research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The methanol and ethanol solvates of 4-glutarato-N,N-diiso­propyl­tryptamine

crossmark logo

aUniversity of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA, and bCaaMTech, Inc., 58 East Sunset Way, Suite 209, Issaquah, WA 98027, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 2 September 2022; accepted 13 September 2022; online 22 September 2022)

The solid-state structures of two solvated forms of 4-glutarato-N,N-diiso­propyl­tryptamine were determined by single-crystal X-ray diffraction, namely, 5-[(3-{2-[bis(propan-2-yl)azaniumyl]ethyl}-1H-indol-4-yl)oxy]-5-oxopentanoate meth­anol monosolvate, C21H30N2O4·CH3OH, and the analogous ethanol monosolvate, C21H30N2O4·C2H6O. In both compounds, the 4-glutarato-N,N-di­iso­­pro­pyl­tryptamine exists as a zwitterion with a protonated tertiary ammonium and a deprotonated glutarato carboxyl­ate. The tryptamine zwitterions and alcohol solvates in both structures combine to produce near identical hydrogen-bonding networks, with N—H⋯O and O—H⋯O hydrogen bonds joining the mol­ecules together in two-dimensional networks parallel to the (100) plane.

1. Chemical context

Psychedelic compounds continue to be a major research focus for treating conditions including depression, post-traumatic stress disorder (PTSD), Alzheimer's disease, and chronic pain (Carhart-Harris & Goodwin, 2017[Carhart-Harris, R. L. & Goodwin, G. M. (2017). Neuropsychopharmacol, 42, 2105-2113.]; Krediet et al., 2020[Krediet, E., Bostoen, T., Breeksema, J., van Schagen, A., Passie, T. & Vermetten, E. (2020). Int. J. Neuropsychopharmacol. 23, 385-400.]; Vann Jones & O'Kelly, 2020[Vann Jones, S. A. & O'Kelly, A. (2020). Front Synaptic Neurosci. 12, 34.]; Ramaekers et al., 2021[Ramaekers, J. G., Hutten, N., Mason, N. L., Dolder, P., Theunissen, E. L., Holze, F., Liechti, M. E., Feilding, A. & Kuypers, K. P. (2021). J. Psychopharmacol. 35, 398-405.]). Tryptamine compounds with chemical structures resembling that of the active product of magic mushrooms, psilocin (4-hy­droxy-N,N-di­methyl­tryptamine; 4-HO-DMT), are of particular inter­est. This is due not just to their structural similarities to the neurotransmitter serotonin (5-hy­droxy­tryptamine; 5-HT), but because many have desirable drug characteristics including oral availability, lowered susceptibility to mono­amine oxidase (MAO) degradation, and short duration of action (Kuypers et al., 2019[Kuypers, K. P., Ng, L., Erritzoe, D., Knudsen, G. M., Nichols, D. E., Nichols, D. E., Pani, L., Soula, A. & Nutt, D. (2019). J. Psychopharmacol. 33, 1039-1057.]). The synthesis of prodrugs that undergo hydrolysis to produce 4-hy­droxy derivatives of di­alkyl­tryptamines are of increasing inter­est (Klein et al., 2021[Klein, A. K., Chatha, M., Laskowski, L. J., Anderson, E. I., Brandt, S. D., Chapman, S. J., McCorvy, J. D. & Halberstadt, A. L. (2021). ACS Pharmacol. Transl. Sci. 4, 533-542.]; Chadeayne et al., 2019a[Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019a). Psychedelic Science Review, https://psychedelicreview.com/the-crystal-structure-of-4-aco-dmt-fumarate/.]; Chadeayne, Pham, Reid et al., 2020[Chadeayne, A. R., Pham, D. N. K., Reid, B. G., Golen, J. A. & Manke, D. R. (2020). ACS Omega, 5, 16940-16943.]; Naeem et al., 2022[Naeem, M., Sherwood, A. M., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2022). Acta Cryst. E78, 550-553.]).

4-Hy­droxy-N,N-diiso­propyl­tryptamine (4-HO-DiPT) is one example of a psilocin analog, first synthesized in 1977, in which both methyl groups on the ethyl­amino moiety of psilocin are replaced with isopropyl groups (Repke et al., 1977[Repke, D. B., Ferguson, W. J. & Bates, D. K. (1977). J. Heterocycl. Chem. 14, 71-74.]). In early 2022, 4-HO-DiPT along with four other psychedelics were part of a proposal issued by the US Drug Enforcement Administration (DEA), requesting comments on reclassifying these compounds to Schedule I of the Controlled Substance Act. Due to a strong public response, the DEA withdrew the proposal before the hearing, which was scheduled for August (US DEA, January 14 & July 6, 2022a[US DEA (2022a). US Drug Enforcement Agency, January 14, 2022. https://www.federalregister.gov/documents/2022/01/14/2022-00713/schedules-of-controlled-substances-placement-of-4-hydroxy-nn (accessed August 15, 2022).],b[US DEA (2022b). US Drug Enforcement Agency, July 6, 2022. https://www.federalregister.gov/documents/2022/07/06/2022-14372/schedules-of-controlled-substances-placement-of-4-hydroxy-nn-diisopropyltryptamine-4-oh-dipt (accessed August 15, 2022).]).

4-HO-DiPT is a serotonin-2A (5-HT2A) receptor agonist that, like psilocin, produces a head-twitch response (HTR) in mice, indicating its competence in producing psychedelic effects (Halberstadt et al., 2020[Halberstadt, A. L., Chatha, M., Klein, A. K., Wallach, J. & Brandt, S. D. (2020). Neuropharmacology, 167, 107933.]). 4-HO-DiPT also inter­acts with the serotonin transporter (SERT) with IC50 values in the low micromolar range, similar to 3,4-methyl­ene­dioxy­methamphetamine (MDMA) (Rickli et al., 2016[Rickli, A., Moning, O. D., Hoener, M. C. & Liechti, M. E. (2016). Eur. Neuropsychopharmacol. 26, 1327-1337.]). 4-HO-DiPT has been reported as orally active at a 15–20 mg dose, with its profound psychedelic effects beginning within 15 minutes and lasting about 2–3 h (Shulgin & Shulgin, 2017[Shulgin, A. & Shulgin, A. (2017). TiHKAL: The Continuation. #17, 4-HO-DiPT, p. 466. Berkeley, CA: Transform Press.]).

4-HO-DiPT glutarate, a `hemiester' prodrug of 4-HO-DiPT has been reported in the patent literature (Bryson, 2022[Bryson, N. (2022). Tryptamine prodrugs. US 2021/0403425 A1, Field Trip Psychedelics, Inc.]). We have previously published work characterizing tryptamine compounds, highlighting the importance of single-crystal X-ray diffraction studies when characterizing tryptamine salts because they can occur in a variety of forms that are often not appreciated by other means of characterization (Chadeayne et al., 2019a[Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019a). Psychedelic Science Review, https://psychedelicreview.com/the-crystal-structure-of-4-aco-dmt-fumarate/.],b[Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019b). Acta Cryst. E75, 900-902.]; Chadeayne, Pham, Golen et al., 2020[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020). Acta Cryst. E76, 514-517.]; Sammeta et al., 2020[Sammeta, V. R., Rasapalli, S., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2020). IUCrData, 5, x201546.]; Pham et al., 2021[Pham, D. N. K., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021). Acta Cryst. E77, 101-106.]; Naeem et al., 2022[Naeem, M., Sherwood, A. M., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2022). Acta Cryst. E78, 550-553.]). To this end, we synthesized 4-glutarato-N,N-diiso­propyl­trypamine and report herein two crystalline forms of the compound as both its methanol and ethanol solvates.

[Scheme 1]

2. Structural commentary

In the solid state, the compound exists as a zwitterion, with a protonated tertiary ammonium group and a deprotonated carboxyl­ate of the glutarato group. Both of the solvate structures possess one zwitterionic mol­ecule and one alcohol mol­ecule in the asymmetric unit (Fig. 1[link]). In the ethanol solvate, the alcohol mol­ecule is disordered over two orientations in a 0.531 (11):0.469 (11) ratio. Both solvates have near planar indole units with r.m.s. deviations from planarity of 0.009 and 0.016 Å for the methanol and ethanol solvates, respectively. The glutarato units are also close to planar with r.m.s. deviations of only 0.061 and 0.071 Å. In both cases, the glutarato unit is nearly orthogonal to the indole plane, showing plane-to-plane twists of 90.99 (6) and 94.21 (8)°. Likewise, the ethyl­amino arms are nearly orthogonal to the indole plane with C7—C8—C9—C10 angles of 90.2 (2) and 86.1 (3)°. Both ethyl­amino arms demonstrate anti configurations, with C8—C9—C10—N2 angles of 179.92 (14) and 180.0 (2)°. In both structures, the glutarato and ethyl­amino arms are turned to opposite sides of the indole. This differs from the structures observed in other zwitterionic indoles where intra­molecular hydrogen bonding leads to two groups being on the same side of the aromatic rings (Naeem et al., 2022[Naeem, M., Sherwood, A. M., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2022). Acta Cryst. E78, 550-553.]). The nature of the groups in this compound only allows for inter­molecular inter­actions (vide infra) and having the groups on opposite sides of the indole is sterically preferred.

[Figure 1]
Figure 1
The mol­ecular structures of 4-glutarato-N,N-diiso­propyl­tryptamine as both its methanol (left) and ethanol (right) solvate, showing atomic labeling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. Dashed bonds indicate the minor occupancy disordered component in the ethanol solvate.

3. Supra­molecular features

In both crystals, the zwitterionic mol­ecules and alcohol solvents are held together by N+—H⋯O and O—H⋯O hydrogen bonds that produce infinite two-dimensional networks parallel to the (100) plane. The most significant hydrogen bonds are N2—H2⋯O4 bonds between the diiso­propyl­tryptammonium cation and the carboxyl­ate anion of another zwitterionic mol­ecule. These inter­actions form centrosymmetrical dimers, which form rings with graph-set notation of R22(28) (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). These dimers are shown in Fig. 2[link]. The dimers are joined together through N1—H1⋯O3 hydrogen bonds between the indole nitro­gen and the other carboxyl­ate oxygen. The alcohol oxygens also hydrogen bond to the carboxyl­ate anion through O5—H5⋯O4 bonds (Tables 1[link] and 2[link]). The two structures demonstrate near identical hydrogen-bonding networks in the solid state, which can be seen in their packing diagrams (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °) for the methanol solvate[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O4 1.00 (1) 1.83 (2) 2.748 (2) 151 (3)
N2—H2⋯O4i 0.90 (1) 1.81 (1) 2.7154 (19) 177 (2)
N1—H1⋯O3ii 0.86 (1) 1.99 (1) 2.773 (2) 151 (2)
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for the ethanol solvate[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4i 0.90 (3) 1.79 (3) 2.686 (3) 177 (3)
N1—H1⋯O3ii 0.85 (1) 1.91 (1) 2.751 (3) 167 (3)
O5—H5A⋯O4iii 0.82 1.97 2.692 (10) 147
O5A—H5AA⋯O4iii 0.82 1.95 2.732 (6) 160
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, -y+1, -z+1].
[Figure 2]
Figure 2
The ring formed by the dimerization of two zwitterionic 4-glutarato-N,N-diiso­propyl­tryptamine mol­ecules with graph set notation of R22(28). The image shown is from the methanol solvate. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding are omitted for clarity. Symmetry code: (i) 1 − x, 1 − y, 1 − z.
[Figure 3]
Figure 3
The crystal packing of the methanol solvate (left) and the ethanol solvate (right) of 4-glutarato-N,N-diiso­propyl­tryptamine, both shown along the a-axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding are omitted for clarity.

4. Database survey

There are three reported tryptamine structures possessing isopropyl groups on the ethyl­amino arm, all of which are N-methyl-N-isopropyl derivatives: N-methyl-N-iso­propyl­tryptammonium hydro­fumarate (Chadeayne, Pham, Golen et al., 2019[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019). Acta Cryst. E75, 1316-1320.]: RONSOF) as well as the hydro­fumarate (Chad­eayne, Pham, Golen et al., 2019[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019). Acta Cryst. E75, 1316-1320.]: RONSUL) and fumarate (Chadeayne, Pham, Golen et al., 2020[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020). Acta Cryst. E76, 514-517.]: TUFQAP) of 4-hy­droxy-N-methyl-N-iso­propyl­tryptamine. There are six structures of 4-substituted esters of tryptamines in the literature, all of which are 4-acet­oxy derivatives: the hydro­fumarate (Chadeayne et al., 2019a[Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019a). Psychedelic Science Review, https://psychedelicreview.com/the-crystal-structure-of-4-aco-dmt-fumarate/.]: HOCJUH) and fumarate (Chad­eayne et al., 2019b[Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019b). Acta Cryst. E75, 900-902.]: XOFDOO) of psilacetin (4-acet­oxy-N,N-di­methyl­tryptamine), 4-acet­oxy-N-methyl-N-ethyl­trypt­ammo­nium hydro­fumarate (Pham et al., 2021[Pham, D. N. K., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021). Acta Cryst. E77, 101-106.]: OJIQIK), 4-acet­oxy-N-methyl-N-allyl­tryptammonium hydro­fumarate (Pham et al., 2021[Pham, D. N. K., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021). Acta Cryst. E77, 101-106.]: OJIQOQ), 4-acet­oxy-N,N-di­allyl­tryptammonium fumarate fumaric acid (Pham et al., 2021[Pham, D. N. K., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021). Acta Cryst. E77, 101-106.]: OJIQUW), and 4-acet­oxy-N,N,N-tri­methyl­tryptammonium iodide (Chadeayne, Pham, Reid et al., 2020[Chadeayne, A. R., Pham, D. N. K., Reid, B. G., Golen, J. A. & Manke, D. R. (2020). ACS Omega, 5, 16940-16943.]: XUXDUS). There are two tryptamine zwitterions reported in the literature, those being the natural products baeocystin, 4-phosphor­yloxy-N-methyl­tryptamine (Naeem et al., 2022[Naeem, M., Sherwood, A. M., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2022). Acta Cryst. E78, 550-553.]), and psilocybin, 4-phosphor­yloxy-N,N-di­methyl­tryptamine (Weber & Petcher, 1974[Weber, H. P. & Petcher, T. J. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 942-946.]; PSILOC; Sherwood et al., 2022[Sherwood, A. M., Kargbo, R. B., Kaylo, K. W., Cozzi, N. V., Meisenheimer, P. & Kaduk, J. A. (2022). Acta Cryst. C78, 36-55.]: TAVZID, TAVZID01; Greenan et al., 2020[Greenan, C., Arlin, J.-B., Lorimer, K., Kaylo, K., Kargbo, R., Meisenheimer, P., Tarpley, W. G. & Sherwood, A. M. (2020). ResearchGate, https://doi. org/10.13140/RG. 2.2.32357.14560.]; OKOKAD).

5. Synthesis and crystallization

112 mg of 4-hy­droxy-N,N-diiso­propyl­tryptamine (1 mmol) were dissolved in 5 mL of chloro­form. 0.3 mL of tri­ethyl­amine (5 mmol) followed by 490 mg of glutaric anhydride (10 mmol) were then added to the solution. The mixture was stirred at room temperature for 30 minutes, resulting in a precipitate which was isolated via filtration. The precipitate was triturated with tetra­hydro­furan and washed with chloro­form to obtain 73 mg of white powder (65% yield).

1H NMR (400 MHz, DMSO-d6): δ 11.02 (s, 1H, NH), 7.22 (d, J = 8.1 Hz, 1H, ArH), 7.16 (d, J = 2.3 Hz, 1H, ArH), 7.02 (t, J = 7.9 Hz, 1H, ArH), 6.64 (d, J = 7.5 Hz, 1H, ArH), 3.10 (sept, J = 6.5 Hz, 2H, CH), 2.77–2.63 (m, 6H, CH2), 2.31 (t, J = 7.2 Hz, 2H, CH2), 1.88 (t, J = 7.2 Hz, 2H, CH2), 1.00 (d, J = 6.6 Hz, 12H, CH3).

The powder was recrystallized from boiling methanol to yield single crystals of the methanol solvate suitable for X-ray diffraction analysis. Slow evaporation of an ethanol solution of the powder produced single crystals of the ethanol solvate suitable for X-ray diffraction analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. In the methanol solvate, hydrogen atoms H1, H2 and H5A were found in a difference-Fourier map and in the ethanol solvate, hydrogen atoms H1 and H2 were found in a difference-Fourier map. These hydrogens were refined isotropically, using DFIX restraints with N—H(indole) distances of 0.87 (1) Å, N—H(ammonium) distances of 0.90 (1) Å, and O—H distances of 0.99 (1) Å. Isotropic displacement parameters were set to 1.2Ueq of the parent nitro­gen atoms and 1.5Ueq of the parent oxygen atom. All other hydrogens were placed in calculated positions [C—H = 0.93 Å (sp2), 0.97 Å (CH2), 0.96 Å (CH3)]. The hydrogen atoms in the disordered ethanol mol­ecule were placed in calculated positions [O—H = 0.82 Å]. Isotropic displacement parameters were set to 1.2Ueq of the parent carbon atoms and 1.5Ueq of the parent oxygen atoms.

Table 3
Experimental details

  Methanol solvate Ethanol solvate
Crystal data
Chemical formula C21H30N2O4·CH4O C21H30N2O4·C2H6O
Mr 406.51 420.54
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 297 297
a, b, c (Å) 7.9531 (5), 13.4224 (7), 21.2015 (11) 8.0087 (12), 13.7968 (17), 21.878 (3)
β (°) 92.484 (2) 90.749 (4)
V3) 2261.1 (2) 2417.2 (5)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 0.08
Crystal size (mm) 0.22 × 0.21 × 0.20 0.30 × 0.27 × 0.22
 
Data collection
Diffractometer Bruker D8 Venture CMOS Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2021[Bruker (2021). APEX4, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2021[Bruker (2021). APEX4, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.718, 0.745 0.692, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 61210, 4304, 3531 37412, 4461, 3038
Rint 0.039 0.055
(sin θ/λ)max−1) 0.610 0.604
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.143, 1.03 0.060, 0.176, 1.04
No. of reflections 4304 4461
No. of parameters 279 313
No. of restraints 3 46
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.46, −0.39 0.35, −0.46
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX4, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX4 (Bruker, 2021); cell refinement: SAINT (Bruker, 2021); data reduction: SAINT (Bruker, 2021); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

5-[(3-{2-[Bis(propan-2-yl)azaniumyl]ethyl}-1H-indol-4-yl)oxy]-5-oxopentanoate methanol monosolvate (I) top
Crystal data top
C21H30N2O4·CH4OF(000) = 880
Mr = 406.51Dx = 1.194 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.9531 (5) ÅCell parameters from 9859 reflections
b = 13.4224 (7) Åθ = 3.0–25.6°
c = 21.2015 (11) ŵ = 0.08 mm1
β = 92.484 (2)°T = 297 K
V = 2261.1 (2) Å3Block, colourless
Z = 40.22 × 0.21 × 0.20 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
3531 reflections with I > 2σ(I)
φ and ω scansRint = 0.039
Absorption correction: multi-scan
(SADABS; Bruker, 2021)
θmax = 25.7°, θmin = 3.0°
Tmin = 0.718, Tmax = 0.745h = 99
61210 measured reflectionsk = 1616
4304 independent reflectionsl = 2525
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0677P)2 + 1.0658P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.143(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.46 e Å3
4304 reflectionsΔρmin = 0.39 e Å3
279 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraintsExtinction coefficient: 0.0049 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.17552 (17)0.35382 (9)0.29846 (5)0.0421 (3)
O20.2385 (2)0.51443 (11)0.28621 (6)0.0675 (5)
O30.3521 (2)0.72404 (12)0.48361 (7)0.0730 (5)
O40.2931 (2)0.66404 (11)0.57648 (6)0.0621 (4)
N10.4481 (2)0.26115 (12)0.11776 (7)0.0454 (4)
N20.61740 (18)0.15461 (10)0.37628 (6)0.0362 (3)
C10.5573 (2)0.25778 (14)0.16893 (9)0.0446 (4)
H1A0.6696470.2388840.1676940.053*
C20.2940 (2)0.29148 (13)0.13645 (8)0.0386 (4)
C30.1426 (3)0.30411 (15)0.10225 (8)0.0481 (5)
H30.1343210.2919320.0590410.058*
C40.0058 (3)0.33510 (17)0.13421 (9)0.0539 (5)
H40.0968390.3437200.1121890.065*
C50.0169 (2)0.35412 (15)0.19936 (9)0.0489 (5)
H50.0772220.3759040.2199440.059*
C60.1662 (2)0.34057 (12)0.23242 (8)0.0375 (4)
C70.3099 (2)0.30850 (12)0.20252 (7)0.0348 (4)
C80.4801 (2)0.28580 (12)0.22217 (8)0.0381 (4)
C90.5583 (2)0.27857 (13)0.28772 (8)0.0410 (4)
H9A0.5013780.3232240.3157550.049*
H9B0.6759600.2975970.2875990.049*
C100.5426 (2)0.17173 (13)0.31047 (8)0.0387 (4)
H10A0.4244720.1536450.3095620.046*
H10B0.5981830.1280850.2814340.046*
C110.4906 (2)0.10852 (14)0.41929 (9)0.0452 (4)
H110.5472110.1001300.4609410.054*
C130.3444 (3)0.17846 (17)0.42725 (11)0.0581 (5)
H13A0.3855210.2414800.4427840.087*
H13B0.2693270.1504840.4567830.087*
H13C0.2852740.1879010.3872530.087*
C120.4347 (4)0.00616 (17)0.39679 (13)0.0723 (7)
H12A0.5304990.0372750.3960770.108*
H12B0.3835120.0111930.3550680.108*
H12C0.3546370.0203170.4249720.108*
C140.7823 (2)0.09675 (15)0.37460 (9)0.0471 (5)
H140.7593630.0325390.3539740.057*
C150.8546 (3)0.0769 (2)0.44071 (11)0.0712 (7)
H15A0.7833850.0309220.4616780.107*
H15B0.8610370.1382800.4639440.107*
H15C0.9653110.0489540.4383960.107*
C160.9078 (3)0.15321 (19)0.33620 (12)0.0632 (6)
H16A0.8627010.1616710.2938030.095*
H16B1.0111720.1163330.3355540.095*
H16C0.9290130.2173500.3549410.095*
C170.2114 (2)0.44694 (13)0.32012 (8)0.0409 (4)
C180.2177 (3)0.44943 (14)0.39084 (8)0.0483 (5)
H18A0.3060250.4049590.4066110.058*
H18B0.1117850.4247680.4056320.058*
C190.2497 (3)0.55192 (15)0.41772 (9)0.0522 (5)
H19A0.1623150.5965520.4013630.063*
H19B0.3563670.5761150.4033490.063*
C200.2538 (3)0.55546 (15)0.48899 (9)0.0536 (5)
H20A0.3320270.5052350.5051710.064*
H20B0.1430590.5380200.5029800.064*
C210.3041 (3)0.65529 (15)0.51767 (9)0.0474 (5)
O50.1577 (3)0.53742 (16)0.66260 (11)0.0928 (6)
H5A0.224 (4)0.563 (2)0.6271 (11)0.111*
C220.2529 (6)0.4611 (3)0.6828 (2)0.1272 (15)
H22A0.1842600.4133290.7034990.191*
H22B0.3394370.4848320.7120360.191*
H22C0.3035850.4301250.6475210.191*
H20.644 (2)0.2153 (9)0.3923 (9)0.045 (5)*
H10.475 (3)0.2488 (16)0.0796 (6)0.057 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0613 (8)0.0378 (6)0.0278 (6)0.0046 (6)0.0104 (5)0.0059 (5)
O20.1172 (14)0.0483 (8)0.0375 (7)0.0279 (9)0.0073 (8)0.0011 (6)
O30.1127 (14)0.0647 (10)0.0436 (8)0.0400 (9)0.0275 (8)0.0135 (7)
O40.1033 (12)0.0526 (8)0.0311 (7)0.0267 (8)0.0110 (7)0.0100 (6)
N10.0607 (10)0.0477 (9)0.0289 (7)0.0035 (7)0.0133 (7)0.0045 (6)
N20.0427 (8)0.0336 (7)0.0321 (7)0.0030 (6)0.0009 (6)0.0024 (6)
C10.0484 (10)0.0436 (10)0.0421 (10)0.0040 (8)0.0068 (8)0.0017 (8)
C20.0537 (10)0.0338 (8)0.0286 (8)0.0027 (7)0.0058 (7)0.0025 (6)
C30.0624 (12)0.0538 (11)0.0278 (8)0.0041 (9)0.0028 (8)0.0026 (8)
C40.0502 (11)0.0655 (13)0.0452 (11)0.0023 (10)0.0074 (9)0.0017 (9)
C50.0455 (10)0.0558 (11)0.0460 (11)0.0010 (9)0.0075 (8)0.0030 (9)
C60.0500 (10)0.0347 (8)0.0283 (8)0.0044 (7)0.0073 (7)0.0033 (6)
C70.0476 (9)0.0301 (8)0.0266 (8)0.0030 (7)0.0026 (7)0.0017 (6)
C80.0480 (10)0.0333 (8)0.0331 (8)0.0006 (7)0.0028 (7)0.0002 (7)
C90.0477 (10)0.0379 (9)0.0370 (9)0.0015 (7)0.0027 (7)0.0032 (7)
C100.0440 (9)0.0398 (9)0.0318 (8)0.0042 (7)0.0027 (7)0.0033 (7)
C110.0531 (11)0.0423 (10)0.0404 (9)0.0060 (8)0.0054 (8)0.0046 (8)
C130.0523 (12)0.0638 (13)0.0592 (13)0.0052 (10)0.0121 (10)0.0035 (10)
C120.0905 (18)0.0434 (12)0.0845 (17)0.0185 (12)0.0207 (14)0.0013 (11)
C140.0463 (10)0.0472 (10)0.0475 (10)0.0064 (8)0.0030 (8)0.0041 (8)
C150.0655 (15)0.0859 (17)0.0609 (14)0.0185 (13)0.0131 (11)0.0064 (12)
C160.0448 (11)0.0772 (16)0.0678 (14)0.0022 (10)0.0058 (10)0.0027 (12)
C170.0503 (10)0.0382 (9)0.0349 (9)0.0052 (8)0.0075 (7)0.0045 (7)
C180.0719 (13)0.0414 (10)0.0319 (9)0.0056 (9)0.0054 (8)0.0059 (7)
C190.0747 (14)0.0454 (11)0.0367 (10)0.0082 (9)0.0036 (9)0.0102 (8)
C200.0731 (14)0.0505 (11)0.0380 (10)0.0169 (10)0.0104 (9)0.0105 (8)
C210.0573 (11)0.0509 (11)0.0349 (9)0.0159 (9)0.0107 (8)0.0100 (8)
O50.0849 (13)0.0864 (14)0.1090 (16)0.0042 (11)0.0245 (11)0.0304 (12)
C220.152 (4)0.073 (2)0.159 (4)0.045 (2)0.036 (3)0.038 (2)
Geometric parameters (Å, º) top
O1—C61.4100 (19)C11—C121.515 (3)
O1—C171.358 (2)C13—H13A0.9600
O2—C171.182 (2)C13—H13B0.9600
O3—C211.242 (2)C13—H13C0.9600
O4—C211.259 (2)C12—H12A0.9600
N1—C11.361 (2)C12—H12B0.9600
N1—C21.366 (2)C12—H12C0.9600
N1—H10.862 (9)C14—H140.9800
N2—C101.510 (2)C14—C151.515 (3)
N2—C111.520 (2)C14—C161.518 (3)
N2—C141.526 (2)C15—H15A0.9600
N2—H20.903 (9)C15—H15B0.9600
C1—H1A0.9300C15—H15C0.9600
C1—C81.361 (2)C16—H16A0.9600
C2—C31.389 (3)C16—H16B0.9600
C2—C71.420 (2)C16—H16C0.9600
C3—H30.9300C17—C181.498 (2)
C3—C41.371 (3)C18—H18A0.9700
C4—H40.9300C18—H18B0.9700
C4—C51.404 (3)C18—C191.506 (3)
C5—H50.9300C19—H19A0.9700
C5—C61.364 (3)C19—H19B0.9700
C6—C71.399 (2)C19—C201.511 (3)
C7—C81.431 (3)C20—H20A0.9700
C8—C91.501 (2)C20—H20B0.9700
C9—H9A0.9700C20—C211.518 (3)
C9—H9B0.9700O5—H5A0.998 (10)
C9—C101.520 (2)O5—C221.334 (4)
C10—H10A0.9700C22—H22A0.9600
C10—H10B0.9700C22—H22B0.9600
C11—H110.9800C22—H22C0.9600
C11—C131.510 (3)
C17—O1—C6116.95 (13)H13B—C13—H13C109.5
C1—N1—C2109.15 (14)C11—C12—H12A109.5
C1—N1—H1124.4 (15)C11—C12—H12B109.5
C2—N1—H1126.4 (15)C11—C12—H12C109.5
C10—N2—C11111.80 (14)H12A—C12—H12B109.5
C10—N2—C14111.11 (13)H12A—C12—H12C109.5
C10—N2—H2106.6 (13)H12B—C12—H12C109.5
C11—N2—C14113.58 (14)N2—C14—H14108.3
C11—N2—H2106.8 (13)C15—C14—N2111.09 (16)
C14—N2—H2106.4 (13)C15—C14—H14108.3
N1—C1—H1A124.6C15—C14—C16110.61 (19)
N1—C1—C8110.89 (17)C16—C14—N2110.14 (16)
C8—C1—H1A124.6C16—C14—H14108.3
N1—C2—C3130.79 (16)C14—C15—H15A109.5
N1—C2—C7106.95 (15)C14—C15—H15B109.5
C3—C2—C7122.25 (17)C14—C15—H15C109.5
C2—C3—H3121.1H15A—C15—H15B109.5
C4—C3—C2117.88 (17)H15A—C15—H15C109.5
C4—C3—H3121.1H15B—C15—H15C109.5
C3—C4—H4119.2C14—C16—H16A109.5
C3—C4—C5121.60 (18)C14—C16—H16B109.5
C5—C4—H4119.2C14—C16—H16C109.5
C4—C5—H5120.1H16A—C16—H16B109.5
C6—C5—C4119.84 (18)H16A—C16—H16C109.5
C6—C5—H5120.1H16B—C16—H16C109.5
C5—C6—O1120.02 (16)O1—C17—C18110.89 (14)
C5—C6—C7121.21 (16)O2—C17—O1122.74 (16)
C7—C6—O1118.69 (15)O2—C17—C18126.32 (17)
C2—C7—C8107.19 (15)C17—C18—H18A108.9
C6—C7—C2117.21 (16)C17—C18—H18B108.9
C6—C7—C8135.60 (15)C17—C18—C19113.38 (16)
C1—C8—C7105.81 (15)H18A—C18—H18B107.7
C1—C8—C9124.48 (17)C19—C18—H18A108.9
C7—C8—C9129.19 (15)C19—C18—H18B108.9
C8—C9—H9A110.0C18—C19—H19A108.8
C8—C9—H9B110.0C18—C19—H19B108.8
C8—C9—C10108.57 (14)C18—C19—C20113.78 (16)
H9A—C9—H9B108.4H19A—C19—H19B107.7
C10—C9—H9A110.0C20—C19—H19A108.8
C10—C9—H9B110.0C20—C19—H19B108.8
N2—C10—C9113.72 (13)C19—C20—H20A108.5
N2—C10—H10A108.8C19—C20—H20B108.5
N2—C10—H10B108.8C19—C20—C21114.98 (16)
C9—C10—H10A108.8H20A—C20—H20B107.5
C9—C10—H10B108.8C21—C20—H20A108.5
H10A—C10—H10B107.7C21—C20—H20B108.5
N2—C11—H11107.3O3—C21—O4122.88 (17)
C13—C11—N2110.38 (15)O3—C21—C20120.35 (16)
C13—C11—H11107.3O4—C21—C20116.77 (17)
C13—C11—C12112.46 (19)C22—O5—H5A101 (2)
C12—C11—N2111.93 (16)O5—C22—H22A109.5
C12—C11—H11107.3O5—C22—H22B109.5
C11—C13—H13A109.5O5—C22—H22C109.5
C11—C13—H13B109.5H22A—C22—H22B109.5
C11—C13—H13C109.5H22A—C22—H22C109.5
H13A—C13—H13B109.5H22B—C22—H22C109.5
H13A—C13—H13C109.5
O1—C6—C7—C2177.15 (14)C6—O1—C17—O22.0 (3)
O1—C6—C7—C82.1 (3)C6—O1—C17—C18179.77 (15)
O1—C17—C18—C19177.50 (17)C6—C7—C8—C1179.74 (19)
O2—C17—C18—C194.8 (3)C6—C7—C8—C97.9 (3)
N1—C1—C8—C70.1 (2)C7—C2—C3—C40.7 (3)
N1—C1—C8—C9172.23 (16)C7—C8—C9—C1090.2 (2)
N1—C2—C3—C4179.42 (19)C8—C9—C10—N2179.92 (14)
N1—C2—C7—C6179.94 (15)C10—N2—C11—C1363.01 (19)
N1—C2—C7—C80.61 (19)C10—N2—C11—C1263.1 (2)
C1—N1—C2—C3178.34 (19)C10—N2—C14—C15178.31 (17)
C1—N1—C2—C70.5 (2)C10—N2—C14—C1658.79 (19)
C1—C8—C9—C1080.3 (2)C11—N2—C10—C9125.26 (16)
C2—N1—C1—C80.3 (2)C11—N2—C14—C1551.2 (2)
C2—C3—C4—C50.3 (3)C11—N2—C14—C16174.13 (16)
C2—C7—C8—C10.45 (19)C14—N2—C10—C9106.70 (17)
C2—C7—C8—C9171.42 (16)C14—N2—C11—C13170.27 (16)
C3—C2—C7—C61.1 (2)C14—N2—C11—C1263.6 (2)
C3—C2—C7—C8178.39 (16)C17—O1—C6—C589.2 (2)
C3—C4—C5—C60.8 (3)C17—O1—C6—C794.06 (19)
C4—C5—C6—O1176.20 (17)C17—C18—C19—C20179.16 (18)
C4—C5—C6—C70.4 (3)C18—C19—C20—C21173.75 (19)
C5—C6—C7—C20.5 (2)C19—C20—C21—O36.2 (3)
C5—C6—C7—C8178.76 (19)C19—C20—C21—O4173.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O41.00 (1)1.83 (2)2.748 (2)151 (3)
N2—H2···O4i0.90 (1)1.81 (1)2.7154 (19)177 (2)
N1—H1···O3ii0.86 (1)1.99 (1)2.773 (2)151 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+1/2.
5-[(3-{2-[Bis(propan-2-yl)azaniumyl]ethyl}-1H-indol-4-yl)oxy]-5-oxopentanoate ethanol monosolvate (II) top
Crystal data top
C21H30N2O4·C2H6OF(000) = 912
Mr = 420.54Dx = 1.156 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.0087 (12) ÅCell parameters from 7678 reflections
b = 13.7968 (17) Åθ = 2.5–24.9°
c = 21.878 (3) ŵ = 0.08 mm1
β = 90.749 (4)°T = 297 K
V = 2417.2 (5) Å3Block, colourless
Z = 40.30 × 0.27 × 0.22 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
3038 reflections with I > 2σ(I)
φ and ω scansRint = 0.055
Absorption correction: multi-scan
(SADABS; Bruker, 2021)
θmax = 25.4°, θmin = 2.5°
Tmin = 0.692, Tmax = 0.745h = 99
37412 measured reflectionsk = 1616
4461 independent reflectionsl = 2626
Refinement top
Refinement on F246 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.060H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.176 w = 1/[σ2(Fo2) + (0.0772P)2 + 1.2353P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4461 reflectionsΔρmax = 0.35 e Å3
313 parametersΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.2092 (2)0.36531 (11)0.30305 (7)0.0553 (5)
O20.2584 (3)0.52278 (14)0.28903 (8)0.0832 (7)
O30.3563 (3)0.73209 (16)0.48029 (8)0.0872 (7)
O40.2945 (3)0.67092 (14)0.56965 (8)0.0787 (7)
N10.4952 (3)0.27474 (16)0.12915 (9)0.0595 (6)
N20.6135 (3)0.16000 (15)0.37926 (9)0.0508 (5)
C10.5975 (4)0.26944 (19)0.17914 (11)0.0583 (7)
H1A0.7086870.2500560.1782800.070*
C20.3413 (4)0.30442 (17)0.14673 (10)0.0513 (6)
C30.1947 (4)0.31751 (19)0.11340 (12)0.0630 (7)
H30.1912170.3070900.0714100.076*
C40.0551 (4)0.3462 (2)0.14408 (13)0.0701 (8)
H40.0448280.3543620.1225840.084*
C50.0599 (4)0.3635 (2)0.20711 (12)0.0628 (7)
H50.0359120.3838070.2269720.075*
C60.2045 (3)0.35080 (17)0.23928 (10)0.0504 (6)
C70.3503 (3)0.31992 (15)0.21087 (10)0.0461 (6)
C80.5159 (3)0.29619 (16)0.23053 (10)0.0492 (6)
C90.5832 (3)0.28496 (17)0.29440 (11)0.0532 (6)
H9A0.5282250.3302280.3214450.064*
H9B0.7020440.2985970.2953890.064*
C100.5518 (3)0.18157 (17)0.31541 (10)0.0513 (6)
H10A0.4327210.1689630.3132710.062*
H10B0.6057200.1374780.2873330.062*
C110.7716 (4)0.0990 (2)0.37851 (13)0.0689 (8)
H110.7457950.0379540.3575160.083*
C120.8324 (5)0.0750 (3)0.44274 (16)0.0990 (12)
H12A0.7535810.0327980.4619690.148*
H12B0.8430010.1337110.4660500.148*
H12C0.9389710.0434280.4408390.148*
C130.9059 (4)0.1506 (3)0.34291 (17)0.0903 (11)
H13A0.8666220.1622430.3019120.135*
H13B1.0043930.1110580.3419350.135*
H13C0.9316850.2113110.3623050.135*
C140.4773 (4)0.11792 (19)0.41877 (12)0.0615 (7)
H140.5263110.1061340.4593680.074*
C150.4148 (5)0.0211 (2)0.39449 (17)0.0947 (12)
H15A0.5059660.0239370.3930210.142*
H15B0.3686560.0297580.3541300.142*
H15C0.3301510.0036240.4209730.142*
C160.3377 (4)0.1903 (2)0.42646 (14)0.0753 (9)
H16A0.2555150.1640770.4533970.113*
H16B0.2869090.2036770.3873750.113*
H16C0.3819230.2492280.4435050.113*
C170.2386 (3)0.45697 (18)0.32284 (11)0.0538 (6)
C180.2450 (4)0.46119 (18)0.39101 (11)0.0596 (7)
H18A0.3364360.4209650.4056610.072*
H18B0.1422550.4344000.4068260.072*
C190.2678 (4)0.56242 (19)0.41582 (11)0.0625 (7)
H19A0.3737190.5878370.4020050.075*
H19B0.1799840.6036030.3993190.075*
C200.2642 (4)0.5668 (2)0.48422 (11)0.0690 (8)
H20A0.3414190.5187490.5003460.083*
H20B0.1532160.5488290.4973590.083*
C210.3081 (4)0.6643 (2)0.51231 (11)0.0627 (7)
H20.640 (3)0.217 (2)0.3959 (12)0.064 (8)*
H10.526 (3)0.261 (2)0.0929 (6)0.068 (8)*
O50.1278 (12)0.4643 (7)0.3667 (5)0.123 (3)0.531 (11)
H5A0.1659220.4380970.3971380.184*0.531 (11)
C220.2489 (13)0.5309 (7)0.3417 (5)0.106 (3)0.531 (11)
H22A0.2818150.5770810.3727350.127*0.531 (11)
H22B0.3476350.4958880.3280470.127*0.531 (11)
C230.1720 (13)0.5827 (6)0.2891 (3)0.106 (3)0.531 (11)
H23A0.2513560.6275410.2718410.159*0.531 (11)
H23B0.0748820.6174230.3030380.159*0.531 (11)
H23C0.1404690.5365180.2585090.159*0.531 (11)
O5A0.1337 (9)0.4474 (4)0.3501 (3)0.0655 (18)0.469 (11)
H5AA0.1986600.4109770.3674740.098*0.469 (11)
C22A0.1963 (16)0.5437 (6)0.3520 (4)0.098 (3)0.469 (11)
H22C0.1065760.5905420.3560160.117*0.469 (11)
H22D0.2736910.5522440.3852710.117*0.469 (11)
C23A0.2814 (13)0.5518 (7)0.2923 (4)0.097 (3)0.469 (11)
H23D0.3296890.6151460.2881850.146*0.469 (11)
H23E0.2022520.5416730.2603030.146*0.469 (11)
H23F0.3678620.5037200.2892940.146*0.469 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0813 (13)0.0451 (9)0.0399 (9)0.0016 (8)0.0149 (8)0.0089 (7)
O20.142 (2)0.0566 (12)0.0510 (11)0.0251 (12)0.0040 (12)0.0006 (9)
O30.142 (2)0.0749 (13)0.0456 (10)0.0433 (13)0.0284 (11)0.0115 (10)
O40.1303 (19)0.0686 (12)0.0376 (9)0.0367 (12)0.0170 (10)0.0126 (8)
N10.0858 (17)0.0567 (13)0.0364 (11)0.0033 (11)0.0155 (11)0.0061 (9)
N20.0669 (14)0.0427 (11)0.0428 (11)0.0010 (10)0.0009 (9)0.0050 (9)
C10.0704 (18)0.0556 (15)0.0491 (14)0.0020 (13)0.0113 (12)0.0018 (11)
C20.0757 (18)0.0403 (12)0.0382 (12)0.0019 (12)0.0086 (12)0.0034 (10)
C30.090 (2)0.0592 (16)0.0391 (13)0.0040 (15)0.0046 (14)0.0045 (11)
C40.075 (2)0.0740 (19)0.0604 (17)0.0038 (16)0.0109 (15)0.0013 (14)
C50.0634 (18)0.0629 (17)0.0621 (16)0.0023 (13)0.0069 (14)0.0077 (13)
C60.0693 (17)0.0428 (13)0.0392 (12)0.0041 (11)0.0078 (11)0.0071 (10)
C70.0662 (16)0.0360 (11)0.0360 (11)0.0054 (10)0.0050 (10)0.0042 (9)
C80.0650 (16)0.0410 (12)0.0417 (12)0.0040 (11)0.0050 (11)0.0024 (10)
C90.0671 (17)0.0480 (14)0.0444 (13)0.0043 (12)0.0013 (11)0.0063 (10)
C100.0649 (16)0.0482 (14)0.0407 (12)0.0041 (12)0.0010 (11)0.0045 (10)
C110.078 (2)0.0663 (18)0.0619 (16)0.0174 (15)0.0067 (14)0.0074 (14)
C120.103 (3)0.113 (3)0.080 (2)0.033 (2)0.021 (2)0.003 (2)
C130.066 (2)0.112 (3)0.094 (2)0.0162 (19)0.0070 (18)0.011 (2)
C140.081 (2)0.0516 (14)0.0520 (14)0.0085 (14)0.0075 (13)0.0042 (12)
C150.126 (3)0.0562 (18)0.102 (3)0.0246 (19)0.022 (2)0.0006 (17)
C160.078 (2)0.076 (2)0.0728 (19)0.0069 (16)0.0166 (16)0.0036 (15)
C170.0651 (17)0.0494 (14)0.0470 (13)0.0051 (12)0.0068 (11)0.0079 (11)
C180.0809 (19)0.0515 (14)0.0466 (14)0.0031 (13)0.0096 (13)0.0091 (11)
C190.083 (2)0.0556 (15)0.0487 (14)0.0081 (14)0.0050 (13)0.0121 (12)
C200.098 (2)0.0628 (17)0.0465 (14)0.0181 (15)0.0105 (14)0.0130 (12)
C210.084 (2)0.0624 (16)0.0420 (13)0.0190 (14)0.0143 (13)0.0109 (12)
O50.125 (4)0.120 (4)0.123 (4)0.0016 (19)0.0008 (19)0.0101 (19)
C220.106 (3)0.105 (3)0.107 (3)0.0010 (10)0.0003 (10)0.0001 (10)
C230.107 (3)0.104 (3)0.106 (3)0.0061 (19)0.0028 (19)0.0021 (19)
O5A0.070 (2)0.060 (2)0.067 (2)0.0011 (15)0.0075 (16)0.0087 (16)
C22A0.098 (3)0.096 (3)0.099 (3)0.0021 (10)0.0001 (10)0.0004 (10)
C23A0.098 (4)0.094 (3)0.100 (3)0.0024 (19)0.0061 (19)0.0016 (19)
Geometric parameters (Å, º) top
O1—C61.409 (3)C13—H13B0.9600
O1—C171.356 (3)C13—H13C0.9600
O2—C171.183 (3)C14—H140.9800
O3—C211.234 (3)C14—C151.520 (4)
O4—C211.264 (3)C14—C161.510 (4)
N1—C11.360 (4)C15—H15A0.9600
N1—C21.359 (3)C15—H15B0.9600
N1—H10.853 (10)C15—H15C0.9600
N2—C101.505 (3)C16—H16A0.9600
N2—C111.521 (4)C16—H16B0.9600
N2—C141.517 (3)C16—H16C0.9600
N2—H20.90 (3)C17—C181.493 (3)
C1—H1A0.9300C18—H18A0.9700
C1—C81.359 (3)C18—H18B0.9700
C2—C31.386 (4)C18—C191.509 (3)
C2—C71.420 (3)C19—H19A0.9700
C3—H30.9300C19—H19B0.9700
C3—C41.370 (4)C19—C201.498 (3)
C4—H40.9300C20—H20A0.9700
C4—C51.400 (4)C20—H20B0.9700
C5—H50.9300C20—C211.518 (4)
C5—C61.358 (4)O5—H5A0.8200
C6—C71.397 (3)O5—C221.439 (8)
C7—C81.427 (4)C22—H22A0.9700
C8—C91.499 (3)C22—H22B0.9700
C9—H9A0.9700C22—C231.496 (8)
C9—H9B0.9700C23—H23A0.9600
C9—C101.521 (3)C23—H23B0.9600
C10—H10A0.9700C23—H23C0.9600
C10—H10B0.9700O5A—H5AA0.8200
C11—H110.9800O5A—C22A1.420 (8)
C11—C121.517 (4)C22A—H22C0.9700
C11—C131.514 (5)C22A—H22D0.9700
C12—H12A0.9600C22A—C23A1.470 (8)
C12—H12B0.9600C23A—H23D0.9600
C12—H12C0.9600C23A—H23E0.9600
C13—H13A0.9600C23A—H23F0.9600
C17—O1—C6116.79 (18)C15—C14—H14107.3
C1—N1—H1124 (2)C16—C14—N2110.5 (2)
C2—N1—C1109.1 (2)C16—C14—H14107.3
C2—N1—H1127 (2)C16—C14—C15112.3 (3)
C10—N2—C11111.28 (19)C14—C15—H15A109.5
C10—N2—C14112.0 (2)C14—C15—H15B109.5
C10—N2—H2106.1 (17)C14—C15—H15C109.5
C11—N2—H2107.4 (18)H15A—C15—H15B109.5
C14—N2—C11113.6 (2)H15A—C15—H15C109.5
C14—N2—H2106.0 (17)H15B—C15—H15C109.5
N1—C1—H1A124.5C14—C16—H16A109.5
C8—C1—N1111.1 (3)C14—C16—H16B109.5
C8—C1—H1A124.5C14—C16—H16C109.5
N1—C2—C3131.0 (2)H16A—C16—H16B109.5
N1—C2—C7106.9 (2)H16A—C16—H16C109.5
C3—C2—C7122.1 (2)H16B—C16—H16C109.5
C2—C3—H3120.9O1—C17—C18111.0 (2)
C4—C3—C2118.1 (2)O2—C17—O1122.7 (2)
C4—C3—H3120.9O2—C17—C18126.3 (2)
C3—C4—H4119.3C17—C18—H18A108.9
C3—C4—C5121.3 (3)C17—C18—H18B108.9
C5—C4—H4119.3C17—C18—C19113.5 (2)
C4—C5—H5120.0H18A—C18—H18B107.7
C6—C5—C4120.0 (3)C19—C18—H18A108.9
C6—C5—H5120.0C19—C18—H18B108.9
C5—C6—O1120.4 (2)C18—C19—H19A109.0
C5—C6—C7121.4 (2)C18—C19—H19B109.0
C7—C6—O1118.2 (2)H19A—C19—H19B107.8
C2—C7—C8107.4 (2)C20—C19—C18113.1 (2)
C6—C7—C2117.0 (2)C20—C19—H19A109.0
C6—C7—C8135.6 (2)C20—C19—H19B109.0
C1—C8—C7105.6 (2)C19—C20—H20A108.4
C1—C8—C9124.9 (2)C19—C20—H20B108.4
C7—C8—C9128.8 (2)C19—C20—C21115.7 (2)
C8—C9—H9A110.0H20A—C20—H20B107.4
C8—C9—H9B110.0C21—C20—H20A108.4
C8—C9—C10108.65 (19)C21—C20—H20B108.4
H9A—C9—H9B108.3O3—C21—O4122.7 (2)
C10—C9—H9A110.0O3—C21—C20121.0 (2)
C10—C9—H9B110.0O4—C21—C20116.3 (2)
N2—C10—C9114.35 (19)C22—O5—H5A109.5
N2—C10—H10A108.7O5—C22—H22A110.0
N2—C10—H10B108.7O5—C22—H22B110.0
C9—C10—H10A108.7O5—C22—C23108.4 (8)
C9—C10—H10B108.7H22A—C22—H22B108.4
H10A—C10—H10B107.6C23—C22—H22A110.0
N2—C11—H11108.1C23—C22—H22B110.0
C12—C11—N2111.6 (2)C22—C23—H23A109.5
C12—C11—H11108.1C22—C23—H23B109.5
C13—C11—N2110.0 (2)C22—C23—H23C109.5
C13—C11—H11108.1H23A—C23—H23B109.5
C13—C11—C12111.0 (3)H23A—C23—H23C109.5
C11—C12—H12A109.5H23B—C23—H23C109.5
C11—C12—H12B109.5C22A—O5A—H5AA109.5
C11—C12—H12C109.5O5A—C22A—H22C111.4
H12A—C12—H12B109.5O5A—C22A—H22D111.4
H12A—C12—H12C109.5O5A—C22A—C23A101.9 (7)
H12B—C12—H12C109.5H22C—C22A—H22D109.3
C11—C13—H13A109.5C23A—C22A—H22C111.4
C11—C13—H13B109.5C23A—C22A—H22D111.4
C11—C13—H13C109.5C22A—C23A—H23D109.5
H13A—C13—H13B109.5C22A—C23A—H23E109.5
H13A—C13—H13C109.5C22A—C23A—H23F109.5
H13B—C13—H13C109.5H23D—C23A—H23E109.5
N2—C14—H14107.3H23D—C23A—H23F109.5
N2—C14—C15111.9 (2)H23E—C23A—H23F109.5
O1—C6—C7—C2179.04 (19)C6—O1—C17—O20.6 (4)
O1—C6—C7—C80.8 (4)C6—O1—C17—C18178.4 (2)
O1—C17—C18—C19176.7 (2)C6—C7—C8—C1179.0 (3)
O2—C17—C18—C194.3 (5)C6—C7—C8—C98.9 (4)
N1—C1—C8—C70.0 (3)C7—C2—C3—C40.1 (4)
N1—C1—C8—C9170.6 (2)C7—C8—C9—C1086.1 (3)
N1—C2—C3—C4178.3 (3)C8—C9—C10—N2180.0 (2)
N1—C2—C7—C6179.8 (2)C10—N2—C11—C12178.7 (3)
N1—C2—C7—C81.1 (3)C10—N2—C11—C1357.7 (3)
C1—N1—C2—C3177.5 (3)C10—N2—C14—C1562.8 (3)
C1—N1—C2—C71.1 (3)C10—N2—C14—C1663.1 (3)
C1—C8—C9—C1082.3 (3)C11—N2—C10—C9105.4 (3)
C2—N1—C1—C80.7 (3)C11—N2—C14—C1564.3 (3)
C2—C3—C4—C51.0 (4)C11—N2—C14—C16169.8 (2)
C2—C7—C8—C10.7 (3)C14—N2—C10—C9126.3 (2)
C2—C7—C8—C9169.4 (2)C14—N2—C11—C1251.2 (3)
C3—C2—C7—C61.0 (3)C14—N2—C11—C13174.8 (2)
C3—C2—C7—C8177.7 (2)C17—O1—C6—C587.0 (3)
C3—C4—C5—C60.8 (4)C17—O1—C6—C795.2 (3)
C4—C5—C6—O1178.1 (2)C17—C18—C19—C20176.7 (3)
C4—C5—C6—C70.4 (4)C18—C19—C20—C21172.6 (3)
C5—C6—C7—C21.2 (3)C19—C20—C21—O35.6 (5)
C5—C6—C7—C8177.0 (3)C19—C20—C21—O4175.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.90 (3)1.79 (3)2.686 (3)177 (3)
N1—H1···O3ii0.85 (1)1.91 (1)2.751 (3)167 (3)
O5—H5A···O4iii0.821.972.692 (10)147
O5A—H5AA···O4iii0.821.952.732 (6)160
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+1/2; (iii) x, y+1, z+1.
 

Acknowledgements

Financial statements and conflict of inter­est: This study was funded by CaaMTech, Inc. ARC reports an ownership inter­est in CaaMTech, Inc., which owns US and worldwide patent applications, covering new tryptamine compounds, compositions, formulations, novel crystalline forms, and methods of making and using the same.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (award No. CHE-1429086).

References

First citationBruker (2021). APEX4, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBryson, N. (2022). Tryptamine prodrugs. US 2021/0403425 A1, Field Trip Psychedelics, Inc.  Google Scholar
First citationCarhart-Harris, R. L. & Goodwin, G. M. (2017). Neuropsychopharmacol, 42, 2105–2113.  CAS Google Scholar
First citationChadeayne, A. R., Golen, J. A. & Manke, D. R. (2019a). Psychedelic Science Review, https://psychedelicreview.com/the-crystal-structure-of-4-aco-dmt-fumarate/.  Google Scholar
First citationChadeayne, A. R., Golen, J. A. & Manke, D. R. (2019b). Acta Cryst. E75, 900–902.  CSD CrossRef IUCr Journals Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019). Acta Cryst. E75, 1316–1320.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020). Acta Cryst. E76, 514–517.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Reid, B. G., Golen, J. A. & Manke, D. R. (2020). ACS Omega, 5, 16940–16943.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationGreenan, C., Arlin, J.-B., Lorimer, K., Kaylo, K., Kargbo, R., Meisenheimer, P., Tarpley, W. G. & Sherwood, A. M. (2020). ResearchGate, https://doi. org/10.13140/RG. 2.2.32357.14560.  Google Scholar
First citationHalberstadt, A. L., Chatha, M., Klein, A. K., Wallach, J. & Brandt, S. D. (2020). Neuropharmacology, 167, 107933.  CrossRef PubMed Google Scholar
First citationKlein, A. K., Chatha, M., Laskowski, L. J., Anderson, E. I., Brandt, S. D., Chapman, S. J., McCorvy, J. D. & Halberstadt, A. L. (2021). ACS Pharmacol. Transl. Sci. 4, 533–542.  CrossRef CAS PubMed Google Scholar
First citationKrediet, E., Bostoen, T., Breeksema, J., van Schagen, A., Passie, T. & Vermetten, E. (2020). Int. J. Neuropsychopharmacol. 23, 385–400.  CrossRef CAS PubMed Google Scholar
First citationKuypers, K. P., Ng, L., Erritzoe, D., Knudsen, G. M., Nichols, D. E., Nichols, D. E., Pani, L., Soula, A. & Nutt, D. (2019). J. Psychopharmacol. 33, 1039–1057.  CrossRef CAS PubMed Google Scholar
First citationNaeem, M., Sherwood, A. M., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2022). Acta Cryst. E78, 550–553.  CSD CrossRef IUCr Journals Google Scholar
First citationPham, D. N. K., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021). Acta Cryst. E77, 101–106.  CSD CrossRef IUCr Journals Google Scholar
First citationRamaekers, J. G., Hutten, N., Mason, N. L., Dolder, P., Theunissen, E. L., Holze, F., Liechti, M. E., Feilding, A. & Kuypers, K. P. (2021). J. Psychopharmacol. 35, 398–405.  CrossRef CAS PubMed Google Scholar
First citationRepke, D. B., Ferguson, W. J. & Bates, D. K. (1977). J. Heterocycl. Chem. 14, 71–74.  CrossRef CAS Web of Science Google Scholar
First citationRickli, A., Moning, O. D., Hoener, M. C. & Liechti, M. E. (2016). Eur. Neuropsychopharmacol. 26, 1327–1337.  CrossRef CAS PubMed Google Scholar
First citationSammeta, V. R., Rasapalli, S., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2020). IUCrData, 5, x201546.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSherwood, A. M., Kargbo, R. B., Kaylo, K. W., Cozzi, N. V., Meisenheimer, P. & Kaduk, J. A. (2022). Acta Cryst. C78, 36–55.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShulgin, A. & Shulgin, A. (2017). TiHKAL: The Continuation. #17, 4-HO-DiPT, p. 466. Berkeley, CA: Transform Press.  Google Scholar
First citationUS DEA (2022a). US Drug Enforcement Agency, January 14, 2022. https://www.federalregister.gov/documents/2022/01/14/2022-00713/schedules-of-controlled-substances-placement-of-4-hydroxy-nn (accessed August 15, 2022).  Google Scholar
First citationUS DEA (2022b). US Drug Enforcement Agency, July 6, 2022. https://www.federalregister.gov/documents/2022/07/06/2022-14372/schedules-of-controlled-substances-placement-of-4-hydroxy-nn-diisopropyltryptamine-4-oh-dipt (accessed August 15, 2022).  Google Scholar
First citationVann Jones, S. A. & O'Kelly, A. (2020). Front Synaptic Neurosci. 12, 34.  CrossRef PubMed Google Scholar
First citationWeber, H. P. & Petcher, T. J. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 942–946.  CSD CrossRef Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds