research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­{3-(3-bromo-4-methoxyphenyl)-5-[6-(1H-pyrazol-1-yl)pyridin-2-yl]-1,2,4-triazol-3-ato}­iron(II) methano­l disolvate

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine, and bDepartment of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41-A, Iasi 700487, Romania
*Correspondence e-mail: mlseredyuk@gmail.com

Edited by G. Diaz de Delgado, Universidad de Los Andes Mérida, Venezuela (Received 10 August 2022; accepted 21 October 2022; online 28 October 2022)

The unit cell of the title compound, [FeII(C17H12BrN6O)2]·2MeOH, consists of a charge-neutral complex mol­ecule and two independent mol­ecules of methanol. In the complex mol­ecule, the two tridentate ligand mol­ecules 2-[5-(3-bromo-4-meth­oxy­phen­yl)-4H-1,2,4-triazol-3-yl]-6-(1H-pyrazol-1-yl)pyridine coordinate to the FeII ion through the N atoms of the pyrazole, pyridine and triazole groups, forming a pseudo-octa­hedral coordination sphere around the central ion. In the crystal, neighbouring asymmetric mol­ecules are linked through weak C—H(pz)⋯π(ph) inter­actions into chains, which are then linked into layers by weak C–H⋯N/C inter­actions. Finally, the layers stack into a three-dimensional network linked by weak inter­layer C—H⋯π inter­actions between the meth­oxy groups and the phenyl rings. The inter­molecular contacts were qu­anti­fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H 34.2%, H⋯C/C⋯H 25.2%, H⋯Br/Br⋯H 13.2%, H⋯N/N⋯H 12.2% and H⋯O/O⋯H 4.0%. The average Fe—N bond distance is 1.949 Å, indicating the low-spin state of the FeII ion. Energy framework analysis at the HF/3–21 G theory level was performed to qu­antify the inter­action energies in the crystal structure.

1. Chemical context

A broad class of coordination compounds exhibiting spin-state switching between low- (total spin S = 0) and high-spin states (total spin S = 2) is represented by FeII complexes based on tridentate bis­azole­pyridine ligands (Halcrow, 2014[Halcrow, M. A. (2014). New J. Chem. 38, 1868-1882.]; Suryadevara et al., 2022[Suryadevara, N., Mizuno, A., Spieker, L., Salamon, S., Sleziona, S., Maas, A., Pollmann, E., Heinrich, B., Schleberger, M., Wende, H., Kuppusamy, S. K. & Ruben, M. (2022). Chem. Eur. J. 28, e202103853.]; Halcrow et al., 2019[Halcrow, M. A., Capel Berdiell, I., Pask, C. M. & Kulmaczewski, R. (2019). Inorg. Chem. 58, 9811-9821.]). In the case of asymmetric ligand design, where one of the azole groups carries a hydrogen on a nitro­gen heteroatom and acts as a Brønsted acid, deprotonation can produce neutral complexes that can be either high-spin (Schäfer et al., 2013[Schäfer, B., Rajnák, C., Šalitroš, I., Fuhr, O., Klar, D., Schmitz-Antoniak, C., Weschke, E., Wende, H. & Ruben, M. (2013). Chem. Commun. 49, 10986.]) or low-spin (Shiga et al., 2019[Shiga, T., Saiki, R., Akiyama, L., Kumai, R., Natke, D., Renz, F., Cameron, J. M., Newton, G. N. & Oshio, H. (2019). Angew. Chem. Int. Ed. 58, 5658-5662.]) or exhibit temperature-induced transitions between the spin states of the central atom (Seredyuk et al., 2014[Seredyuk, M., Znovjyak, K. O., Kusz, J., Nowak, M., Muñoz, M. C. & Real, J. A. (2014). Dalton Trans. 43, 16387-16394.]), depending on the ligand field strength. The periphery of the mol­ecule, i.e. ligand substituents, also plays an important role in the behaviour, determining the way in which mol­ecules are packed in the lattice and their inter­actions with each other, and therefore further influencing the spin state adopted by the central atom. As we have recently demonstrated, the dynamic rearrangement of the meth­oxy group between the bent and extended configurations can lead to a highly hysteretic spin transition via a supra­molecular blocking mechanism (Seredyuk et al., 2022[Seredyuk, M., Znovjyak, K., Valverde-Muñoz, F. J., da Silva, I., Muñoz, M. C., Moroz, Y. S. & Real, J. A. (2022). J. Am. Chem. Soc. https://doi.org/10.1021/jacs.2c05417.]).

[Scheme 1]

Having inter­est in spin-transition 3d-metal complexes formed by polydentate ligands (Bartual-Murgui et al., 2017[Bartual-Murgui, C., Piñeiro-López, L., Valverde-Muñoz, F. J., Muñoz, M. C., Seredyuk, M. & Real, J. A. (2017). Inorg. Chem. 56, 13535-13546.]; Bonhommeau et al., 2012[Bonhommeau, S., Lacroix, P. G., Talaga, D., Bousseksou, A., Seredyuk, M., Fritsky, I. O. & Rodriguez, V. (2012). J. Phys. Chem. C, 116, 11251-11255.]; Valverde-Muñoz et al., 2020[Valverde-Muñoz, F., Seredyuk, M., Muñoz, M. C., Molnár, G., Bibik, Y. S. & Real, J. A. (2020). Angew. Chem. Int. Ed. 59, 18632-18638.]), we report here on our current structural exploration of a new complex [FeIIL2] based on an asymmetric deprotonable ligand with two substituents on the phenyl group, L = 2-[5-(3-bromo-4-meth­oxy­phen­yl)-4H-1,2,4-triazol-3-yl]-6-(1H-pyrazol-1-yl)pyridine.

2. Structural commentary

The title complex has a asymmetric mol­ecule with divergent phenyl groups. The ligand mol­ecules are almost planar (r.m.s. deviation = 0.330 Å), including the meth­oxy substituents, which also lie in the plane of the aromatic groups [atoms C17 and C35 are 0.514 (1) and 0.116 (1) Å, respectively, away from the planes passing through their respective ligand molecules]. The two independent methanol mol­ecules form O—H⋯N hydrogen bonds with the triazole (trz) rings of the ligand mol­ecules (Fig. 1[link], Table 1[link]). The central FeII ion of the complex has a distorted octa­hedral N6 coordination environment formed by the nitro­gen donor atoms of two tridentate ligands (Fig. 1[link]).

Table 1
Geometry (Å, °) of hydrogen bonds and C⋯N interactions in the title compound

Cg1 and Cg2 are the centroids of the C11–C16 and C29–C34 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C17⋯N6i     3.201 (16)  
O3—H3A⋯N12 0.84 2.02 2.820 (12) 160
O4—H4⋯N6 0.84 2.06 2.855 (11) 158
C1—H1⋯O4ii 0.95 2.22 3.128 (14) 161
C18—H18⋯O3iii 0.95 2.27 3.192 (14) 163
C35—H35A⋯C30iv 0.98 2.62 3.233 (16) 121
C3—H3⋯N5iii 0.95 2.45 3.301 (13) 148
C7—H7⋯O4 0.95 2.46 3.310 (11) 148
C22—H22⋯N11ii 0.95 2.39 3.317 (13) 166
C20—H20⋯N11ii 0.95 2.55 3.389 (13) 148
C5—H5⋯N5iii 0.95 2.53 3.440 (12) 161
C17—H17A⋯O4i 0.98 2.52 3.451 (17) 159
C34—H34⋯C20v 0.95 2.63 3.535 (15) 159
C25—H25⋯O3 0.95 2.69 3.542 (13) 150
C18—H18⋯C36iii 0.95 2.88 3.65 (2) 138
C2—H2⋯C31vi 0.95 2.84 3.639 (15) 143
C2—H2⋯C32vi 0.95 2.89 3.656 (15) 139
C2—H2⋯C30vi 0.95 2.86 3.734 (11) 154
C2—H2⋯Cg2vi 0.95 2.57 3.501 (11) 168
C19—H19⋯Cg1vi 0.95 2.74 3.681 (11) 169
Symmetry codes: (i) [-x+1, -y+1, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+2, -y+1, z-{\script{1\over 2}}]; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) x, y, z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. Hydrogen bonds are indicated by dashed lines.

The average bond length, <Fe—N> = 1.949 Å, is typical for low-spin complexes with an N6 coordination environment (Gütlich & Goodwin, 2004[Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1-47.]). The average trigonal distortion parameters Σ = Σ112(|90 − φi|), where φi is the angle N–Fe–N′ (Drew et al., 1995[Drew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035-1038.]), and Θ = Σ124(|60 − θi|), where θi is the angle generated by superposition of two opposite faces of an octa­hedron (Chang et al., 1990[Chang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814-6827.]) are 93.3 and 298.8°, respectively. The values reveal a deviation of the coordination environment from an ideal octa­hedron (where Σ = Θ = 0) but is, however, in the expected range for bis­azole­pyridines and similar ligands (see below). The calculated continuous shape measure (CShM) value relative to the ideal Oh symmetry is 2.24 (Kershaw Cook et al., 2015[Kershaw Cook, L. J., Mohammed, R., Sherborne, G., Roberts, T. D., Alvarez, S. & Halcrow, M. A. (2015). Coord. Chem. Rev. 289-290, 2-12.]). The volume of the [FeN6] coord­ination polyhedron is 9.536 Å3.

3. Supra­molecular features

As a result of their asymmetric shape, neighbouring complex mol­ecules fit into each other and inter­act through a weak C—H(pz)⋯π(ph) inter­molecular contact between the pyrazole (pz) and phenyl (ph) groups respectively (Table 1[link]). The mono-periodic supra­molecular chains formed extend along the c-axis direction with a stacking periodicity of 10.6434 (3) Å (equal to cell parameter c; Fig. 2[link]a). Through weak inter­molecular C—H(pz, py)⋯ N/C(pz, trz) inter­actions in the range 3.128 (14)–3.734 (11) Å (Table 1[link]), neighbouring chains are linked into corrugated layers in the bc plane (Fig. 2[link]b,c). The layers stack with inter­layer inter­actions limited to C—H⋯N(trz) and C—H⋯π(ph) contacts involving the methyl groups (Fig. 2[link]c). The voids between the layers are occupied by methanol mol­ecules, which also participate in bonding between neighbouring layers (see Table 1[link] for the complete list of inter­molecular inter­actions).

[Figure 2]
Figure 2
(a) Mono-periodic supra­molecular chain formed by stacking of mol­ecules of the title compound. (b) Di-periodic layers formed by supra­molecular chains. For a better representation, each chain has a different colour. (c) Highlighted inter­actions of neighbouring layers in the three-dimensional supra­molecular network of the title complex. The red dashed lines correspond to contacts below the sum of the van der Waals radii. The methanol mol­ecules are not shown for clarity.

4. Hirshfeld surface and 2D fingerprint plots

Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.2869 (red) to 2.4335 (blue) a.u. (Fig. 3[link]). The pale-red spots represent short contacts and negative dnorm values on the surface corresponding to the inter­actions described above. The overall two-dimensional fingerprint plot is illustrated in Fig. 4[link]. The Hirshfeld surfaces mapped over dnorm are shown for the H⋯H, H⋯C/C⋯H, H⋯Br/Br⋯H, H⋯N/N⋯H and H⋯O/O⋯H contacts together with the two-dimensional fingerprint plots associated with their relative contributions to the Hirshfeld surface. At 34.2%, the largest contribution to the overall crystal packing is from H⋯H inter­actions, which are located in the middle region of the fingerprint plot. H⋯C/C⋯H contacts contribute 25.2%, and the H⋯Br/Br⋯H contacts contribute 13.2% to the Hirshfeld surface and both result in a pair of characteristic wings. The H⋯N/N⋯H contacts, represented by a pair of sharp spikes in the fingerprint plot, make a 12.2% contribution to the Hirshfeld surface. Finally, H⋯O/O⋯H contacts, which account for 4.0% of the contribution, are mostly distributed in the middle part of the plot.

[Figure 3]
Figure 3
A projection of dnorm mapped on the Hirshfeld surface, showing the inter­molecular inter­actions within the mol­ecule. Red areas represent regions where contacts are shorter than the sum of the van der Waals radii, blue areas represent regions where contacts are larger than the sum of van der Waals radii, and white areas are regions where contacts are close to the sum of van der Waals radii.
[Figure 4]
Figure 4
(a) The overall two-dimensional fingerprint plot and those decomposed into specified inter­actions. (b) Hirshfeld surface representations with the function dnorm plotted onto the surface for the different inter­actions.

5. Energy framework analysis

The energy framework (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), calculated using the wave function at the HF/3-21G theory level, including the electrostatic potential forces (Eele), the dispersion forces (Edis) and the total energy diagrams (Etot), are shown in Fig. 5[link]. The cylindrical radii, adjusted to the same scale factor of 100, are proportional to the relative strength of the corresponding energies. The major contribution to the inter­molecular inter­actions is due to the dispersion forces (Edis), reflecting the dominating inter­actions in the lattice of the neutral asymmetric mol­ecules. The topology of the energy framework resembles the topology of the inter­actions within and between the layers described above. The calculated values Etot are in the range 65.2–87.6 kJ mol−1 for intra­chain and intra­layer inter­actions, whereas for the inter­layer inter­actions they are within 7.7–23.4 kJ mol−1. The colour-coded inter­action mappings within a radius of 3.8 Å of a central reference mol­ecule for the title compound together with full details of the various contributions to the total energy (Etot) are given in the supporting information.

[Figure 5]
Figure 5
The calculated energy frameworks, showing the electrostatic potential forces (Eele), dispersion forces (Edis) and total energy (Etot) diagrams. Tube size is set at 100 scale, cut-off is 5 kJ mol−1.

6. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, last update February 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals several similar neutral FeII complexes with a deprotonable azole group, for example, derivatives of a pyrazole-pyridine-tetra­zole (IGERIX and LUTGEO; Gentili et al., 2015[Gentili, D., Demitri, N., Schäfer, B., Liscio, F., Bergenti, I., Ruani, G., Ruben, M. & Cavallini, M. (2015). J. Mater. Chem. C. 3, 7836-7844.]; Senthil Kumar et al., 2015[Senthil Kumar, K., Šalitroš, I., Heinrich, B., Fuhr, O. & Ruben, M. (2015). J. Mater. Chem. C. 3, 11635-11644.]) and a pyrazole-pyridine-benzimidazole (XODCEB; Shiga et al., 2019[Shiga, T., Saiki, R., Akiyama, L., Kumai, R., Natke, D., Renz, F., Cameron, J. M., Newton, G. N. & Oshio, H. (2019). Angew. Chem. Int. Ed. 58, 5658-5662.]). There are also related complexes based on phenanthroline-tetra­zole, such as QIDJET (Zhang et al., 2007[Zhang, W., Zhao, F., Liu, T., Yuan, M., Wang, Z. M. & Gao, S. (2007). Inorg. Chem. 46, 2541-2555.]) and phenanthroline-benzimidazole (DOMQUT; Seredyuk et al., 2014[Seredyuk, M., Znovjyak, K. O., Kusz, J., Nowak, M., Muñoz, M. C. & Real, J. A. (2014). Dalton Trans. 43, 16387-16394.]). Schematic structures of the complexes are shown in Fig. S1 in the supporting information. The Fe—N distances of these complexes in the low-spin state are 1.933–1.959 Å, while in the high-spin state they are in the range 2.179–2.184 Å. The values of the trigonal distortion and CShM(Oh) change correspondingly, and in the low-spin state they are systematically lower than in the high-spin state. Table 2[link] collates the structural parameters of the complexes and of the title compound.

Table 2
Computed distortion indices (Å,°) for the title compound and similar complexes reported in the literature

CSD refcode Spin state <Fe—N> Σ Θ CShM(Oh)
Title compound LS 1.949 93.3 298.8 2.24
IGERIXa HS 2.179 149.7 553.2 6.06
IGERIX01a LS 1.986 105.6 350.6 2.85
LUTGEOb LS 1.933 85.0 309.6 2.10
XODCEBc LS 1.950 87.4 276.6 1.93
DOMQIHd LS 1.962 83.8 280.7 2.02
QIDJET01e LS 1.970 90.3 341.3 2.47
QIDJETe HS 2.184 145.5 553.3 5.88
DOMQUTd LS 1.991 88.5 320.0 2.48
DOMQUT02d HS 2.183 139.6 486.9 5.31
Notes: (a) Gentili et al. (2015[Gentili, D., Demitri, N., Schäfer, B., Liscio, F., Bergenti, I., Ruani, G., Ruben, M. & Cavallini, M. (2015). J. Mater. Chem. C. 3, 7836-7844.]); (b) Senthil Kumar et al. (2015[Senthil Kumar, K., Šalitroš, I., Heinrich, B., Fuhr, O. & Ruben, M. (2015). J. Mater. Chem. C. 3, 11635-11644.]); (c) Shiga et al. (2019[Shiga, T., Saiki, R., Akiyama, L., Kumai, R., Natke, D., Renz, F., Cameron, J. M., Newton, G. N. & Oshio, H. (2019). Angew. Chem. Int. Ed. 58, 5658-5662.]); (d) Seredyuk et al. (2014[Seredyuk, M., Znovjyak, K. O., Kusz, J., Nowak, M., Muñoz, M. C. & Real, J. A. (2014). Dalton Trans. 43, 16387-16394.]); (e) Zhang et al. (2007[Zhang, W., Zhao, F., Liu, T., Yuan, M., Wang, Z. M. & Gao, S. (2007). Inorg. Chem. 46, 2541-2555.]).

7. Synthesis and crystallization

The synthesis of the title compound is identical to that reported recently for a similar complex (Seredyuk et al., 2022[Seredyuk, M., Znovjyak, K., Valverde-Muñoz, F. J., da Silva, I., Muñoz, M. C., Moroz, Y. S. & Real, J. A. (2022). J. Am. Chem. Soc. https://doi.org/10.1021/jacs.2c05417.]). It was produced by layering in a standard test tube. The layering sequence was as follows: the bottom layer contains a solution of [Fe(L2)](BF4)2 prepared by dissolving L = 2-[5-(3-bromo-4-meth­oxy­phen­yl)-4H-1,2,4-triazol-3-yl]-6-(1H-pyra­zol-1-yl)pyridine (100 mg, 0.252 mmol) and Fe(BF4)2·6H2O (43 mg, 0.126 mmol) in boiling acetone, to which chloro­form (5 ml) was then added. The middle layer was a methanol–chloro­form mixture (1:10, 10 ml), which was covered by a layer of methanol (10 ml), to which 100 µl of NEt3 was added dropwise. The tube was sealed, and black cubic single crystals appeared in 3–4 weeks (yield ca 60%). Elemental analysis calculated for C36H32Br2FeN12O4: C, 47.39; H, 3.54; N, 18.42. Found: C, 47.11; H, 3.74; N, 18.40.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The highest and lowest remaining electron density peaks are located 1.01 and 0.88 Å, respectively, from the Br2 atom. H atoms were refined as riding [C—H = 0.95–0.98 Å with Uiso(H) = 1.2–1.5Ueq(C)]. O-bound H atoms were refined with Uiso(H) = 1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula [Fe(C17H12BrN6O)2]·2CH4O
Mr 912.40
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 180
a, b, c (Å) 27.4318 (10), 12.6723 (4), 10.6434 (3)
V3) 3699.9 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.63
Crystal size (mm) 0.3 × 0.26 × 0.04
 
Data collection
Diffractometer Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.772, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14160, 6227, 4361
Rint 0.061
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.125, 1.03
No. of reflections 6227
No. of parameters 502
No. of restraints 7
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.25, −0.62
Absolute structure Flack x determined using 1444 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.009 (8)
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2022); cell refinement: CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis{3-(3-bromo-4-methoxyphenyl)-5-[6-(1H-pyrazol-1-yl)pyridin-2-yl]-1,2,4-triazol-3-ato}iron(II) methanol disolvate top
Crystal data top
[Fe(C17H12BrN6O)2]·2CH4ODx = 1.638 Mg m3
Mr = 912.40Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 3167 reflections
a = 27.4318 (10) Åθ = 2.2–25.7°
b = 12.6723 (4) ŵ = 2.63 mm1
c = 10.6434 (3) ÅT = 180 K
V = 3699.9 (2) Å3Plate, clear dark red
Z = 40.3 × 0.26 × 0.04 mm
F(000) = 1840
Data collection top
Xcalibur, Eos
diffractometer
6227 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source4361 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 16.1593 pixels mm-1θmax = 25.0°, θmin = 1.8°
ω scansh = 2932
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 159
Tmin = 0.772, Tmax = 1.000l = 1112
14160 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.057 w = 1/[σ2(Fo2) + (0.0468P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.125(Δ/σ)max = 0.001
S = 1.03Δρmax = 1.25 e Å3
6227 reflectionsΔρmin = 0.62 e Å3
502 parametersAbsolute structure: Flack x determined using 1444 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
7 restraintsAbsolute structure parameter: 0.009 (8)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.93947 (6)0.18179 (10)0.18738 (16)0.0755 (6)
Br20.58117 (5)0.86423 (9)0.16575 (14)0.0533 (4)
Fe10.74880 (4)0.51357 (9)0.66488 (14)0.0165 (3)
O10.9850 (3)0.3512 (6)0.0344 (7)0.046 (2)
O20.5033 (3)0.7175 (7)0.0845 (8)0.059 (3)
N10.7925 (3)0.4642 (7)0.7986 (7)0.021 (2)
N20.7854 (3)0.3616 (6)0.8310 (6)0.0190 (19)
N30.7331 (2)0.3663 (5)0.6688 (8)0.0169 (16)
N40.6980 (3)0.5090 (7)0.5358 (7)0.019 (2)
N50.6735 (3)0.5777 (6)0.4591 (7)0.021 (2)
N60.6424 (3)0.4144 (6)0.4290 (7)0.021 (2)
N70.7030 (3)0.5599 (6)0.7956 (7)0.0179 (19)
N80.7095 (3)0.6637 (6)0.8297 (7)0.0203 (19)
N90.7639 (2)0.6605 (5)0.6733 (7)0.0157 (16)
N100.8015 (3)0.5208 (7)0.5376 (7)0.0167 (19)
N110.8252 (3)0.4538 (7)0.4581 (7)0.020 (2)
N120.8561 (3)0.6197 (6)0.4353 (7)0.020 (2)
C10.8232 (4)0.5020 (9)0.8838 (9)0.022 (3)
H10.8360270.5716890.8843920.027*
C20.8342 (4)0.4225 (8)0.9744 (9)0.027 (3)
H20.8542030.4296491.0467660.032*
C30.8103 (3)0.3351 (8)0.9362 (9)0.022 (2)
H30.8108270.2678950.9756460.027*
C40.7534 (3)0.3030 (8)0.7529 (8)0.020 (2)
C50.7444 (3)0.1970 (8)0.7604 (8)0.020 (2)
H50.7604280.1533480.8199440.024*
C60.7104 (3)0.1564 (7)0.6761 (9)0.026 (2)
H60.7035800.0829040.6757270.032*
C70.6865 (3)0.2219 (8)0.5934 (8)0.023 (2)
H70.6623030.1943690.5385430.028*
C80.6979 (3)0.3278 (8)0.5907 (8)0.018 (2)
C90.6790 (3)0.4128 (8)0.5154 (7)0.016 (2)
C100.6407 (4)0.5181 (8)0.3985 (8)0.020 (2)
C110.6061 (3)0.5658 (8)0.3117 (8)0.021 (2)
C120.5688 (4)0.5087 (9)0.2563 (10)0.042 (3)
H120.5666900.4350120.2717270.051*
C130.5339 (4)0.5569 (9)0.1775 (13)0.049 (3)
H130.5086610.5153890.1413890.059*
C140.5360 (4)0.6632 (9)0.1525 (11)0.034 (3)
C150.5737 (3)0.7203 (9)0.2037 (9)0.029 (3)
C160.6080 (4)0.6728 (8)0.2824 (9)0.026 (3)
H160.6334270.7146860.3169510.031*
C170.4597 (5)0.6610 (12)0.0437 (14)0.085 (6)
H17A0.4369600.7106750.0042570.128*
H17B0.4439700.6281330.1166110.128*
H17C0.4687520.6063050.0170040.128*
C180.6699 (4)0.5218 (9)0.8754 (9)0.027 (3)
H180.6569750.4523220.8729070.033*
C190.6568 (4)0.6007 (9)0.9651 (9)0.028 (3)
H190.6345760.5937891.0330200.033*
C200.6829 (4)0.6878 (8)0.9327 (9)0.022 (2)
H200.6824360.7539100.9748320.026*
C210.7426 (3)0.7227 (8)0.7576 (8)0.019 (2)
C220.7510 (4)0.8292 (8)0.7670 (9)0.024 (2)
H220.7342180.8716980.8263910.029*
C230.7855 (3)0.8719 (7)0.6848 (9)0.028 (2)
H230.7922620.9454510.6866810.033*
C250.8098 (4)0.8074 (8)0.6009 (9)0.024 (2)
H250.8336050.8363050.5459770.029*
C260.7993 (3)0.7007 (8)0.5971 (8)0.015 (2)
C270.8201 (3)0.6167 (8)0.5207 (8)0.017 (2)
C280.8572 (3)0.5168 (9)0.3993 (8)0.022 (2)
C290.8908 (3)0.4756 (8)0.3034 (9)0.021 (2)
C300.9141 (4)0.5434 (9)0.2193 (8)0.028 (3)
H300.9081220.6171200.2230760.034*
C310.9464 (4)0.5030 (10)0.1295 (9)0.029 (3)
H310.9628980.5500640.0745110.034*
C320.9544 (4)0.3969 (10)0.1196 (9)0.034 (3)
C330.9309 (4)0.3287 (9)0.2023 (10)0.037 (3)
C340.8993 (4)0.3676 (9)0.2928 (9)0.029 (3)
H340.8833590.3201390.3482460.035*
C351.0089 (5)0.4170 (10)0.0556 (11)0.062 (4)
H35A1.0263810.3728770.1163800.093*
H35B1.0321480.4632880.0124600.093*
H35C0.9846620.4600360.0997180.093*
O30.8946 (3)0.8132 (7)0.3501 (8)0.054 (2)
H3A0.8897700.7495150.3683230.080*
C360.9355 (6)0.8495 (13)0.4134 (18)0.101 (6)
H36A0.9646690.8161160.3783240.151*
H36B0.9327200.8318200.5027340.151*
H36C0.9378690.9262350.4037630.151*
O40.6173 (3)0.2092 (6)0.3391 (7)0.040 (2)
H40.6201550.2747420.3485130.059*
C240.5796 (4)0.1885 (10)0.2562 (11)0.054 (4)
H24A0.5819280.1152980.2270280.082*
H24B0.5819530.2363230.1840820.082*
H24C0.5483140.1991540.2986800.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0982 (11)0.0278 (8)0.1007 (13)0.0159 (8)0.0583 (11)0.0030 (9)
Br20.0659 (8)0.0299 (7)0.0640 (8)0.0033 (6)0.0228 (9)0.0170 (8)
Fe10.0203 (6)0.0113 (7)0.0179 (6)0.0009 (6)0.0005 (7)0.0006 (8)
O10.048 (5)0.041 (6)0.050 (5)0.001 (4)0.030 (4)0.010 (4)
O20.048 (5)0.050 (6)0.077 (6)0.010 (5)0.044 (4)0.030 (5)
N10.023 (5)0.016 (5)0.023 (5)0.008 (4)0.003 (4)0.001 (4)
N20.028 (5)0.011 (5)0.019 (4)0.001 (4)0.007 (3)0.007 (4)
N30.027 (4)0.011 (4)0.013 (4)0.003 (3)0.008 (4)0.004 (4)
N40.028 (5)0.015 (5)0.013 (4)0.001 (4)0.000 (3)0.001 (4)
N50.021 (5)0.010 (5)0.031 (5)0.005 (4)0.001 (4)0.009 (4)
N60.025 (5)0.015 (5)0.022 (5)0.002 (4)0.004 (4)0.000 (4)
N70.024 (5)0.010 (5)0.020 (4)0.002 (4)0.008 (4)0.004 (4)
N80.030 (5)0.009 (5)0.022 (5)0.002 (4)0.001 (4)0.007 (4)
N90.026 (4)0.009 (4)0.013 (4)0.001 (3)0.008 (4)0.002 (4)
N100.015 (4)0.016 (5)0.018 (4)0.000 (4)0.004 (3)0.002 (4)
N110.027 (5)0.014 (5)0.017 (5)0.005 (4)0.005 (4)0.010 (4)
N120.024 (5)0.010 (5)0.026 (5)0.004 (4)0.004 (4)0.003 (4)
C10.019 (6)0.013 (6)0.034 (6)0.003 (5)0.003 (5)0.002 (5)
C20.033 (6)0.022 (7)0.025 (6)0.008 (6)0.006 (5)0.001 (5)
C30.029 (6)0.018 (6)0.020 (5)0.011 (5)0.005 (4)0.005 (4)
C40.025 (6)0.018 (6)0.015 (5)0.001 (5)0.004 (4)0.001 (4)
C50.027 (6)0.013 (6)0.020 (5)0.003 (5)0.003 (4)0.007 (4)
C60.034 (5)0.020 (5)0.026 (6)0.005 (5)0.007 (6)0.001 (6)
C70.028 (6)0.024 (7)0.018 (5)0.000 (5)0.005 (4)0.005 (5)
C80.018 (5)0.013 (6)0.022 (5)0.003 (5)0.004 (4)0.006 (4)
C90.021 (6)0.016 (6)0.009 (5)0.001 (5)0.002 (4)0.000 (4)
C100.025 (6)0.018 (7)0.018 (5)0.001 (5)0.002 (4)0.003 (4)
C110.022 (6)0.021 (6)0.021 (5)0.005 (5)0.002 (4)0.003 (5)
C120.039 (8)0.023 (7)0.064 (8)0.007 (6)0.007 (6)0.015 (6)
C130.039 (6)0.042 (8)0.066 (8)0.014 (6)0.033 (7)0.012 (8)
C140.026 (5)0.041 (7)0.035 (6)0.002 (5)0.009 (5)0.021 (6)
C150.026 (6)0.031 (7)0.028 (6)0.001 (5)0.002 (5)0.013 (5)
C160.026 (6)0.021 (6)0.031 (6)0.003 (5)0.007 (5)0.001 (5)
C170.069 (10)0.081 (12)0.105 (11)0.027 (9)0.065 (9)0.032 (9)
C180.031 (7)0.018 (7)0.032 (6)0.000 (6)0.001 (5)0.004 (5)
C190.039 (7)0.028 (7)0.017 (5)0.006 (6)0.009 (5)0.000 (5)
C200.027 (6)0.019 (6)0.019 (5)0.009 (5)0.007 (4)0.003 (5)
C210.022 (6)0.015 (6)0.019 (5)0.005 (5)0.006 (4)0.003 (4)
C220.026 (6)0.023 (6)0.023 (5)0.001 (5)0.005 (4)0.005 (5)
C230.046 (6)0.009 (5)0.028 (6)0.002 (5)0.001 (6)0.002 (5)
C250.030 (6)0.018 (6)0.023 (5)0.007 (5)0.001 (4)0.005 (5)
C260.013 (5)0.014 (6)0.020 (5)0.002 (5)0.002 (4)0.002 (4)
C270.021 (5)0.021 (6)0.010 (5)0.007 (5)0.003 (4)0.001 (4)
C280.016 (5)0.025 (7)0.023 (6)0.002 (5)0.000 (4)0.002 (5)
C290.018 (5)0.025 (7)0.020 (5)0.005 (5)0.000 (4)0.004 (5)
C300.030 (6)0.030 (7)0.026 (5)0.008 (6)0.004 (5)0.011 (5)
C310.020 (6)0.038 (8)0.028 (6)0.007 (6)0.003 (4)0.001 (5)
C320.033 (7)0.041 (8)0.028 (6)0.010 (6)0.001 (5)0.005 (5)
C330.050 (7)0.028 (7)0.033 (7)0.007 (6)0.004 (6)0.008 (5)
C340.025 (6)0.031 (7)0.032 (6)0.004 (6)0.012 (5)0.001 (5)
C350.072 (10)0.057 (11)0.056 (8)0.007 (9)0.038 (8)0.005 (8)
O30.067 (6)0.023 (5)0.070 (6)0.009 (5)0.009 (5)0.013 (4)
C360.058 (11)0.065 (13)0.179 (18)0.023 (10)0.015 (12)0.025 (12)
O40.044 (5)0.021 (5)0.053 (5)0.003 (4)0.018 (4)0.012 (4)
C240.060 (9)0.047 (10)0.056 (9)0.012 (8)0.019 (7)0.022 (7)
Geometric parameters (Å, º) top
Br1—C331.883 (11)C11—C121.384 (14)
Br2—C151.879 (11)C11—C161.392 (13)
Fe1—N11.964 (8)C12—H120.9500
Fe1—N31.916 (7)C12—C131.412 (14)
Fe1—N41.958 (8)C13—H130.9500
Fe1—N71.964 (8)C13—C141.374 (14)
Fe1—N91.909 (6)C14—C151.375 (13)
Fe1—N101.982 (8)C15—C161.396 (13)
O1—C321.364 (12)C16—H160.9500
O1—C351.430 (13)C17—H17A0.9800
O2—C141.342 (11)C17—H17B0.9800
O2—C171.462 (14)C17—H17C0.9800
N1—N21.359 (10)C18—H180.9500
N1—C11.328 (12)C18—C191.429 (14)
N2—C31.354 (11)C19—H190.9500
N2—C41.418 (12)C19—C201.360 (14)
N3—C41.324 (11)C20—H200.9500
N3—C81.363 (11)C21—C221.373 (13)
N4—N51.370 (11)C22—H220.9500
N4—C91.344 (12)C22—C231.398 (13)
N5—C101.340 (12)C23—H230.9500
N6—C91.361 (11)C23—C251.382 (13)
N6—C101.354 (12)C25—H250.9500
N7—N81.376 (10)C25—C261.384 (13)
N7—C181.334 (12)C26—C271.455 (13)
N8—C201.352 (11)C28—C291.472 (13)
N8—C211.404 (11)C29—C301.395 (14)
N9—C211.329 (11)C29—C341.393 (13)
N9—C261.365 (11)C30—H300.9500
N10—N111.364 (11)C30—C311.399 (12)
N10—C271.331 (12)C31—H310.9500
N11—C281.341 (12)C31—C321.367 (15)
N12—C271.341 (11)C32—C331.393 (15)
N12—C281.359 (12)C33—C341.385 (14)
C1—H10.9500C34—H340.9500
C1—C21.426 (13)C35—H35A0.9800
C2—H20.9500C35—H35B0.9800
C2—C31.350 (14)C35—H35C0.9800
C3—H30.9500O3—H3A0.8400
C4—C51.369 (12)O3—C361.387 (16)
C5—H50.9500C36—H36A0.9800
C5—C61.392 (13)C36—H36B0.9800
C6—H60.9500C36—H36C0.9800
C6—C71.376 (13)O4—H40.8400
C7—H70.9500O4—C241.384 (12)
C7—C81.379 (13)C24—H24A0.9800
C8—C91.440 (13)C24—H24B0.9800
C10—C111.456 (13)C24—H24C0.9800
N1—Fe1—N788.4 (3)O2—C14—C13125.4 (10)
N1—Fe1—N1093.7 (3)O2—C14—C15116.5 (10)
N3—Fe1—N179.1 (3)C13—C14—C15118.1 (10)
N3—Fe1—N480.0 (3)C14—C15—Br2120.5 (7)
N3—Fe1—N797.6 (3)C14—C15—C16121.2 (10)
N3—Fe1—N10102.9 (3)C16—C15—Br2118.3 (8)
N4—Fe1—N1159.1 (4)C11—C16—C15121.9 (9)
N4—Fe1—N793.0 (3)C11—C16—H16119.1
N4—Fe1—N1092.3 (3)C15—C16—H16119.1
N7—Fe1—N10159.4 (3)O2—C17—H17A109.5
N9—Fe1—N198.3 (3)O2—C17—H17B109.5
N9—Fe1—N3176.0 (4)O2—C17—H17C109.5
N9—Fe1—N4102.5 (3)H17A—C17—H17B109.5
N9—Fe1—N779.3 (3)H17A—C17—H17C109.5
N9—Fe1—N1080.2 (3)H17B—C17—H17C109.5
C32—O1—C35118.7 (10)N7—C18—H18125.0
C14—O2—C17117.1 (10)N7—C18—C19110.1 (10)
N2—N1—Fe1113.6 (6)C19—C18—H18125.0
C1—N1—Fe1140.1 (8)C18—C19—H19127.3
C1—N1—N2105.3 (8)C20—C19—C18105.4 (9)
N1—N2—C4116.2 (7)C20—C19—H19127.3
C3—N2—N1111.9 (8)N8—C20—C19107.8 (9)
C3—N2—C4131.9 (8)N8—C20—H20126.1
C4—N3—Fe1120.6 (6)C19—C20—H20126.1
C4—N3—C8119.6 (8)N9—C21—N8109.7 (8)
C8—N3—Fe1119.6 (6)N9—C21—C22123.9 (9)
N5—N4—Fe1138.5 (7)C22—C21—N8126.3 (9)
C9—N4—Fe1114.6 (6)C21—C22—H22121.6
C9—N4—N5106.8 (8)C21—C22—C23116.7 (9)
C10—N5—N4105.0 (8)C23—C22—H22121.6
C10—N6—C9101.7 (8)C22—C23—H23120.0
N8—N7—Fe1113.0 (6)C25—C23—C22120.1 (9)
C18—N7—Fe1141.1 (7)C25—C23—H23120.0
C18—N7—N8105.5 (8)C23—C25—H25120.1
N7—N8—C21116.6 (7)C23—C25—C26119.8 (9)
C20—N8—N7111.1 (8)C26—C25—H25120.1
C20—N8—C21132.2 (8)N9—C26—C25119.7 (8)
C21—N9—Fe1121.0 (6)N9—C26—C27109.8 (8)
C21—N9—C26119.5 (8)C25—C26—C27130.5 (9)
C26—N9—Fe1119.4 (6)N10—C27—N12113.6 (9)
N11—N10—Fe1138.0 (7)N10—C27—C26116.2 (8)
C27—N10—Fe1114.5 (6)N12—C27—C26130.3 (9)
C27—N10—N11107.5 (8)N11—C28—N12115.1 (9)
C28—N11—N10103.3 (8)N11—C28—C29121.5 (10)
C27—N12—C28100.4 (8)N12—C28—C29123.3 (9)
N1—C1—H1125.1C30—C29—C28121.0 (10)
N1—C1—C2109.9 (10)C34—C29—C28120.6 (9)
C2—C1—H1125.1C34—C29—C30118.4 (9)
C1—C2—H2127.1C29—C30—H30119.9
C3—C2—C1105.9 (9)C29—C30—C31120.2 (11)
C3—C2—H2127.1C31—C30—H30119.9
N2—C3—H3126.5C30—C31—H31119.5
C2—C3—N2106.9 (9)C32—C31—C30120.9 (10)
C2—C3—H3126.5C32—C31—H31119.5
N3—C4—N2109.9 (8)O1—C32—C31124.6 (10)
N3—C4—C5123.8 (8)O1—C32—C33116.2 (11)
C5—C4—N2126.3 (8)C31—C32—C33119.2 (10)
C4—C5—H5121.7C32—C33—Br1120.2 (8)
C4—C5—C6116.5 (9)C34—C33—Br1119.3 (9)
C6—C5—H5121.7C34—C33—C32120.5 (11)
C5—C6—H6119.7C29—C34—H34119.6
C7—C6—C5120.6 (9)C33—C34—C29120.7 (10)
C7—C6—H6119.7C33—C34—H34119.6
C6—C7—H7120.3O1—C35—H35A109.5
C6—C7—C8119.5 (9)O1—C35—H35B109.5
C8—C7—H7120.3O1—C35—H35C109.5
N3—C8—C7119.8 (9)H35A—C35—H35B109.5
N3—C8—C9109.1 (8)H35A—C35—H35C109.5
C7—C8—C9131.1 (9)H35B—C35—H35C109.5
N4—C9—N6112.4 (8)C36—O3—H3A109.5
N4—C9—C8116.6 (8)O3—C36—H36A109.5
N6—C9—C8130.8 (9)O3—C36—H36B109.5
N5—C10—N6114.0 (9)O3—C36—H36C109.5
N5—C10—C11120.6 (9)H36A—C36—H36B109.5
N6—C10—C11125.3 (9)H36A—C36—H36C109.5
C12—C11—C10122.3 (10)H36B—C36—H36C109.5
C12—C11—C16116.3 (9)C24—O4—H4109.5
C16—C11—C10121.4 (9)O4—C24—H24A109.5
C11—C12—H12119.1O4—C24—H24B109.5
C11—C12—C13121.9 (10)O4—C24—H24C109.5
C13—C12—H12119.1H24A—C24—H24B109.5
C12—C13—H13119.7H24A—C24—H24C109.5
C14—C13—C12120.6 (10)H24B—C24—H24C109.5
C14—C13—H13119.7
Br1—C33—C34—C29177.7 (8)C3—N2—C4—N3172.4 (9)
Br2—C15—C16—C11177.8 (7)C3—N2—C4—C58.0 (16)
Fe1—N1—N2—C3169.9 (6)C4—N2—C3—C2178.2 (9)
Fe1—N1—N2—C48.8 (10)C4—N3—C8—C74.9 (13)
Fe1—N1—C1—C2165.1 (8)C4—N3—C8—C9175.6 (8)
Fe1—N3—C4—N20.4 (10)C4—C5—C6—C72.0 (13)
Fe1—N3—C4—C5179.2 (7)C5—C6—C7—C82.7 (14)
Fe1—N3—C8—C7179.9 (7)C6—C7—C8—N30.7 (14)
Fe1—N3—C8—C90.5 (10)C6—C7—C8—C9179.8 (9)
Fe1—N4—N5—C10176.2 (7)C7—C8—C9—N4179.9 (9)
Fe1—N4—C9—N6177.2 (6)C7—C8—C9—N63.8 (17)
Fe1—N4—C9—C80.5 (10)C8—N3—C4—N2174.6 (7)
Fe1—N7—N8—C20170.3 (6)C8—N3—C4—C55.7 (14)
Fe1—N7—N8—C217.5 (9)C9—N4—N5—C100.7 (10)
Fe1—N7—C18—C19167.7 (8)C9—N6—C10—N50.4 (11)
Fe1—N9—C21—N81.0 (10)C9—N6—C10—C11177.5 (9)
Fe1—N9—C21—C22178.6 (7)C10—N6—C9—N40.1 (10)
Fe1—N9—C26—C25178.7 (7)C10—N6—C9—C8176.3 (10)
Fe1—N9—C26—C270.7 (10)C10—C11—C12—C13176.6 (10)
Fe1—N10—N11—C28180.0 (7)C10—C11—C16—C15177.1 (9)
Fe1—N10—C27—N12179.3 (6)C11—C12—C13—C140.4 (19)
Fe1—N10—C27—C260.1 (10)C12—C11—C16—C151.3 (15)
O1—C32—C33—Br13.1 (13)C12—C13—C14—O2176.3 (11)
O1—C32—C33—C34179.6 (10)C12—C13—C14—C151.6 (19)
O2—C14—C15—Br25.6 (14)C13—C14—C15—Br2176.3 (9)
O2—C14—C15—C16176.0 (10)C13—C14—C15—C162.1 (17)
N1—N2—C3—C20.3 (11)C14—C15—C16—C110.6 (16)
N1—N2—C4—N36.1 (11)C16—C11—C12—C131.9 (16)
N1—N2—C4—C5173.6 (9)C17—O2—C14—C136.0 (19)
N1—C1—C2—C32.4 (12)C17—O2—C14—C15171.9 (11)
N2—N1—C1—C22.2 (11)C18—N7—N8—C203.1 (10)
N2—C4—C5—C6178.2 (8)C18—N7—N8—C21179.0 (8)
N3—C4—C5—C62.2 (14)C18—C19—C20—N80.6 (12)
N3—C8—C9—N40.6 (11)C20—N8—C21—N9172.9 (9)
N3—C8—C9—N6176.7 (8)C20—N8—C21—C229.5 (16)
N4—N5—C10—N60.7 (11)C21—N8—C20—C19179.8 (9)
N4—N5—C10—C11177.2 (8)C21—N9—C26—C255.5 (12)
N5—N4—C9—N60.5 (10)C21—N9—C26—C27175.1 (8)
N5—N4—C9—C8177.3 (8)C21—C22—C23—C251.0 (14)
N5—C10—C11—C12173.9 (9)C22—C23—C25—C261.0 (14)
N5—C10—C11—C164.5 (15)C23—C25—C26—N92.3 (13)
N6—C10—C11—C123.9 (15)C23—C25—C26—C27178.5 (9)
N6—C10—C11—C16177.7 (9)C25—C26—C27—N10178.9 (9)
N7—N8—C20—C192.3 (11)C25—C26—C27—N121.9 (17)
N7—N8—C21—N94.4 (11)C26—N9—C21—N8176.6 (7)
N7—N8—C21—C22173.2 (9)C26—N9—C21—C225.7 (14)
N7—C18—C19—C201.4 (12)C27—N10—N11—C280.4 (10)
N8—N7—C18—C192.7 (11)C27—N12—C28—N110.9 (11)
N8—C21—C22—C23179.6 (8)C27—N12—C28—C29179.4 (8)
N9—C21—C22—C232.4 (14)C28—N12—C27—N101.1 (10)
N9—C26—C27—N100.4 (11)C28—N12—C27—C26179.6 (9)
N9—C26—C27—N12178.8 (9)C28—C29—C30—C31179.4 (8)
N10—N11—C28—N120.3 (11)C28—C29—C34—C33179.8 (9)
N10—N11—C28—C29180.0 (8)C29—C30—C31—C322.1 (15)
N11—N10—C27—N121.0 (10)C30—C29—C34—C331.1 (15)
N11—N10—C27—C26179.6 (8)C30—C31—C32—O1179.6 (9)
N11—C28—C29—C30162.3 (9)C30—C31—C32—C331.4 (15)
N11—C28—C29—C3416.3 (14)C31—C32—C33—Br1177.8 (8)
N12—C28—C29—C3018.0 (15)C31—C32—C33—C340.6 (16)
N12—C28—C29—C34163.4 (9)C32—C33—C34—C290.4 (16)
C1—N1—N2—C31.2 (10)C34—C29—C30—C311.9 (14)
C1—N1—N2—C4180.0 (8)C35—O1—C32—C313.0 (16)
C1—C2—C3—N21.6 (11)C35—O1—C32—C33178.0 (10)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C11–C16 and C29–C34 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C17···N6i3.201 (16)
O3—H3A···N120.842.022.820 (12)160
O4—H4···N60.842.062.855 (11)158
C1—H1···O4ii0.952.223.128 (14)161
C18—H18···O3iii0.952.273.192 (14)163
C35—H35A···C30iv0.982.623.233 (16)121
C3—H3···N5iii0.952.453.301 (13)148
C7—H7···O40.952.463.310 (11)148
C22—H22···N11ii0.952.393.317 (13)166
C20—H20···N11ii0.952.553.389 (13)148
C5—H5···N5iii0.952.533.440 (12)161
C17—H17A···O4i0.982.523.451 (17)159
C34—H34···C20v0.952.633.535 (15)159
C25—H25···O30.952.693.542 (13)150
C18—H18···C36iii0.952.883.65 (2)138
C2—H2···C31vi0.952.843.639 (15)143
C2—H2···C32vi0.952.893.656 (15)139
C2—H2···C30vi0.952.863.734 (11)154
C2—H2···Cg2vi0.952.573.501 (11)168
C19—H19···Cg1vi0.952.743.681 (11)169
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x+2, y+1, z1/2; (v) x+3/2, y1/2, z1/2; (vi) x, y, z+1.
Computed distortion indices (Å,°) for the title compound and similar complexes reported in the literature top
CSD refcodeSpin state<Fe—N>ΣΘCShM(Oh)
Title compoundLS1.94993.3298.82.24
IGERIXaHS2.179149.7553.26.06
IGERIX01aLS1.986105.6350.62.85
LUTGEObLS1.93385.0309.62.10
XODCEBcLS1.95087.4276.61.93
DOMQIHdLS1.96283.8280.72.02
QIDJET01eLS1.97090.3341.32.47
QIDJETeHS2.184145.5553.35.88
DOMQUTdLS1.99188.5320.02.48
DOMQUT02dHS2.183139.6486.95.31
Notes: (a) Gentili et al. (2015); (b) Senthil Kumar et al., 2015); (c) Shiga et al. (2019); (d) Seredyuk et al. (2014); (e) Zhang et al. (2007).
Geometry (Å, °) of hydrogen bonds and C···N interactions in the title compound. top
D–H···AD–HD···AH···AD–H···ASymmetry operation
C17···N6-3.20 (2)--1-x,1-y,-1/2+z
O3-H···N120.84 (1)2.82 (1)2.02 (1)159.5 (5)x,y,z
O4-H···N60.84 (1)2.86 (1)2.06 (2)158.0 (5)x,y,z
C1-H···O40.95 (1)3.13 (1)2.22 (1)160.6 (5)1.5-x,1/2+y,1/2+z
C18-H···O30.95 (1)3.19 (1)2.27 (1)162.6 (5)1.5-x,-1/2+y,1/2+z
C35-H···C300.95 (1)3.23 (2)2.62 (2)121.0 (5)2-x,1-y,-1/2+z
C3-H···N50.95 (1)3.30 (1)2.46 (2)148.4 (5)1.5-x,-1/2+y,1/2+z
C7-H···O40.95 (1)3.31 (1)2.46 (1)148.4 (5)x,y,z
C22-H···N110.95 (1)3.32 (1)2.39 (1)165.6 (5)1.5-x,1/2+y,1/2+z
C20-H···N110.95 (1)3.39 (1)2.55 (2)147.6 (5)1.5-x,1/2+y,1/2+z
C5-H···N50.95 (1)3.44 (1)2.53 (2)160.7 (5)1.5-x,-1/2+y,1/2+z
C17-H···O40.95 (1)3.45 (2)2.52 (2)159.1 (5)1-x,1-y,-1/2+z
C34-H···C200.95 (1)3.53 (2)2.63 (1)159.1 (5)1.5-x,-1/2+y,-1/2+z
C25-H···O30.95 (1)3.54 (1)2.69 (1)149.6 (5)x,y,z
C18-H···C360.95 (1)3.65 (2)2.88 (1)138.0 (5)1.5-x,-1/2+y,1/2+z
C2–H···C310.95 (1)3.64 (2)2.84 (1)143.0 (5)x,y,1+z
C2-H···C320.95 (1)3.66 (2)2.89 (2)139.0 (5)x,y,1+z
C2–H···C300.95 (1)3.73 (1)2.86 (1)154.4 (5)x,y,1+z

Acknowledgements

Author contributions are as follows: Conceptualization, KZ and MS; methodology, KZ; formal analysis, IOF; synthesis, SOM; single-crystal measurements, SS; writing (original draft), MS; writing (review and editing of the manuscript), TYS, MS; visualization and calculations, KZ, VMA; funding acquisition, MS, IOF, VMA.

Funding information

Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant No. 22BF037-03, 22BF037-04).

References

First citationBartual-Murgui, C., Piñeiro-López, L., Valverde-Muñoz, F. J., Muñoz, M. C., Seredyuk, M. & Real, J. A. (2017). Inorg. Chem. 56, 13535–13546.  Web of Science CAS PubMed Google Scholar
First citationBonhommeau, S., Lacroix, P. G., Talaga, D., Bousseksou, A., Seredyuk, M., Fritsky, I. O. & Rodriguez, V. (2012). J. Phys. Chem. C, 116, 11251–11255.  Web of Science CrossRef CAS Google Scholar
First citationChang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814–6827.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDrew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035–1038.  CSD CrossRef Web of Science Google Scholar
First citationGentili, D., Demitri, N., Schäfer, B., Liscio, F., Bergenti, I., Ruani, G., Ruben, M. & Cavallini, M. (2015). J. Mater. Chem. C. 3, 7836–7844.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1–47.  Google Scholar
First citationHalcrow, M. A. (2014). New J. Chem. 38, 1868–1882.  Web of Science CrossRef CAS Google Scholar
First citationHalcrow, M. A., Capel Berdiell, I., Pask, C. M. & Kulmaczewski, R. (2019). Inorg. Chem. 58, 9811–9821.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKershaw Cook, L. J., Mohammed, R., Sherborne, G., Roberts, T. D., Alvarez, S. & Halcrow, M. A. (2015). Coord. Chem. Rev. 289–290, 2–12.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSchäfer, B., Rajnák, C., Šalitroš, I., Fuhr, O., Klar, D., Schmitz-Antoniak, C., Weschke, E., Wende, H. & Ruben, M. (2013). Chem. Commun. 49, 10986.  Google Scholar
First citationSenthil Kumar, K., Šalitroš, I., Heinrich, B., Fuhr, O. & Ruben, M. (2015). J. Mater. Chem. C. 3, 11635–11644.  CSD CrossRef CAS Google Scholar
First citationSeredyuk, M., Znovjyak, K., Valverde-Muñoz, F. J., da Silva, I., Muñoz, M. C., Moroz, Y. S. & Real, J. A. (2022). J. Am. Chem. Soc. https://doi.org/10.1021/jacs.2c05417.  Google Scholar
First citationSeredyuk, M., Znovjyak, K. O., Kusz, J., Nowak, M., Muñoz, M. C. & Real, J. A. (2014). Dalton Trans. 43, 16387–16394.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShiga, T., Saiki, R., Akiyama, L., Kumai, R., Natke, D., Renz, F., Cameron, J. M., Newton, G. N. & Oshio, H. (2019). Angew. Chem. Int. Ed. 58, 5658–5662.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuryadevara, N., Mizuno, A., Spieker, L., Salamon, S., Sleziona, S., Maas, A., Pollmann, E., Heinrich, B., Schleberger, M., Wende, H., Kuppusamy, S. K. & Ruben, M. (2022). Chem. Eur. J. 28, e202103853.  PubMed Google Scholar
First citationValverde–Muñoz, F., Seredyuk, M., Muñoz, M. C., Molnár, G., Bibik, Y. S. & Real, J. A. (2020). Angew. Chem. Int. Ed. 59, 18632–18638.  Google Scholar
First citationZhang, W., Zhao, F., Liu, T., Yuan, M., Wang, Z. M. & Gao, S. (2007). Inorg. Chem. 46, 2541–2555.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds