research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of chlorido­[diphen­yl(thio­phen-2-yl)phosphine-κP]gold(I)

crossmark logo

aDepartment of Chemistry, Grand Valley State University, Allendale, MI 49401, USA, and bCenter for Crystallographic Research, Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
*Correspondence e-mail: biross@gvsu.edu

Edited by M. Zeller, Purdue University, USA (Received 15 September 2022; accepted 16 September 2022; online 26 September 2022)

The crystal structure of the title compound, [AuCl(C16H13PS)], is reported. The mol­ecular structure features a nearly linear arrangement of the chloride and phosphino ligands around the gold(I) center, with a P—Au—Cl bond angle of 179.42 (9)°. The Au—P and Au—Cl bond lengths are 2.226 (2) and 2.287 (2) Å, respectively. The geometry of the groups bonded to the phospho­rus atom of the ligand is a slightly distorted tetra­hedron. The phenyl and thienyl rings of the ligand are extensively disordered, with the thienyl refined over all three possible positions on the phospho­rus atom. The relative occupancy ratio between these positions was found to be 0.406 (3):0.406 (2):0.188 (2). One of the major thienyl ring positions with the relative occupancy of 0.406 was modeled as two rotational isomers around the C—P bond with a relative occupancy ratio of 0.278 (3):0.128 (3). Inter­molecular C—H⋯π inter­actions present in the crystal lattice link mol­ecules of the title compound together to form a complex three-dimensional network.

1. Chemical context

The incorporation of tri­aryl­phosphines as ligands in metal complexes has led to a multitude of species capable of, for example, catalyzing organic transformations, binding to biological targets, and combating cancer. The synthesis of unsymmetric tri­aryl­phosphines has the potential to add additional functionality and selectivity to the resultant metal–ligand complexes. If we consider gold(I)–PAr3 complexes, structural diversity of the phosphine ligand has led to properties such as selective catalysis for cyclo­isomerization reactions (Christian et al., 2017[Christian, A. H., Niemeyer, Z. L., Sigman, M. S. & Toste, F. D. (2017). ACS Catal. 7, 3973-3978.]), triboluminescence (Kuchison et al., 2009[Kuchison, A. M., Wolf, M. O. & Patrick, B. O. (2009). Chem. Commun. pp. 7387-7389.]), and enzyme inhibition (Zhang et al., 2014[Zhang, D., Xu, Z., Yuan, J., Zhao, Y.-X., Qiao, Z.-Y., Gao, Y.-J., Yu, G.-A., Li, J. & Wang, H. (2014). J. Med. Chem. 57, 8132-8139.]; Fonteh & Meyer, 2009[Fonteh, P. & Meyer, D. (2009). Metallomics, 1, 427-433.]). To this end, our group has been developing synthetic routes to unsymmetric tri­aryl­phosphines, their chalcogenide derivatives and the resultant metal–ligand complexes (Luster et al., 2022[Luster, T., Van de Roovaart, H., Korman, K. J., Sands, G. G., Dunn, K. M., Spyker, A., Staples, R. J., Biros, S. M. & Bender, J. E. (2022). Dalton Trans. 51, 9103-9115.]). While attempting to prepare a complex between gold(I) and the selenide derivative of diphenyl-2-thienylphosphine, we isolated single crystals of the title compound as a decomposition product.

[Scheme 1]

2. Structural commentary

The structure of compound I was solved in the ortho­rhom­bic space group P212121 with a Flack parameter of −0.002 (6) (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]). The phospho­rus–gold and chloride–gold bond lengths are 2.226 (2) and 2.287 (2) Å, respectively. The phenyl and thienyl rings of the ligand are disordered, with the thienyl ring being distributed over all three possible positions at the P atom. The relative occupancy ratio between these positions was found to be 0.406 (3):0.406 (2):0.188 (2). Furthermore, the thienyl ring position with a relative occupancy of 0.406 (3) was modeled as two rotational isomers around the C—P bond with a relative occupancy ratio of 0.279 (3):0.128 (3) (see the Refinement section for further details of the treatment of the disorder). The atom-labeling scheme for the predominant moiety (Part 1: phenyl rings C1–C6 and C14–C19 as well as thienyl ring S1C and C1C–C4C) is shown in Fig. 1[link].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound I, with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level, all hydrogen atoms have been omitted and only the predominant Part 1 is shown for clarity.

The coordination geometry of the gold center is nearly linear with a P1—Au1—Cl1 bond angle of 179.42 (9)°. With regard to the phosphine ligand, for the most prevalent moiety the P—C bond lengths are 1.769 (7), 1.786 (7) and 1.874 (14) Å. The geometry around the phospho­rus atom P1 resembles a tetra­hedron with a τ4 descriptor for fourfold coordination of 0.95 (where 0.00 = square planar, 0.85 = trigonal pyramidal, and 1.00 = tetra­hedral; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). The C—P—C bond angles range from 105.3 (6) to 106.9 (11)°, and the Au—P—C bond angles range from 111.9 (5) to 113.6 (3)° for the most prelavent moiety.

3. Supra­molecular features

Individual mol­ecules of the title compound are held together through inter­molecular C—H⋯π inter­actions (Table 1[link]). In Part 1, these inter­actions exist between the C14–C19 phenyl ring and the hydrogen atom C2C(H2C) of the thienyl ring as well as between hydrogen atom C18(H18) and the S1C/C1C–C4C thienyl ring. These inter­molecular C—H⋯π inter­actions link the mol­ecules together to form helices that propagate along the a-axis direction (Fig. 2[link]). The helices are then held together through C—H⋯π inter­actions to form a complex 3D network (Fig. 3[link]). The remainder of the inter­molecular C—H⋯π inter­actions present in this structure are not exclusive to Part 1, and are listed in Table 1[link].

Table 1
C—H⋯π interactions (Å, °)

Cg1, Cg2, Cg3, and Cg4 are the centroids of the S1C/C1C–C4C, S1D/C1D–C4D, C7–C12, and C14–C19 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2C—H2CCg2i 0.95 2.80 141 4 (1)
C2C—H2CCg4i 0.95 2.79 139 4 (1)
C3D—H3DCg1ii 0.95 2.87 141 4 (1)
C3D—H3DCg3ii 0.95 2.85 141 4 (1)
C8—H8⋯Cg2i 0.95 2.80 131 4 (1)
C8—H8⋯Cg4i 0.95 2.77 130 4 (1)
C18—H18⋯Cg1ii 0.95 2.96 129 4 (1)
C18—H18⋯Cg3ii 0.95 2.95 128 4 (1)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The C—H⋯π inter­actions (solid, blue lines) found in crystals of the title compound that form helices that run along the a-axis direction, depicted using a ball-and-stick model with standard CPK colors (Au = tan , hydrogen = light pink). The chlorine atoms, phenyl ring C1–C6, and any hydrogen atom not involved in a C—H⋯π inter­action have been omitted for clarity. Only Part 1 is shown. Symmetry codes as in Table 1.
[Figure 3]
Figure 3
The crystal packing of the title compound as viewed down the a-axis, depicted using a ball-and-stick model with standard CPK colors (Au = tan , Cl = green, H = light pink). Inter­molecular C—H⋯π inter­actions are shown with solid, blue lines. For clarity any hydrogen atoms not involved in a C—H⋯π inter­action have been omitted. Only Part 1 is shown.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, November, 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures containing a P—Au bond where the phospho­rus atom bears one thienyl ring resulted in 14 hits. Structures IHUJUQ (Ho & Tiekink, 2003[Ho, S. Y. & Tiekink, E. R. T. (2003). Z. Kristallogr. New Cryst. Struct. 218, 73-74.]) and IHUJUQ01 (Monkowius et al., 2003[Monkowius, U., Nogai, S. & Schmidbaur, H. (2003). Z. Naturforsch. Teil B, 58, 751-758.]) are closely related to compound I, with a linear arrangement of chloride and one tris­(2-thien­yl)-substituted phosphine ligand bound to a gold(I) atom. Another related structure is IWAYUC (Yang et al., 2016[Yang, D., Liu, H., Wang, D.-L., Lu, Y., Zhao, X.-L. & Liu, Y. (2016). J. Mol. Catal. A Chem. 424, 323-330.]), which contains a di­phenyl­phosphino-3-thienyl-1H-imidazole ligand again bound to a gold(I) atom that also bears a chloride. Finally, structure YAHPUT (Stott et al., 2005[Stott, T. L., Wolf, M. O. & Patrick, B. O. (2005). Inorg. Chem. 44, 620-627.]) features a terthio­phene-substituted di­phenyl­phosphinogold(I)–chloride complex.

5. Synthesis and crystallization

A small vial was charged with diphen­yl(2-thien­yl)phosphine selenide (10-15 mg; Luster et al., 2022[Luster, T., Van de Roovaart, H., Korman, K. J., Sands, G. G., Dunn, K. M., Spyker, A., Staples, R. J., Biros, S. M. & Bender, J. E. (2022). Dalton Trans. 51, 9103-9115.]) and a stoichiometric amount of chloro­(tetra­hydro­thio­phene)­gold(I). The solids were dissolved in 1 mL of CDCl3, and the reaction mixture was transferred to an NMR tube. Crystals of compound I were grown serendipitously via slow evaporation of the solvent.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were placed in calculated positions and refined as riding: C—H = 0.95–1.00 Å with Uiso(H) = 1.2Ueq(C). The electron density corresponding to the disordered phenyl rings and the thienyl ring was modeled over three parts. In the model, electron density corresponding to the thienyl ring was found at three positions on the phospho­rus atom. In one of these positions, the thienyl ring was also found to be present as two rotational isomers corresponding to a 180° rotation around the C—P bond. The relative occupancies of each position of the thienyl ring were refined, while the total occupancy of all thienyl sites as well as the occupancy sum of each site were constrained to unity using SUMP commands. The thienyl occupancy rates refined to be 0.406 (2):0.278 (3):0.128 (3):0.188 (2) for the sites of S1C, S1B, S1A and S1D. Bond lengths and angles of all four thienyl moieties were restrained to be similar to each other using SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) SAME commands with an esd of 0.001 Å. For the pivot moiety with the highest occupancy (S1C/C1C–C4C), distance restraints were used to ensure a model with bond lengths and angles that agree with known values. Bonds of the thienyl ring were restrained using DFIX commands to be 1.70 (S1C—C1C), 1.34 (C1C—C2C, C3C—C4C) and 1.41 (C2C—C3C) Å with an esd of 0.002 Å in SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). The less occupied thienyl rings A and B were also restrained to be planar and coplanar with the P atom using FLAT commands. All P1—Cipso distances were restrained to be similar to each other using SADI commands. The atoms of each phenyl ring C1–C6, C7–C13 and C14–C15 were constrained to resemble an ideal hexa­gon with C—C bond lengths of 1.39 Å using SHELXL AFIX 66 commands. Lastly, Uij components of all C, S and P atoms were restrained to be similar to each other for atoms closer than 2.0 Å with an esd of 0.002 Å2.

Table 2
Experimental details

Crystal data
Chemical formula [AuCl(C16H13PS)]
Mr 500.71
Crystal system, space group Orthorhombic, P212121
Temperature (K) 173
a, b, c (Å) 10.0322 (13), 12.0784 (15), 12.9412 (16)
V3) 1568.1 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 9.77
Crystal size (mm) 0.24 × 0.16 × 0.11
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.474, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 13335, 3075, 2854
Rint 0.037
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.059, 1.08
No. of reflections 3075
No. of parameters 341
No. of restraints 837
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.02, −0.53
Absolute structure Flack x determined using 1149 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.002 (6)
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]; Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: CrystalMaker (Palmer, 2007); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015).

chlorido[diphenyl(thiophen-2-yl)phosphine-κP]gold(I) top
Crystal data top
[AuCl(C16H13PS)]Dx = 2.121 Mg m3
Mr = 500.71Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 8845 reflections
a = 10.0322 (13) Åθ = 2.3–26.0°
b = 12.0784 (15) ŵ = 9.77 mm1
c = 12.9412 (16) ÅT = 173 K
V = 1568.1 (3) Å3Block, clear colourless
Z = 40.24 × 0.16 × 0.11 mm
F(000) = 944
Data collection top
Bruker APEXII CCD
diffractometer
2854 reflections with I > 2σ(I)
φ and ω scansRint = 0.037
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 26.0°, θmin = 2.3°
Tmin = 0.474, Tmax = 0.745h = 1212
13335 measured reflectionsk = 1414
3075 independent reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0234P)2 + 0.2535P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3075 reflectionsΔρmax = 1.02 e Å3
341 parametersΔρmin = 0.53 e Å3
837 restraintsAbsolute structure: Flack x determined using 1149 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.002 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Au10.33353 (3)0.56862 (2)0.75765 (2)0.03375 (11)
Cl10.1218 (2)0.5105 (2)0.79464 (19)0.0511 (6)
P10.5388 (2)0.62695 (16)0.72152 (16)0.0324 (4)
C140.6564 (8)0.5173 (6)0.7053 (6)0.0351 (9)0.812 (2)
C150.6753 (8)0.4457 (6)0.7881 (4)0.0368 (11)0.812 (2)
H150.6274960.4568240.8506420.044*0.812 (2)
C160.7640 (7)0.3578 (5)0.7794 (4)0.0375 (11)0.812 (2)
H160.7769140.3088860.8360350.045*0.812 (2)
C170.8339 (7)0.3415 (5)0.6879 (5)0.0377 (11)0.812 (2)
H170.8945630.2814660.6820160.045*0.812 (2)
C180.8150 (8)0.4131 (6)0.6051 (4)0.0371 (11)0.812 (2)
H180.8627950.4019840.5426030.045*0.812 (2)
C190.7263 (9)0.5010 (6)0.6138 (5)0.0363 (10)0.812 (2)
H190.7133770.5499220.5572080.044*0.812 (2)
S1D0.7040 (12)0.4155 (10)0.7816 (9)0.0374 (10)0.188 (2)
C1D0.667 (4)0.514 (2)0.6928 (18)0.0356 (10)0.188 (2)
C2D0.744 (4)0.493 (3)0.610 (2)0.0362 (11)0.188 (2)
H2D0.7462780.5392220.5508840.043*0.188 (2)
C3D0.821 (4)0.396 (2)0.6202 (18)0.0370 (11)0.188 (2)
H3D0.8695910.3650430.5643530.044*0.188 (2)
C4D0.819 (3)0.351 (3)0.7147 (17)0.0375 (11)0.188 (2)
H4D0.8738300.2920310.7384890.045*0.188 (2)
C70.6082 (10)0.7125 (13)0.8182 (11)0.0358 (9)0.595 (2)
C80.5277 (8)0.7756 (12)0.8828 (10)0.0351 (10)0.595 (2)
H80.4335080.7723890.8760810.042*0.595 (2)
C90.5851 (9)0.8435 (9)0.9573 (8)0.0363 (11)0.595 (2)
H90.5301230.8866001.0014690.044*0.595 (2)
C100.7230 (9)0.8482 (8)0.9672 (7)0.0372 (12)0.595 (2)
H100.7621890.8945671.0180650.045*0.595 (2)
C110.8034 (8)0.7851 (10)0.9025 (8)0.0380 (11)0.595 (2)
H110.8976400.7883210.9092720.046*0.595 (2)
C120.7460 (10)0.7172 (11)0.8281 (9)0.0381 (10)0.595 (2)
H120.8010270.6741090.7838820.046*0.595 (2)
S1A0.6318 (19)0.8216 (16)0.5903 (12)0.0373 (9)0.128 (3)
C1A0.527 (3)0.712 (2)0.600 (2)0.0365 (9)0.128 (3)
C2A0.450 (3)0.714 (3)0.515 (2)0.0372 (10)0.128 (3)
H2A0.3788060.6634740.5042090.045*0.128 (3)
C3A0.482 (3)0.798 (2)0.444 (2)0.0374 (10)0.128 (3)
H3A0.4386060.8072400.3793660.045*0.128 (3)
C4A0.581 (3)0.864 (3)0.4765 (19)0.0373 (10)0.128 (3)
H4A0.6162450.9255730.4397050.045*0.128 (3)
S1B0.4495 (10)0.6766 (7)0.5027 (7)0.0381 (9)0.278 (3)
C1B0.539 (3)0.7187 (17)0.6068 (13)0.0365 (9)0.278 (3)
C2B0.592 (3)0.8176 (17)0.5838 (16)0.0370 (10)0.278 (3)
H2B0.6394020.8612630.6328760.044*0.278 (3)
C3B0.572 (3)0.8513 (18)0.4807 (15)0.0373 (10)0.278 (3)
H3B0.6089770.9168360.4516530.045*0.278 (3)
C4B0.496 (3)0.7797 (15)0.4285 (15)0.0374 (10)0.278 (3)
H4B0.4716600.7876070.3578900.045*0.278 (3)
C10.5435 (15)0.7063 (10)0.6066 (7)0.0363 (9)0.594 (3)
C20.4658 (12)0.6722 (8)0.5236 (8)0.0376 (9)0.594 (3)
H20.4177150.6045130.5273840.045*0.594 (3)
C30.4584 (10)0.7370 (8)0.4351 (7)0.0377 (10)0.594 (3)
H30.4052720.7137020.3783340.045*0.594 (3)
C40.5288 (11)0.8360 (7)0.4295 (6)0.0371 (10)0.594 (3)
H40.5237070.8803050.3690300.045*0.594 (3)
C50.6065 (11)0.8701 (7)0.5126 (7)0.0373 (10)0.594 (3)
H50.6545860.9377200.5087770.045*0.594 (3)
C60.6139 (14)0.8052 (10)0.6011 (7)0.0372 (9)0.594 (3)
H60.6670310.8285320.6578290.045*0.594 (3)
S1C0.7765 (6)0.7214 (6)0.8449 (5)0.0391 (9)0.406 (2)
C1C0.6089 (7)0.716 (2)0.8269 (19)0.0359 (9)0.406 (2)
C2C0.5458 (15)0.7872 (18)0.8898 (16)0.0353 (11)0.406 (2)
H2C0.4519120.7967960.8923070.042*0.406 (2)
C3C0.6375 (13)0.8457 (16)0.9518 (14)0.0365 (11)0.406 (2)
H3C0.6115920.8986201.0023040.044*0.406 (2)
C4C0.7646 (14)0.8193 (16)0.9322 (14)0.0375 (11)0.406 (2)
H4C0.8389500.8531770.9649730.045*0.406 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.03260 (17)0.03393 (17)0.03470 (17)0.00391 (13)0.00094 (16)0.00163 (15)
Cl10.0410 (13)0.0613 (15)0.0511 (14)0.0158 (12)0.0081 (10)0.0031 (12)
P10.0345 (10)0.0308 (9)0.0319 (10)0.0026 (8)0.0018 (8)0.0000 (8)
C140.0355 (18)0.0308 (18)0.0391 (17)0.0009 (17)0.0010 (16)0.0016 (16)
C150.037 (2)0.032 (2)0.0414 (19)0.001 (2)0.0009 (19)0.0015 (19)
C160.037 (2)0.033 (2)0.043 (2)0.001 (2)0.000 (2)0.001 (2)
C170.037 (2)0.033 (2)0.043 (2)0.000 (2)0.001 (2)0.0026 (19)
C180.037 (2)0.033 (2)0.042 (2)0.000 (2)0.0001 (19)0.0017 (19)
C190.036 (2)0.032 (2)0.041 (2)0.0000 (19)0.0010 (18)0.0017 (18)
S1D0.038 (2)0.033 (2)0.0419 (18)0.0001 (18)0.0007 (18)0.0017 (18)
C1D0.0360 (19)0.0315 (18)0.0393 (18)0.0006 (17)0.0011 (17)0.0014 (17)
C2D0.036 (2)0.032 (2)0.041 (2)0.000 (2)0.0007 (19)0.0017 (19)
C3D0.037 (2)0.032 (2)0.042 (2)0.000 (2)0.001 (2)0.002 (2)
C4D0.037 (2)0.033 (2)0.042 (2)0.000 (2)0.000 (2)0.002 (2)
C70.0374 (18)0.0366 (17)0.0336 (18)0.0053 (17)0.0045 (16)0.0003 (15)
C80.037 (2)0.036 (2)0.033 (2)0.005 (2)0.0052 (19)0.0002 (18)
C90.038 (2)0.037 (2)0.034 (2)0.005 (2)0.005 (2)0.0004 (18)
C100.039 (2)0.039 (2)0.034 (2)0.006 (2)0.004 (2)0.001 (2)
C110.039 (2)0.040 (2)0.035 (2)0.006 (2)0.005 (2)0.0011 (18)
C120.039 (2)0.0398 (19)0.035 (2)0.0060 (19)0.0055 (19)0.0005 (17)
S1A0.0404 (18)0.0373 (18)0.0342 (18)0.0033 (17)0.0043 (17)0.0025 (16)
C1A0.0396 (17)0.0364 (16)0.0337 (17)0.0032 (16)0.0043 (15)0.0022 (15)
C2A0.0405 (18)0.0372 (18)0.0339 (18)0.0033 (17)0.0049 (17)0.0024 (16)
C3A0.0408 (19)0.0376 (18)0.0340 (18)0.0034 (17)0.0049 (17)0.0026 (17)
C4A0.0405 (19)0.0374 (19)0.0340 (19)0.0034 (18)0.0045 (17)0.0025 (17)
S1B0.0414 (18)0.0384 (17)0.0344 (18)0.0036 (16)0.0055 (16)0.0027 (15)
C1B0.0395 (17)0.0363 (16)0.0336 (17)0.0031 (16)0.0043 (15)0.0022 (15)
C2B0.0401 (19)0.0371 (18)0.0339 (18)0.0032 (17)0.0045 (17)0.0025 (16)
C3B0.0406 (19)0.0374 (18)0.0340 (19)0.0034 (18)0.0046 (17)0.0026 (17)
C4B0.0408 (19)0.0376 (18)0.0339 (18)0.0034 (17)0.0048 (17)0.0026 (17)
C10.0393 (17)0.0361 (16)0.0334 (16)0.0029 (16)0.0042 (15)0.0021 (15)
C20.0410 (18)0.0377 (17)0.0341 (18)0.0034 (17)0.0052 (16)0.0027 (16)
C30.0411 (19)0.0378 (19)0.0341 (19)0.0037 (18)0.0050 (17)0.0025 (17)
C40.040 (2)0.037 (2)0.034 (2)0.0034 (19)0.0045 (18)0.0024 (18)
C50.0406 (19)0.0373 (18)0.0339 (19)0.0034 (18)0.0045 (17)0.0027 (17)
C60.0403 (18)0.0372 (18)0.0341 (18)0.0034 (17)0.0043 (17)0.0027 (16)
S1C0.0392 (19)0.0415 (17)0.0367 (18)0.0068 (17)0.0065 (16)0.0008 (15)
C1C0.0373 (18)0.0367 (17)0.0337 (18)0.0054 (17)0.0048 (17)0.0002 (16)
C2C0.037 (2)0.036 (2)0.033 (2)0.005 (2)0.0052 (19)0.0000 (18)
C3C0.038 (2)0.038 (2)0.034 (2)0.006 (2)0.005 (2)0.0006 (18)
C4C0.039 (2)0.039 (2)0.035 (2)0.006 (2)0.0050 (19)0.0010 (18)
Geometric parameters (Å, º) top
Au1—Cl12.287 (2)C11—C121.3900
Au1—P12.226 (2)C12—H120.9500
P1—C141.786 (5)S1A—C1A1.699 (3)
P1—C1D1.907 (18)S1A—C4A1.640 (15)
P1—C71.766 (7)C1A—C2A1.342 (3)
P1—C1A1.881 (18)C2A—H2A0.9500
P1—C1B1.852 (16)C2A—C3A1.410 (3)
P1—C11.769 (7)C3A—H3A0.9500
P1—C1C1.874 (14)C3A—C4A1.339 (3)
C14—C151.3900C4A—H4A0.9500
C14—C191.3900S1B—C1B1.699 (3)
C15—H150.9500S1B—C4B1.640 (15)
C15—C161.3900C1B—C2B1.342 (3)
C16—H160.9500C2B—H2B0.9500
C16—C171.3900C2B—C3B1.410 (3)
C17—H170.9500C3B—H3B0.9500
C17—C181.3900C3B—C4B1.339 (3)
C18—H180.9500C4B—H4B0.9500
C18—C191.3900C1—C21.3900
C19—H190.9500C1—C61.3900
S1D—C1D1.699 (3)C2—H20.9500
S1D—C4D1.640 (15)C2—C31.3900
C1D—C2D1.342 (3)C3—H30.9500
C2D—H2D0.9500C3—C41.3900
C2D—C3D1.410 (3)C4—H40.9500
C3D—H3D0.9500C4—C51.3900
C3D—C4D1.339 (3)C5—H50.9500
C4D—H4D0.9500C5—C61.3900
C7—C81.3900C6—H60.9500
C7—C121.3900S1C—C1C1.699 (3)
C8—H80.9500S1C—C4C1.640 (15)
C8—C91.3900C1C—C2C1.342 (3)
C9—H90.9500C2C—H2C0.9500
C9—C101.3900C2C—C3C1.410 (3)
C10—H100.9500C3C—H3C0.9500
C10—C111.3900C3C—C4C1.339 (3)
C11—H110.9500C4C—H4C0.9500
P1—Au1—Cl1179.42 (9)C7—C12—H12120.0
C14—P1—Au1113.6 (3)C11—C12—C7120.0
C14—P1—C1C105.3 (6)C11—C12—H12120.0
C1D—P1—Au1116.0 (12)C4A—S1A—C1A96.8 (12)
C7—P1—Au1113.6 (5)S1A—C1A—P1116.5 (13)
C7—P1—C1D106.9 (14)C2A—C1A—P1137.1 (15)
C7—P1—C1B102.5 (8)C2A—C1A—S1A106.2 (15)
C1A—P1—Au1106.8 (9)C1A—C2A—H2A122.7
C1B—P1—Au1111.1 (8)C1A—C2A—C3A115 (2)
C1B—P1—C1D105.5 (12)C3A—C2A—H2A122.7
C1—P1—Au1111.9 (5)C2A—C3A—H3A123.4
C1—P1—C14106.6 (6)C4A—C3A—C2A113 (2)
C1—P1—C1C106.9 (11)C4A—C3A—H3A123.4
C1C—P1—Au1112.1 (6)S1A—C4A—H4A125.5
C15—C14—P1117.4 (4)C3A—C4A—S1A109.0 (19)
C15—C14—C19120.0C3A—C4A—H4A125.5
C19—C14—P1122.6 (4)C4B—S1B—C1B95.0 (9)
C14—C15—H15120.0S1B—C1B—P1117.1 (9)
C16—C15—C14120.0C2B—C1B—P1135.4 (10)
C16—C15—H15120.0C2B—C1B—S1B107.5 (12)
C15—C16—H16120.0C1B—C2B—H2B122.9
C15—C16—C17120.0C1B—C2B—C3B114.2 (16)
C17—C16—H16120.0C3B—C2B—H2B122.9
C16—C17—H17120.0C2B—C3B—H3B124.0
C18—C17—C16120.0C4B—C3B—C2B111.9 (18)
C18—C17—H17120.0C4B—C3B—H3B124.0
C17—C18—H18120.0S1B—C4B—H4B124.5
C17—C18—C19120.0C3B—C4B—S1B110.9 (15)
C19—C18—H18120.0C3B—C4B—H4B124.5
C14—C19—H19120.0C2—C1—P1118.3 (6)
C18—C19—C14120.0C2—C1—C6120.0
C18—C19—H19120.0C6—C1—P1121.5 (6)
C4D—S1D—C1D97.6 (11)C1—C2—H2120.0
S1D—C1D—P1121.1 (11)C1—C2—C3120.0
C2D—C1D—P1132.8 (13)C3—C2—H2120.0
C2D—C1D—S1D106.1 (14)C2—C3—H3120.0
C1D—C2D—H2D123.1C2—C3—C4120.0
C1D—C2D—C3D113.7 (18)C4—C3—H3120.0
C3D—C2D—H2D123.1C3—C4—H4120.0
C2D—C3D—H3D122.8C5—C4—C3120.0
C4D—C3D—C2D114 (2)C5—C4—H4120.0
C4D—C3D—H3D122.8C4—C5—H5120.0
S1D—C4D—H4D126.4C4—C5—C6120.0
C3D—C4D—S1D107.3 (16)C6—C5—H5120.0
C3D—C4D—H4D126.4C1—C6—H6120.0
C8—C7—P1121.2 (6)C5—C6—C1120.0
C8—C7—C12120.0C5—C6—H6120.0
C12—C7—P1118.8 (6)C4C—S1C—C1C92.8 (8)
C7—C8—H8120.0S1C—C1C—P1119.5 (8)
C7—C8—C9120.0C2C—C1C—P1129.2 (7)
C9—C8—H8120.0C2C—C1C—S1C111.0 (10)
C8—C9—H9120.0C1C—C2C—H2C124.5
C10—C9—C8120.0C1C—C2C—C3C111.0 (13)
C10—C9—H9120.0C3C—C2C—H2C124.5
C9—C10—H10120.0C2C—C3C—H3C123.4
C11—C10—C9120.0C4C—C3C—C2C113.2 (14)
C11—C10—H10120.0C4C—C3C—H3C123.4
C10—C11—H11120.0S1C—C4C—H4C124.1
C10—C11—C12120.0C3C—C4C—S1C111.8 (12)
C12—C11—H11120.0C3C—C4C—H4C124.1
Au1—P1—C14—C1559.1 (5)C7—P1—C1B—S1B167.2 (16)
Au1—P1—C14—C19119.9 (4)C7—P1—C1B—C2B10 (3)
Au1—P1—C7—C827.0 (10)C7—C8—C9—C100.0
Au1—P1—C7—C12153.9 (6)C8—C7—C12—C110.0
Au1—P1—C1A—S1A145.5 (19)C8—C9—C10—C110.0
Au1—P1—C1A—C2A30 (4)C9—C10—C11—C120.0
Au1—P1—C1B—S1B45 (2)C10—C11—C12—C70.0
Au1—P1—C1B—C2B132 (3)C12—C7—C8—C90.0
Au1—P1—C1—C239.9 (9)S1A—C1A—C2A—C3A4 (3)
Au1—P1—C1—C6134.8 (6)C1A—S1A—C4A—C3A1 (2)
Au1—P1—C1C—S1C152.2 (14)C1A—C2A—C3A—C4A3 (3)
Au1—P1—C1C—C2C33 (3)C2A—C3A—C4A—S1A1 (3)
P1—C14—C15—C16179.0 (7)C4A—S1A—C1A—P1179 (3)
P1—C14—C19—C18179.0 (7)C4A—S1A—C1A—C2A3 (2)
P1—C1D—C2D—C3D177 (4)S1B—C1B—C2B—C3B7 (2)
P1—C7—C8—C9179.1 (13)C1B—P1—C7—C893.0 (13)
P1—C7—C12—C11179.1 (13)C1B—P1—C7—C1286.1 (14)
P1—C1A—C2A—C3A179 (4)C1B—S1B—C4B—C3B3.7 (17)
P1—C1B—C2B—C3B176 (3)C1B—C2B—C3B—C4B4 (3)
P1—C1—C2—C3174.8 (11)C2B—C3B—C4B—S1B0 (2)
P1—C1—C6—C5174.6 (12)C4B—S1B—C1B—P1176 (2)
P1—C1C—C2C—C3C174 (2)C4B—S1B—C1B—C2B5.9 (18)
C14—P1—C1—C284.9 (8)C1—P1—C14—C15177.2 (5)
C14—P1—C1—C6100.4 (8)C1—P1—C14—C193.8 (7)
C14—P1—C1C—S1C28 (2)C1—P1—C1C—S1C84.9 (19)
C14—P1—C1C—C2C158 (2)C1—P1—C1C—C2C89 (2)
C14—C15—C16—C170.0C1—C2—C3—C40.0
C15—C14—C19—C180.0C2—C1—C6—C50.0
C15—C16—C17—C180.0C2—C3—C4—C50.0
C16—C17—C18—C190.0C3—C4—C5—C60.0
C17—C18—C19—C140.0C4—C5—C6—C10.0
C19—C14—C15—C160.0C6—C1—C2—C30.0
S1D—C1D—C2D—C3D4 (4)S1C—C1C—C2C—C3C0 (2)
C1D—P1—C7—C8156.3 (10)C1C—P1—C14—C1563.9 (11)
C1D—P1—C7—C1224.6 (12)C1C—P1—C14—C19117.1 (10)
C1D—P1—C1B—S1B81 (2)C1C—P1—C1—C2162.9 (7)
C1D—P1—C1B—C2B101 (3)C1C—P1—C1—C611.8 (9)
C1D—S1D—C4D—C3D6 (3)C1C—S1C—C4C—C3C2.5 (19)
C1D—C2D—C3D—C4D9 (5)C1C—C2C—C3C—C4C1 (2)
C2D—C3D—C4D—S1D10 (4)C2C—C3C—C4C—S1C3 (2)
C4D—S1D—C1D—P1178 (3)C4C—S1C—C1C—P1173.6 (19)
C4D—S1D—C1D—C2D1 (3)C4C—S1C—C1C—C2C1.6 (19)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3, and Cg4 are the centroids of the S1C/C1C–C4C, S1D/C1D–C4D, C7–C12, and C14–C19 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2C—H2C···Cg2i0.952.801414 (1)
C2C—H2C···Cg4i0.952.791394 (1)
C3D—H3D···Cg1ii0.952.871414 (1)
C3D—H3D···Cg3ii0.952.851414 (1)
C8—H8···Cg2i0.952.801314 (1)
C8—H8···Cg4i0.952.771304 (1)
C18—H18···Cg1ii0.952.961294 (1)
C18—H18···Cg3ii0.952.951284 (1)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+3/2, y+1, z1/2.
 

Acknowledgements

We are grateful to the GVSU Chemistry Department's Weldon Fund, CSCE and OURS for financial support of this work. The diffractometers at MSU were purchased/upgraded with departmental funds.

Funding information

Funding for this research was provided by: GVSU Office of Undergraduate Research (grant No. MS3 to A. LaDuca).

References

First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChristian, A. H., Niemeyer, Z. L., Sigman, M. S. & Toste, F. D. (2017). ACS Catal. 7, 3973–3978.  CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFonteh, P. & Meyer, D. (2009). Metallomics, 1, 427–433.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHo, S. Y. & Tiekink, E. R. T. (2003). Z. Kristallogr. New Cryst. Struct. 218, 73–74.  CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKuchison, A. M., Wolf, M. O. & Patrick, B. O. (2009). Chem. Commun. pp. 7387–7389.  CSD CrossRef Google Scholar
First citationLuster, T., Van de Roovaart, H., Korman, K. J., Sands, G. G., Dunn, K. M., Spyker, A., Staples, R. J., Biros, S. M. & Bender, J. E. (2022). Dalton Trans. 51, 9103–9115.  CSD CrossRef CAS PubMed Google Scholar
First citationMonkowius, U., Nogai, S. & Schmidbaur, H. (2003). Z. Naturforsch. Teil B, 58, 751–758.  CrossRef CAS Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStott, T. L., Wolf, M. O. & Patrick, B. O. (2005). Inorg. Chem. 44, 620–627.  CSD CrossRef PubMed CAS Google Scholar
First citationYang, D., Liu, H., Wang, D.-L., Lu, Y., Zhao, X.-L. & Liu, Y. (2016). J. Mol. Catal. A Chem. 424, 323–330.  CSD CrossRef CAS Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, D., Xu, Z., Yuan, J., Zhao, Y.-X., Qiao, Z.-Y., Gao, Y.-J., Yu, G.-A., Li, J. & Wang, H. (2014). J. Med. Chem. 57, 8132–8139.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds