research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of 2-(1,3-dithietan-2-yl­­idene)cyclo­hexane-1,3-dione

crossmark logo

aLaboratoire de Cristallographie, Département de Physique, Université des Frères Mentouri de Constantine-1, 25000 Constantine, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (URCHEMS), Département de Chimie, Université des Frères Mentouri de Constantine-1, 25000 Constantine, Algeria, and cFaculté de Technologie, Université Mohamed Boudiaf, M'sila, Algeria
*Correspondence e-mail: souheila_chetioui@umc.edu.dz

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 4 July 2022; accepted 9 October 2022; online 13 October 2022)

The title compound, C8H8O2S2, contains a cyclo­hexane-1,3-dione ring, which has a twist-boat conformation. The C2S2 ring is close to planar (r.m.s. deviation = 0.023 Å) and the dihedral angle between the mean planes of the cyclo­hexane and 1,3-dithietane rings is 9.1 (3)°. Short intra­molecular S⋯O contacts occur [2.719 (5) and 2.740 (5) Å]. In the crystal, the mol­ecules are linked by weak C—H⋯S hydrogen bonds and short [3.165 (5) Å] S⋯O contacts, forming (010) layers. The prevalence of these inter­actions is illustrated by an analysis of the three-dimensional Hirshfeld surface and by two-dimensional fingerprint plots.

1. Chemical context

Ketene di­thio­acetals are useful inter­mediates in organic synthesis and have been used for the preparation of heterocyclic compounds (Kolb, 1990[Kolb, M. (1990). Synthesis, pp. 171-190.]; Ila et al., 2001[Ila, H., Junjappa, H. & Barun, O. (2001). J. Organomet. Chem. 624, 34-40.]). The synthesis of tri­fluoro­methyl ketene di­thio­acetals has applications in the field of pharmaceuticals and agrochemicals (Gouault-Bironneau et al., 2012[Gouault-Bironneau, S., Timoshenko, V. M., Grellepois, F. & Portella, C. (2012). J. Fluor. Chem. 134, 164-171.]; Timoshenko & Portella, 2009[Timoshenko, V. M. & Portella, C. (2009). J. Fluor. Chem. 130, 586-590.]). The functionalization of ketene di­thio­acetals provides more powerful tools for the development of new inter­mediates (Wang et al., 2011[Wang, H., Zhao, Y.-L., Ren, C.-Q., Diallo, A. & Liu, Q. (2011). Chem. Commun. 47, 12316-12318.]; Gao et al., 2010[Gao, X., Di, C.-A., Hu, Y., Yang, X., Fan, H., Zhang, F., Liu, Y., Li, H. & Zhu, D. (2010). J. Am. Chem. Soc. 132, 3697-3699.]; Hu et al., 2012[Hu, Y., Qin, Y., Gao, X., Zhang, F., Di, C.-A., Zhao, Z., Li, H. & Zhu, D. (2012). Org. Lett. 14, 292-295.]). The direct formation of a C—C bond has been carried out by reacting a cyano ketene di­thio­acetal and Morita–Baylis–Hillman (MBH) alcohols resulting from the reaction of acrylo­nitrile and aryl aldehydes. This reaction led to the corresponding 1,4-penta­diene deriv­atives (Zhao et al., 2007[Zhao, Y.-L., Chen, L., Liu, Q. & Li, D.-W. (2007). Synlett, pp. 37-42.]). Fiala et al. (2007[Fiala, A., Chibani, A., Darchen, A., Boulkamh, A. & Djebbar, K. (2007). Appl. Surf. Sci. 253, 9347-9356.]) have studied the inhibitive action of some synthetic ketene di­thio­acetal deriv­atives towards the corrosion of copper in aerated nitric acid solutions. They concluded that these compounds are good inhibitors of copper corrosion in this medium. In the present study, we report the synthesis, crystal structure and Hirshfeld surface analysis of the new title 1,3-di­thian-2-yl­idene derivative, C8H8O2S2, (I)[link].

[Scheme 1]

2. Structural commentary

In the mol­ecular structure of (I)[link], the cyclo­hexane and dithietane rings are linked by a C=C bond of 1.364 (8) Å (Fig. 1[link]). The cyclo­hexane-1,3-dione ring adopts a twist-boat conformation, as seen in related compounds (Kuppan Chandralekha et al., 2016[Chandralekha, K., Gavaskar, D., Sureshbabu, A. R. & Lakshmi, S. (2016). Acta Cryst. E72, 387-390.]; Liu et al., 2011[Liu, Z.-J., Fu, X.-K., Hu, Z.-K., Wu, X.-J. & Wu, L. (2011). Acta Cryst. E67, o1562.]). Atom C5 is displaced by 0.627 (8) Å with respect to the C2/C3/C4/C6/C7 mean plane, similar to the value observed for 2-[chloro­(4-meth­oxy­phen­yl)meth­yl]-2-(4-meth­oxy­phen­yl)-5,5-di­methyl­cyclo­hexane-1,3-dione (Saloua Chelli et al., 2016[Chelli, S., Troshin, K., Lakhdar, S., Mayr, H. & Mayer, P. (2016). Acta Cryst. E72, 300-303.]). The largest endocyclic angle in the cyclo­hexane ring [C7—C2—C3 = 123.2 (6)°] is located opposite the dithiethan ring and the largest exo-cyclic angle (C6—C7—O2) is 122.3 (5)°. A difference of 1.3° is observed between the angles located on either side of the C1=C2 double bond. In the C2S2 ring, the C1—S1 and C1—S2 bond lengths are indistinguishable at 1.716 (6) Å whereas the C8—S1 and C8—S2 bond lengths differ slightly [1.819 (7) and 1.801 (7) Å, respectively]. The mol­ecule has local Cs symmetry with a non-crystallographic mirror plane passing through atoms C8, C1, C2 and C5. The dihedral angle between the cyclo­hexane (all atoms) and dithietane rings is 9.1 (3)° and short intra­molecular S1⋯O2 [2.719 (5) Å] and S2⋯O1 [2.740 (5) Å] contacts are observed (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] with displacement ellipsoids drawn at the 50% probability level. The short intra­molecular S⋯O contacts are shown as dashed lines.

3. Supra­molecular features

In the crystal, the mol­ecules stack head-to-tail along the b-axis direction. The mol­ecules are linked by C5—H5A⋯S2 hydrogen bonds (Table 1[link]) and short [3.165 (5) Å compared to a van der Waals separation of 3.32 Å] S2⋯O2ii [symmetry code: (ii) [{1\over 2}] − x, y, [{1\over 2}] + z] contacts, forming (010) layers (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯S2i 0.97 2.87 3.844 (8) 178
Symmetry code: (i) [-x, -y+2, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Structure of (I)[link] viewed along the [010] direction, showing the infinite layers propagating parallel to the ac plane. The C—H⋯S and short S⋯O contacts are shown as blue dashed lines.

4. Hirshfeld surface analysis

The nature of the inter­molecular inter­actions in (I)[link] has been computed by CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia.]), using Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). The dnorm plot (Fig. 3[link]) shows red spots corresponding to the C5—H5A⋯S2 hydrogen bond and short S2⋯O2 contact. A list of the relative percentage contributions of the close contacts to the HS of (I)[link] are given in Table 2[link] and the overall two-dimensional fingerprint plot is shown in Fig. 4[link]a. A contribution of 30.7% was found for the H⋯O/O⋯H inter­actions, representing the largest contribution; these contacts are represented by the spikes in the top left (de > di, H⋯O, 14.3%) and bottom right (de < di, O⋯H, 16.5%) of Fig. 4[link]b. Inter­actions of the type H⋯H appear in the middle of the scattered points in the fingerprint plots with a pair of spikes at de + di = 2.5 Å and comprise 25.9% of the entire surface (Fig. 4[link]c); the van der Waals radius for this inter­action is 2.4 Å, which means it is a weak inter­action. The S⋯H/H⋯S contacts (Fig. 4[link]d), which account for 23.8% of the Hirshfeld surface, are displayed on the fingerprint plot as a pair of long spikes at de + di = 2.7Å. This distance differs by 0.3 Å from the sum of the van der Waals radii, which means it is the strongest inter­action present. The S⋯C/C⋯S (4.0%, Fig. 4[link]f) and S⋯O/O ⋯S (3.3%, Fig. 4[link]g) contacts are seen as pairs of spikes at de + di = 3.2 and 3.05 Å, respectively. These distances are shorter than the sums of the van der Waals radii of 3.5 and 3.32 Å, respectively. The C⋯O/O⋯C inter­actions make a contribution of 0.7% to the Hirshfeld surface (Fig. 4[link]h), their inter­atomic distances (de + di = 3.3 Å) being larger than the sum of the van der Waals radius (3.22 Å), so this inter­action is very weak in this structure. The fingerprint plot corresponding to C⋯H/H⋯C contacts (Fig. 4[link]e) shows a fin-like distribution of points with the edges at de + di = 2.8 Å.

Table 2
Relative percentage contributions of the close contacts to the Hirshfeld surface of the title compound

Contact type Percentage contribution
O⋯H/H⋯O 30.7
H⋯H 25.9
S⋯H/H⋯S 23.8
C⋯H/H⋯C 11.6
S⋯C/S⋯C 4.0
S⋯O/O⋯S 3.3
C⋯O/O⋯C 0.7
[Figure 3]
Figure 3
Hirshfeld surface for (I)[link] scaled from −0.16 (red) a.u. to 1.09 (blue) a.u.
[Figure 4]
Figure 4
Two-dimensional finger print plots for (I)[link]: (a) overall, and delineated into contributions from different contacts: (b) H⋯O/O⋯H, (c) H⋯H, (d) H⋯S/S⋯H, (e) C⋯H/H⋯C, (f) C⋯S/S⋯C, (g) O⋯S/S⋯O and (h) C⋯O/O⋯C.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, last update March 2022 ; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 1,3-dithietane fragment yielded three relevant hits. These are di­spiro­[1,3-dithietane-2,2′:4,2′′-diadamantane] (CSD refcode AFECAP; Linden et al., 2002[Linden, A., Fu, C., Majchrzak, A., Mloston, G. & Heimgartner, H. (2002). Acta Cryst. C58, o231-o234.]), trans-2,4-bis­(isoprop­yl)-2,4-bis­[(2-methyl-1-thioxo)propyl­sulfan­yl]-1,3-dithietane (HUZ­HOZ; Mahjoub et al., 2003[Mahjoub, A., Zantour, H., Masson, S., Saquet, M. & Averbuch-Pouchot, M.-T. (2003). Acta Cryst. E59, o545-o546.]) and 2-(nitro­methyl­ene)-1,3-dithietane (WOCQEK; Shanmuga Sundara Raj et al., 2000[Shanmuga Sundara Raj, S., Surya Prakash Rao, H., Sakthikumar, L. & Fun, H.-K. (2000). Acta Cryst. C56, 1113-1114.]): in these compounds the dithietane ring is planar. In (I)[link], the angles C1—S1—C8 and S1—C8—S2 are 82.7 (3) and 93.6 (3)°, respectively, similar to the values observed for the aforementioned compounds, viz. 85.76 and 94.24°, 85.40 and 94.60°, 82.8 and 94.00° for AFECAP, HUZHOZ and WOCQEK, respectively. A search for the cyclo­hexane-1,3-dione fragment revealed over 30 hits. The most relevant structures are 2-(phenyl­amino­methyl­idene)cyclo­hexane-1,3-dione (ISUQAO; Kettmann et al., 2004[Kettmann, V., Lokaj, J., Milata, V., Marko, M. & Štvrtecká, M. (2004). Acta Cryst. C60, o252-o254.]), (E)-5,5-dimethyl-2- [3-(4- nitro­phen­yl)allyl­idene]cyclo­hexane-1,3-dione (VUGVUQ; Jae Kyun Lee et al., 2015[Lee, J. K., Min, S.-J., Cho, Y. S., Kwon, J. H. & Park, J. (2015). Acta Cryst. E71, o485-o486.]), 2-[chloro­(4-meth­oxy­phen­yl)meth­yl]-2-(4-meth­oxy­phen­yl)-5,5-di­methyl­cyclo­hexane-1,3-dione (TAC­ZIJ; Saloua Chelli et al., 2016[Chelli, S., Troshin, K., Lakhdar, S., Mayr, H. & Mayer, P. (2016). Acta Cryst. E72, 300-303.]) and 2-{(1S*,2S*)-2-[(E)-(2,4-di­hydroxy­benzyl­idene)amino]­cyclo­hex­yl}isoindoline-1,3-di­one (EVABIN; Liu et al., 2011[Liu, Z.-J., Fu, X.-K., Hu, Z.-K., Wu, X.-J. & Wu, L. (2011). Acta Cryst. E67, o1562.]). The cyclo­hexane ring adopts a chair conformation in all five of these compounds, as in the title compound.

6. Synthesis and crystallization

Potassium carbonate (0.3 mol, 42 g) in DMF (50 ml) was well stirred at room temperature. To this mixture, cyclo­hexane-1,3-dione (0.1 mol) was added and the resultant solution stirred at room temperature for 20 min. Carbon di­sulfide (0.15 mol, 9.0 ml) was then added in one lot. The reaction mixture was stirred and kept for 10 min at room temperature. Di­iodo­methane (0.12 mol) was added dropwise over 20 min and the reaction mixture stirred for 7 h at room temperature. Ice–water (500 ml) was added to the reaction mass, the solid was filtered and washed with water, dried and recrystallized from ethanol solution to give (I)[link] in the form of colourless plates. Yield 81%; m.p. 487 K; UV (H2O) λmax, 335 nm (ɛ 18760); IR (KBr, cm−1): 1640 (C=O), 1H NMR (CDCl3) δ (ppm): 4.35 (s, 2H, CH2—S), 2.52 (t, J = 6.5 Hz, 4H, CH2—CH2—CH2), 1.97 (q, J = 6.5 Hz, 2H, CH2—CH2—CH2); 13C NMR (CDCl3) δ (ppm): 197.28 (CO),189.73 (C=C—S), 119.93 (C=C—S), 37.31 (CH2—CH2—CH2), 33.39 (CH2—S), 18.62 (CH2—CH2—CH2).

7. Refinement

Crystal data, data collection and structure refinement details for the title compound are summarized in Table 3[link]. H atoms were positioned geometrically with C—H = 0.97 Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C8H8O2S2
Mr 200.28
Crystal system, space group Orthorhombic, Pca21
Temperature (K) 296
a, b, c (Å) 10.7521 (14), 5.5245 (9), 14.480 (2)
V3) 860.1 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.57
Crystal size (mm) 0.13 × 0.06 × 0.01
 
Data collection
Diffractometer Bruker APEXII
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.960, 0.994
No. of measured, independent and observed [I > 2σ(I)] reflections 3646, 1881, 1230
Rint 0.044
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.094, 1.00
No. of reflections 1881
No. of parameters 109
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.30
Absolute structure Flack x determined using 396 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.04 (8)
Computer programs: APEX2 and (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and ORTEP-3 for Windows and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: SAINT (Bruker, 2014); cell refinement: APEX2 (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015b); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015a); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

2-(1,3-Dithietan-2-ylidene)cyclohexane-1,3-dione top
Crystal data top
C8H8O2S2F(000) = 416
Mr = 200.28Dx = 1.547 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 772 reflections
a = 10.7521 (14) Åθ = 3.7–23.4°
b = 5.5245 (9) ŵ = 0.57 mm1
c = 14.480 (2) ÅT = 296 K
V = 860.1 (2) Å3Plate, colorless
Z = 40.13 × 0.06 × 0.01 mm
Data collection top
Bruker APEXII
diffractometer
1881 independent reflections
Radiation source: fine-focus sealed tube1230 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
CCD rotation images, thick slices scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 913
Tmin = 0.960, Tmax = 0.994k = 47
3646 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0343P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1881 reflectionsΔρmax = 0.34 e Å3
109 parametersΔρmin = 0.29 e Å3
1 restraintAbsolute structure: Flack x determined using 396 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 constraintsAbsolute structure parameter: 0.04 (8)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.27332 (13)0.3620 (3)0.53923 (11)0.0371 (5)
S20.16018 (17)0.5982 (3)0.67352 (10)0.0430 (5)
O10.0128 (4)0.9617 (7)0.6058 (4)0.0457 (16)
O20.2139 (4)0.5407 (8)0.3699 (3)0.0520 (19)
C10.1711 (5)0.5968 (10)0.5553 (4)0.0273 (19)
C20.1164 (5)0.7427 (12)0.4911 (4)0.0260 (17)
C30.0319 (5)0.9299 (10)0.5239 (5)0.034 (2)
C40.0307 (6)1.0849 (12)0.4519 (5)0.045 (2)
C50.0404 (7)0.9587 (14)0.3579 (6)0.060 (3)
C60.0814 (7)0.8675 (13)0.3269 (4)0.058 (3)
C70.1416 (6)0.7004 (12)0.3941 (4)0.034 (2)
C80.2644 (7)0.3440 (12)0.6645 (5)0.050 (3)
H4A0.113521.126790.473070.0542*
H4B0.015931.234050.444700.0542*
H5A0.072541.072030.312620.0722*
H5B0.098480.824830.362410.0722*
H6A0.070630.783380.268650.0697*
H6B0.136181.003980.316090.0697*
H8A0.343740.371940.694480.0598*
H8B0.227730.193890.686170.0598*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0410 (8)0.0394 (9)0.0308 (8)0.0115 (8)0.0003 (9)0.0007 (9)
S20.0561 (11)0.0509 (10)0.0219 (7)0.0117 (9)0.0005 (8)0.0001 (10)
O10.052 (3)0.045 (3)0.040 (2)0.011 (2)0.006 (3)0.010 (3)
O20.070 (4)0.058 (3)0.028 (3)0.020 (3)0.008 (3)0.001 (2)
C10.026 (3)0.028 (4)0.028 (3)0.006 (2)0.002 (3)0.000 (3)
C20.027 (3)0.026 (3)0.025 (3)0.002 (3)0.001 (3)0.000 (3)
C30.026 (3)0.032 (4)0.044 (4)0.003 (3)0.001 (3)0.004 (3)
C40.039 (4)0.038 (4)0.059 (4)0.003 (3)0.007 (4)0.009 (4)
C50.064 (6)0.069 (6)0.048 (4)0.013 (4)0.014 (4)0.016 (5)
C60.061 (5)0.072 (5)0.041 (4)0.020 (4)0.010 (4)0.024 (4)
C70.035 (4)0.039 (4)0.028 (3)0.002 (3)0.003 (3)0.005 (3)
C80.064 (5)0.052 (5)0.034 (4)0.014 (3)0.006 (4)0.006 (4)
Geometric parameters (Å, º) top
S1—C11.716 (6)C5—C61.473 (11)
S1—C81.819 (7)C6—C71.489 (9)
S2—C11.716 (6)C4—H4A0.9700
S2—C81.801 (7)C4—H4B0.9700
O1—C31.216 (9)C5—H5A0.9700
O2—C71.227 (8)C5—H5B0.9700
C1—C21.364 (8)C6—H6A0.9700
C2—C31.456 (8)C6—H6B0.9700
C2—C71.449 (8)C8—H8A0.9700
C3—C41.508 (9)C8—H8B0.9700
C4—C51.533 (11)
C1—S1—C882.7 (3)C3—C4—H4B109.00
C1—S2—C883.2 (3)C5—C4—H4A109.00
S1—C1—S2100.5 (3)C5—C4—H4B109.00
S1—C1—C2129.1 (5)H4A—C4—H4B108.00
S2—C1—C2130.4 (5)C4—C5—H5A109.00
C1—C2—C3117.8 (5)C4—C5—H5B109.00
C1—C2—C7119.0 (6)C6—C5—H5A109.00
C3—C2—C7123.2 (6)C6—C5—H5B109.00
O1—C3—C2121.7 (6)H5A—C5—H5B108.00
O1—C3—C4121.1 (5)C5—C6—H6A109.00
C2—C3—C4117.2 (6)C5—C6—H6B109.00
C3—C4—C5112.7 (6)C7—C6—H6A109.00
C4—C5—C6111.5 (6)C7—C6—H6B109.00
C5—C6—C7113.5 (6)H6A—C6—H6B108.00
O2—C7—C2120.7 (6)S1—C8—H8A113.00
O2—C7—C6122.3 (5)S1—C8—H8B113.00
C2—C7—C6116.9 (6)S2—C8—H8A113.00
S1—C8—S293.6 (3)S2—C8—H8B113.00
C3—C4—H4A109.00H8A—C8—H8B110.00
C8—S1—C1—S21.5 (3)C1—C2—C3—C4178.3 (5)
C8—S1—C1—C2179.6 (6)C1—C2—C7—C6178.9 (6)
C1—S1—C8—S21.4 (3)C3—C2—C7—O2179.8 (6)
C8—S2—C1—S11.5 (3)C1—C2—C7—O22.2 (9)
C8—S2—C1—C2179.6 (6)C1—C2—C3—O12.2 (8)
C1—S2—C8—S11.4 (3)C3—C2—C7—C63.1 (9)
S2—C1—C2—C31.6 (9)C2—C3—C4—C524.6 (8)
S1—C1—C2—C3179.8 (4)O1—C3—C4—C5155.8 (6)
S1—C1—C2—C71.6 (9)C3—C4—C5—C652.6 (8)
S2—C1—C2—C7179.7 (5)C4—C5—C6—C756.3 (8)
C7—C2—C3—O1179.8 (6)C5—C6—C7—C231.5 (9)
C7—C2—C3—C40.2 (8)C5—C6—C7—O2151.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···S2i0.972.873.844 (8)178
Symmetry code: (i) x, y+2, z1/2.
Relative percentage contributions of the close contacts to the Hirshfeld surface of the title compound top
Contact typePercentage contribution
O···H/H···O30.7
H···H25.9
S···H/H···S23.8
C···H/H···C11.6
S···C/S···C4.0
S···O/O···S3.3
C···O/O···C0.7
 

Acknowledgements

We thank the Diffractometry Center of the University of Rennes 1 for collecting the X-ray diffraction data.

References

First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandralekha, K., Gavaskar, D., Sureshbabu, A. R. & Lakshmi, S. (2016). Acta Cryst. E72, 387–390.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChelli, S., Troshin, K., Lakhdar, S., Mayr, H. & Mayer, P. (2016). Acta Cryst. E72, 300–303.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFiala, A., Chibani, A., Darchen, A., Boulkamh, A. & Djebbar, K. (2007). Appl. Surf. Sci. 253, 9347–9356.  Web of Science CrossRef CAS Google Scholar
First citationGao, X., Di, C.-A., Hu, Y., Yang, X., Fan, H., Zhang, F., Liu, Y., Li, H. & Zhu, D. (2010). J. Am. Chem. Soc. 132, 3697–3699.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGouault-Bironneau, S., Timoshenko, V. M., Grellepois, F. & Portella, C. (2012). J. Fluor. Chem. 134, 164–171.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHu, Y., Qin, Y., Gao, X., Zhang, F., Di, C.-A., Zhao, Z., Li, H. & Zhu, D. (2012). Org. Lett. 14, 292–295.  Web of Science CrossRef CAS PubMed Google Scholar
First citationIla, H., Junjappa, H. & Barun, O. (2001). J. Organomet. Chem. 624, 34–40.  Web of Science CrossRef CAS Google Scholar
First citationKettmann, V., Lokaj, J., Milata, V., Marko, M. & Štvrtecká, M. (2004). Acta Cryst. C60, o252–o254.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKolb, M. (1990). Synthesis, pp. 171–190.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLee, J. K., Min, S.-J., Cho, Y. S., Kwon, J. H. & Park, J. (2015). Acta Cryst. E71, o485–o486.  CSD CrossRef IUCr Journals Google Scholar
First citationLinden, A., Fu, C., Majchrzak, A., Mloston, G. & Heimgartner, H. (2002). Acta Cryst. C58, o231–o234.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLiu, Z.-J., Fu, X.-K., Hu, Z.-K., Wu, X.-J. & Wu, L. (2011). Acta Cryst. E67, o1562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMahjoub, A., Zantour, H., Masson, S., Saquet, M. & Averbuch-Pouchot, M.-T. (2003). Acta Cryst. E59, o545–o546.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationShanmuga Sundara Raj, S., Surya Prakash Rao, H., Sakthikumar, L. & Fun, H.-K. (2000). Acta Cryst. C56, 1113–1114.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTimoshenko, V. M. & Portella, C. (2009). J. Fluor. Chem. 130, 586–590.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia.  Google Scholar
First citationWang, H., Zhao, Y.-L., Ren, C.-Q., Diallo, A. & Liu, Q. (2011). Chem. Commun. 47, 12316–12318.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, Y.-L., Chen, L., Liu, Q. & Li, D.-W. (2007). Synlett, pp. 37–42.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds