6612570.024*
C10B0.66606 (7)0.38057 (18)0.6078 (2)0.0177 (5)
C11B0.69188 (7)0.27764 (19)0.6499 (3)0.0243 (5)
H11B0.6787000.2206130.7134440.029*
C12B0.73692 (8)0.2581 (2)0.5992 (3)0.0314 (6)
H12B0.7543490.1871710.6271100.038*
C13B0.75634 (8)0.3413 (2)0.5085 (3)0.0339 (6)
H13B0.7870390.3273120.4733030.041*
C14B0.73134 (8)0.4452 (2)0.4685 (3)0.0302 (6)
H14B0.7450770.5031490.4073520.036*
C15B0.68621 (7)0.4646 (2)0.5178 (2)0.0216 (5)
H15B0.6689730.5356920.4898160.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.02056 (10)0.01578 (11)0.01793 (13)0.00204 (8)0.00389 (8)0.00260 (9)
O1A0.0167 (7)0.0096 (7)0.0194 (9)0.0001 (5)0.0033 (6)0.0007 (6)
O2A0.0156 (7)0.0133 (7)0.0146 (9)0.0002 (5)0.0031 (6)0.0003 (6)
O3A0.0195 (7)0.0107 (7)0.0193 (9)0.0015 (5)0.0025 (6)0.0002 (6)
N1A0.0121 (8)0.0127 (8)0.0143 (11)0.0018 (6)0.0009 (7)0.0020 (7)
N2A0.0173 (8)0.0093 (8)0.0159 (11)0.0011 (7)0.0025 (7)0.0005 (7)
C1A0.0124 (9)0.0113 (9)0.0134 (12)0.0006 (7)0.0033 (8)0.0007 (8)
C2A0.0120 (9)0.0116 (9)0.0153 (12)0.0028 (8)0.0051 (8)0.0014 (8)
C3A0.0155 (10)0.0102 (9)0.0196 (13)0.0018 (8)0.0019 (9)0.0018 (8)
C4A0.015 (1)0.0161 (10)0.0172 (13)0.0025 (8)0.0018 (8)0.0035 (9)
C5A0.0113 (9)0.0159 (10)0.0132 (12)0.0019 (8)0.0002 (8)0.0021 (8)
C6A0.0158 (10)0.0101 (9)0.0145 (12)0.0009 (8)0.0049 (8)0.0007 (8)
C7A0.0145 (9)0.0100 (9)0.0164 (13)0.0005 (7)0.0042 (8)0.0005 (8)
C8A0.0109 (9)0.0134 (10)0.0164 (12)0.0005 (7)0.0045 (8)0.0003 (8)
C9A0.0176 (10)0.0171 (10)0.0125 (12)0.0022 (8)0.0018 (9)0.0042 (8)
C10A0.0155 (10)0.0172 (10)0.0124 (12)0.0013 (8)0.0029 (8)0.0060 (8)
C11A0.0235 (11)0.0167 (10)0.0185 (13)0.0030 (9)0.0049 (9)0.0007 (9)
C12A0.0185 (11)0.0253 (12)0.0278 (15)0.0061 (9)0.0083 (9)0.0055 (10)
C13A0.0137 (10)0.0311 (13)0.0257 (15)0.0020 (9)0.0000 (9)0.0118 (10)
C14A0.0211 (11)0.0254 (12)0.0237 (14)0.0073 (9)0.0026 (10)0.0037 (10)
C15A0.0214 (10)0.0154 (10)0.0176 (13)0.0007 (8)0.0029 (9)0.0026 (9)
Br1B0.0178 (1)0.01828 (11)0.01947 (13)0.00271 (8)0.00094 (8)0.00299 (9)
O1B0.0174 (7)0.0116 (7)0.0227 (10)0.0013 (6)0.0037 (6)0.0002 (6)
O2B0.0174 (7)0.0154 (7)0.0259 (10)0.0012 (6)0.0070 (6)0.0003 (6)
O3B0.0230 (7)0.0118 (7)0.0284 (10)0.0024 (6)0.0017 (7)0.0006 (6)
N1B0.0153 (9)0.0139 (9)0.0193 (12)0.0015 (6)0.0009 (8)0.0029 (7)
N2B0.0183 (9)0.0115 (8)0.0221 (12)0.0006 (7)0.0058 (8)0.0015 (8)
C1B0.0126 (9)0.0146 (10)0.0162 (12)0.0002 (8)0.0031 (8)0.0001 (8)
C2B0.0137 (9)0.0133 (10)0.0200 (13)0.0021 (8)0.0034 (8)0.0029 (9)
C3B0.0197 (10)0.0124 (10)0.0243 (14)0.0013 (8)0.0028 (9)0.0013 (9)
C4B0.0189 (10)0.0177 (10)0.0189 (13)0.0015 (8)0.0004 (9)0.0017 (9)
C5B0.0125 (9)0.0172 (10)0.0176 (13)0.0023 (8)0.0037 (8)0.0034 (9)
C6B0.0167 (10)0.0111 (10)0.0186 (13)0.0006 (8)0.0039 (9)0.0004 (8)
C7B0.0152 (10)0.0102 (9)0.0222 (13)0.0003 (8)0.0009 (9)0.0003 (8)
C8B0.0132 (10)0.0165 (10)0.0197 (13)0.0002 (8)0.0024 (8)0.0011 (9)
C9B0.018 (1)0.0211 (11)0.0195 (13)0.0016 (8)0.0056 (9)0.0039 (9)
C10B0.0174 (10)0.0190 (11)0.0160 (13)0.0011 (8)0.0033 (9)0.0051 (9)
C11B0.0229 (11)0.0182 (11)0.0307 (15)0.0014 (9)0.0041 (10)0.002 (1)
C12B0.0240 (12)0.0267 (13)0.0419 (17)0.0059 (10)0.0069 (11)0.0121 (12)
C13B0.0198 (12)0.0505 (16)0.0320 (17)0.0009 (11)0.0052 (11)0.0142 (13)
C14B0.0285 (12)0.0410 (15)0.0213 (15)0.0098 (11)0.0042 (10)0.0048 (11)
C15B0.0255 (11)0.0225 (11)0.0160 (13)0.0015 (9)0.0032 (9)0.0018 (9)
Geometric parameters (Å, º) top
Br1A—C5A1.8949 (19)Br1B—C5B1.896 (2)
O1A—C2A1.360 (2)O1B—C2B1.360 (2)
O1A—H1AO0.82 (2)O1B—H1BO0.80 (2)
O2A—C8A1.346 (2)O2B—C8B1.349 (2)
O2A—C9A1.461 (2)O2B—C9B1.464 (2)
O3A—C8A1.211 (2)O3B—C8B1.203 (2)
N1A—C7A1.279 (2)N1B—C7B1.282 (2)
N1A—N2A1.365 (2)N1B—N2B1.362 (2)
N2A—C8A1.361 (3)N2B—C8B1.369 (3)
N2A—H2AN0.87 (2)N2B—H2BN0.88 (2)
C1A—C6A1.399 (3)C1B—C6B1.397 (3)
C1A—C2A1.412 (3)C1B—C2B1.407 (3)
C1A—C7A1.456 (3)C1B—C7B1.460 (3)
C2A—C3A1.388 (3)C2B—C3B1.388 (3)
C3A—C4A1.381 (3)C3B—C4B1.378 (3)
C3A—H3A0.9500C3B—H3B0.9500
C4A—C5A1.398 (3)C4B—C5B1.394 (3)
C4A—H4A0.9500C4B—H4B0.9500
C5A—C6A1.378 (3)C5B—C6B1.381 (3)
C6A—H6A0.9500C6B—H6B0.9500
C7A—H7A0.9500C7B—H7B0.9500
C9A—C10A1.500 (3)C9B—C10B1.499 (3)
C9A—H9A10.9900C9B—H9B10.9900
C9A—H9A20.9900C9B—H9B20.9900
C10A—C11A1.388 (3)C10B—C15B1.388 (3)
C10A—C15A1.392 (3)C10B—C11B1.390 (3)
C11A—C12A1.385 (3)C11B—C12B1.389 (3)
C11A—H11A0.9500C11B—H11B0.9500
C12A—C13A1.380 (3)C12B—C13B1.377 (4)
C12A—H12A0.9500C12B—H12B0.9500
C13A—C14A1.386 (3)C13B—C14B1.384 (4)
C13A—H13A0.9500C13B—H13B0.9500
C14A—C15A1.389 (3)C14B—C15B1.385 (3)
C14A—H14A0.9500C14B—H14B0.9500
C15A—H15A0.9500C15B—H15B0.9500
C2A—O1A—H1AO105.5 (16)C2B—O1B—H1BO107.9 (17)
C8A—O2A—C9A116.62 (15)C8B—O2B—C9B116.93 (16)
C7A—N1A—N2A119.20 (16)C7B—N1B—N2B119.03 (17)
C8A—N2A—N1A117.02 (16)N1B—N2B—C8B117.14 (17)
C8A—N2A—H2AN121.5 (15)N1B—N2B—H2BN122.0 (15)
N1A—N2A—H2AN121.3 (15)C8B—N2B—H2BN120.8 (15)
C6A—C1A—C2A118.64 (18)C6B—C1B—C2B118.97 (18)
C6A—C1A—C7A119.38 (17)C6B—C1B—C7B119.38 (18)
C2A—C1A—C7A121.97 (18)C2B—C1B—C7B121.59 (18)
O1A—C2A—C3A118.04 (17)O1B—C2B—C3B117.61 (18)
O1A—C2A—C1A121.65 (18)O1B—C2B—C1B122.20 (18)
C3A—C2A—C1A120.30 (18)C3B—C2B—C1B120.18 (18)
C4A—C3A—C2A120.53 (18)C4B—C3B—C2B120.41 (19)
C4A—C3A—H3A119.7C4B—C3B—H3B119.8
C2A—C3A—H3A119.7C2B—C3B—H3B119.8
C3A—C4A—C5A119.28 (18)C3B—C4B—C5B119.61 (19)
C3A—C4A—H4A120.4C3B—C4B—H4B120.2
C5A—C4A—H4A120.4C5B—C4B—H4B120.2
C6A—C5A—C4A121.02 (18)C6B—C5B—C4B120.81 (18)
C6A—C5A—Br1A119.71 (14)C6B—C5B—Br1B120.43 (15)
C4A—C5A—Br1A119.27 (15)C4B—C5B—Br1B118.72 (15)
C5A—C6A—C1A120.22 (18)C5B—C6B—C1B120.00 (18)
C5A—C6A—H6A119.9C5B—C6B—H6B120.0
C1A—C6A—H6A119.9C1B—C6B—H6B120.0
N1A—C7A—C1A118.65 (17)N1B—C7B—C1B118.39 (18)
N1A—C7A—H7A120.7N1B—C7B—H7B120.8
C1A—C7A—H7A120.7C1B—C7B—H7B120.8
O3A—C8A—O2A126.12 (19)O3B—C8B—O2B126.55 (19)
O3A—C8A—N2A125.18 (19)O3B—C8B—N2B125.7 (2)
O2A—C8A—N2A108.70 (16)O2B—C8B—N2B107.76 (17)
O2A—C9A—C10A109.76 (16)O2B—C9B—C10B109.90 (17)
O2A—C9A—H9A1109.7O2B—C9B—H9B1109.7
C10A—C9A—H9A1109.7C10B—C9B—H9B1109.7
O2A—C9A—H9A2109.7O2B—C9B—H9B2109.7
C10A—C9A—H9A2109.7C10B—C9B—H9B2109.7
H9A1—C9A—H9A2108.2H9B1—C9B—H9B2108.2
C11A—C10A—C15A119.15 (19)C15B—C10B—C11B119.4 (2)
C11A—C10A—C9A120.30 (19)C15B—C10B—C9B120.74 (19)
C15A—C10A—C9A120.48 (18)C11B—C10B—C9B119.9 (2)
C12A—C11A—C10A120.6 (2)C12B—C11B—C10B120.1 (2)
C12A—C11A—H11A119.7C12B—C11B—H11B119.9
C10A—C11A—H11A119.7C10B—C11B—H11B119.9
C13A—C12A—C11A119.9 (2)C13B—C12B—C11B120.0 (2)
C13A—C12A—H12A120.1C13B—C12B—H12B120.0
C11A—C12A—H12A120.1C11B—C12B—H12B120.0
C12A—C13A—C14A120.4 (2)C12B—C13B—C14B120.3 (2)
C12A—C13A—H13A119.8C12B—C13B—H13B119.9
C14A—C13A—H13A119.8C14B—C13B—H13B119.9
C13A—C14A—C15A119.6 (2)C13B—C14B—C15B119.8 (2)
C13A—C14A—H14A120.2C13B—C14B—H14B120.1
C15A—C14A—H14A120.2C15B—C14B—H14B120.1
C14A—C15A—C10A120.4 (2)C14B—C15B—C10B120.4 (2)
C14A—C15A—H15A119.8C14B—C15B—H15B119.8
C10A—C15A—H15A119.8C10B—C15B—H15B119.8
C7A—N1A—N2A—C8A177.37 (18)C7B—N1B—N2B—C8B177.79 (18)
C6A—C1A—C2A—O1A178.68 (17)C6B—C1B—C2B—O1B179.66 (18)
C7A—C1A—C2A—O1A3.0 (3)C7B—C1B—C2B—O1B3.1 (3)
C6A—C1A—C2A—C3A1.6 (3)C6B—C1B—C2B—C3B0.8 (3)
C7A—C1A—C2A—C3A176.79 (18)C7B—C1B—C2B—C3B176.38 (19)
O1A—C2A—C3A—C4A179.10 (18)O1B—C2B—C3B—C4B179.38 (19)
C1A—C2A—C3A—C4A1.2 (3)C1B—C2B—C3B—C4B0.2 (3)
C2A—C3A—C4A—C5A0.0 (3)C2B—C3B—C4B—C5B0.7 (3)
C3A—C4A—C5A—C6A0.6 (3)C3B—C4B—C5B—C6B0.2 (3)
C3A—C4A—C5A—Br1A179.20 (15)C3B—C4B—C5B—Br1B178.02 (16)
C4A—C5A—C6A—C1A0.2 (3)C4B—C5B—C6B—C1B0.8 (3)
Br1A—C5A—C6A—C1A179.65 (14)Br1B—C5B—C6B—C1B176.99 (15)
C2A—C1A—C6A—C5A0.9 (3)C2B—C1B—C6B—C5B1.3 (3)
C7A—C1A—C6A—C5A177.49 (18)C7B—C1B—C6B—C5B175.98 (19)
N2A—N1A—C7A—C1A177.06 (16)N2B—N1B—C7B—C1B178.03 (17)
C6A—C1A—C7A—N1A176.88 (18)C6B—C1B—C7B—N1B177.23 (19)
C2A—C1A—C7A—N1A1.5 (3)C2B—C1B—C7B—N1B0.0 (3)
C9A—O2A—C8A—O3A11.2 (3)C9B—O2B—C8B—O3B8.9 (3)
C9A—O2A—C8A—N2A169.09 (15)C9B—O2B—C8B—N2B171.53 (16)
N1A—N2A—C8A—O3A7.7 (3)N1B—N2B—C8B—O3B4.0 (3)
N1A—N2A—C8A—O2A171.98 (15)N1B—N2B—C8B—O2B175.60 (16)
C8A—O2A—C9A—C10A98.12 (19)C8B—O2B—C9B—C10B98.0 (2)
O2A—C9A—C10A—C11A88.3 (2)O2B—C9B—C10B—C15B95.9 (2)
O2A—C9A—C10A—C15A88.5 (2)O2B—C9B—C10B—C11B84.5 (2)
C15A—C10A—C11A—C12A1.6 (3)C15B—C10B—C11B—C12B1.5 (3)
C9A—C10A—C11A—C12A175.19 (19)C9B—C10B—C11B—C12B178.9 (2)
C10A—C11A—C12A—C13A0.0 (3)C10B—C11B—C12B—C13B0.8 (4)
C11A—C12A—C13A—C14A1.7 (3)C11B—C12B—C13B—C14B0.6 (4)
C12A—C13A—C14A—C15A1.8 (3)C12B—C13B—C14B—C15B1.1 (4)
C13A—C14A—C15A—C10A0.1 (3)C13B—C14B—C15B—C10B0.4 (3)
C11A—C10A—C15A—C14A1.6 (3)C11B—C10B—C15B—C14B1.0 (3)
C9A—C10A—C15A—C14A175.24 (19)C9B—C10B—C15B—C14B179.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1AO···N1A0.82 (2)1.81 (2)2.565 (2)151 (2)
N2A—H2AN···O1Ai0.87 (2)2.04 (2)2.902 (2)171 (2)
C3A—H3A···O2Aii0.952.503.392 (2)156
C6A—H6A···O3Ai0.952.383.296 (2)161
O1B—H1BO···N1B0.80 (2)1.84 (2)2.558 (2)148 (2)
N2B—H2BN···O1Biii0.88 (2)2.04 (2)2.915 (2)171 (2)
C3B—H3B···O2Biv0.952.443.360 (2)164
C6B—H6B···O3Biii0.952.393.297 (2)159
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2.
Selected torsion angles (°) for I, IIA and IIB top
I
C8—O2—C9—C10-78.01 (18)O2—C9—C10—C11-59.9 (2)
II
C8A—O2A—C9A—C10A-98.12 (19)O2A—C9A—C10A—C11A-88.3 (2)
C8B—O2B—C9B—C10B-98.0 (2)O2B—C9B—C10B—C11B-84.5 (2)
The above torsion angles quantify the most substantive differences between the conformations of I, IIA and IIB.
A sample of structures similar to I and II in the CSD top
R and R' represent groups attached at the equivalent of C4 and R'' represents the group attached at the equivalent of O3.
CSD refcodeRR'R''Reference
HODLOC2-hydroxyphenylHmethylSun & Cheng (2008)
QOFLAZ2-hydroxyphenylHethylGao (2008)
KODVUV4-hydroxyphenylHmethylCheng (2008a)
XOGVEVphenylmethylmethylCheng (2008b)
XOGXEX4-hydroxyphenylHethylCheng (2008c)
XOGXIB3-methoxy-4-hydroxyphenylHmethylCheng (2008d)
AZOTAL3-hydroxyphenylHmethylLi et al. (2011)
AWUJAE3-hydroxyphenylHethylHu et al. (2011)
WEFRUX4-diethylamino-2-hydroxyphenylHmethylLv et al. (2017)
 

Acknowledgements

One of the authors (V) is grateful to the DST–PURSE Project, Vijnana Bhavana, UOM for providing research facilities.

Funding information

HSY thanks UGC for a BSR Faculty fellowship for three years. Funding for this research was provided by: NSF (MRI CHE1625732) and the University of Kentucky (Bruker D8 Venture diffractometer).

References

First citationBorg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331–4342.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, B.-B., Su, Y.-P., Huang, D.-F., Wang, K.-H., Zhang, W.-G., Shi, Y., Zhang, X.-H. & Hu, Y.-L. (2018). J. Org. Chem. 83, 4365–4374.  CSD CrossRef CAS PubMed Google Scholar
First citationCheng, X.-W. (2008a). Acta Cryst. E64, o1302.  CSD CrossRef IUCr Journals Google Scholar
First citationCheng, X.-W. (2008b). Acta Cryst. E64, o1384.  CSD CrossRef IUCr Journals Google Scholar
First citationCheng, X.-W. (2008c). Acta Cryst. E64, o1396.  CSD CrossRef IUCr Journals Google Scholar
First citationCheng, X.-W. (2008d). Acta Cryst. E64, o1397.  CSD CrossRef IUCr Journals Google Scholar
First citationDong, K. & Wang, Y. (2014). Acta Cryst. E70, o527.  CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908–915.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGao, B. (2008). Acta Cryst. E64, o1547.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHu, X.-C., Zhang, J., Yang, D.-Y. & Lv, L.-P. (2011). Acta Cryst. E67, o1884.  CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, W.-W., Yu, T.-M., Lv, L.-P. & Hu, X.-C. (2011). Acta Cryst. E67, o2584.  CSD CrossRef IUCr Journals Google Scholar
First citationLv, L.-P., Lv, W.-D., Rao, J.-F. & Chen, J.-Y. (2017). Z. Kristallogr. New Cryst. Struct. 232, 667–668.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNithya, P., Simpson, J., Helena, S., Rajamanikandan, R. & Govindarajan, S. (2017). J. Therm. Anal. Calorim. 129, 1001–1019.  Web of Science CSD CrossRef CAS Google Scholar
First citationÖzdemir, A., Turan-Zitouni, G., Kaplancikli, Z. A. & Tunali, Y. (2009). J. Enzyme Inhib. Med. Chem. 24, 825–831.  PubMed Google Scholar
First citationParashar, R. K., Sharma, R. C., Kumar, A. & Mohan, G. (1988). Inorg. Chim. Acta, 151, 201–208.  CrossRef CAS Web of Science Google Scholar
First citationParkin, S. (2000). Acta Cryst. A56, 157–162.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParkin, S. (2013). CIFFIX. https://xray.uky.edu/Resources/scripts/ciffix  Google Scholar
First citationParkin, S. & Hope, H. (1998). J. Appl. Cryst. 31, 945–953.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRollas, S. & Küçükgüzel, S. G. (2007). Molecules, 12, 1910–1939.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSersen, F., Gregan, F., Kotora, P., Kmetova, J., Filo, J., Loos, D. & Gregan, J. (2017). Molecules, 22, 894.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShen, L.-W., Wang, Z.-H., You, Y., Zhao, J.-Q., Zhou, M.-Q. & Yuan, W.-C. (2022). Org. Lett. 24, 1094–1099.  CSD CrossRef CAS PubMed Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, R. & Cheng, X.-W. (2008). Acta Cryst. E64, o1563.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y.-L., Li, B.-Y., Yang, R., Xia, L.-Y., Fan, A.-L., Chu, Y.-C., Wang, L.-J., Wang, Z.-C., Jiang, A.-Q. & Zhu, H.-L. (2019). Eur. J. Med. Chem. 163, 896–910.  CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds