research communications
Syntheses and structural characterizations of the first coordination polymers assembled from the Ni(cyclam)2+ cation and the benzene-1,3,5-tricarboxylate linker
aL. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospekt Nauki 31, Kyiv, 03028, Ukraine, and b"Petru Poni" Institute of Macromolecular Chemistry, Department of Inorganic Polymers, Aleea Grigore Ghika Voda 41A, RO-700487 Iasi, Romania
*Correspondence e-mail: lampeka@adamant.net
The catena-poly[[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-μ2-5-carboxybenzene-1,3-dicarboxylato-κ2O1:O3] octahydrate], {[Ni(C9H4O6)(C10H24N4)]·8H2O}n (I), consists of a macrocyclic Ni2+ cation, a carboxylate dianion and eight highly disordered water molecules of crystallization. The components of the compound catena-poly[[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-μ2-5-carboxybenzene-1,3-dicarboxylato-κ2O1:O3] monohydrate], {[Ni(C9H4O6)(C10H24N4)]·H2O}n (II), are two crystallographically unique centrosymmetric macrocyclic dications, a carboxylate dianion and one water molecule of crystallization. In each compound, the metal ion is coordinated in the equatorial plane by the four secondary N atoms of the macrocyclic ligand, which adopts the most energetically stable trans-III conformation, and two mutually trans O atoms of the carboxylate anions in a slightly tetragonally distorted trans-NiN4O2 octahedral geometry. The crystals of both compounds are composed of parallel coordination polymeric chains running along the [010] direction in I and the [110] and [10] directions in II. The bridging carboxylate anions display different modes of coordination connected with the relative orientation of coordinated O atoms, i.e., remote in I and intermediate in II, thus resulting in essentially different distances between the Ni atoms in the chains [11.0657 (4) and 8.9089 (2) Å in I and II, respectively]. As a result of hydrogen-bonding interactions, the chains are joined together in sheets oriented parallel to the (10) and (001) planes in I and II, respectively.
of1. Chemical context
Azamacrocyclic complexes of transition metals are widely used for the construction of metal–organic frameworks (MOFs) – crystalline porous materials displaying many promising properties connected with the possibilities of their practical applications (Lampeka & Tsymbal, 2004; Suh & Moon, 2007; Suh et al., 2012; Stackhouse & Ma, 2018). Complexes of the 14-membered tetraaza cyclam ligand (cyclam = 1,4,8,11-tetraazacyclotetradecane, C10H24N4, L), which is the most suitable for binding of 3d transition-metal ions, in particular, Ni2+, are among popular metal-containing nodes in the formation of MOFs. Their interactions with different oligocarboxylates as the most common bridging ligands (Rao et al., 2004) usually result in coordination polymers, the dimensionalities of which are dependent on the number of carboxylic groups present in the linker. As was shown formerly for a number of macrocyclic Ni2+ complexes of aza- and diazacyclam derivatives, which are the closest structural analogues of L (azacyclam = 1,3,5,8,12-pentatetraazacyclotetradecane, diazacyclam = 1,3,5,8,10,12-hexaazazacyclotetradecane), the coordination of the simplest tridentate aromatic ligand benzene-1,3,5-tricarboxylate (btc3–) in the trans-axial coordination positions of the metal ion leads to the formation of two-dimensional coordination polymers with hexagonal nets of 63 topology (Choi et al., 2001; Meng et al., 2011; Choi & Suh, 1998; Ryoo et al., 2010; Lu et al., 2001; Lu et al., 2002; Lampeka et al., 2012). Surprisingly, for the Ni(L)2+ cation itself, only ionic compounds built on the trans-diaqua [Ni(L)(H2O)2]2+ cation and the non-coordinated btc3−anion have been described to date (Choi et al., 1999; Parsons et al., 2006; Tadokoro et al., 2015).
The present work describes the preparation and structural characterization of the first representatives of polymeric complexes formed by Ni(L)2+ and the benzene-1,3,5-tricarboxylate anion, namely, catena-poly[[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-μ2-5-carboxybenzene-1,3-dicarboxylato-κ2O1:O3] octahydrate], {[Ni(C9H4O6)(C10H24N4)]·8H2O}n (I) and catena-poly[[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-μ2-5-carboxybenzene-1,3-dicarboxylato-κ2O1:O3] monohydrate], {[Ni(C9H4O6)(C10H24N4)]·H2O}n (II).
2. Structural commentary
The molecular structures of I and II are shown in Fig. 1. The of I consists of a macrocyclic [Ni(L)]2+ di-cation, a monoprotonated carboxylate Hbtc2− dianion and eight water molecules of crystallization, while the components of II are the same dianion, two crystallographically unique centrosymmetric dications and one water molecule of crystallization. The coordination polyhedra of the metal ions in both complexes are very similar: the Ni2+ ions are coordinated by the four secondary N atoms of the macrocycle L, which adopt the most energetically stable trans-III (R,R,S,S) conformation (Bosnich et al., 1965a; Barefield et al., 1986) in which the five-membered (N—Ni—N bite angles ≃ 85°) and six-membered (N—Ni—N bite angles ≃ 95°) chelate rings are in gauche and chair conformations, respectively (Table 1). The O atoms of the carboxylate ligands occupy the axial positions in the coordination spheres of the metal ions, resulting in a tetragonally elongated trans-NiN4O2 coordination octahedra with the Ni—N bond lengths (average value 2.063 Å) slightly shorter than the Ni—O ones (average value 2.121 Å) (Table 1). The axial Ni—O bonds are nearly orthogonal to the NiN4 planes (deviations of the angles N—Ni—O from 90° do not exceed 5°). The deviations of the Ni and N atoms from the mean N4 plane in I are 0.011 Å and ±0.009 Å, respectively, while the NiN4 coordination moieties in II are strictly planar because of the location of the metal ions on crystallographic inversion centers. As in other complexes of the Ni2+ macrocyclic cations and carboxylate ligands (Tsymbal et al., 2021) the Ni—O bonds in I and II are reinforced by the intramolecular hydrogen bonds between the secondary NH atoms and the non-coordinated O atoms of each coordinated carboxylic group (Fig. 1, Tables 2 and 3).
|
|
The C—O bond lengths in the deprotonated carboxylate groups are nearly equal, thus indicating essential electron delocalization, while protonated carboxylic groups remain non-delocalized [the lengths of the C—OH and C=O bonds in I and II are 1.305 (4) and 1.200 (3) Å and 1.314 (4) and 1.205 (3) Å, respectively]. The mean planes of the carboxylate groups are slightly tilted relative to the mean plane of their attached aromatic rings (average angle equals 7.0° in I and 16.0° in II).
In both complexes, the monoprotonated carboxylate ligands display a μ2-bis-monodentate bridging function of the isophthalate type, resulting in the formation of one-dimensional coordination polymers (Figs. 2 and 3). The Ni—O coordination bonds of the Hbtc2− bridge are characterized by the syn/syn orientation. Since the carboxylate groups are nearly coplanar with the aromatic rings, the possibility arises for appearance of different modes of ligand coordination, depending on the mutual spatial arrangement of coordinated O atoms (Tsymbal et al., 2021). In the complexes under consideration, these modes can be recognized as remote (rm) in I and intermediate (im) in II (see insets in Figs. 2 and 3).
Such peculiarities lead to several differences in the structures of the polymeric chains. In particular, the angle between the mean NiN4 planes of the macrocyclic cations in I is 40.62 (1)°, while they are nearly orthogonal in II [85.49 (1)°]. Therewith, the chains of the Ni atoms in I are non-linear [the angle Ni⋯Ni⋯Ni is 169.590 (9)°], in contrast to strictly linear metal atom chains in II. The most important difference is connected with the mode of the carboxylate coordination and consists of essentially different distances between the Ni atoms in the chains formed by the rm-syn/syn coordinated ligand in I [Ni⋯Ni = 11.0657 (4) Å], as compared to the im-syn/syn coordinated one in II [8.9089 (2) Å].
3. Supramolecular features
Both compounds are characterized by lamellar structures as the result of linking of the polymeric chains into sheets due to hydrogen-bonding interactions (Tables 2 and 3). The key role in the formation of sheets oriented parallel to the (10) plane from the chains running along the [010] direction in the crystals of I is played by the protonated carboxylic group of the Hbtc2− dianion, which forms two O—H⋯O hydrogen bonds acting both as the proton donor in a strong interaction with the O atom of the coordinated carboxylic ligand on neighboring chain [O5—H5⋯O4(x + , −y + , z + )] and as the proton acceptor in a weak interaction with the secondary amino group of the macrocyclic cation belonging to the same neighboring chain [N4—H4⋯O6(−x + 2, −y + 1, −z + 2)] (Fig. 2). There are no hydrogen-bonding contacts between the sheets and the three-dimensional coherence of the crystal is provided by van der Waals interactions.
In the crystal of II, polymeric chains with different orientations are present, namely, running along the [110] or [10] directions. As a result of the weak hydrogen bond between the carbonyl O6 atom of the protonated carboxylic group of the acid as the acceptor and the secondary N2—H2 amino group of the macrocyclic cation of a neighboring chain as the donor (Fig. 3), they form alternating sheets oriented parallel to the (001) plane. At the same time, the hydroxyl group of the protonated carboxylate group as the donor interacts strongly with the water molecule of crystallization as acceptor, and this interaction together with two additional hydrogen bonds with participation of O1W molecule results in a three-dimensional network in II.
As estimated by PLATON (Spek, 2020), the volume of the solvent-accessible voids in I in the form of parallel one-dimensional channels equals 1111 Å3 (37.5% of the unit-cell volume) and according to SQUEEZE calculations it is filled with eight highly disordered water molecules of crystallization. The crystals of II are non-porous.
4. Database survey
The Cambridge Structural Database (CSD, Version 5.43, last update March 2022; Groom et al., 2016) contains descriptions of several polymorphs of compounds containing the Ni(L) moiety and the benzene-1,3,5-tricarboxylate anion (refcodes GOQTIP, Choi et al., 1999; PELCOZ, Parsons et al., 2006; GOQTIP01, SABLEP, SABLOZ and SABLOZ01, Tadokoro et al., 2015). All of them are highly hydrated (18–29 water molecules of crystallization) ionic complexes containing the trans-diaqua [Ni(L)(H2O)2]2+ dication and non-coordinated btc3– trianions. At the same time, a number of two-dimensional coordination polymers built on parent 14-membered derivatives of Ni(azacyclam) (CAXMIZ, Lampeka et al., 2012) and Ni(diazacyclam) (IPOZIW, Choi et al., 2001; IWESIN and IWESOT, Meng et al., 2011; JEDQIS and JEDQOY, Choi & Suh, 1998; UJUHUD, Ryoo et al., 2010; VOQSAV, Lu et al., 2001; and WUJDEK, Lu et al., 2002) bearing different substituents at the non-coordinated distal nitrogen atom(s) have been structurally characterized. In addition, two compounds with other structures have been described. One represents the molecular complex in which the trans-[Ni(LA)(btc)2]4– anion compensates the charge of the two trans-[Ni(LA)(H2O)2]2+ cations (LA = 3,10-dibutyl-1,3,5,8,10,12-hexaazacyclotetradecane) (SUXXEQ, Shin et al., 2016), and the other is the hydrated (3.5 water molecules of crystallization) one-dimensional coordination polymer formed by the [Ni(LB)]2+ cation and the μ2 Hbtc2– linker (LB = 1,3,6,9,11,14-hexaazatricyclo[12.2.1.16,9]octadecane) (SEFLOG, Tao et al., 2012). The structure of the latter is similar to the structure of I – it is a neutral one-dimensional coordination polymer with parallel alignment of the chains formed due to the carboxylate displaying the rm-syn/syn mode of the bridging function. Correspondingly, the Ni⋯Ni distance in this compound (11.313 Å) is close to that observed in I, though the chains, in contrast to I, are linear.
5. Synthesis and crystallization
All chemicals and solvents used in this work were purchased from Sigma–Aldrich and used without further purification. The complex [Ni(L)](ClO4)2 was prepared from ethanol solution as described in the literature (Bosnich et al., 1965).
The complex [Ni(L)(Hbtc)·8H2O], (I), was prepared as follows. [Ni(L)](ClO4)2 (153 mg, 0.33 mmol) and H3btc (50 mg, 0.24 mmol) were dissolved in 10 ml of a DMF/H2O mixture (4:1 by volume) and the solution was heated at 358 K for 30 h. A small amount of pink needle-like crystals in the form of concretions was formed in a week. These were filtered off, washed with small amounts of methanol and diethyl ether, and dried in air. Yield: 15 mg (10% based on acid). Analysis calculated for C19H44N4NiO14: C 37.36, H 7.27, N 9.18%. Found: C 37.52, H 7.31, N 9.15%. Single crystals of I suitable for X-ray were selected from the sample formed after refrigerating the mother liquor for several days.
Apparently, the complex [Ni(L)(Hbtc)·H2O], (II), is more thermodynamically stable than I and it was prepared according to similar procedure, except that initially precipitated crystals were left to remain under the mother liquor at ambient temperature. Over ca one week, the needle-like crystals of I dissolved; instead, a precipitate in the form of rhomb-shaped plates was formed and single crystals of II suitable for X-ray were selected from this reaction mixture. Alternatively, larger amounts of II can be obtained using an analogous procedure but using higher concentrations of the reagents. [Ni(L)](ClO4)2 (200 mg, 0.44 mmol) and H3btc (65 mg, 0.31 mmol) were dissolved in 10 ml of a DMF/H2O mixture (4:1 by volume) and the solution was heated at 358 K for 24 h. After cooling of the reaction mixture, the product began to crystallize in several hours in the form of pink plate-like concretions. It was filtered off, washed with small amounts of methanol and diethyl ether, and dried in air. Yield: 38 mg (25% based on acid). Analysis calculated for C19H30N4NiO7: C 47.09, H 6.24, N 11.57%. Found: C 47.15, H 6.31, N 11.65%.
Caution! Perchlorate salts of metal complexes are potentially explosive and should be handled with care.
6. Refinement
Crystal data, data collection and structure . The H atoms in I and II were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 Å (ring H atoms), 0.97 Å (methylene H atoms), N—H distances of 0.98 Å, O—H distances of 0.82 Å (protonated carboxylate group) and 0.85 Å (water molecules) with Uiso(H) values of 1.2Ueq or 1.5Ueq times those of the corresponding parent atoms. SQUEEZE calculations indicate the presence of eight water molecules of crystallization per of I.
details are summarized in Table 4
|
Supporting information
https://doi.org/10.1107/S2056989022009860/hb8040sup1.cif
contains datablocks I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022009860/hb8040Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989022009860/hb8040IIsup3.hkl
For both structures, data collection: CrysAlis PRO (Rigaku OD, 2021); cell
CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXS (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).[Ni(C9H4O6)(C10H24N4)]·8H2O | F(000) = 984 |
Mr = 467.16 | Dx = 1.047 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.3650 (6) Å | Cell parameters from 3816 reflections |
b = 22.0401 (8) Å | θ = 1.9–23.7° |
c = 14.3567 (7) Å | µ = 0.69 mm−1 |
β = 91.457 (5)° | T = 293 K |
V = 2962.3 (3) Å3 | Prism, clear light pink |
Z = 4 | 0.40 × 0.20 × 0.10 mm |
Rigaku Xcalibur Eos diffractometer | 6875 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 3858 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.058 |
Detector resolution: 16.1593 pixels mm-1 | θmax = 29.3°, θmin = 2.6° |
ω scans | h = −11→11 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2021) | k = −27→27 |
Tmin = 0.751, Tmax = 1.000 | l = −18→17 |
21516 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.059 | H-atom parameters constrained |
wR(F2) = 0.125 | w = 1/[σ2(Fo2) + (0.0348P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
6875 reflections | Δρmax = 0.31 e Å−3 |
272 parameters | Δρmin = −0.32 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.69720 (4) | 0.55885 (2) | 0.75502 (3) | 0.03961 (15) | |
O1 | 0.6534 (2) | 0.46933 (8) | 0.79800 (14) | 0.0538 (6) | |
O2 | 0.5619 (3) | 0.41875 (8) | 0.67715 (16) | 0.0719 (8) | |
O3 | 0.7624 (2) | 0.15022 (8) | 0.78673 (14) | 0.0485 (6) | |
O4 | 0.6373 (3) | 0.19208 (9) | 0.67255 (18) | 0.1011 (11) | |
O5 | 0.9540 (3) | 0.27371 (10) | 1.04356 (19) | 0.0971 (11) | |
H5 | 1.026567 | 0.284652 | 1.072019 | 0.146* | |
O6 | 0.8741 (3) | 0.36664 (10) | 1.06441 (17) | 0.0918 (10) | |
N1 | 0.8659 (3) | 0.52742 (12) | 0.6799 (3) | 0.0696 (9) | |
H1 | 0.855311 | 0.483290 | 0.675135 | 0.084* | |
N2 | 0.5551 (3) | 0.55160 (11) | 0.6431 (2) | 0.0596 (9) | |
H2 | 0.528340 | 0.508716 | 0.638191 | 0.072* | |
N3 | 0.5242 (4) | 0.58978 (12) | 0.8261 (2) | 0.0730 (10) | |
H3 | 0.528845 | 0.634199 | 0.825184 | 0.088* | |
N4 | 0.8406 (4) | 0.56357 (11) | 0.8647 (2) | 0.0710 (10) | |
H4 | 0.876485 | 0.605323 | 0.866867 | 0.085* | |
C1 | 0.8744 (6) | 0.55061 (19) | 0.5861 (4) | 0.1075 (18) | |
H1A | 0.957482 | 0.533515 | 0.556787 | 0.129* | |
H1B | 0.886094 | 0.594320 | 0.588217 | 0.129* | |
C2 | 0.7421 (7) | 0.5352 (2) | 0.5283 (3) | 0.114 (2) | |
H2A | 0.762054 | 0.542420 | 0.463294 | 0.137* | |
H2B | 0.722629 | 0.492262 | 0.535306 | 0.137* | |
C3 | 0.6120 (6) | 0.56943 (17) | 0.5518 (3) | 0.0911 (17) | |
H3A | 0.539192 | 0.562589 | 0.503691 | 0.109* | |
H3B | 0.633845 | 0.612446 | 0.552779 | 0.109* | |
C4 | 0.4290 (5) | 0.58417 (17) | 0.6676 (4) | 0.0880 (15) | |
H4A | 0.348784 | 0.571120 | 0.628441 | 0.106* | |
H4B | 0.443004 | 0.627298 | 0.657987 | 0.106* | |
C5 | 0.3984 (5) | 0.57217 (18) | 0.7675 (4) | 0.0958 (16) | |
H5A | 0.315607 | 0.595338 | 0.785710 | 0.115* | |
H5B | 0.377847 | 0.529444 | 0.776235 | 0.115* | |
C6 | 0.5197 (6) | 0.5718 (2) | 0.9226 (4) | 0.1113 (19) | |
H6A | 0.502707 | 0.528444 | 0.925611 | 0.134* | |
H6B | 0.439987 | 0.592000 | 0.951231 | 0.134* | |
C7 | 0.6542 (8) | 0.5863 (2) | 0.9777 (3) | 0.129 (2) | |
H7A | 0.677056 | 0.628688 | 0.967197 | 0.154* | |
H7B | 0.634114 | 0.581925 | 1.043262 | 0.154* | |
C8 | 0.7827 (7) | 0.55005 (17) | 0.9583 (3) | 0.111 (2) | |
H8A | 0.758997 | 0.507277 | 0.961644 | 0.133* | |
H8B | 0.855740 | 0.558380 | 1.005650 | 0.133* | |
C9 | 0.9589 (5) | 0.52540 (18) | 0.8405 (4) | 0.107 (2) | |
H9A | 0.933373 | 0.482969 | 0.846677 | 0.129* | |
H9B | 1.040926 | 0.533639 | 0.881155 | 0.129* | |
C10 | 0.9923 (5) | 0.53932 (19) | 0.7435 (5) | 0.110 (2) | |
H10A | 1.072151 | 0.514566 | 0.724517 | 0.132* | |
H10B | 1.020103 | 0.581576 | 0.738609 | 0.132* | |
C11 | 0.6747 (3) | 0.36318 (11) | 0.8010 (2) | 0.0399 (8) | |
C12 | 0.6602 (3) | 0.30772 (11) | 0.7576 (2) | 0.0420 (8) | |
H12 | 0.612201 | 0.305534 | 0.700194 | 0.050* | |
C13 | 0.7152 (3) | 0.25504 (11) | 0.7973 (2) | 0.0401 (8) | |
C14 | 0.7864 (3) | 0.25897 (12) | 0.8827 (2) | 0.0486 (9) | |
H14 | 0.825804 | 0.224222 | 0.909616 | 0.058* | |
C15 | 0.7995 (3) | 0.31362 (12) | 0.9283 (2) | 0.0463 (8) | |
C16 | 0.7405 (3) | 0.36579 (12) | 0.8868 (2) | 0.0424 (8) | |
H16 | 0.746168 | 0.402657 | 0.918165 | 0.051* | |
C17 | 0.6238 (4) | 0.42117 (12) | 0.7530 (2) | 0.0450 (8) | |
C18 | 0.7045 (4) | 0.19457 (12) | 0.7481 (2) | 0.0506 (9) | |
C19 | 0.8792 (4) | 0.32119 (14) | 1.0186 (2) | 0.0618 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0576 (3) | 0.0201 (2) | 0.0402 (3) | 0.00044 (18) | −0.0169 (2) | −0.00049 (15) |
O1 | 0.0879 (18) | 0.0212 (11) | 0.0512 (14) | −0.0037 (11) | −0.0180 (12) | 0.0000 (9) |
O2 | 0.116 (2) | 0.0268 (12) | 0.0699 (18) | 0.0005 (12) | −0.0539 (16) | 0.0005 (10) |
O3 | 0.0769 (16) | 0.0214 (11) | 0.0455 (13) | 0.0068 (10) | −0.0287 (12) | −0.0031 (9) |
O4 | 0.176 (3) | 0.0313 (13) | 0.091 (2) | 0.0219 (15) | −0.100 (2) | −0.0163 (11) |
O5 | 0.156 (3) | 0.0365 (14) | 0.094 (2) | 0.0040 (15) | −0.091 (2) | −0.0084 (13) |
O6 | 0.150 (3) | 0.0500 (15) | 0.0726 (19) | 0.0118 (15) | −0.0564 (18) | −0.0265 (13) |
N1 | 0.069 (2) | 0.0365 (17) | 0.103 (3) | −0.0020 (15) | 0.012 (2) | −0.0088 (16) |
N2 | 0.083 (2) | 0.0269 (15) | 0.067 (2) | −0.0068 (14) | −0.0393 (18) | 0.0016 (13) |
N3 | 0.097 (3) | 0.0377 (17) | 0.085 (3) | 0.0057 (16) | 0.018 (2) | −0.0059 (16) |
N4 | 0.112 (3) | 0.0204 (14) | 0.077 (2) | −0.0101 (15) | −0.059 (2) | 0.0079 (13) |
C1 | 0.156 (5) | 0.066 (3) | 0.103 (4) | −0.017 (3) | 0.057 (4) | −0.010 (3) |
C2 | 0.227 (7) | 0.065 (3) | 0.052 (3) | −0.029 (4) | 0.018 (4) | −0.009 (2) |
C3 | 0.163 (5) | 0.056 (3) | 0.052 (3) | −0.026 (3) | −0.052 (3) | 0.004 (2) |
C4 | 0.079 (3) | 0.056 (3) | 0.127 (4) | −0.002 (2) | −0.051 (3) | 0.008 (3) |
C5 | 0.066 (3) | 0.061 (3) | 0.160 (5) | 0.003 (2) | −0.002 (4) | −0.011 (3) |
C6 | 0.180 (6) | 0.077 (3) | 0.080 (4) | −0.008 (3) | 0.056 (4) | −0.007 (3) |
C7 | 0.284 (8) | 0.060 (3) | 0.041 (3) | −0.014 (4) | 0.004 (4) | −0.007 (2) |
C8 | 0.232 (7) | 0.041 (2) | 0.055 (3) | −0.019 (3) | −0.062 (4) | 0.012 (2) |
C9 | 0.095 (4) | 0.050 (3) | 0.172 (6) | −0.007 (2) | −0.086 (4) | 0.015 (3) |
C10 | 0.055 (3) | 0.049 (3) | 0.223 (7) | −0.003 (2) | −0.022 (4) | −0.012 (3) |
C11 | 0.055 (2) | 0.0183 (16) | 0.046 (2) | −0.0037 (13) | −0.0130 (16) | 0.0015 (12) |
C12 | 0.057 (2) | 0.0269 (17) | 0.041 (2) | 0.0024 (13) | −0.0192 (16) | −0.0036 (12) |
C13 | 0.057 (2) | 0.0214 (16) | 0.0409 (19) | −0.0007 (13) | −0.0190 (16) | −0.0010 (12) |
C14 | 0.069 (2) | 0.0227 (16) | 0.053 (2) | −0.0013 (14) | −0.0261 (18) | 0.0011 (13) |
C15 | 0.063 (2) | 0.0270 (17) | 0.048 (2) | −0.0046 (14) | −0.0208 (17) | 0.0009 (13) |
C16 | 0.062 (2) | 0.0214 (16) | 0.043 (2) | −0.0050 (14) | −0.0119 (17) | −0.0053 (12) |
C17 | 0.057 (2) | 0.0216 (16) | 0.055 (2) | −0.0046 (14) | −0.0146 (18) | 0.0023 (14) |
C18 | 0.080 (3) | 0.0225 (17) | 0.047 (2) | 0.0004 (16) | −0.0342 (19) | −0.0003 (13) |
C19 | 0.100 (3) | 0.034 (2) | 0.049 (2) | −0.0126 (19) | −0.035 (2) | 0.0023 (15) |
Ni1—O1 | 2.1106 (18) | C3—H3B | 0.9700 |
Ni1—O3i | 2.1377 (18) | C4—H4A | 0.9700 |
Ni1—N1 | 2.056 (3) | C4—H4B | 0.9700 |
Ni1—N2 | 2.066 (2) | C4—C5 | 1.494 (6) |
Ni1—N3 | 2.053 (3) | C5—H5A | 0.9700 |
Ni1—N4 | 2.046 (3) | C5—H5B | 0.9700 |
O1—C17 | 1.270 (3) | C6—H6A | 0.9700 |
O2—C17 | 1.221 (3) | C6—H6B | 0.9700 |
O3—C18 | 1.241 (3) | C6—C7 | 1.505 (7) |
O4—C18 | 1.241 (3) | C7—H7A | 0.9700 |
O5—H5 | 0.8200 | C7—H7B | 0.9700 |
O5—C19 | 1.305 (4) | C7—C8 | 1.477 (7) |
O6—C19 | 1.200 (3) | C8—H8A | 0.9700 |
N1—H1 | 0.9800 | C8—H8B | 0.9700 |
N1—C1 | 1.445 (5) | C9—H9A | 0.9700 |
N1—C10 | 1.499 (5) | C9—H9B | 0.9700 |
N2—H2 | 0.9800 | C9—C10 | 1.467 (6) |
N2—C3 | 1.481 (5) | C10—H10A | 0.9700 |
N2—C4 | 1.434 (5) | C10—H10B | 0.9700 |
N3—H3 | 0.9800 | C11—C12 | 1.377 (3) |
N3—C5 | 1.481 (5) | C11—C16 | 1.364 (4) |
N3—C6 | 1.443 (5) | C11—C17 | 1.523 (4) |
N4—H4 | 0.9800 | C12—H12 | 0.9300 |
N4—C8 | 1.492 (5) | C12—C13 | 1.387 (3) |
N4—C9 | 1.441 (6) | C13—C14 | 1.383 (4) |
C1—H1A | 0.9700 | C13—C18 | 1.511 (4) |
C1—H1B | 0.9700 | C14—H14 | 0.9300 |
C1—C2 | 1.512 (7) | C14—C15 | 1.375 (4) |
C2—H2A | 0.9700 | C15—C16 | 1.403 (4) |
C2—H2B | 0.9700 | C15—C19 | 1.488 (4) |
C2—C3 | 1.479 (6) | C16—H16 | 0.9300 |
C3—H3A | 0.9700 | ||
O1—Ni1—O3i | 178.71 (9) | C5—C4—H4B | 109.9 |
N1—Ni1—O1 | 89.78 (10) | N3—C5—C4 | 109.3 (4) |
N1—Ni1—O3i | 91.51 (10) | N3—C5—H5A | 109.8 |
N1—Ni1—N2 | 93.13 (14) | N3—C5—H5B | 109.8 |
N2—Ni1—O1 | 91.66 (9) | C4—C5—H5A | 109.8 |
N2—Ni1—O3i | 88.28 (8) | C4—C5—H5B | 109.8 |
N3—Ni1—O1 | 90.19 (10) | H5A—C5—H5B | 108.3 |
N3—Ni1—O3i | 88.52 (10) | N3—C6—H6A | 108.8 |
N3—Ni1—N1 | 178.04 (14) | N3—C6—H6B | 108.8 |
N3—Ni1—N2 | 84.92 (14) | N3—C6—C7 | 113.7 (4) |
N4—Ni1—O1 | 87.21 (9) | H6A—C6—H6B | 107.7 |
N4—Ni1—O3i | 92.89 (8) | C7—C6—H6A | 108.8 |
N4—Ni1—N1 | 85.55 (15) | C7—C6—H6B | 108.8 |
N4—Ni1—N2 | 178.25 (12) | C6—C7—H7A | 107.9 |
N4—Ni1—N3 | 96.41 (15) | C6—C7—H7B | 107.9 |
C17—O1—Ni1 | 132.4 (2) | H7A—C7—H7B | 107.2 |
C18—O3—Ni1ii | 134.01 (19) | C8—C7—C6 | 117.4 (4) |
C19—O5—H5 | 109.5 | C8—C7—H7A | 107.9 |
Ni1—N1—H1 | 107.1 | C8—C7—H7B | 107.9 |
C1—N1—Ni1 | 115.5 (3) | N4—C8—H8A | 109.2 |
C1—N1—H1 | 107.1 | N4—C8—H8B | 109.2 |
C1—N1—C10 | 116.4 (4) | C7—C8—N4 | 112.2 (3) |
C10—N1—Ni1 | 103.2 (3) | C7—C8—H8A | 109.2 |
C10—N1—H1 | 107.1 | C7—C8—H8B | 109.2 |
Ni1—N2—H2 | 106.8 | H8A—C8—H8B | 107.9 |
C3—N2—Ni1 | 115.4 (2) | N4—C9—H9A | 110.3 |
C3—N2—H2 | 106.8 | N4—C9—H9B | 110.3 |
C4—N2—Ni1 | 106.8 (2) | N4—C9—C10 | 106.9 (4) |
C4—N2—H2 | 106.8 | H9A—C9—H9B | 108.6 |
C4—N2—C3 | 113.7 (3) | C10—C9—H9A | 110.3 |
Ni1—N3—H3 | 106.8 | C10—C9—H9B | 110.3 |
C5—N3—Ni1 | 104.9 (3) | N1—C10—H10A | 109.5 |
C5—N3—H3 | 106.8 | N1—C10—H10B | 109.5 |
C6—N3—Ni1 | 115.4 (3) | C9—C10—N1 | 110.9 (4) |
C6—N3—H3 | 106.8 | C9—C10—H10A | 109.5 |
C6—N3—C5 | 115.5 (4) | C9—C10—H10B | 109.5 |
Ni1—N4—H4 | 106.9 | H10A—C10—H10B | 108.0 |
C8—N4—Ni1 | 115.9 (3) | C12—C11—C17 | 120.9 (3) |
C8—N4—H4 | 106.9 | C16—C11—C12 | 118.9 (2) |
C9—N4—Ni1 | 106.2 (2) | C16—C11—C17 | 120.2 (2) |
C9—N4—H4 | 106.9 | C11—C12—H12 | 119.1 |
C9—N4—C8 | 113.6 (3) | C11—C12—C13 | 121.7 (3) |
N1—C1—H1A | 109.3 | C13—C12—H12 | 119.1 |
N1—C1—H1B | 109.3 | C12—C13—C18 | 121.8 (2) |
N1—C1—C2 | 111.6 (4) | C14—C13—C12 | 118.5 (2) |
H1A—C1—H1B | 108.0 | C14—C13—C18 | 119.6 (2) |
C2—C1—H1A | 109.3 | C13—C14—H14 | 119.6 |
C2—C1—H1B | 109.3 | C15—C14—C13 | 120.8 (3) |
C1—C2—H2A | 108.4 | C15—C14—H14 | 119.6 |
C1—C2—H2B | 108.4 | C14—C15—C16 | 119.1 (3) |
H2A—C2—H2B | 107.5 | C14—C15—C19 | 123.4 (3) |
C3—C2—C1 | 115.4 (4) | C16—C15—C19 | 117.5 (2) |
C3—C2—H2A | 108.4 | C11—C16—C15 | 120.9 (2) |
C3—C2—H2B | 108.4 | C11—C16—H16 | 119.5 |
N2—C3—H3A | 109.1 | C15—C16—H16 | 119.5 |
N2—C3—H3B | 109.1 | O1—C17—C11 | 114.2 (3) |
C2—C3—N2 | 112.5 (3) | O2—C17—O1 | 125.6 (3) |
C2—C3—H3A | 109.1 | O2—C17—C11 | 120.2 (2) |
C2—C3—H3B | 109.1 | O3—C18—C13 | 117.6 (2) |
H3A—C3—H3B | 107.8 | O4—C18—O3 | 124.2 (3) |
N2—C4—H4A | 109.9 | O4—C18—C13 | 118.3 (2) |
N2—C4—H4B | 109.9 | O5—C19—C15 | 113.8 (3) |
N2—C4—C5 | 109.0 (3) | O6—C19—O5 | 123.2 (3) |
H4A—C4—H4B | 108.3 | O6—C19—C15 | 123.0 (3) |
C5—C4—H4A | 109.9 | ||
Ni1—O1—C17—O2 | −29.8 (5) | C10—N1—C1—C2 | 179.3 (4) |
Ni1—O1—C17—C11 | 149.4 (2) | C11—C12—C13—C14 | −0.1 (5) |
Ni1ii—O3—C18—O4 | 9.4 (6) | C11—C12—C13—C18 | −177.5 (3) |
Ni1ii—O3—C18—C13 | −171.6 (2) | C12—C11—C16—C15 | 3.5 (5) |
Ni1—N1—C1—C2 | −59.5 (4) | C12—C11—C17—O1 | −175.0 (3) |
Ni1—N1—C10—C9 | 40.3 (4) | C12—C11—C17—O2 | 4.1 (5) |
Ni1—N2—C3—C2 | 56.1 (4) | C12—C13—C14—C15 | 1.5 (5) |
Ni1—N2—C4—C5 | −40.1 (4) | C12—C13—C18—O3 | 176.8 (3) |
Ni1—N3—C5—C4 | −42.2 (4) | C12—C13—C18—O4 | −4.2 (5) |
Ni1—N3—C6—C7 | 52.7 (5) | C13—C14—C15—C16 | −0.4 (5) |
Ni1—N4—C8—C7 | −51.9 (4) | C13—C14—C15—C19 | −177.7 (3) |
Ni1—N4—C9—C10 | 45.1 (4) | C14—C13—C18—O3 | −0.7 (5) |
N1—C1—C2—C3 | 72.3 (5) | C14—C13—C18—O4 | 178.4 (3) |
N2—C4—C5—N3 | 57.0 (4) | C14—C15—C16—C11 | −2.1 (5) |
N3—C6—C7—C8 | −71.3 (6) | C14—C15—C19—O5 | 10.1 (5) |
N4—C9—C10—N1 | −59.4 (4) | C14—C15—C19—O6 | −169.3 (4) |
C1—N1—C10—C9 | 167.9 (4) | C16—C11—C12—C13 | −2.4 (5) |
C1—C2—C3—N2 | −70.2 (5) | C16—C11—C17—O1 | 2.6 (5) |
C3—N2—C4—C5 | −168.5 (3) | C16—C11—C17—O2 | −178.2 (3) |
C4—N2—C3—C2 | 179.9 (3) | C16—C15—C19—O5 | −167.3 (3) |
C5—N3—C6—C7 | 175.5 (4) | C16—C15—C19—O6 | 13.4 (6) |
C6—N3—C5—C4 | −170.4 (3) | C17—C11—C12—C13 | 175.2 (3) |
C6—C7—C8—N4 | 69.6 (6) | C17—C11—C16—C15 | −174.2 (3) |
C8—N4—C9—C10 | 173.6 (3) | C18—C13—C14—C15 | 179.0 (3) |
C9—N4—C8—C7 | −175.2 (4) | C19—C15—C16—C11 | 175.3 (3) |
Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) −x+3/2, y−1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···O4iii | 0.82 | 1.83 | 2.604 (3) | 157 |
N2—H2···O2 | 0.98 | 2.08 | 2.969 (3) | 150 |
N4—H4···O4i | 0.98 | 2.00 | 2.891 (3) | 151 |
N4—H4···O6iv | 0.98 | 2.59 | 3.226 (4) | 123 |
Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (iii) x+1/2, −y+1/2, z+1/2; (iv) −x+2, −y+1, −z+2. |
[Ni(C9H4O6)(C10H24N4)]·H2O | F(000) = 1024 |
Mr = 485.18 | Dx = 1.455 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.3852 (3) Å | Cell parameters from 3646 reflections |
b = 15.1459 (4) Å | θ = 2.4–25.9° |
c = 15.7561 (5) Å | µ = 0.92 mm−1 |
β = 98.604 (3)° | T = 293 K |
V = 2214.49 (12) Å3 | Prism, clear light pink |
Z = 4 | 0.20 × 0.20 × 0.07 mm |
Rigaku Xcalibur Eos diffractometer | 4534 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 2876 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
Detector resolution: 16.1593 pixels mm-1 | θmax = 26.4°, θmin = 1.9° |
ω scans | h = −9→11 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2021) | k = −16→18 |
Tmin = 0.988, Tmax = 1.000 | l = −19→19 |
14088 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.045 | H-atom parameters constrained |
wR(F2) = 0.108 | w = 1/[σ2(Fo2) + (0.0401P)2 + 0.0138P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
4534 reflections | Δρmax = 0.32 e Å−3 |
287 parameters | Δρmin = −0.43 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.500000 | 0.000000 | 0.500000 | 0.02584 (15) | |
Ni2 | 0.000000 | 0.500000 | 0.500000 | 0.02872 (16) | |
O1 | 0.4273 (2) | 0.05862 (11) | 0.60827 (13) | 0.0353 (5) | |
O3 | 0.0632 (2) | 0.39590 (12) | 0.58677 (14) | 0.0414 (6) | |
O4 | −0.1125 (2) | 0.36910 (12) | 0.66423 (15) | 0.0447 (6) | |
O2 | 0.4878 (2) | 0.20071 (13) | 0.60647 (14) | 0.0467 (6) | |
O6 | −0.1510 (3) | 0.05141 (13) | 0.75736 (16) | 0.0520 (6) | |
O5 | 0.0511 (2) | −0.02739 (14) | 0.77650 (18) | 0.0554 (7) | |
H5 | −0.000820 | −0.064204 | 0.794730 | 0.083* | |
N2 | 0.7014 (3) | −0.01412 (16) | 0.57185 (18) | 0.0457 (7) | |
H2 | 0.701145 | 0.020446 | 0.624409 | 0.055* | |
N4 | 0.1739 (3) | 0.46959 (16) | 0.44077 (17) | 0.0430 (7) | |
H4 | 0.167340 | 0.507198 | 0.389722 | 0.052* | |
N3 | 0.1428 (3) | 0.57669 (15) | 0.58082 (17) | 0.0471 (7) | |
H3 | 0.171423 | 0.541563 | 0.632809 | 0.057* | |
N1 | 0.4558 (3) | −0.12013 (14) | 0.55014 (17) | 0.0449 (7) | |
H1 | 0.465282 | −0.164283 | 0.505861 | 0.054* | |
C15 | 0.0616 (3) | 0.11465 (16) | 0.71803 (17) | 0.0285 (7) | |
C14 | −0.0002 (3) | 0.19775 (16) | 0.70186 (17) | 0.0298 (7) | |
H14 | −0.090488 | 0.209866 | 0.716643 | 0.036* | |
C16 | 0.1962 (3) | 0.09647 (17) | 0.69488 (17) | 0.0303 (7) | |
H16 | 0.236652 | 0.040675 | 0.704847 | 0.036* | |
C11 | 0.2702 (3) | 0.16131 (16) | 0.65700 (17) | 0.0277 (7) | |
C13 | 0.0737 (3) | 0.26238 (16) | 0.66354 (17) | 0.0276 (7) | |
C12 | 0.2094 (3) | 0.24429 (16) | 0.64298 (17) | 0.0294 (7) | |
H12 | 0.260129 | 0.288490 | 0.619479 | 0.035* | |
C18 | 0.0012 (3) | 0.34979 (17) | 0.63708 (19) | 0.0315 (7) | |
C17 | 0.4080 (3) | 0.13921 (18) | 0.62309 (18) | 0.0320 (7) | |
C19 | −0.0245 (4) | 0.04389 (19) | 0.75310 (19) | 0.0342 (7) | |
C10 | 0.2721 (4) | 0.5851 (2) | 0.5387 (2) | 0.0638 (12) | |
H10A | 0.354096 | 0.601851 | 0.580611 | 0.077* | |
H10B | 0.257072 | 0.630564 | 0.494968 | 0.077* | |
C9 | 0.3017 (4) | 0.4978 (2) | 0.4984 (3) | 0.0638 (12) | |
H9A | 0.382015 | 0.504040 | 0.466614 | 0.077* | |
H9B | 0.327024 | 0.453820 | 0.542783 | 0.077* | |
C3 | 0.8229 (4) | 0.0180 (3) | 0.5312 (3) | 0.0659 (12) | |
H3A | 0.832111 | −0.018523 | 0.481770 | 0.079* | |
H3B | 0.911249 | 0.012526 | 0.571549 | 0.079* | |
C4 | 0.7132 (4) | −0.1070 (2) | 0.5974 (2) | 0.0665 (12) | |
H4A | 0.789513 | −0.114001 | 0.645772 | 0.080* | |
H4B | 0.737125 | −0.142464 | 0.550269 | 0.080* | |
C8 | 0.1819 (4) | 0.3768 (2) | 0.4105 (2) | 0.0617 (12) | |
H8A | 0.194636 | 0.337322 | 0.459597 | 0.074* | |
H8B | 0.264607 | 0.370223 | 0.380824 | 0.074* | |
C2 | 0.1962 (4) | −0.1130 (3) | 0.4971 (3) | 0.0791 (14) | |
H2A | 0.218068 | −0.147555 | 0.448833 | 0.095* | |
H2B | 0.105101 | −0.134149 | 0.511227 | 0.095* | |
C1 | 0.3115 (5) | −0.1306 (2) | 0.5727 (3) | 0.0694 (13) | |
H1A | 0.299479 | −0.090074 | 0.618793 | 0.083* | |
H1B | 0.300638 | −0.190172 | 0.593296 | 0.083* | |
C6 | 0.0876 (5) | 0.6599 (2) | 0.6088 (2) | 0.0658 (12) | |
H6A | 0.066868 | 0.699100 | 0.559851 | 0.079* | |
H6B | 0.161339 | 0.687604 | 0.650001 | 0.079* | |
C7 | −0.0465 (5) | 0.6485 (2) | 0.6492 (2) | 0.0715 (13) | |
H7A | −0.064849 | 0.703405 | 0.677396 | 0.086* | |
H7B | −0.028017 | 0.603571 | 0.693318 | 0.086* | |
C5 | 0.5729 (5) | −0.1376 (2) | 0.6218 (2) | 0.0699 (13) | |
H5A | 0.577720 | −0.200247 | 0.634537 | 0.084* | |
H5B | 0.553957 | −0.106461 | 0.672815 | 0.084* | |
O1W | −0.1024 (3) | −0.15256 (17) | 0.8190 (3) | 0.0910 (11) | |
H1WA | −0.064587 | −0.195140 | 0.849607 | 0.137* | |
H1WB | −0.191789 | −0.155991 | 0.822448 | 0.137* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0253 (3) | 0.0224 (3) | 0.0308 (3) | 0.0006 (2) | 0.0073 (2) | −0.0004 (2) |
Ni2 | 0.0254 (3) | 0.0257 (3) | 0.0350 (3) | 0.0011 (2) | 0.0041 (3) | 0.0068 (2) |
O1 | 0.0420 (13) | 0.0267 (11) | 0.0410 (13) | 0.0045 (9) | 0.0185 (11) | −0.0043 (9) |
O3 | 0.0428 (14) | 0.0343 (11) | 0.0494 (14) | 0.0083 (10) | 0.0142 (11) | 0.0191 (10) |
O4 | 0.0421 (14) | 0.0413 (12) | 0.0554 (15) | 0.0157 (10) | 0.0229 (12) | 0.0162 (10) |
O2 | 0.0449 (15) | 0.0371 (12) | 0.0647 (16) | −0.0149 (10) | 0.0293 (13) | −0.0184 (11) |
O6 | 0.0456 (16) | 0.0403 (13) | 0.0755 (18) | 0.0032 (11) | 0.0268 (14) | 0.0123 (11) |
O5 | 0.0472 (15) | 0.0363 (12) | 0.0852 (19) | 0.0030 (11) | 0.0187 (14) | 0.0283 (12) |
N2 | 0.0368 (18) | 0.0553 (17) | 0.0431 (18) | 0.0092 (13) | 0.0003 (14) | −0.0133 (13) |
N4 | 0.0342 (17) | 0.0477 (15) | 0.0477 (18) | 0.0095 (13) | 0.0082 (14) | 0.0201 (13) |
N3 | 0.058 (2) | 0.0397 (15) | 0.0406 (17) | −0.0138 (13) | −0.0039 (15) | 0.0103 (12) |
N1 | 0.069 (2) | 0.0270 (13) | 0.0444 (18) | −0.0054 (13) | 0.0263 (16) | −0.0009 (12) |
C15 | 0.0353 (18) | 0.0260 (15) | 0.0243 (16) | −0.0008 (13) | 0.0046 (14) | 0.0023 (11) |
C14 | 0.0329 (18) | 0.0288 (15) | 0.0294 (17) | 0.0026 (12) | 0.0105 (14) | 0.0021 (12) |
C16 | 0.0395 (19) | 0.0246 (15) | 0.0271 (16) | 0.0040 (13) | 0.0056 (14) | −0.0011 (12) |
C11 | 0.0305 (18) | 0.0275 (15) | 0.0253 (16) | 0.0009 (12) | 0.0053 (14) | −0.0026 (12) |
C13 | 0.0338 (18) | 0.0276 (15) | 0.0218 (15) | 0.0031 (12) | 0.0052 (13) | 0.0009 (11) |
C12 | 0.0345 (18) | 0.0247 (15) | 0.0299 (17) | −0.0015 (12) | 0.0077 (14) | 0.0024 (12) |
C18 | 0.035 (2) | 0.0265 (16) | 0.0315 (17) | 0.0047 (13) | −0.0001 (15) | 0.0008 (12) |
C17 | 0.0337 (19) | 0.0302 (17) | 0.0315 (17) | 0.0001 (14) | 0.0025 (15) | −0.0028 (13) |
C19 | 0.041 (2) | 0.0280 (17) | 0.0348 (18) | 0.0018 (14) | 0.0103 (16) | 0.0022 (12) |
C10 | 0.043 (2) | 0.082 (3) | 0.060 (3) | −0.031 (2) | −0.015 (2) | 0.027 (2) |
C9 | 0.031 (2) | 0.085 (3) | 0.075 (3) | 0.0057 (19) | 0.006 (2) | 0.032 (2) |
C3 | 0.026 (2) | 0.100 (3) | 0.073 (3) | −0.003 (2) | 0.009 (2) | −0.036 (2) |
C4 | 0.078 (3) | 0.069 (3) | 0.046 (2) | 0.035 (2) | −0.013 (2) | −0.0007 (19) |
C8 | 0.087 (3) | 0.047 (2) | 0.062 (3) | 0.034 (2) | 0.046 (3) | 0.0191 (18) |
C2 | 0.049 (3) | 0.084 (3) | 0.113 (4) | −0.037 (2) | 0.041 (3) | −0.041 (3) |
C1 | 0.092 (4) | 0.047 (2) | 0.081 (3) | −0.029 (2) | 0.055 (3) | −0.010 (2) |
C6 | 0.107 (4) | 0.043 (2) | 0.045 (2) | −0.023 (2) | 0.002 (2) | 0.0031 (17) |
C7 | 0.128 (4) | 0.042 (2) | 0.047 (2) | 0.010 (2) | 0.022 (3) | −0.0051 (17) |
C5 | 0.121 (4) | 0.045 (2) | 0.043 (2) | 0.017 (2) | 0.012 (3) | 0.0146 (17) |
O1W | 0.0553 (18) | 0.0570 (17) | 0.170 (3) | 0.0166 (14) | 0.047 (2) | 0.0672 (18) |
Ni1—O1 | 2.1242 (19) | C16—H16 | 0.9300 |
Ni1—O1i | 2.1242 (19) | C16—C11 | 1.388 (4) |
Ni1—N2 | 2.064 (3) | C11—C12 | 1.384 (3) |
Ni1—N2i | 2.064 (3) | C11—C17 | 1.509 (4) |
Ni1—N1i | 2.051 (2) | C13—C12 | 1.388 (4) |
Ni1—N1 | 2.051 (2) | C13—C18 | 1.518 (4) |
Ni2—O3ii | 2.1129 (18) | C12—H12 | 0.9300 |
Ni2—O3 | 2.1129 (18) | C10—H10A | 0.9700 |
Ni2—N4ii | 2.050 (3) | C10—H10B | 0.9700 |
Ni2—N4 | 2.050 (3) | C10—C9 | 1.510 (5) |
Ni2—N3 | 2.063 (2) | C9—H9A | 0.9700 |
Ni2—N3ii | 2.063 (2) | C9—H9B | 0.9700 |
O1—C17 | 1.261 (3) | C3—H3A | 0.9700 |
O3—C18 | 1.262 (3) | C3—H3B | 0.9700 |
O4—C18 | 1.243 (3) | C3—C2i | 1.508 (5) |
O2—C17 | 1.247 (3) | C4—H4A | 0.9700 |
O6—C19 | 1.205 (3) | C4—H4B | 0.9700 |
O5—H5 | 0.8200 | C4—C5 | 1.500 (5) |
O5—C19 | 1.314 (4) | C8—H8A | 0.9700 |
N2—H2 | 0.9800 | C8—H8B | 0.9700 |
N2—C3 | 1.472 (4) | C8—C7ii | 1.512 (5) |
N2—C4 | 1.463 (4) | C2—H2A | 0.9700 |
N4—H4 | 0.9800 | C2—H2B | 0.9700 |
N4—C9 | 1.455 (4) | C2—C1 | 1.508 (5) |
N4—C8 | 1.490 (4) | C1—H1A | 0.9700 |
N3—H3 | 0.9800 | C1—H1B | 0.9700 |
N3—C10 | 1.473 (4) | C6—H6A | 0.9700 |
N3—C6 | 1.457 (4) | C6—H6B | 0.9700 |
N1—H1 | 0.9800 | C6—C7 | 1.503 (5) |
N1—C1 | 1.459 (4) | C7—H7A | 0.9700 |
N1—C5 | 1.477 (4) | C7—H7B | 0.9700 |
C15—C14 | 1.393 (4) | C5—H5A | 0.9700 |
C15—C16 | 1.394 (4) | C5—H5B | 0.9700 |
C15—C19 | 1.497 (4) | O1W—H1WA | 0.8501 |
C14—H14 | 0.9300 | O1W—H1WB | 0.8501 |
C14—C13 | 1.389 (4) | ||
O1i—Ni1—O1 | 180.0 | C11—C12—H12 | 119.6 |
N2—Ni1—O1 | 88.88 (9) | C13—C12—H12 | 119.6 |
N2i—Ni1—O1 | 91.12 (9) | O3—C18—C13 | 115.2 (3) |
N2—Ni1—O1i | 91.11 (9) | O4—C18—O3 | 125.9 (3) |
N2i—Ni1—O1i | 88.88 (9) | O4—C18—C13 | 118.9 (3) |
N2—Ni1—N2i | 180.0 | O1—C17—C11 | 115.8 (2) |
N1i—Ni1—O1i | 87.34 (8) | O2—C17—O1 | 125.2 (3) |
N1—Ni1—O1 | 87.34 (8) | O2—C17—C11 | 118.8 (2) |
N1—Ni1—O1i | 92.66 (8) | O6—C19—O5 | 123.8 (3) |
N1i—Ni1—O1 | 92.65 (8) | O6—C19—C15 | 122.9 (3) |
N1—Ni1—N2 | 85.31 (11) | O5—C19—C15 | 113.2 (3) |
N1i—Ni1—N2i | 85.31 (11) | N3—C10—H10A | 109.8 |
N1—Ni1—N2i | 94.69 (11) | N3—C10—H10B | 109.8 |
N1i—Ni1—N2 | 94.69 (11) | N3—C10—C9 | 109.3 (3) |
N1—Ni1—N1i | 180.00 (16) | H10A—C10—H10B | 108.3 |
O3—Ni2—O3ii | 180.0 | C9—C10—H10A | 109.8 |
N4—Ni2—O3ii | 92.22 (9) | C9—C10—H10B | 109.8 |
N4—Ni2—O3 | 87.78 (9) | N4—C9—C10 | 109.5 (3) |
N4ii—Ni2—O3 | 92.22 (9) | N4—C9—H9A | 109.8 |
N4ii—Ni2—O3ii | 87.78 (9) | N4—C9—H9B | 109.8 |
N4ii—Ni2—N4 | 180.0 | C10—C9—H9A | 109.8 |
N4ii—Ni2—N3 | 94.62 (11) | C10—C9—H9B | 109.8 |
N4—Ni2—N3 | 85.38 (11) | H9A—C9—H9B | 108.2 |
N4—Ni2—N3ii | 94.62 (11) | N2—C3—H3A | 109.2 |
N4ii—Ni2—N3ii | 85.38 (11) | N2—C3—H3B | 109.2 |
N3—Ni2—O3ii | 94.18 (9) | N2—C3—C2i | 112.2 (3) |
N3ii—Ni2—O3ii | 85.83 (9) | H3A—C3—H3B | 107.9 |
N3—Ni2—O3 | 85.82 (9) | C2i—C3—H3A | 109.2 |
N3ii—Ni2—O3 | 94.18 (9) | C2i—C3—H3B | 109.2 |
N3—Ni2—N3ii | 180.0 | N2—C4—H4A | 109.8 |
C17—O1—Ni1 | 128.73 (18) | N2—C4—H4B | 109.8 |
C18—O3—Ni2 | 135.10 (19) | N2—C4—C5 | 109.5 (3) |
C19—O5—H5 | 109.5 | H4A—C4—H4B | 108.2 |
Ni1—N2—H2 | 106.9 | C5—C4—H4A | 109.8 |
C3—N2—Ni1 | 115.6 (2) | C5—C4—H4B | 109.8 |
C3—N2—H2 | 106.9 | N4—C8—H8A | 109.4 |
C4—N2—Ni1 | 106.0 (2) | N4—C8—H8B | 109.4 |
C4—N2—H2 | 106.9 | N4—C8—C7ii | 111.1 (3) |
C4—N2—C3 | 114.0 (3) | H8A—C8—H8B | 108.0 |
Ni2—N4—H4 | 106.6 | C7ii—C8—H8A | 109.4 |
C9—N4—Ni2 | 106.7 (2) | C7ii—C8—H8B | 109.4 |
C9—N4—H4 | 106.6 | C3i—C2—H2A | 108.2 |
C9—N4—C8 | 113.6 (3) | C3i—C2—H2B | 108.2 |
C8—N4—Ni2 | 116.0 (2) | C3i—C2—C1 | 116.2 (3) |
C8—N4—H4 | 106.6 | H2A—C2—H2B | 107.4 |
Ni2—N3—H3 | 106.4 | C1—C2—H2A | 108.2 |
C10—N3—Ni2 | 105.9 (2) | C1—C2—H2B | 108.2 |
C10—N3—H3 | 106.4 | N1—C1—C2 | 111.8 (3) |
C6—N3—Ni2 | 116.5 (2) | N1—C1—H1A | 109.3 |
C6—N3—H3 | 106.4 | N1—C1—H1B | 109.3 |
C6—N3—C10 | 114.6 (3) | C2—C1—H1A | 109.3 |
Ni1—N1—H1 | 106.6 | C2—C1—H1B | 109.3 |
C1—N1—Ni1 | 116.0 (2) | H1A—C1—H1B | 107.9 |
C1—N1—H1 | 106.6 | N3—C6—H6A | 109.0 |
C1—N1—C5 | 113.9 (3) | N3—C6—H6B | 109.0 |
C5—N1—Ni1 | 106.4 (2) | N3—C6—C7 | 112.8 (3) |
C5—N1—H1 | 106.6 | H6A—C6—H6B | 107.8 |
C14—C15—C16 | 120.0 (2) | C7—C6—H6A | 109.0 |
C14—C15—C19 | 118.8 (3) | C7—C6—H6B | 109.0 |
C16—C15—C19 | 121.0 (2) | C8ii—C7—H7A | 108.2 |
C15—C14—H14 | 120.2 | C8ii—C7—H7B | 108.2 |
C13—C14—C15 | 119.7 (3) | C6—C7—C8ii | 116.4 (3) |
C13—C14—H14 | 120.2 | C6—C7—H7A | 108.2 |
C15—C16—H16 | 119.9 | C6—C7—H7B | 108.2 |
C11—C16—C15 | 120.3 (2) | H7A—C7—H7B | 107.3 |
C11—C16—H16 | 119.9 | N1—C5—C4 | 109.3 (3) |
C16—C11—C17 | 120.4 (2) | N1—C5—H5A | 109.8 |
C12—C11—C16 | 119.4 (3) | N1—C5—H5B | 109.8 |
C12—C11—C17 | 120.0 (2) | C4—C5—H5A | 109.8 |
C14—C13—C18 | 120.1 (3) | C4—C5—H5B | 109.8 |
C12—C13—C14 | 119.8 (2) | H5A—C5—H5B | 108.3 |
C12—C13—C18 | 119.8 (2) | H1WA—O1W—H1WB | 104.5 |
C11—C12—C13 | 120.9 (3) | ||
Ni1—O1—C17—O2 | −39.4 (4) | C14—C13—C18—O4 | 13.4 (4) |
Ni1—O1—C17—C11 | 135.4 (2) | C16—C15—C14—C13 | −0.7 (4) |
Ni1—N2—C3—C2i | 54.6 (4) | C16—C15—C19—O6 | −164.3 (3) |
Ni1—N2—C4—C5 | −40.7 (3) | C16—C15—C19—O5 | 14.1 (4) |
Ni1—N1—C1—C2 | 56.5 (4) | C16—C11—C12—C13 | −2.3 (4) |
Ni1—N1—C5—C4 | −39.1 (3) | C16—C11—C17—O1 | 20.0 (4) |
Ni2—O3—C18—O4 | −19.0 (5) | C16—C11—C17—O2 | −164.8 (3) |
Ni2—O3—C18—C13 | 159.41 (19) | C12—C11—C17—O1 | −153.7 (3) |
Ni2—N4—C9—C10 | −39.8 (3) | C12—C11—C17—O2 | 21.5 (4) |
Ni2—N4—C8—C7ii | 55.9 (3) | C12—C13—C18—O3 | 9.5 (4) |
Ni2—N3—C10—C9 | −39.6 (3) | C12—C13—C18—O4 | −171.9 (3) |
Ni2—N3—C6—C7 | 54.0 (4) | C18—C13—C12—C11 | −172.1 (2) |
N2—C4—C5—N1 | 55.0 (4) | C17—C11—C12—C13 | 171.5 (3) |
N3—C10—C9—N4 | 54.9 (4) | C19—C15—C14—C13 | −175.3 (3) |
N3—C6—C7—C8ii | −70.5 (4) | C19—C15—C16—C11 | 175.6 (3) |
C15—C14—C13—C12 | −1.1 (4) | C10—N3—C6—C7 | 178.4 (3) |
C15—C14—C13—C18 | 173.6 (2) | C9—N4—C8—C7ii | −179.8 (3) |
C15—C16—C11—C12 | 0.4 (4) | C3—N2—C4—C5 | −169.0 (3) |
C15—C16—C11—C17 | −173.3 (3) | C3i—C2—C1—N1 | −71.5 (4) |
C14—C15—C16—C11 | 1.1 (4) | C4—N2—C3—C2i | 177.9 (3) |
C14—C15—C19—O6 | 10.2 (5) | C8—N4—C9—C10 | −169.0 (3) |
C14—C15—C19—O5 | −171.4 (3) | C1—N1—C5—C4 | −168.3 (3) |
C14—C13—C12—C11 | 2.6 (4) | C6—N3—C10—C9 | −169.5 (3) |
C14—C13—C18—O3 | −165.2 (3) | C5—N1—C1—C2 | −179.4 (3) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···O1W | 0.82 | 1.72 | 2.531 (3) | 170 |
N2—H2···O6iii | 0.98 | 2.38 | 3.199 (4) | 141 |
N4—H4···O4ii | 0.98 | 2.09 | 2.959 (3) | 147 |
N1—H1···O2i | 0.98 | 1.97 | 2.872 (3) | 153 |
O1W—H1WA···O2iv | 0.85 | 1.83 | 2.664 (3) | 168 |
O1W—H1WB···O4v | 0.85 | 1.92 | 2.747 (3) | 165 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y+1, −z+1; (iii) x+1, y, z; (iv) −x+1/2, y−1/2, −z+3/2; (v) −x−1/2, y−1/2, −z+3/2. |
I | II | ||
Ni1—N1 | 2.056 (3) | Ni1—N1 | 2.051 (2) |
Ni1—N2 | 2.066 (2) | Ni1—N2 | 2.064 (3) |
Ni1—N3 | 2.053 (3) | Ni2—N3 | 2.063 (2) |
Ni1—N4 | 2.046 (3) | Ni2—N4 | 2.050 (3) |
Ni1—O1 | 2.1106 (18) | Ni1—O1 | 2.1242 (19) |
Ni1—O3i | 2.1377 (18) | Ni2—O3 | 2.1129 (18) |
N1—Ni1—N4 | 85.55 (15) | N1—Ni1—N2 | 85.31 (11) |
N2—Ni1—N3 | 84.92 (14) | N3—Ni2—N4 | 85.38 (11) |
N1—Ni1—N2 | 93.13 (14) | N1—Ni1—N2ii | 94.69 (11) |
N3—Ni1—N4 | 96.41 (15) | N3—Ni1—N4iii | 94.62 (11) |
Symmetry codes: (i) -x + 3/2, y + 1/2, -z + 3/2; (ii) -x + 1, -y, -z + 1; (iii) -x, -y + 1, -z + 1. |
References
Bosnich, B., Tobe, M. L. & Webb, G. A. (1965). Inorg. Chem. 4, 1109–1112. CrossRef CAS Web of Science Google Scholar
Choi, H. J., Lee, T. S. & Suh, M. P. (1999). Angew. Chem. Int. Ed. 38, 1405–1408. Web of Science CrossRef CAS Google Scholar
Choi, H. J., Lee, T. S. & Suh, M. P. (2001). J. Inclusion Phenom. Macrocyclic Chem. 41, 155–162. Web of Science CSD CrossRef CAS Google Scholar
Choi, H. J. & Suh, M. P. (1998). J. Am. Chem. Soc. 120, 10622–10628. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Lampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345–371. CrossRef CAS Google Scholar
Lampeka, Ya. D., Tsymbal, L. V., Barna, A. V., Shuĺga, Y. L., Shova, S. & Arion, V. B. (2012). Dalton Trans. 41, 4118–4125. Web of Science CSD CrossRef CAS PubMed Google Scholar
Lu, T.-B., Xiang, H., Luck, R. L., Jiang, L., Mao, Z.-W. & Ji, L.-N. (2002). New J. Chem. 26, 969–971. Web of Science CSD CrossRef CAS Google Scholar
Lu, T.-B., Xiang, H., Luck, R. L., Mao, Z.-W., Wang, D., Chen, C. & Ji, L.-N. (2001). CrystEngComm, 3, 168–169. Web of Science CSD CrossRef Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Meng, X.-R., Zhong, D.-C., Jiang, L., Li, H.-Y. & Lu, T.-B. (2011). Cryst. Growth Des. 11, 2020–2025. Web of Science CSD CrossRef CAS Google Scholar
Parsons, S., Jagaln, V. B., Harrison, A., Parkin, A. & Johnstone, R. (2006). Private Communication. Google Scholar
Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496. Web of Science CrossRef CAS Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Ryoo, J. J., Shin, J. W., Dho, H.-S. & Min, K. S. (2010). Inorg. Chem. 49, 7232–7234. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shin, J. W., Kim, D.-W. & Moon, D. (2016). Polyhedron, 105, 62–70. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154–165. Web of Science CrossRef CAS Google Scholar
Suh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39–79. San Diego: Academic Press. Google Scholar
Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835. Web of Science CrossRef CAS PubMed Google Scholar
Tadokoro, M., Suda, T., Shouji, T., Ohno, K., Honda, K., Takeuchi, A., Yoshizawa, M., Isoda, K., Kamebuchi, H. & Matsui, H. (2015). Bull. Chem. Soc. Jpn, 88, 1707–1715. Web of Science CSD CrossRef CAS Google Scholar
Tao, B., Cheng, F., Jiang, X. & Xia, H. (2012). J. Mol. Struct. 1028, 176–180. Web of Science CSD CrossRef CAS Google Scholar
Tsymbal, L. V., Andriichuk, I. L., Shova, S., Trzybiński, D., Woźniak, K., Arion, V. B. & Lampeka, Ya. D. (2021). Cryst. Growth Des. 21, 2355–2370. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.