research communications
H-pyrazol-1-yl)pyridin-2-yl]-1,2,4-triazol-3-ato}iron(II) methanol disolvate
of bis{3-(3-bromo-4-methoxyphenyl)-5-[6-(1aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine, and bDepartment of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41-A, Iasi 700487, Romania
*Correspondence e-mail: mlseredyuk@gmail.com
The II(C17H12BrN6O)2]·2MeOH, consists of a charge-neutral complex molecule and two independent molecules of methanol. In the complex molecule, the two tridentate ligand molecules 2-[5-(3-bromo-4-methoxyphenyl)-4H-1,2,4-triazol-3-yl]-6-(1H-pyrazol-1-yl)pyridine coordinate to the FeII ion through the N atoms of the pyrazole, pyridine and triazole groups, forming a pseudo-octahedral coordination sphere around the central ion. In the crystal, neighbouring asymmetric molecules are linked through weak C—H(pz)⋯π(ph) interactions into chains, which are then linked into layers by weak C–H⋯N/C interactions. Finally, the layers stack into a three-dimensional network linked by weak interlayer C—H⋯π interactions between the methoxy groups and the phenyl rings. The intermolecular contacts were quantified using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H 34.2%, H⋯C/C⋯H 25.2%, H⋯Br/Br⋯H 13.2%, H⋯N/N⋯H 12.2% and H⋯O/O⋯H 4.0%. The average Fe—N bond distance is 1.949 Å, indicating the low-spin state of the FeII ion. Energy framework analysis at the HF/3–21 G theory level was performed to quantify the interaction energies in the crystal structure.
of the title compound, [FeKeywords: crystal structure; spin-crossover; spin transition; energy frameworks.
CCDC reference: 2215273
1. Chemical context
A broad class of coordination compounds exhibiting spin-state switching between low- (total spin S = 0) and high-spin states (total spin S = 2) is represented by FeII complexes based on tridentate bisazolepyridine ligands (Halcrow, 2014; Suryadevara et al., 2022; Halcrow et al., 2019). In the case of asymmetric ligand design, where one of the azole groups carries a hydrogen on a nitrogen heteroatom and acts as a Brønsted acid, deprotonation can produce neutral complexes that can be either high-spin (Schäfer et al., 2013) or low-spin (Shiga et al., 2019) or exhibit temperature-induced transitions between the spin states of the central atom (Seredyuk et al., 2014), depending on the strength. The periphery of the molecule, i.e. ligand substituents, also plays an important role in the behaviour, determining the way in which molecules are packed in the lattice and their interactions with each other, and therefore further influencing the spin state adopted by the central atom. As we have recently demonstrated, the dynamic rearrangement of the methoxy group between the bent and extended configurations can lead to a highly hysteretic spin transition via a supramolecular blocking mechanism (Seredyuk et al., 2022).
Having interest in spin-transition 3d-metal complexes formed by polydentate ligands (Bartual-Murgui et al., 2017; Bonhommeau et al., 2012; Valverde-Muñoz et al., 2020), we report here on our current structural exploration of a new complex [FeIIL2] based on an asymmetric deprotonable ligand with two substituents on the phenyl group, L = 2-[5-(3-bromo-4-methoxyphenyl)-4H-1,2,4-triazol-3-yl]-6-(1H-pyrazol-1-yl)pyridine.
2. Structural commentary
The title complex has a asymmetric molecule with divergent phenyl groups. The ligand molecules are almost planar (r.m.s. deviation = 0.330 Å), including the methoxy substituents, which also lie in the plane of the aromatic groups [atoms C17 and C35 are 0.514 (1) and 0.116 (1) Å, respectively, away from the planes passing through their respective ligand molecules]. The two independent methanol molecules form O—H⋯N hydrogen bonds with the triazole (trz) rings of the ligand molecules (Fig. 1, Table 1). The central FeII ion of the complex has a distorted octahedral N6 coordination environment formed by the nitrogen donor atoms of two tridentate ligands (Fig. 1).
The average bond length, <Fe—N> = 1.949 Å, is typical for low-spin complexes with an N6 coordination environment (Gütlich & Goodwin, 2004). The average trigonal distortion parameters Σ = Σ112(|90 − φi|), where φi is the angle N–Fe–N′ (Drew et al., 1995), and Θ = Σ124(|60 − θi|), where θi is the angle generated by superposition of two opposite faces of an octahedron (Chang et al., 1990) are 93.3 and 298.8°, respectively. The values reveal a deviation of the coordination environment from an ideal octahedron (where Σ = Θ = 0) but is, however, in the expected range for bisazolepyridines and similar ligands (see below). The calculated continuous shape measure (CShM) value relative to the ideal Oh symmetry is 2.24 (Kershaw Cook et al., 2015). The volume of the [FeN6] coordination polyhedron is 9.536 Å3.
3. Supramolecular features
As a result of their asymmetric shape, neighbouring complex molecules fit into each other and interact through a weak C—H(pz)⋯π(ph) intermolecular contact between the pyrazole (pz) and phenyl (ph) groups respectively (Table 1). The mono-periodic supramolecular chains formed extend along the c-axis direction with a stacking periodicity of 10.6434 (3) Å (equal to cell parameter c; Fig. 2a). Through weak intermolecular C—H(pz, py)⋯ N/C(pz, trz) interactions in the range 3.128 (14)–3.734 (11) Å (Table 1), neighbouring chains are linked into corrugated layers in the bc plane (Fig. 2b,c). The layers stack with interlayer interactions limited to C—H⋯N(trz) and C—H⋯π(ph) contacts involving the methyl groups (Fig. 2c). The voids between the layers are occupied by methanol molecules, which also participate in bonding between neighbouring layers (see Table 1 for the complete list of intermolecular interactions).
4. Hirshfeld surface and 2D fingerprint plots
Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using CrystalExplorer (Spackman et al., 2021), with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.2869 (red) to 2.4335 (blue) a.u. (Fig. 3). The pale-red spots represent short contacts and negative dnorm values on the surface corresponding to the interactions described above. The overall two-dimensional fingerprint plot is illustrated in Fig. 4. The Hirshfeld surfaces mapped over dnorm are shown for the H⋯H, H⋯C/C⋯H, H⋯Br/Br⋯H, H⋯N/N⋯H and H⋯O/O⋯H contacts together with the two-dimensional fingerprint plots associated with their relative contributions to the Hirshfeld surface. At 34.2%, the largest contribution to the overall crystal packing is from H⋯H interactions, which are located in the middle region of the fingerprint plot. H⋯C/C⋯H contacts contribute 25.2%, and the H⋯Br/Br⋯H contacts contribute 13.2% to the Hirshfeld surface and both result in a pair of characteristic wings. The H⋯N/N⋯H contacts, represented by a pair of sharp spikes in the fingerprint plot, make a 12.2% contribution to the Hirshfeld surface. Finally, H⋯O/O⋯H contacts, which account for 4.0% of the contribution, are mostly distributed in the middle part of the plot.
5. Energy framework analysis
The energy framework (Spackman et al., 2021), calculated using the wave function at the HF/3-21G theory level, including the electrostatic potential forces (Eele), the dispersion forces (Edis) and the total energy diagrams (Etot), are shown in Fig. 5. The cylindrical radii, adjusted to the same scale factor of 100, are proportional to the relative strength of the corresponding energies. The major contribution to the intermolecular interactions is due to the dispersion forces (Edis), reflecting the dominating interactions in the lattice of the neutral asymmetric molecules. The topology of the energy framework resembles the topology of the interactions within and between the layers described above. The calculated values Etot are in the range 65.2–87.6 kJ mol−1 for intrachain and intralayer interactions, whereas for the interlayer interactions they are within 7.7–23.4 kJ mol−1. The colour-coded interaction mappings within a radius of 3.8 Å of a central reference molecule for the title compound together with full details of the various contributions to the total energy (Etot) are given in the supporting information.
6. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, last update February 2021; Groom et al., 2016) reveals several similar neutral FeII complexes with a deprotonable azole group, for example, derivatives of a pyrazole-pyridine-tetrazole (IGERIX and LUTGEO; Gentili et al., 2015; Senthil Kumar et al., 2015) and a pyrazole-pyridine-benzimidazole (XODCEB; Shiga et al., 2019). There are also related complexes based on phenanthroline-tetrazole, such as QIDJET (Zhang et al., 2007) and phenanthroline-benzimidazole (DOMQUT; Seredyuk et al., 2014). Schematic structures of the complexes are shown in Fig. S1 in the supporting information. The Fe—N distances of these complexes in the low-spin state are 1.933–1.959 Å, while in the high-spin state they are in the range 2.179–2.184 Å. The values of the trigonal distortion and CShM(Oh) change correspondingly, and in the low-spin state they are systematically lower than in the high-spin state. Table 2 collates the structural parameters of the complexes and of the title compound.
|
7. Synthesis and crystallization
The synthesis of the title compound is identical to that reported recently for a similar complex (Seredyuk et al., 2022). It was produced by layering in a standard test tube. The layering sequence was as follows: the bottom layer contains a solution of [Fe(L2)](BF4)2 prepared by dissolving L = 2-[5-(3-bromo-4-methoxyphenyl)-4H-1,2,4-triazol-3-yl]-6-(1H-pyrazol-1-yl)pyridine (100 mg, 0.252 mmol) and Fe(BF4)2·6H2O (43 mg, 0.126 mmol) in boiling acetone, to which chloroform (5 ml) was then added. The middle layer was a methanol–chloroform mixture (1:10, 10 ml), which was covered by a layer of methanol (10 ml), to which 100 µl of NEt3 was added dropwise. The tube was sealed, and black cubic single crystals appeared in 3–4 weeks (yield ca 60%). Elemental analysis calculated for C36H32Br2FeN12O4: C, 47.39; H, 3.54; N, 18.42. Found: C, 47.11; H, 3.74; N, 18.40.
8. Refinement
Crystal data, data collection and structure . The highest and lowest remaining electron density peaks are located 1.01 and 0.88 Å, respectively, from the Br2 atom. H atoms were refined as riding [C—H = 0.95–0.98 Å with Uiso(H) = 1.2–1.5Ueq(C)]. O-bound H atoms were refined with Uiso(H) = 1.5Ueq(O).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2215273
https://doi.org/10.1107/S2056989022010179/dj2053sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022010179/dj2053Isup2.hkl
Includes energy framework data and schematic structures of similar neutral Fe(II) complexes. DOI: https://doi.org/10.1107/S2056989022010179/dj2053sup3.pdf
Supporting information file. DOI: https://doi.org/10.1107/S2056989022010179/dj2053Isup4.cdx
Data collection: CrysAlis PRO (Rigaku OD, 2022); cell
CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Fe(C17H12BrN6O)2]·2CH4O | Dx = 1.638 Mg m−3 |
Mr = 912.40 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pna21 | Cell parameters from 3167 reflections |
a = 27.4318 (10) Å | θ = 2.2–25.7° |
b = 12.6723 (4) Å | µ = 2.63 mm−1 |
c = 10.6434 (3) Å | T = 180 K |
V = 3699.9 (2) Å3 | Plate, clear dark red |
Z = 4 | 0.3 × 0.26 × 0.04 mm |
F(000) = 1840 |
Xcalibur, Eos diffractometer | 6227 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 4361 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.061 |
Detector resolution: 16.1593 pixels mm-1 | θmax = 25.0°, θmin = 1.8° |
ω scans | h = −29→32 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) | k = −15→9 |
Tmin = 0.772, Tmax = 1.000 | l = −11→12 |
14160 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.057 | w = 1/[σ2(Fo2) + (0.0468P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.125 | (Δ/σ)max = 0.001 |
S = 1.03 | Δρmax = 1.25 e Å−3 |
6227 reflections | Δρmin = −0.62 e Å−3 |
502 parameters | Absolute structure: Flack x determined using 1444 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
7 restraints | Absolute structure parameter: −0.009 (8) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.93947 (6) | 0.18179 (10) | 0.18738 (16) | 0.0755 (6) | |
Br2 | 0.58117 (5) | 0.86423 (9) | 0.16575 (14) | 0.0533 (4) | |
Fe1 | 0.74880 (4) | 0.51357 (9) | 0.66488 (14) | 0.0165 (3) | |
O1 | 0.9850 (3) | 0.3512 (6) | 0.0344 (7) | 0.046 (2) | |
O2 | 0.5033 (3) | 0.7175 (7) | 0.0845 (8) | 0.059 (3) | |
N1 | 0.7925 (3) | 0.4642 (7) | 0.7986 (7) | 0.021 (2) | |
N2 | 0.7854 (3) | 0.3616 (6) | 0.8310 (6) | 0.0190 (19) | |
N3 | 0.7331 (2) | 0.3663 (5) | 0.6688 (8) | 0.0169 (16) | |
N4 | 0.6980 (3) | 0.5090 (7) | 0.5358 (7) | 0.019 (2) | |
N5 | 0.6735 (3) | 0.5777 (6) | 0.4591 (7) | 0.021 (2) | |
N6 | 0.6424 (3) | 0.4144 (6) | 0.4290 (7) | 0.021 (2) | |
N7 | 0.7030 (3) | 0.5599 (6) | 0.7956 (7) | 0.0179 (19) | |
N8 | 0.7095 (3) | 0.6637 (6) | 0.8297 (7) | 0.0203 (19) | |
N9 | 0.7639 (2) | 0.6605 (5) | 0.6733 (7) | 0.0157 (16) | |
N10 | 0.8015 (3) | 0.5208 (7) | 0.5376 (7) | 0.0167 (19) | |
N11 | 0.8252 (3) | 0.4538 (7) | 0.4581 (7) | 0.020 (2) | |
N12 | 0.8561 (3) | 0.6197 (6) | 0.4353 (7) | 0.020 (2) | |
C1 | 0.8232 (4) | 0.5020 (9) | 0.8838 (9) | 0.022 (3) | |
H1 | 0.836027 | 0.571689 | 0.884392 | 0.027* | |
C2 | 0.8342 (4) | 0.4225 (8) | 0.9744 (9) | 0.027 (3) | |
H2 | 0.854203 | 0.429649 | 1.046766 | 0.032* | |
C3 | 0.8103 (3) | 0.3351 (8) | 0.9362 (9) | 0.022 (2) | |
H3 | 0.810827 | 0.267895 | 0.975646 | 0.027* | |
C4 | 0.7534 (3) | 0.3030 (8) | 0.7529 (8) | 0.020 (2) | |
C5 | 0.7444 (3) | 0.1970 (8) | 0.7604 (8) | 0.020 (2) | |
H5 | 0.760428 | 0.153348 | 0.819944 | 0.024* | |
C6 | 0.7104 (3) | 0.1564 (7) | 0.6761 (9) | 0.026 (2) | |
H6 | 0.703580 | 0.082904 | 0.675727 | 0.032* | |
C7 | 0.6865 (3) | 0.2219 (8) | 0.5934 (8) | 0.023 (2) | |
H7 | 0.662303 | 0.194369 | 0.538543 | 0.028* | |
C8 | 0.6979 (3) | 0.3278 (8) | 0.5907 (8) | 0.018 (2) | |
C9 | 0.6790 (3) | 0.4128 (8) | 0.5154 (7) | 0.016 (2) | |
C10 | 0.6407 (4) | 0.5181 (8) | 0.3985 (8) | 0.020 (2) | |
C11 | 0.6061 (3) | 0.5658 (8) | 0.3117 (8) | 0.021 (2) | |
C12 | 0.5688 (4) | 0.5087 (9) | 0.2563 (10) | 0.042 (3) | |
H12 | 0.566690 | 0.435012 | 0.271727 | 0.051* | |
C13 | 0.5339 (4) | 0.5569 (9) | 0.1775 (13) | 0.049 (3) | |
H13 | 0.508661 | 0.515389 | 0.141389 | 0.059* | |
C14 | 0.5360 (4) | 0.6632 (9) | 0.1525 (11) | 0.034 (3) | |
C15 | 0.5737 (3) | 0.7203 (9) | 0.2037 (9) | 0.029 (3) | |
C16 | 0.6080 (4) | 0.6728 (8) | 0.2824 (9) | 0.026 (3) | |
H16 | 0.633427 | 0.714686 | 0.316951 | 0.031* | |
C17 | 0.4597 (5) | 0.6610 (12) | 0.0437 (14) | 0.085 (6) | |
H17A | 0.436960 | 0.710675 | 0.004257 | 0.128* | |
H17B | 0.443970 | 0.628133 | 0.116611 | 0.128* | |
H17C | 0.468752 | 0.606305 | −0.017004 | 0.128* | |
C18 | 0.6699 (4) | 0.5218 (9) | 0.8754 (9) | 0.027 (3) | |
H18 | 0.656975 | 0.452322 | 0.872907 | 0.033* | |
C19 | 0.6568 (4) | 0.6007 (9) | 0.9651 (9) | 0.028 (3) | |
H19 | 0.634576 | 0.593789 | 1.033020 | 0.033* | |
C20 | 0.6829 (4) | 0.6878 (8) | 0.9327 (9) | 0.022 (2) | |
H20 | 0.682436 | 0.753910 | 0.974832 | 0.026* | |
C21 | 0.7426 (3) | 0.7227 (8) | 0.7576 (8) | 0.019 (2) | |
C22 | 0.7510 (4) | 0.8292 (8) | 0.7670 (9) | 0.024 (2) | |
H22 | 0.734218 | 0.871698 | 0.826391 | 0.029* | |
C23 | 0.7855 (3) | 0.8719 (7) | 0.6848 (9) | 0.028 (2) | |
H23 | 0.792262 | 0.945451 | 0.686681 | 0.033* | |
C25 | 0.8098 (4) | 0.8074 (8) | 0.6009 (9) | 0.024 (2) | |
H25 | 0.833605 | 0.836305 | 0.545977 | 0.029* | |
C26 | 0.7993 (3) | 0.7007 (8) | 0.5971 (8) | 0.015 (2) | |
C27 | 0.8201 (3) | 0.6167 (8) | 0.5207 (8) | 0.017 (2) | |
C28 | 0.8572 (3) | 0.5168 (9) | 0.3993 (8) | 0.022 (2) | |
C29 | 0.8908 (3) | 0.4756 (8) | 0.3034 (9) | 0.021 (2) | |
C30 | 0.9141 (4) | 0.5434 (9) | 0.2193 (8) | 0.028 (3) | |
H30 | 0.908122 | 0.617120 | 0.223076 | 0.034* | |
C31 | 0.9464 (4) | 0.5030 (10) | 0.1295 (9) | 0.029 (3) | |
H31 | 0.962898 | 0.550064 | 0.074511 | 0.034* | |
C32 | 0.9544 (4) | 0.3969 (10) | 0.1196 (9) | 0.034 (3) | |
C33 | 0.9309 (4) | 0.3287 (9) | 0.2023 (10) | 0.037 (3) | |
C34 | 0.8993 (4) | 0.3676 (9) | 0.2928 (9) | 0.029 (3) | |
H34 | 0.883359 | 0.320139 | 0.348246 | 0.035* | |
C35 | 1.0089 (5) | 0.4170 (10) | −0.0556 (11) | 0.062 (4) | |
H35A | 1.026381 | 0.372877 | −0.116380 | 0.093* | |
H35B | 1.032148 | 0.463288 | −0.012460 | 0.093* | |
H35C | 0.984662 | 0.460036 | −0.099718 | 0.093* | |
O3 | 0.8946 (3) | 0.8132 (7) | 0.3501 (8) | 0.054 (2) | |
H3A | 0.889770 | 0.749515 | 0.368323 | 0.080* | |
C36 | 0.9355 (6) | 0.8495 (13) | 0.4134 (18) | 0.101 (6) | |
H36A | 0.964669 | 0.816116 | 0.378324 | 0.151* | |
H36B | 0.932720 | 0.831820 | 0.502734 | 0.151* | |
H36C | 0.937869 | 0.926235 | 0.403763 | 0.151* | |
O4 | 0.6173 (3) | 0.2092 (6) | 0.3391 (7) | 0.040 (2) | |
H4 | 0.620155 | 0.274742 | 0.348513 | 0.059* | |
C24 | 0.5796 (4) | 0.1885 (10) | 0.2562 (11) | 0.054 (4) | |
H24A | 0.581928 | 0.115298 | 0.227028 | 0.082* | |
H24B | 0.581953 | 0.236323 | 0.184082 | 0.082* | |
H24C | 0.548314 | 0.199154 | 0.298680 | 0.082* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0982 (11) | 0.0278 (8) | 0.1007 (13) | 0.0159 (8) | 0.0583 (11) | −0.0030 (9) |
Br2 | 0.0659 (8) | 0.0299 (7) | 0.0640 (8) | 0.0033 (6) | −0.0228 (9) | 0.0170 (8) |
Fe1 | 0.0203 (6) | 0.0113 (7) | 0.0179 (6) | −0.0009 (6) | −0.0005 (7) | 0.0006 (8) |
O1 | 0.048 (5) | 0.041 (6) | 0.050 (5) | 0.001 (4) | 0.030 (4) | −0.010 (4) |
O2 | 0.048 (5) | 0.050 (6) | 0.077 (6) | −0.010 (5) | −0.044 (4) | 0.030 (5) |
N1 | 0.023 (5) | 0.016 (5) | 0.023 (5) | −0.008 (4) | 0.003 (4) | 0.001 (4) |
N2 | 0.028 (5) | 0.011 (5) | 0.019 (4) | −0.001 (4) | 0.007 (3) | 0.007 (4) |
N3 | 0.027 (4) | 0.011 (4) | 0.013 (4) | −0.003 (3) | 0.008 (4) | 0.004 (4) |
N4 | 0.028 (5) | 0.015 (5) | 0.013 (4) | 0.001 (4) | 0.000 (3) | −0.001 (4) |
N5 | 0.021 (5) | 0.010 (5) | 0.031 (5) | −0.005 (4) | −0.001 (4) | 0.009 (4) |
N6 | 0.025 (5) | 0.015 (5) | 0.022 (5) | −0.002 (4) | −0.004 (4) | 0.000 (4) |
N7 | 0.024 (5) | 0.010 (5) | 0.020 (4) | −0.002 (4) | 0.008 (4) | 0.004 (4) |
N8 | 0.030 (5) | 0.009 (5) | 0.022 (5) | 0.002 (4) | 0.001 (4) | −0.007 (4) |
N9 | 0.026 (4) | 0.009 (4) | 0.013 (4) | −0.001 (3) | −0.008 (4) | −0.002 (4) |
N10 | 0.015 (4) | 0.016 (5) | 0.018 (4) | 0.000 (4) | −0.004 (3) | 0.002 (4) |
N11 | 0.027 (5) | 0.014 (5) | 0.017 (5) | −0.005 (4) | 0.005 (4) | −0.010 (4) |
N12 | 0.024 (5) | 0.010 (5) | 0.026 (5) | −0.004 (4) | 0.004 (4) | −0.003 (4) |
C1 | 0.019 (6) | 0.013 (6) | 0.034 (6) | −0.003 (5) | −0.003 (5) | −0.002 (5) |
C2 | 0.033 (6) | 0.022 (7) | 0.025 (6) | 0.008 (6) | −0.006 (5) | 0.001 (5) |
C3 | 0.029 (6) | 0.018 (6) | 0.020 (5) | 0.011 (5) | −0.005 (4) | 0.005 (4) |
C4 | 0.025 (6) | 0.018 (6) | 0.015 (5) | −0.001 (5) | −0.004 (4) | 0.001 (4) |
C5 | 0.027 (6) | 0.013 (6) | 0.020 (5) | 0.003 (5) | 0.003 (4) | 0.007 (4) |
C6 | 0.034 (5) | 0.020 (5) | 0.026 (6) | −0.005 (5) | 0.007 (6) | 0.001 (6) |
C7 | 0.028 (6) | 0.024 (7) | 0.018 (5) | 0.000 (5) | −0.005 (4) | −0.005 (5) |
C8 | 0.018 (5) | 0.013 (6) | 0.022 (5) | −0.003 (5) | 0.004 (4) | −0.006 (4) |
C9 | 0.021 (6) | 0.016 (6) | 0.009 (5) | 0.001 (5) | −0.002 (4) | 0.000 (4) |
C10 | 0.025 (6) | 0.018 (7) | 0.018 (5) | 0.001 (5) | −0.002 (4) | 0.003 (4) |
C11 | 0.022 (6) | 0.021 (6) | 0.021 (5) | −0.005 (5) | −0.002 (4) | 0.003 (5) |
C12 | 0.039 (8) | 0.023 (7) | 0.064 (8) | −0.007 (6) | −0.007 (6) | 0.015 (6) |
C13 | 0.039 (6) | 0.042 (8) | 0.066 (8) | −0.014 (6) | −0.033 (7) | 0.012 (8) |
C14 | 0.026 (5) | 0.041 (7) | 0.035 (6) | −0.002 (5) | −0.009 (5) | 0.021 (6) |
C15 | 0.026 (6) | 0.031 (7) | 0.028 (6) | 0.001 (5) | −0.002 (5) | 0.013 (5) |
C16 | 0.026 (6) | 0.021 (6) | 0.031 (6) | −0.003 (5) | −0.007 (5) | −0.001 (5) |
C17 | 0.069 (10) | 0.081 (12) | 0.105 (11) | −0.027 (9) | −0.065 (9) | 0.032 (9) |
C18 | 0.031 (7) | 0.018 (7) | 0.032 (6) | 0.000 (6) | 0.001 (5) | 0.004 (5) |
C19 | 0.039 (7) | 0.028 (7) | 0.017 (5) | 0.006 (6) | 0.009 (5) | 0.000 (5) |
C20 | 0.027 (6) | 0.019 (6) | 0.019 (5) | 0.009 (5) | 0.007 (4) | 0.003 (5) |
C21 | 0.022 (6) | 0.015 (6) | 0.019 (5) | −0.005 (5) | −0.006 (4) | 0.003 (4) |
C22 | 0.026 (6) | 0.023 (6) | 0.023 (5) | 0.001 (5) | −0.005 (4) | −0.005 (5) |
C23 | 0.046 (6) | 0.009 (5) | 0.028 (6) | −0.002 (5) | −0.001 (6) | −0.002 (5) |
C25 | 0.030 (6) | 0.018 (6) | 0.023 (5) | −0.007 (5) | 0.001 (4) | 0.005 (5) |
C26 | 0.013 (5) | 0.014 (6) | 0.020 (5) | −0.002 (5) | −0.002 (4) | 0.002 (4) |
C27 | 0.021 (5) | 0.021 (6) | 0.010 (5) | −0.007 (5) | 0.003 (4) | −0.001 (4) |
C28 | 0.016 (5) | 0.025 (7) | 0.023 (6) | 0.002 (5) | 0.000 (4) | 0.002 (5) |
C29 | 0.018 (5) | 0.025 (7) | 0.020 (5) | 0.005 (5) | 0.000 (4) | −0.004 (5) |
C30 | 0.030 (6) | 0.030 (7) | 0.026 (5) | −0.008 (6) | 0.004 (5) | −0.011 (5) |
C31 | 0.020 (6) | 0.038 (8) | 0.028 (6) | −0.007 (6) | 0.003 (4) | −0.001 (5) |
C32 | 0.033 (7) | 0.041 (8) | 0.028 (6) | 0.010 (6) | 0.001 (5) | −0.005 (5) |
C33 | 0.050 (7) | 0.028 (7) | 0.033 (7) | 0.007 (6) | 0.004 (6) | −0.008 (5) |
C34 | 0.025 (6) | 0.031 (7) | 0.032 (6) | −0.004 (6) | 0.012 (5) | −0.001 (5) |
C35 | 0.072 (10) | 0.057 (11) | 0.056 (8) | −0.007 (9) | 0.038 (8) | −0.005 (8) |
O3 | 0.067 (6) | 0.023 (5) | 0.070 (6) | −0.009 (5) | 0.009 (5) | 0.013 (4) |
C36 | 0.058 (11) | 0.065 (13) | 0.179 (18) | −0.023 (10) | −0.015 (12) | 0.025 (12) |
O4 | 0.044 (5) | 0.021 (5) | 0.053 (5) | 0.003 (4) | −0.018 (4) | −0.012 (4) |
C24 | 0.060 (9) | 0.047 (10) | 0.056 (9) | 0.012 (8) | −0.019 (7) | −0.022 (7) |
Br1—C33 | 1.883 (11) | C11—C12 | 1.384 (14) |
Br2—C15 | 1.879 (11) | C11—C16 | 1.392 (13) |
Fe1—N1 | 1.964 (8) | C12—H12 | 0.9500 |
Fe1—N3 | 1.916 (7) | C12—C13 | 1.412 (14) |
Fe1—N4 | 1.958 (8) | C13—H13 | 0.9500 |
Fe1—N7 | 1.964 (8) | C13—C14 | 1.374 (14) |
Fe1—N9 | 1.909 (6) | C14—C15 | 1.375 (13) |
Fe1—N10 | 1.982 (8) | C15—C16 | 1.396 (13) |
O1—C32 | 1.364 (12) | C16—H16 | 0.9500 |
O1—C35 | 1.430 (13) | C17—H17A | 0.9800 |
O2—C14 | 1.342 (11) | C17—H17B | 0.9800 |
O2—C17 | 1.462 (14) | C17—H17C | 0.9800 |
N1—N2 | 1.359 (10) | C18—H18 | 0.9500 |
N1—C1 | 1.328 (12) | C18—C19 | 1.429 (14) |
N2—C3 | 1.354 (11) | C19—H19 | 0.9500 |
N2—C4 | 1.418 (12) | C19—C20 | 1.360 (14) |
N3—C4 | 1.324 (11) | C20—H20 | 0.9500 |
N3—C8 | 1.363 (11) | C21—C22 | 1.373 (13) |
N4—N5 | 1.370 (11) | C22—H22 | 0.9500 |
N4—C9 | 1.344 (12) | C22—C23 | 1.398 (13) |
N5—C10 | 1.340 (12) | C23—H23 | 0.9500 |
N6—C9 | 1.361 (11) | C23—C25 | 1.382 (13) |
N6—C10 | 1.354 (12) | C25—H25 | 0.9500 |
N7—N8 | 1.376 (10) | C25—C26 | 1.384 (13) |
N7—C18 | 1.334 (12) | C26—C27 | 1.455 (13) |
N8—C20 | 1.352 (11) | C28—C29 | 1.472 (13) |
N8—C21 | 1.404 (11) | C29—C30 | 1.395 (14) |
N9—C21 | 1.329 (11) | C29—C34 | 1.393 (13) |
N9—C26 | 1.365 (11) | C30—H30 | 0.9500 |
N10—N11 | 1.364 (11) | C30—C31 | 1.399 (12) |
N10—C27 | 1.331 (12) | C31—H31 | 0.9500 |
N11—C28 | 1.341 (12) | C31—C32 | 1.367 (15) |
N12—C27 | 1.341 (11) | C32—C33 | 1.393 (15) |
N12—C28 | 1.359 (12) | C33—C34 | 1.385 (14) |
C1—H1 | 0.9500 | C34—H34 | 0.9500 |
C1—C2 | 1.426 (13) | C35—H35A | 0.9800 |
C2—H2 | 0.9500 | C35—H35B | 0.9800 |
C2—C3 | 1.350 (14) | C35—H35C | 0.9800 |
C3—H3 | 0.9500 | O3—H3A | 0.8400 |
C4—C5 | 1.369 (12) | O3—C36 | 1.387 (16) |
C5—H5 | 0.9500 | C36—H36A | 0.9800 |
C5—C6 | 1.392 (13) | C36—H36B | 0.9800 |
C6—H6 | 0.9500 | C36—H36C | 0.9800 |
C6—C7 | 1.376 (13) | O4—H4 | 0.8400 |
C7—H7 | 0.9500 | O4—C24 | 1.384 (12) |
C7—C8 | 1.379 (13) | C24—H24A | 0.9800 |
C8—C9 | 1.440 (13) | C24—H24B | 0.9800 |
C10—C11 | 1.456 (13) | C24—H24C | 0.9800 |
N1—Fe1—N7 | 88.4 (3) | O2—C14—C13 | 125.4 (10) |
N1—Fe1—N10 | 93.7 (3) | O2—C14—C15 | 116.5 (10) |
N3—Fe1—N1 | 79.1 (3) | C13—C14—C15 | 118.1 (10) |
N3—Fe1—N4 | 80.0 (3) | C14—C15—Br2 | 120.5 (7) |
N3—Fe1—N7 | 97.6 (3) | C14—C15—C16 | 121.2 (10) |
N3—Fe1—N10 | 102.9 (3) | C16—C15—Br2 | 118.3 (8) |
N4—Fe1—N1 | 159.1 (4) | C11—C16—C15 | 121.9 (9) |
N4—Fe1—N7 | 93.0 (3) | C11—C16—H16 | 119.1 |
N4—Fe1—N10 | 92.3 (3) | C15—C16—H16 | 119.1 |
N7—Fe1—N10 | 159.4 (3) | O2—C17—H17A | 109.5 |
N9—Fe1—N1 | 98.3 (3) | O2—C17—H17B | 109.5 |
N9—Fe1—N3 | 176.0 (4) | O2—C17—H17C | 109.5 |
N9—Fe1—N4 | 102.5 (3) | H17A—C17—H17B | 109.5 |
N9—Fe1—N7 | 79.3 (3) | H17A—C17—H17C | 109.5 |
N9—Fe1—N10 | 80.2 (3) | H17B—C17—H17C | 109.5 |
C32—O1—C35 | 118.7 (10) | N7—C18—H18 | 125.0 |
C14—O2—C17 | 117.1 (10) | N7—C18—C19 | 110.1 (10) |
N2—N1—Fe1 | 113.6 (6) | C19—C18—H18 | 125.0 |
C1—N1—Fe1 | 140.1 (8) | C18—C19—H19 | 127.3 |
C1—N1—N2 | 105.3 (8) | C20—C19—C18 | 105.4 (9) |
N1—N2—C4 | 116.2 (7) | C20—C19—H19 | 127.3 |
C3—N2—N1 | 111.9 (8) | N8—C20—C19 | 107.8 (9) |
C3—N2—C4 | 131.9 (8) | N8—C20—H20 | 126.1 |
C4—N3—Fe1 | 120.6 (6) | C19—C20—H20 | 126.1 |
C4—N3—C8 | 119.6 (8) | N9—C21—N8 | 109.7 (8) |
C8—N3—Fe1 | 119.6 (6) | N9—C21—C22 | 123.9 (9) |
N5—N4—Fe1 | 138.5 (7) | C22—C21—N8 | 126.3 (9) |
C9—N4—Fe1 | 114.6 (6) | C21—C22—H22 | 121.6 |
C9—N4—N5 | 106.8 (8) | C21—C22—C23 | 116.7 (9) |
C10—N5—N4 | 105.0 (8) | C23—C22—H22 | 121.6 |
C10—N6—C9 | 101.7 (8) | C22—C23—H23 | 120.0 |
N8—N7—Fe1 | 113.0 (6) | C25—C23—C22 | 120.1 (9) |
C18—N7—Fe1 | 141.1 (7) | C25—C23—H23 | 120.0 |
C18—N7—N8 | 105.5 (8) | C23—C25—H25 | 120.1 |
N7—N8—C21 | 116.6 (7) | C23—C25—C26 | 119.8 (9) |
C20—N8—N7 | 111.1 (8) | C26—C25—H25 | 120.1 |
C20—N8—C21 | 132.2 (8) | N9—C26—C25 | 119.7 (8) |
C21—N9—Fe1 | 121.0 (6) | N9—C26—C27 | 109.8 (8) |
C21—N9—C26 | 119.5 (8) | C25—C26—C27 | 130.5 (9) |
C26—N9—Fe1 | 119.4 (6) | N10—C27—N12 | 113.6 (9) |
N11—N10—Fe1 | 138.0 (7) | N10—C27—C26 | 116.2 (8) |
C27—N10—Fe1 | 114.5 (6) | N12—C27—C26 | 130.3 (9) |
C27—N10—N11 | 107.5 (8) | N11—C28—N12 | 115.1 (9) |
C28—N11—N10 | 103.3 (8) | N11—C28—C29 | 121.5 (10) |
C27—N12—C28 | 100.4 (8) | N12—C28—C29 | 123.3 (9) |
N1—C1—H1 | 125.1 | C30—C29—C28 | 121.0 (10) |
N1—C1—C2 | 109.9 (10) | C34—C29—C28 | 120.6 (9) |
C2—C1—H1 | 125.1 | C34—C29—C30 | 118.4 (9) |
C1—C2—H2 | 127.1 | C29—C30—H30 | 119.9 |
C3—C2—C1 | 105.9 (9) | C29—C30—C31 | 120.2 (11) |
C3—C2—H2 | 127.1 | C31—C30—H30 | 119.9 |
N2—C3—H3 | 126.5 | C30—C31—H31 | 119.5 |
C2—C3—N2 | 106.9 (9) | C32—C31—C30 | 120.9 (10) |
C2—C3—H3 | 126.5 | C32—C31—H31 | 119.5 |
N3—C4—N2 | 109.9 (8) | O1—C32—C31 | 124.6 (10) |
N3—C4—C5 | 123.8 (8) | O1—C32—C33 | 116.2 (11) |
C5—C4—N2 | 126.3 (8) | C31—C32—C33 | 119.2 (10) |
C4—C5—H5 | 121.7 | C32—C33—Br1 | 120.2 (8) |
C4—C5—C6 | 116.5 (9) | C34—C33—Br1 | 119.3 (9) |
C6—C5—H5 | 121.7 | C34—C33—C32 | 120.5 (11) |
C5—C6—H6 | 119.7 | C29—C34—H34 | 119.6 |
C7—C6—C5 | 120.6 (9) | C33—C34—C29 | 120.7 (10) |
C7—C6—H6 | 119.7 | C33—C34—H34 | 119.6 |
C6—C7—H7 | 120.3 | O1—C35—H35A | 109.5 |
C6—C7—C8 | 119.5 (9) | O1—C35—H35B | 109.5 |
C8—C7—H7 | 120.3 | O1—C35—H35C | 109.5 |
N3—C8—C7 | 119.8 (9) | H35A—C35—H35B | 109.5 |
N3—C8—C9 | 109.1 (8) | H35A—C35—H35C | 109.5 |
C7—C8—C9 | 131.1 (9) | H35B—C35—H35C | 109.5 |
N4—C9—N6 | 112.4 (8) | C36—O3—H3A | 109.5 |
N4—C9—C8 | 116.6 (8) | O3—C36—H36A | 109.5 |
N6—C9—C8 | 130.8 (9) | O3—C36—H36B | 109.5 |
N5—C10—N6 | 114.0 (9) | O3—C36—H36C | 109.5 |
N5—C10—C11 | 120.6 (9) | H36A—C36—H36B | 109.5 |
N6—C10—C11 | 125.3 (9) | H36A—C36—H36C | 109.5 |
C12—C11—C10 | 122.3 (10) | H36B—C36—H36C | 109.5 |
C12—C11—C16 | 116.3 (9) | C24—O4—H4 | 109.5 |
C16—C11—C10 | 121.4 (9) | O4—C24—H24A | 109.5 |
C11—C12—H12 | 119.1 | O4—C24—H24B | 109.5 |
C11—C12—C13 | 121.9 (10) | O4—C24—H24C | 109.5 |
C13—C12—H12 | 119.1 | H24A—C24—H24B | 109.5 |
C12—C13—H13 | 119.7 | H24A—C24—H24C | 109.5 |
C14—C13—C12 | 120.6 (10) | H24B—C24—H24C | 109.5 |
C14—C13—H13 | 119.7 | ||
Br1—C33—C34—C29 | −177.7 (8) | C3—N2—C4—N3 | 172.4 (9) |
Br2—C15—C16—C11 | −177.8 (7) | C3—N2—C4—C5 | −8.0 (16) |
Fe1—N1—N2—C3 | −169.9 (6) | C4—N2—C3—C2 | −178.2 (9) |
Fe1—N1—N2—C4 | 8.8 (10) | C4—N3—C8—C7 | −4.9 (13) |
Fe1—N1—C1—C2 | 165.1 (8) | C4—N3—C8—C9 | 175.6 (8) |
Fe1—N3—C4—N2 | 0.4 (10) | C4—C5—C6—C7 | −2.0 (13) |
Fe1—N3—C4—C5 | −179.2 (7) | C5—C6—C7—C8 | 2.7 (14) |
Fe1—N3—C8—C7 | −179.9 (7) | C6—C7—C8—N3 | 0.7 (14) |
Fe1—N3—C8—C9 | 0.5 (10) | C6—C7—C8—C9 | −179.8 (9) |
Fe1—N4—N5—C10 | −176.2 (7) | C7—C8—C9—N4 | 179.9 (9) |
Fe1—N4—C9—N6 | 177.2 (6) | C7—C8—C9—N6 | 3.8 (17) |
Fe1—N4—C9—C8 | 0.5 (10) | C8—N3—C4—N2 | −174.6 (7) |
Fe1—N7—N8—C20 | −170.3 (6) | C8—N3—C4—C5 | 5.7 (14) |
Fe1—N7—N8—C21 | 7.5 (9) | C9—N4—N5—C10 | 0.7 (10) |
Fe1—N7—C18—C19 | 167.7 (8) | C9—N6—C10—N5 | 0.4 (11) |
Fe1—N9—C21—N8 | −1.0 (10) | C9—N6—C10—C11 | −177.5 (9) |
Fe1—N9—C21—C22 | −178.6 (7) | C10—N6—C9—N4 | 0.1 (10) |
Fe1—N9—C26—C25 | 178.7 (7) | C10—N6—C9—C8 | 176.3 (10) |
Fe1—N9—C26—C27 | −0.7 (10) | C10—C11—C12—C13 | 176.6 (10) |
Fe1—N10—N11—C28 | 180.0 (7) | C10—C11—C16—C15 | −177.1 (9) |
Fe1—N10—C27—N12 | 179.3 (6) | C11—C12—C13—C14 | 0.4 (19) |
Fe1—N10—C27—C26 | −0.1 (10) | C12—C11—C16—C15 | 1.3 (15) |
O1—C32—C33—Br1 | −3.1 (13) | C12—C13—C14—O2 | −176.3 (11) |
O1—C32—C33—C34 | 179.6 (10) | C12—C13—C14—C15 | 1.6 (19) |
O2—C14—C15—Br2 | −5.6 (14) | C13—C14—C15—Br2 | 176.3 (9) |
O2—C14—C15—C16 | 176.0 (10) | C13—C14—C15—C16 | −2.1 (17) |
N1—N2—C3—C2 | 0.3 (11) | C14—C15—C16—C11 | 0.6 (16) |
N1—N2—C4—N3 | −6.1 (11) | C16—C11—C12—C13 | −1.9 (16) |
N1—N2—C4—C5 | 173.6 (9) | C17—O2—C14—C13 | 6.0 (19) |
N1—C1—C2—C3 | 2.4 (12) | C17—O2—C14—C15 | −171.9 (11) |
N2—N1—C1—C2 | −2.2 (11) | C18—N7—N8—C20 | 3.1 (10) |
N2—C4—C5—C6 | 178.2 (8) | C18—N7—N8—C21 | −179.0 (8) |
N3—C4—C5—C6 | −2.2 (14) | C18—C19—C20—N8 | 0.6 (12) |
N3—C8—C9—N4 | −0.6 (11) | C20—N8—C21—N9 | 172.9 (9) |
N3—C8—C9—N6 | −176.7 (8) | C20—N8—C21—C22 | −9.5 (16) |
N4—N5—C10—N6 | −0.7 (11) | C21—N8—C20—C19 | −179.8 (9) |
N4—N5—C10—C11 | 177.2 (8) | C21—N9—C26—C25 | −5.5 (12) |
N5—N4—C9—N6 | −0.5 (10) | C21—N9—C26—C27 | 175.1 (8) |
N5—N4—C9—C8 | −177.3 (8) | C21—C22—C23—C25 | −1.0 (14) |
N5—C10—C11—C12 | −173.9 (9) | C22—C23—C25—C26 | 1.0 (14) |
N5—C10—C11—C16 | 4.5 (15) | C23—C25—C26—N9 | 2.3 (13) |
N6—C10—C11—C12 | 3.9 (15) | C23—C25—C26—C27 | −178.5 (9) |
N6—C10—C11—C16 | −177.7 (9) | C25—C26—C27—N10 | −178.9 (9) |
N7—N8—C20—C19 | −2.3 (11) | C25—C26—C27—N12 | 1.9 (17) |
N7—N8—C21—N9 | −4.4 (11) | C26—N9—C21—N8 | −176.6 (7) |
N7—N8—C21—C22 | 173.2 (9) | C26—N9—C21—C22 | 5.7 (14) |
N7—C18—C19—C20 | 1.4 (12) | C27—N10—N11—C28 | 0.4 (10) |
N8—N7—C18—C19 | −2.7 (11) | C27—N12—C28—N11 | −0.9 (11) |
N8—C21—C22—C23 | −179.6 (8) | C27—N12—C28—C29 | 179.4 (8) |
N9—C21—C22—C23 | −2.4 (14) | C28—N12—C27—N10 | 1.1 (10) |
N9—C26—C27—N10 | 0.4 (11) | C28—N12—C27—C26 | −179.6 (9) |
N9—C26—C27—N12 | −178.8 (9) | C28—C29—C30—C31 | 179.4 (8) |
N10—N11—C28—N12 | 0.3 (11) | C28—C29—C34—C33 | 179.8 (9) |
N10—N11—C28—C29 | −180.0 (8) | C29—C30—C31—C32 | 2.1 (15) |
N11—N10—C27—N12 | −1.0 (10) | C30—C29—C34—C33 | 1.1 (15) |
N11—N10—C27—C26 | 179.6 (8) | C30—C31—C32—O1 | 179.6 (9) |
N11—C28—C29—C30 | 162.3 (9) | C30—C31—C32—C33 | −1.4 (15) |
N11—C28—C29—C34 | −16.3 (14) | C31—C32—C33—Br1 | 177.8 (8) |
N12—C28—C29—C30 | −18.0 (15) | C31—C32—C33—C34 | 0.6 (16) |
N12—C28—C29—C34 | 163.4 (9) | C32—C33—C34—C29 | −0.4 (16) |
C1—N1—N2—C3 | 1.2 (10) | C34—C29—C30—C31 | −1.9 (14) |
C1—N1—N2—C4 | 180.0 (8) | C35—O1—C32—C31 | −3.0 (16) |
C1—C2—C3—N2 | −1.6 (11) | C35—O1—C32—C33 | 178.0 (10) |
Cg1 and Cg2 are the centroids of the C11–C16 and C29–C34 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C17···N6i | 3.201 (16) | |||
O3—H3A···N12 | 0.84 | 2.02 | 2.820 (12) | 160 |
O4—H4···N6 | 0.84 | 2.06 | 2.855 (11) | 158 |
C1—H1···O4ii | 0.95 | 2.22 | 3.128 (14) | 161 |
C18—H18···O3iii | 0.95 | 2.27 | 3.192 (14) | 163 |
C35—H35A···C30iv | 0.98 | 2.62 | 3.233 (16) | 121 |
C3—H3···N5iii | 0.95 | 2.45 | 3.301 (13) | 148 |
C7—H7···O4 | 0.95 | 2.46 | 3.310 (11) | 148 |
C22—H22···N11ii | 0.95 | 2.39 | 3.317 (13) | 166 |
C20—H20···N11ii | 0.95 | 2.55 | 3.389 (13) | 148 |
C5—H5···N5iii | 0.95 | 2.53 | 3.440 (12) | 161 |
C17—H17A···O4i | 0.98 | 2.52 | 3.451 (17) | 159 |
C34—H34···C20v | 0.95 | 2.63 | 3.535 (15) | 159 |
C25—H25···O3 | 0.95 | 2.69 | 3.542 (13) | 150 |
C18—H18···C36iii | 0.95 | 2.88 | 3.65 (2) | 138 |
C2—H2···C31vi | 0.95 | 2.84 | 3.639 (15) | 143 |
C2—H2···C32vi | 0.95 | 2.89 | 3.656 (15) | 139 |
C2—H2···C30vi | 0.95 | 2.86 | 3.734 (11) | 154 |
C2—H2···Cg2vi | 0.95 | 2.57 | 3.501 (11) | 168 |
C19—H19···Cg1vi | 0.95 | 2.74 | 3.681 (11) | 169 |
Symmetry codes: (i) −x+1, −y+1, z−1/2; (ii) −x+3/2, y+1/2, z+1/2; (iii) −x+3/2, y−1/2, z+1/2; (iv) −x+2, −y+1, z−1/2; (v) −x+3/2, y−1/2, z−1/2; (vi) x, y, z+1. |
CSD refcode | Spin state | <Fe—N> | Σ | Θ | CShM(Oh) |
Title compound | LS | 1.949 | 93.3 | 298.8 | 2.24 |
IGERIXa | HS | 2.179 | 149.7 | 553.2 | 6.06 |
IGERIX01a | LS | 1.986 | 105.6 | 350.6 | 2.85 |
LUTGEOb | LS | 1.933 | 85.0 | 309.6 | 2.10 |
XODCEBc | LS | 1.950 | 87.4 | 276.6 | 1.93 |
DOMQIHd | LS | 1.962 | 83.8 | 280.7 | 2.02 |
QIDJET01e | LS | 1.970 | 90.3 | 341.3 | 2.47 |
QIDJETe | HS | 2.184 | 145.5 | 553.3 | 5.88 |
DOMQUTd | LS | 1.991 | 88.5 | 320.0 | 2.48 |
DOMQUT02d | HS | 2.183 | 139.6 | 486.9 | 5.31 |
Notes: (a) Gentili et al. (2015); (b) Senthil Kumar et al., 2015); (c) Shiga et al. (2019); (d) Seredyuk et al. (2014); (e) Zhang et al. (2007). |
D–H···A | D–H | D···A | H···A | D–H···A | Symmetry operation |
C17···N6 | - | 3.20 (2) | - | - | 1-x,1-y,-1/2+z |
O3-H···N12 | 0.84 (1) | 2.82 (1) | 2.02 (1) | 159.5 (5) | x,y,z |
O4-H···N6 | 0.84 (1) | 2.86 (1) | 2.06 (2) | 158.0 (5) | x,y,z |
C1-H···O4 | 0.95 (1) | 3.13 (1) | 2.22 (1) | 160.6 (5) | 1.5-x,1/2+y,1/2+z |
C18-H···O3 | 0.95 (1) | 3.19 (1) | 2.27 (1) | 162.6 (5) | 1.5-x,-1/2+y,1/2+z |
C35-H···C30 | 0.95 (1) | 3.23 (2) | 2.62 (2) | 121.0 (5) | 2-x,1-y,-1/2+z |
C3-H···N5 | 0.95 (1) | 3.30 (1) | 2.46 (2) | 148.4 (5) | 1.5-x,-1/2+y,1/2+z |
C7-H···O4 | 0.95 (1) | 3.31 (1) | 2.46 (1) | 148.4 (5) | x,y,z |
C22-H···N11 | 0.95 (1) | 3.32 (1) | 2.39 (1) | 165.6 (5) | 1.5-x,1/2+y,1/2+z |
C20-H···N11 | 0.95 (1) | 3.39 (1) | 2.55 (2) | 147.6 (5) | 1.5-x,1/2+y,1/2+z |
C5-H···N5 | 0.95 (1) | 3.44 (1) | 2.53 (2) | 160.7 (5) | 1.5-x,-1/2+y,1/2+z |
C17-H···O4 | 0.95 (1) | 3.45 (2) | 2.52 (2) | 159.1 (5) | 1-x,1-y,-1/2+z |
C34-H···C20 | 0.95 (1) | 3.53 (2) | 2.63 (1) | 159.1 (5) | 1.5-x,-1/2+y,-1/2+z |
C25-H···O3 | 0.95 (1) | 3.54 (1) | 2.69 (1) | 149.6 (5) | x,y,z |
C18-H···C36 | 0.95 (1) | 3.65 (2) | 2.88 (1) | 138.0 (5) | 1.5-x,-1/2+y,1/2+z |
C2–H···C31 | 0.95 (1) | 3.64 (2) | 2.84 (1) | 143.0 (5) | x,y,1+z |
C2-H···C32 | 0.95 (1) | 3.66 (2) | 2.89 (2) | 139.0 (5) | x,y,1+z |
C2–H···C30 | 0.95 (1) | 3.73 (1) | 2.86 (1) | 154.4 (5) | x,y,1+z |
Acknowledgements
Author contributions are as follows: Conceptualization, KZ and MS; methodology, KZ; formal analysis, IOF; synthesis, SOM; single-crystal measurements, SS; writing (original draft), MS; writing (review and editing of the manuscript), TYS, MS; visualization and calculations, KZ, VMA; funding acquisition, MS, IOF, VMA.
Funding information
Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant No. 22BF037-03, 22BF037-04).
References
Bartual-Murgui, C., Piñeiro-López, L., Valverde-Muñoz, F. J., Muñoz, M. C., Seredyuk, M. & Real, J. A. (2017). Inorg. Chem. 56, 13535–13546. Web of Science CAS PubMed Google Scholar
Bonhommeau, S., Lacroix, P. G., Talaga, D., Bousseksou, A., Seredyuk, M., Fritsky, I. O. & Rodriguez, V. (2012). J. Phys. Chem. C, 116, 11251–11255. Web of Science CrossRef CAS Google Scholar
Chang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814–6827. CSD CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Drew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035–1038. CSD CrossRef Web of Science Google Scholar
Gentili, D., Demitri, N., Schäfer, B., Liscio, F., Bergenti, I., Ruani, G., Ruben, M. & Cavallini, M. (2015). J. Mater. Chem. C. 3, 7836–7844. CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1–47. Google Scholar
Halcrow, M. A. (2014). New J. Chem. 38, 1868–1882. Web of Science CrossRef CAS Google Scholar
Halcrow, M. A., Capel Berdiell, I., Pask, C. M. & Kulmaczewski, R. (2019). Inorg. Chem. 58, 9811–9821. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kershaw Cook, L. J., Mohammed, R., Sherborne, G., Roberts, T. D., Alvarez, S. & Halcrow, M. A. (2015). Coord. Chem. Rev. 289–290, 2–12. Web of Science CSD CrossRef CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Schäfer, B., Rajnák, C., Šalitroš, I., Fuhr, O., Klar, D., Schmitz-Antoniak, C., Weschke, E., Wende, H. & Ruben, M. (2013). Chem. Commun. 49, 10986. Google Scholar
Senthil Kumar, K., Šalitroš, I., Heinrich, B., Fuhr, O. & Ruben, M. (2015). J. Mater. Chem. C. 3, 11635–11644. CSD CrossRef CAS Google Scholar
Seredyuk, M., Znovjyak, K., Valverde-Muñoz, F. J., da Silva, I., Muñoz, M. C., Moroz, Y. S. & Real, J. A. (2022). J. Am. Chem. Soc. https://doi.org/10.1021/jacs.2c05417. Google Scholar
Seredyuk, M., Znovjyak, K. O., Kusz, J., Nowak, M., Muñoz, M. C. & Real, J. A. (2014). Dalton Trans. 43, 16387–16394. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shiga, T., Saiki, R., Akiyama, L., Kumai, R., Natke, D., Renz, F., Cameron, J. M., Newton, G. N. & Oshio, H. (2019). Angew. Chem. Int. Ed. 58, 5658–5662. Web of Science CSD CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suryadevara, N., Mizuno, A., Spieker, L., Salamon, S., Sleziona, S., Maas, A., Pollmann, E., Heinrich, B., Schleberger, M., Wende, H., Kuppusamy, S. K. & Ruben, M. (2022). Chem. Eur. J. 28, e202103853. PubMed Google Scholar
Valverde–Muñoz, F., Seredyuk, M., Muñoz, M. C., Molnár, G., Bibik, Y. S. & Real, J. A. (2020). Angew. Chem. Int. Ed. 59, 18632–18638. Google Scholar
Zhang, W., Zhao, F., Liu, T., Yuan, M., Wang, Z. M. & Gao, S. (2007). Inorg. Chem. 46, 2541–2555. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.