research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and structural characterizations of the first coordination polymers assembled from the Ni(cyclam)2+ cation and the benzene-1,3,5-tri­carboxyl­ate linker

crossmark logo

aL. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospekt Nauki 31, Kyiv, 03028, Ukraine, and b"Petru Poni" Institute of Macromolecular Chemistry, Department of Inorganic Polymers, Aleea Grigore Ghika Voda 41A, RO-700487 Iasi, Romania
*Correspondence e-mail: lampeka@adamant.net

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 3 October 2022; accepted 9 October 2022; online 13 October 2022)

The asymmetric unit of catena-poly[[[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N1,N4,N8,N11)nickel(II)]-μ2-5-carb­oxy­benzene-1,3-di­carboxyl­ato-κ2O1:O3] octa­hydrate], {[Ni(C9H4O6)(C10H24N4)]·8H2O}n (I), consists of a macrocyclic Ni2+ cation, a carboxyl­ate dianion and eight highly disordered water mol­ecules of crystallization. The components of the compound catena-poly[[[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N1,N4,N8,N11)nickel(II)]-μ2-5-carb­oxy­benzene-1,3-di­carboxyl­ato-κ2O1:O3] monohydrate], {[Ni(C9H4O6)(C10H24N4)]·H2O}n (II), are two crystallographically unique centrosymmetric macrocyclic dications, a carboxyl­ate dianion and one water mol­ecule of crystallization. In each compound, the metal ion is coordinated in the equatorial plane by the four secondary N atoms of the macrocyclic ligand, which adopts the most energetically stable trans-III conformation, and two mutually trans O atoms of the carboxyl­ate anions in a slightly tetra­gonally distorted trans-NiN4O2 octa­hedral geometry. The crystals of both compounds are composed of parallel coordination polymeric chains running along the [010] direction in I and the [110] and [1[\overline{1}]0] directions in II. The bridging carboxyl­ate anions display different modes of coordination connected with the relative orientation of coordinated O atoms, i.e., remote in I and inter­mediate in II, thus resulting in essentially different distances between the Ni atoms in the chains [11.0657 (4) and 8.9089 (2) Å in I and II, respectively]. As a result of hydrogen-bonding inter­actions, the chains are joined together in sheets oriented parallel to the (10[\overline{1}]) and (001) planes in I and II, respectively.

1. Chemical context

Aza­macrocyclic complexes of transition metals are widely used for the construction of metal–organic frameworks (MOFs) – crystalline porous materials displaying many promising properties connected with the possibilities of their practical applications (Lampeka & Tsymbal, 2004[Lampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345-371.]; Suh & Moon, 2007[Suh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39-79. San Diego: Academic Press.]; Suh et al., 2012[Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782-835.]; Stackhouse & Ma, 2018[Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154-165.]). Complexes of the 14-membered tetra­aza cyclam ligand (cyclam = 1,4,8,11-tetra­aza­cyclo­tetra­decane, C10H24N4, L), which is the most suitable for binding of 3d transition-metal ions, in particular, Ni2+, are among popular metal-containing nodes in the formation of MOFs. Their inter­actions with different oligo­carboxyl­ates as the most common bridging ligands (Rao et al., 2004[Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466-1496.]) usually result in coordination polymers, the dimensionalities of which are dependent on the number of carb­oxy­lic groups present in the linker. As was shown formerly for a number of macrocyclic Ni2+ complexes of aza- and di­aza­cyclam derivatives, which are the closest structural analogues of L (aza­cyclam = 1,3,5,8,12-penta­tetra­aza­cyclo­tetra­decane, di­aza­cyclam = 1,3,5,8,10,12-hexa­aza­zacyclo­tetra­deca­ne), the coordination of the simplest tridentate aromatic ligand benzene-1,3,5-tri­carboxyl­ate (btc3–) in the trans-axial coordination positions of the metal ion leads to the formation of two-dimensional coordination polymers with hexa­gonal nets of 63 topology (Choi et al., 2001[Choi, H. J., Lee, T. S. & Suh, M. P. (2001). J. Inclusion Phenom. Macrocyclic Chem. 41, 155-162.]; Meng et al., 2011[Meng, X.-R., Zhong, D.-C., Jiang, L., Li, H.-Y. & Lu, T.-B. (2011). Cryst. Growth Des. 11, 2020-2025.]; Choi & Suh, 1998[Choi, H. J. & Suh, M. P. (1998). J. Am. Chem. Soc. 120, 10622-10628.]; Ryoo et al., 2010[Ryoo, J. J., Shin, J. W., Dho, H.-S. & Min, K. S. (2010). Inorg. Chem. 49, 7232-7234.]; Lu et al., 2001[Lu, T.-B., Xiang, H., Luck, R. L., Mao, Z.-W., Wang, D., Chen, C. & Ji, L.-N. (2001). CrystEngComm, 3, 168-169.]; Lu et al., 2002[Lu, T.-B., Xiang, H., Luck, R. L., Jiang, L., Mao, Z.-W. & Ji, L.-N. (2002). New J. Chem. 26, 969-971.]; Lampeka et al., 2012[Lampeka, Ya. D., Tsymbal, L. V., Barna, A. V., Shuĺga, Y. L., Shova, S. & Arion, V. B. (2012). Dalton Trans. 41, 4118-4125.]). Surprisingly, for the Ni(L)2+ cation itself, only ionic compounds built on the trans-di­aqua [Ni(L)(H2O)2]2+ cation and the non-coordinated btc3−anion have been described to date (Choi et al., 1999[Choi, H. J., Lee, T. S. & Suh, M. P. (1999). Angew. Chem. Int. Ed. 38, 1405-1408.]; Parsons et al., 2006[Parsons, S., Jagaln, V. B., Harrison, A., Parkin, A. & Johnstone, R. (2006). Private Communication.]; Tadokoro et al., 2015[Tadokoro, M., Suda, T., Shouji, T., Ohno, K., Honda, K., Takeuchi, A., Yoshizawa, M., Isoda, K., Kamebuchi, H. & Matsui, H. (2015). Bull. Chem. Soc. Jpn, 88, 1707-1715.]).

[Scheme 1]

The present work describes the preparation and structural characterization of the first representatives of polymeric complexes formed by Ni(L)2+ and the benzene-1,3,5-tri­carboxyl­ate anion, namely, catena-poly[[[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N1,N4,N8,N11)nickel(II)]-μ2-5-carb­oxy­benzene-1,3-di­carboxyl­ato-κ2O1:O3] octa­hydrate], {[Ni(C9H4O6)(C10H24N4)]·8H2O}n (I) and catena-poly[[[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N1,N4,N8,N11)nickel(II)]-μ2-5-carb­oxy­benzene-1,3-di­carb­oxyl­ato-κ2O1:O3] monohydrate], {[Ni(C9H4O6)(C10H24N4)]·H2O}n (II).

2. Structural commentary

The mol­ecular structures of I and II are shown in Fig. 1[link]. The asymmetric unit of I consists of a macrocyclic [Ni(L)]2+ di-cation, a monoprotonated carboxyl­ate Hbtc2− dianion and eight water mol­ecules of crystallization, while the components of II are the same dianion, two crystallographically unique centrosymmetric dications and one water mol­ecule of crystallization. The coordination polyhedra of the metal ions in both complexes are very similar: the Ni2+ ions are coordinated by the four secondary N atoms of the macrocycle L, which adopt the most energetically stable trans-III (R,R,S,S) conformation (Bosnich et al., 1965a; Barefield et al., 1986) in which the five-membered (N—Ni—N bite angles ≃ 85°) and six-membered (N—Ni—N bite angles ≃ 95°) chelate rings are in gauche and chair conformations, respectively (Table 1[link]). The O atoms of the carboxyl­ate ligands occupy the axial positions in the coordination spheres of the metal ions, resulting in a tetra­gonally elongated trans-NiN4O2 coordination octa­hedra with the Ni—N bond lengths (average value 2.063 Å) slightly shorter than the Ni—O ones (average value 2.121 Å) (Table 1[link]). The axial Ni—O bonds are nearly orthogonal to the NiN4 planes (deviations of the angles N—Ni—O from 90° do not exceed 5°). The deviations of the Ni and N atoms from the mean N4 plane in I are 0.011 Å and ±0.009 Å, respectively, while the NiN4 coordination moieties in II are strictly planar because of the location of the metal ions on crystallographic inversion centers. As in other complexes of the Ni2+ macrocyclic cations and carboxyl­ate ligands (Tsymbal et al., 2021[Tsymbal, L. V., Andriichuk, I. L., Shova, S., Trzybiński, D., Woźniak, K., Arion, V. B. & Lampeka, Ya. D. (2021). Cryst. Growth Des. 21, 2355-2370.]) the Ni—O bonds in I and II are reinforced by the intra­molecular hydrogen bonds between the secondary NH atoms and the non-coordinated O atoms of each coordinated carb­oxy­lic group (Fig. 1[link], Tables 2[link] and 3[link]).

Table 1
Selected geometric parameters (Å, °)

I   II  
Ni1—N1 2.056 (3) Ni1—N1 2.051 (2)
Ni1—N2 2.066 (2) Ni1—N2 2.064 (3)
Ni1—N3 2.053 (3) Ni2—N3 2.063 (2)
Ni1—N4 2.046 (3) Ni2—N4 2.050 (3)
Ni1—O1 2.1106 (18) Ni1—O1 2.1242 (19)
Ni1—O3i 2.1377 (18) Ni2—O3 2.1129 (18)
       
N1—Ni1—N4 85.55 (15) N1—Ni1—N2 85.31 (11)
N2—Ni1—N3 84.92 (14) N3—Ni2—N4 85.38 (11)
N1—Ni1—N2 93.13 (14) N1—Ni1—N2ii 94.69 (11)
N3—Ni1—N4 96.41 (15) N3—Ni1—N4iii 94.62 (11)
Symmetry codes: (i) −x + [{3\over 2}], y + [{1\over 2}], −z + [{3\over 2}]; (ii) −x + 1, −y, −z + 1; (iii) −x, −y + 1, −z + 1.

Table 2
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O4i 0.82 1.83 2.604 (3) 157
N2—H2⋯O2 0.98 2.08 2.969 (3) 150
N4—H4⋯O4ii 0.98 2.00 2.891 (3) 151
N4—H4⋯O6iii 0.98 2.59 3.226 (4) 123
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+2, -y+1, -z+2].

Table 3
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O1W 0.82 1.72 2.531 (3) 170
N2—H2⋯O6i 0.98 2.38 3.199 (4) 141
N4—H4⋯O4ii 0.98 2.09 2.959 (3) 147
N1—H1⋯O2iii 0.98 1.97 2.872 (3) 153
O1W—H1WA⋯O2iv 0.85 1.83 2.664 (3) 168
O1W—H1WB⋯O4v 0.85 1.92 2.747 (3) 165
Symmetry codes: (i) x+1, y, z; (ii) [-x, -y+1, -z+1]; (iii) [-x+1, -y, -z+1]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The extended asymmetric unit in (a) I and (b) II showing the coordination environment of the Ni atoms and the atom-labeling scheme (displacement ellipsoids are drawn at the 30% probability level). C-bound H atoms are omitted for clarity. Intra­molecular hydrogen bonds are shown as dotted lines. Symmetry codes: (i) −x + [{3\over 2}], y − [{1\over 2}], −z + [{3\over 2}]; (ii) −x + [{3\over 2}], y + [{1\over 2}], −z + [{3\over 2}]; (iii) −x + 1, −y, −z + 1; (iv) −x, −y + 1, −z + 1.

The C—O bond lengths in the deprotonated carboxyl­ate groups are nearly equal, thus indicating essential electron delocalization, while protonated carb­oxy­lic groups remain non-delocalized [the lengths of the C—OH and C=O bonds in I and II are 1.305 (4) and 1.200 (3) Å and 1.314 (4) and 1.205 (3) Å, respectively]. The mean planes of the carboxyl­ate groups are slightly tilted relative to the mean plane of their attached aromatic rings (average angle equals 7.0° in I and 16.0° in II).

In both complexes, the monoprotonated carboxyl­ate ligands display a μ2-bis-monodentate bridging function of the isophthalate type, resulting in the formation of one-dimensional coordination polymers (Figs. 2[link] and 3[link]). The Ni—O coordination bonds of the Hbtc2− bridge are characterized by the syn/syn orientation. Since the carboxyl­ate groups are nearly coplanar with the aromatic rings, the possibility arises for appearance of different modes of ligand coordination, depending on the mutual spatial arrangement of coordinated O atoms (Tsymbal et al., 2021[Tsymbal, L. V., Andriichuk, I. L., Shova, S., Trzybiński, D., Woźniak, K., Arion, V. B. & Lampeka, Ya. D. (2021). Cryst. Growth Des. 21, 2355-2370.]). In the complexes under consideration, these modes can be recognized as remote (rm) in I and inter­mediate (im) in II (see insets in Figs. 2[link] and 3[link]).

[Figure 2]
Figure 2
The hydrogen-bonded (dashed lines) sheet in I. C-bound H atoms have been omitted; the intra­molecular hydrogen bonds are not shown. The mode of coordination of carboxyl­ate ligand is shown as an inset. Symmetry codes: (i) −x + 2, −y + 1, −z + 2; (ii) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}].
[Figure 3]
Figure 3
The hydrogen-bonded (dashed lines) sheet in II. C-bound H atoms and water mol­ecule of crystallization have been omitted; the intra­molecular hydrogen bonds are not shown. The mode of coordination of carboxyl­ate ligand is shown as an inset. Symmetry code: (i) x − 1, y, z.

Such peculiarities lead to several differences in the structures of the polymeric chains. In particular, the angle between the mean NiN4 planes of the macrocyclic cations in I is 40.62 (1)°, while they are nearly orthogonal in II [85.49 (1)°]. Therewith, the chains of the Ni atoms in I are non-linear [the angle Ni⋯Ni⋯Ni is 169.590 (9)°], in contrast to strictly linear metal atom chains in II. The most important difference is connected with the mode of the carboxyl­ate coordination and consists of essentially different distances between the Ni atoms in the chains formed by the rm-syn/syn coordinated ligand in I [Ni⋯Ni = 11.0657 (4) Å], as compared to the im-syn/syn coordinated one in II [8.9089 (2) Å].

3. Supra­molecular features

Both compounds are characterized by lamellar structures as the result of linking of the polymeric chains into sheets due to hydrogen-bonding inter­actions (Tables 2[link] and 3[link]). The key role in the formation of sheets oriented parallel to the (10[\overline{1}]) plane from the chains running along the [010] direction in the crystals of I is played by the protonated carb­oxy­lic group of the Hbtc2− dianion, which forms two O—H⋯O hydrogen bonds acting both as the proton donor in a strong inter­action with the O atom of the coordinated carb­oxy­lic ligand on neighboring chain [O5—H5⋯O4(x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}])] and as the proton acceptor in a weak inter­action with the secondary amino group of the macrocyclic cation belonging to the same neighboring chain [N4—H4⋯O6(−x + 2, −y + 1, −z + 2)] (Fig. 2[link]). There are no hydrogen-bonding contacts between the sheets and the three-dimensional coherence of the crystal is provided by van der Waals inter­actions.

In the crystal of II, polymeric chains with different orientations are present, namely, running along the [110] or [1[\overline{1}]0] directions. As a result of the weak hydrogen bond between the carbonyl O6 atom of the protonated carb­oxy­lic group of the acid as the acceptor and the secondary N2—H2 amino group of the macrocyclic cation of a neighboring chain as the donor (Fig. 3[link]), they form alternating sheets oriented parallel to the (001) plane. At the same time, the hydroxyl group of the protonated carboxyl­ate group as the donor inter­acts strongly with the water mol­ecule of crystallization as acceptor, and this inter­action together with two additional hydrogen bonds with participation of O1W mol­ecule results in a three-dimensional network in II.

As estimated by PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), the volume of the solvent-accessible voids in I in the form of parallel one-dimensional channels equals 1111 Å3 (37.5% of the unit-cell volume) and according to SQUEEZE calculations it is filled with eight highly disordered water mol­ecules of crystallization. The crystals of II are non-porous.

4. Database survey

The Cambridge Structural Database (CSD, Version 5.43, last update March 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains descriptions of several polymorphs of compounds containing the Ni(L) moiety and the benzene-1,3,5-tri­carboxyl­ate anion (refcodes GOQTIP, Choi et al., 1999[Choi, H. J., Lee, T. S. & Suh, M. P. (1999). Angew. Chem. Int. Ed. 38, 1405-1408.]; PELCOZ, Parsons et al., 2006[Parsons, S., Jagaln, V. B., Harrison, A., Parkin, A. & Johnstone, R. (2006). Private Communication.]; GOQTIP01, SABLEP, SABLOZ and SABLOZ01, Tadokoro et al., 2015[Tadokoro, M., Suda, T., Shouji, T., Ohno, K., Honda, K., Takeuchi, A., Yoshizawa, M., Isoda, K., Kamebuchi, H. & Matsui, H. (2015). Bull. Chem. Soc. Jpn, 88, 1707-1715.]). All of them are highly hydrated (18–29 water mol­ecules of crystallization) ionic complexes containing the trans-di­aqua [Ni(L)(H2O)2]2+ dication and non-coordinated btc3– trianions. At the same time, a number of two-dimensional coordination polymers built on parent 14-membered derivatives of Ni(aza­cyclam) (CAXMIZ, Lampeka et al., 2012[Lampeka, Ya. D., Tsymbal, L. V., Barna, A. V., Shuĺga, Y. L., Shova, S. & Arion, V. B. (2012). Dalton Trans. 41, 4118-4125.]) and Ni(di­aza­cyclam) (IPOZIW, Choi et al., 2001[Choi, H. J., Lee, T. S. & Suh, M. P. (2001). J. Inclusion Phenom. Macrocyclic Chem. 41, 155-162.]; IWESIN and IWESOT, Meng et al., 2011[Meng, X.-R., Zhong, D.-C., Jiang, L., Li, H.-Y. & Lu, T.-B. (2011). Cryst. Growth Des. 11, 2020-2025.]; JEDQIS and JEDQOY, Choi & Suh, 1998[Choi, H. J. & Suh, M. P. (1998). J. Am. Chem. Soc. 120, 10622-10628.]; UJUHUD, Ryoo et al., 2010[Ryoo, J. J., Shin, J. W., Dho, H.-S. & Min, K. S. (2010). Inorg. Chem. 49, 7232-7234.]; VOQSAV, Lu et al., 2001[Lu, T.-B., Xiang, H., Luck, R. L., Mao, Z.-W., Wang, D., Chen, C. & Ji, L.-N. (2001). CrystEngComm, 3, 168-169.]; and WUJDEK, Lu et al., 2002[Lu, T.-B., Xiang, H., Luck, R. L., Jiang, L., Mao, Z.-W. & Ji, L.-N. (2002). New J. Chem. 26, 969-971.]) bearing different substituents at the non-coordinated distal nitro­gen atom(s) have been structurally characterized. In addition, two compounds with other structures have been described. One represents the mol­ecular complex in which the trans-[Ni(LA)(btc)2]4– anion compensates the charge of the two trans-[Ni(LA)(H2O)2]2+ cations (LA = 3,10-dibutyl-1,3,5,8,10,12-hexa­aza­cyclo­tetra­deca­ne) (SUXXEQ, Shin et al., 2016[Shin, J. W., Kim, D.-W. & Moon, D. (2016). Polyhedron, 105, 62-70.]), and the other is the hydrated (3.5 water mol­ecules of crystallization) one-dimensional coordination polymer formed by the [Ni(LB)]2+ cation and the μ2 Hbtc2– linker (LB = 1,3,6,9,11,14-hexa­aza­tri­cyclo­[12.2.1.16,9]octa­deca­ne) (SEF­LOG, Tao et al., 2012[Tao, B., Cheng, F., Jiang, X. & Xia, H. (2012). J. Mol. Struct. 1028, 176-180.]). The structure of the latter is similar to the structure of I – it is a neutral one-dimensional coordination polymer with parallel alignment of the chains formed due to the carboxyl­ate displaying the rm-syn/syn mode of the bridging function. Correspondingly, the Ni⋯Ni distance in this compound (11.313 Å) is close to that observed in I, though the chains, in contrast to I, are linear.

5. Synthesis and crystallization

All chemicals and solvents used in this work were purchased from Sigma–Aldrich and used without further purification. The complex [Ni(L)](ClO4)2 was prepared from ethanol solution as described in the literature (Bosnich et al., 1965[Bosnich, B., Tobe, M. L. & Webb, G. A. (1965). Inorg. Chem. 4, 1109-1112.]).

The complex [Ni(L)(Hbtc)·8H2O], (I), was prepared as follows. [Ni(L)](ClO4)2 (153 mg, 0.33 mmol) and H3btc (50 mg, 0.24 mmol) were dissolved in 10 ml of a DMF/H2O mixture (4:1 by volume) and the solution was heated at 358 K for 30 h. A small amount of pink needle-like crystals in the form of concretions was formed in a week. These were filtered off, washed with small amounts of methanol and diethyl ether, and dried in air. Yield: 15 mg (10% based on acid). Analysis calculated for C19H44N4NiO14: C 37.36, H 7.27, N 9.18%. Found: C 37.52, H 7.31, N 9.15%. Single crystals of I suitable for X-ray diffraction analysis were selected from the sample formed after refrigerating the mother liquor for several days.

Apparently, the complex [Ni(L)(Hbtc)·H2O], (II), is more thermodynamically stable than I and it was prepared according to similar procedure, except that initially precipitated crystals were left to remain under the mother liquor at ambient temperature. Over ca one week, the needle-like crystals of I dissolved; instead, a precipitate in the form of rhomb-shaped plates was formed and single crystals of II suitable for X-ray diffraction analysis were selected from this reaction mixture. Alternatively, larger amounts of II can be obtained using an analogous procedure but using higher concentrations of the reagents. [Ni(L)](ClO4)2 (200 mg, 0.44 mmol) and H3btc (65 mg, 0.31 mmol) were dissolved in 10 ml of a DMF/H2O mixture (4:1 by volume) and the solution was heated at 358 K for 24 h. After cooling of the reaction mixture, the product began to crystallize in several hours in the form of pink plate-like concretions. It was filtered off, washed with small amounts of methanol and diethyl ether, and dried in air. Yield: 38 mg (25% based on acid). Analysis calculated for C19H30N4NiO7: C 47.09, H 6.24, N 11.57%. Found: C 47.15, H 6.31, N 11.65%.

Caution! Perchlorate salts of metal complexes are potentially explosive and should be handled with care.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The H atoms in I and II were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 Å (ring H atoms), 0.97 Å (methyl­ene H atoms), N—H distances of 0.98 Å, O—H distances of 0.82 Å (protonated carboxyl­ate group) and 0.85 Å (water mol­ecules) with Uiso(H) values of 1.2Ueq or 1.5Ueq times those of the corresponding parent atoms. SQUEEZE calculations indicate the presence of eight water mol­ecules of crystallization per asymmetric unit of I.

Table 4
Experimental details

  I II
Crystal data
Chemical formula [Ni(C9H4O6)(C10H24N4)]·8H2O [Ni(C9H4O6)(C10H24N4)]·H2O
Mr 467.16 485.18
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 293 293
a, b, c (Å) 9.3650 (6), 22.0401 (8), 14.3567 (7) 9.3852 (3), 15.1459 (4), 15.7561 (5)
β (°) 91.457 (5) 98.604 (3)
V3) 2962.3 (3) 2214.49 (12)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.69 0.92
Crystal size (mm) 0.40 × 0.20 × 0.10 0.20 × 0.20 × 0.07
 
Data collection
Diffractometer Rigaku Xcalibur Eos Rigaku Xcalibur Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.751, 1.000 0.988, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 21516, 6875, 3858 14088, 4534, 2876
Rint 0.058 0.042
(sin θ/λ)max−1) 0.688 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.125, 1.08 0.045, 0.108, 1.03
No. of reflections 6875 4534
No. of parameters 272 287
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.32 0.32, −0.43
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXS (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

catena-Poly[[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-µ2-5-carboxybenzene-1,3-dicarboxylato-κ2O1:O3] octahydrate] (I) top
Crystal data top
[Ni(C9H4O6)(C10H24N4)]·8H2OF(000) = 984
Mr = 467.16Dx = 1.047 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.3650 (6) ÅCell parameters from 3816 reflections
b = 22.0401 (8) Åθ = 1.9–23.7°
c = 14.3567 (7) ŵ = 0.69 mm1
β = 91.457 (5)°T = 293 K
V = 2962.3 (3) Å3Prism, clear light pink
Z = 40.40 × 0.20 × 0.10 mm
Data collection top
Rigaku Xcalibur Eos
diffractometer
6875 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source3858 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 16.1593 pixels mm-1θmax = 29.3°, θmin = 2.6°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2021)
k = 2727
Tmin = 0.751, Tmax = 1.000l = 1817
21516 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0348P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
6875 reflectionsΔρmax = 0.31 e Å3
272 parametersΔρmin = 0.32 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.69720 (4)0.55885 (2)0.75502 (3)0.03961 (15)
O10.6534 (2)0.46933 (8)0.79800 (14)0.0538 (6)
O20.5619 (3)0.41875 (8)0.67715 (16)0.0719 (8)
O30.7624 (2)0.15022 (8)0.78673 (14)0.0485 (6)
O40.6373 (3)0.19208 (9)0.67255 (18)0.1011 (11)
O50.9540 (3)0.27371 (10)1.04356 (19)0.0971 (11)
H51.0265670.2846521.0720190.146*
O60.8741 (3)0.36664 (10)1.06441 (17)0.0918 (10)
N10.8659 (3)0.52742 (12)0.6799 (3)0.0696 (9)
H10.8553110.4832900.6751350.084*
N20.5551 (3)0.55160 (11)0.6431 (2)0.0596 (9)
H20.5283400.5087160.6381910.072*
N30.5242 (4)0.58978 (12)0.8261 (2)0.0730 (10)
H30.5288450.6341990.8251840.088*
N40.8406 (4)0.56357 (11)0.8647 (2)0.0710 (10)
H40.8764850.6053230.8668670.085*
C10.8744 (6)0.55061 (19)0.5861 (4)0.1075 (18)
H1A0.9574820.5335150.5567870.129*
H1B0.8860940.5943200.5882170.129*
C20.7421 (7)0.5352 (2)0.5283 (3)0.114 (2)
H2A0.7620540.5424200.4632940.137*
H2B0.7226290.4922620.5353060.137*
C30.6120 (6)0.56943 (17)0.5518 (3)0.0911 (17)
H3A0.5391920.5625890.5036910.109*
H3B0.6338450.6124460.5527790.109*
C40.4290 (5)0.58417 (17)0.6676 (4)0.0880 (15)
H4A0.3487840.5711200.6284410.106*
H4B0.4430040.6272980.6579870.106*
C50.3984 (5)0.57217 (18)0.7675 (4)0.0958 (16)
H5A0.3156070.5953380.7857100.115*
H5B0.3778470.5294440.7762350.115*
C60.5197 (6)0.5718 (2)0.9226 (4)0.1113 (19)
H6A0.5027070.5284440.9256110.134*
H6B0.4399870.5920000.9512310.134*
C70.6542 (8)0.5863 (2)0.9777 (3)0.129 (2)
H7A0.6770560.6286880.9671970.154*
H7B0.6341140.5819251.0432620.154*
C80.7827 (7)0.55005 (17)0.9583 (3)0.111 (2)
H8A0.7589970.5072770.9616440.133*
H8B0.8557400.5583801.0056500.133*
C90.9589 (5)0.52540 (18)0.8405 (4)0.107 (2)
H9A0.9333730.4829690.8466770.129*
H9B1.0409260.5336390.8811550.129*
C100.9923 (5)0.53932 (19)0.7435 (5)0.110 (2)
H10A1.0721510.5145660.7245170.132*
H10B1.0201030.5815760.7386090.132*
C110.6747 (3)0.36318 (11)0.8010 (2)0.0399 (8)
C120.6602 (3)0.30772 (11)0.7576 (2)0.0420 (8)
H120.6122010.3055340.7001940.050*
C130.7152 (3)0.25504 (11)0.7973 (2)0.0401 (8)
C140.7864 (3)0.25897 (12)0.8827 (2)0.0486 (9)
H140.8258040.2242220.9096160.058*
C150.7995 (3)0.31362 (12)0.9283 (2)0.0463 (8)
C160.7405 (3)0.36579 (12)0.8868 (2)0.0424 (8)
H160.7461680.4026570.9181650.051*
C170.6238 (4)0.42117 (12)0.7530 (2)0.0450 (8)
C180.7045 (4)0.19457 (12)0.7481 (2)0.0506 (9)
C190.8792 (4)0.32119 (14)1.0186 (2)0.0618 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0576 (3)0.0201 (2)0.0402 (3)0.00044 (18)0.0169 (2)0.00049 (15)
O10.0879 (18)0.0212 (11)0.0512 (14)0.0037 (11)0.0180 (12)0.0000 (9)
O20.116 (2)0.0268 (12)0.0699 (18)0.0005 (12)0.0539 (16)0.0005 (10)
O30.0769 (16)0.0214 (11)0.0455 (13)0.0068 (10)0.0287 (12)0.0031 (9)
O40.176 (3)0.0313 (13)0.091 (2)0.0219 (15)0.100 (2)0.0163 (11)
O50.156 (3)0.0365 (14)0.094 (2)0.0040 (15)0.091 (2)0.0084 (13)
O60.150 (3)0.0500 (15)0.0726 (19)0.0118 (15)0.0564 (18)0.0265 (13)
N10.069 (2)0.0365 (17)0.103 (3)0.0020 (15)0.012 (2)0.0088 (16)
N20.083 (2)0.0269 (15)0.067 (2)0.0068 (14)0.0393 (18)0.0016 (13)
N30.097 (3)0.0377 (17)0.085 (3)0.0057 (16)0.018 (2)0.0059 (16)
N40.112 (3)0.0204 (14)0.077 (2)0.0101 (15)0.059 (2)0.0079 (13)
C10.156 (5)0.066 (3)0.103 (4)0.017 (3)0.057 (4)0.010 (3)
C20.227 (7)0.065 (3)0.052 (3)0.029 (4)0.018 (4)0.009 (2)
C30.163 (5)0.056 (3)0.052 (3)0.026 (3)0.052 (3)0.004 (2)
C40.079 (3)0.056 (3)0.127 (4)0.002 (2)0.051 (3)0.008 (3)
C50.066 (3)0.061 (3)0.160 (5)0.003 (2)0.002 (4)0.011 (3)
C60.180 (6)0.077 (3)0.080 (4)0.008 (3)0.056 (4)0.007 (3)
C70.284 (8)0.060 (3)0.041 (3)0.014 (4)0.004 (4)0.007 (2)
C80.232 (7)0.041 (2)0.055 (3)0.019 (3)0.062 (4)0.012 (2)
C90.095 (4)0.050 (3)0.172 (6)0.007 (2)0.086 (4)0.015 (3)
C100.055 (3)0.049 (3)0.223 (7)0.003 (2)0.022 (4)0.012 (3)
C110.055 (2)0.0183 (16)0.046 (2)0.0037 (13)0.0130 (16)0.0015 (12)
C120.057 (2)0.0269 (17)0.041 (2)0.0024 (13)0.0192 (16)0.0036 (12)
C130.057 (2)0.0214 (16)0.0409 (19)0.0007 (13)0.0190 (16)0.0010 (12)
C140.069 (2)0.0227 (16)0.053 (2)0.0013 (14)0.0261 (18)0.0011 (13)
C150.063 (2)0.0270 (17)0.048 (2)0.0046 (14)0.0208 (17)0.0009 (13)
C160.062 (2)0.0214 (16)0.043 (2)0.0050 (14)0.0119 (17)0.0053 (12)
C170.057 (2)0.0216 (16)0.055 (2)0.0046 (14)0.0146 (18)0.0023 (14)
C180.080 (3)0.0225 (17)0.047 (2)0.0004 (16)0.0342 (19)0.0003 (13)
C190.100 (3)0.034 (2)0.049 (2)0.0126 (19)0.035 (2)0.0023 (15)
Geometric parameters (Å, º) top
Ni1—O12.1106 (18)C3—H3B0.9700
Ni1—O3i2.1377 (18)C4—H4A0.9700
Ni1—N12.056 (3)C4—H4B0.9700
Ni1—N22.066 (2)C4—C51.494 (6)
Ni1—N32.053 (3)C5—H5A0.9700
Ni1—N42.046 (3)C5—H5B0.9700
O1—C171.270 (3)C6—H6A0.9700
O2—C171.221 (3)C6—H6B0.9700
O3—C181.241 (3)C6—C71.505 (7)
O4—C181.241 (3)C7—H7A0.9700
O5—H50.8200C7—H7B0.9700
O5—C191.305 (4)C7—C81.477 (7)
O6—C191.200 (3)C8—H8A0.9700
N1—H10.9800C8—H8B0.9700
N1—C11.445 (5)C9—H9A0.9700
N1—C101.499 (5)C9—H9B0.9700
N2—H20.9800C9—C101.467 (6)
N2—C31.481 (5)C10—H10A0.9700
N2—C41.434 (5)C10—H10B0.9700
N3—H30.9800C11—C121.377 (3)
N3—C51.481 (5)C11—C161.364 (4)
N3—C61.443 (5)C11—C171.523 (4)
N4—H40.9800C12—H120.9300
N4—C81.492 (5)C12—C131.387 (3)
N4—C91.441 (6)C13—C141.383 (4)
C1—H1A0.9700C13—C181.511 (4)
C1—H1B0.9700C14—H140.9300
C1—C21.512 (7)C14—C151.375 (4)
C2—H2A0.9700C15—C161.403 (4)
C2—H2B0.9700C15—C191.488 (4)
C2—C31.479 (6)C16—H160.9300
C3—H3A0.9700
O1—Ni1—O3i178.71 (9)C5—C4—H4B109.9
N1—Ni1—O189.78 (10)N3—C5—C4109.3 (4)
N1—Ni1—O3i91.51 (10)N3—C5—H5A109.8
N1—Ni1—N293.13 (14)N3—C5—H5B109.8
N2—Ni1—O191.66 (9)C4—C5—H5A109.8
N2—Ni1—O3i88.28 (8)C4—C5—H5B109.8
N3—Ni1—O190.19 (10)H5A—C5—H5B108.3
N3—Ni1—O3i88.52 (10)N3—C6—H6A108.8
N3—Ni1—N1178.04 (14)N3—C6—H6B108.8
N3—Ni1—N284.92 (14)N3—C6—C7113.7 (4)
N4—Ni1—O187.21 (9)H6A—C6—H6B107.7
N4—Ni1—O3i92.89 (8)C7—C6—H6A108.8
N4—Ni1—N185.55 (15)C7—C6—H6B108.8
N4—Ni1—N2178.25 (12)C6—C7—H7A107.9
N4—Ni1—N396.41 (15)C6—C7—H7B107.9
C17—O1—Ni1132.4 (2)H7A—C7—H7B107.2
C18—O3—Ni1ii134.01 (19)C8—C7—C6117.4 (4)
C19—O5—H5109.5C8—C7—H7A107.9
Ni1—N1—H1107.1C8—C7—H7B107.9
C1—N1—Ni1115.5 (3)N4—C8—H8A109.2
C1—N1—H1107.1N4—C8—H8B109.2
C1—N1—C10116.4 (4)C7—C8—N4112.2 (3)
C10—N1—Ni1103.2 (3)C7—C8—H8A109.2
C10—N1—H1107.1C7—C8—H8B109.2
Ni1—N2—H2106.8H8A—C8—H8B107.9
C3—N2—Ni1115.4 (2)N4—C9—H9A110.3
C3—N2—H2106.8N4—C9—H9B110.3
C4—N2—Ni1106.8 (2)N4—C9—C10106.9 (4)
C4—N2—H2106.8H9A—C9—H9B108.6
C4—N2—C3113.7 (3)C10—C9—H9A110.3
Ni1—N3—H3106.8C10—C9—H9B110.3
C5—N3—Ni1104.9 (3)N1—C10—H10A109.5
C5—N3—H3106.8N1—C10—H10B109.5
C6—N3—Ni1115.4 (3)C9—C10—N1110.9 (4)
C6—N3—H3106.8C9—C10—H10A109.5
C6—N3—C5115.5 (4)C9—C10—H10B109.5
Ni1—N4—H4106.9H10A—C10—H10B108.0
C8—N4—Ni1115.9 (3)C12—C11—C17120.9 (3)
C8—N4—H4106.9C16—C11—C12118.9 (2)
C9—N4—Ni1106.2 (2)C16—C11—C17120.2 (2)
C9—N4—H4106.9C11—C12—H12119.1
C9—N4—C8113.6 (3)C11—C12—C13121.7 (3)
N1—C1—H1A109.3C13—C12—H12119.1
N1—C1—H1B109.3C12—C13—C18121.8 (2)
N1—C1—C2111.6 (4)C14—C13—C12118.5 (2)
H1A—C1—H1B108.0C14—C13—C18119.6 (2)
C2—C1—H1A109.3C13—C14—H14119.6
C2—C1—H1B109.3C15—C14—C13120.8 (3)
C1—C2—H2A108.4C15—C14—H14119.6
C1—C2—H2B108.4C14—C15—C16119.1 (3)
H2A—C2—H2B107.5C14—C15—C19123.4 (3)
C3—C2—C1115.4 (4)C16—C15—C19117.5 (2)
C3—C2—H2A108.4C11—C16—C15120.9 (2)
C3—C2—H2B108.4C11—C16—H16119.5
N2—C3—H3A109.1C15—C16—H16119.5
N2—C3—H3B109.1O1—C17—C11114.2 (3)
C2—C3—N2112.5 (3)O2—C17—O1125.6 (3)
C2—C3—H3A109.1O2—C17—C11120.2 (2)
C2—C3—H3B109.1O3—C18—C13117.6 (2)
H3A—C3—H3B107.8O4—C18—O3124.2 (3)
N2—C4—H4A109.9O4—C18—C13118.3 (2)
N2—C4—H4B109.9O5—C19—C15113.8 (3)
N2—C4—C5109.0 (3)O6—C19—O5123.2 (3)
H4A—C4—H4B108.3O6—C19—C15123.0 (3)
C5—C4—H4A109.9
Ni1—O1—C17—O229.8 (5)C10—N1—C1—C2179.3 (4)
Ni1—O1—C17—C11149.4 (2)C11—C12—C13—C140.1 (5)
Ni1ii—O3—C18—O49.4 (6)C11—C12—C13—C18177.5 (3)
Ni1ii—O3—C18—C13171.6 (2)C12—C11—C16—C153.5 (5)
Ni1—N1—C1—C259.5 (4)C12—C11—C17—O1175.0 (3)
Ni1—N1—C10—C940.3 (4)C12—C11—C17—O24.1 (5)
Ni1—N2—C3—C256.1 (4)C12—C13—C14—C151.5 (5)
Ni1—N2—C4—C540.1 (4)C12—C13—C18—O3176.8 (3)
Ni1—N3—C5—C442.2 (4)C12—C13—C18—O44.2 (5)
Ni1—N3—C6—C752.7 (5)C13—C14—C15—C160.4 (5)
Ni1—N4—C8—C751.9 (4)C13—C14—C15—C19177.7 (3)
Ni1—N4—C9—C1045.1 (4)C14—C13—C18—O30.7 (5)
N1—C1—C2—C372.3 (5)C14—C13—C18—O4178.4 (3)
N2—C4—C5—N357.0 (4)C14—C15—C16—C112.1 (5)
N3—C6—C7—C871.3 (6)C14—C15—C19—O510.1 (5)
N4—C9—C10—N159.4 (4)C14—C15—C19—O6169.3 (4)
C1—N1—C10—C9167.9 (4)C16—C11—C12—C132.4 (5)
C1—C2—C3—N270.2 (5)C16—C11—C17—O12.6 (5)
C3—N2—C4—C5168.5 (3)C16—C11—C17—O2178.2 (3)
C4—N2—C3—C2179.9 (3)C16—C15—C19—O5167.3 (3)
C5—N3—C6—C7175.5 (4)C16—C15—C19—O613.4 (6)
C6—N3—C5—C4170.4 (3)C17—C11—C12—C13175.2 (3)
C6—C7—C8—N469.6 (6)C17—C11—C16—C15174.2 (3)
C8—N4—C9—C10173.6 (3)C18—C13—C14—C15179.0 (3)
C9—N4—C8—C7175.2 (4)C19—C15—C16—C11175.3 (3)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+3/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O4iii0.821.832.604 (3)157
N2—H2···O20.982.082.969 (3)150
N4—H4···O4i0.982.002.891 (3)151
N4—H4···O6iv0.982.593.226 (4)123
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+2, y+1, z+2.
catena-Poly[[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-µ2-5-carboxybenzene-1,3-dicarboxylato-κ2O1:O3] monohydrate] (II) top
Crystal data top
[Ni(C9H4O6)(C10H24N4)]·H2OF(000) = 1024
Mr = 485.18Dx = 1.455 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.3852 (3) ÅCell parameters from 3646 reflections
b = 15.1459 (4) Åθ = 2.4–25.9°
c = 15.7561 (5) ŵ = 0.92 mm1
β = 98.604 (3)°T = 293 K
V = 2214.49 (12) Å3Prism, clear light pink
Z = 40.20 × 0.20 × 0.07 mm
Data collection top
Rigaku Xcalibur Eos
diffractometer
4534 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2876 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 16.1593 pixels mm-1θmax = 26.4°, θmin = 1.9°
ω scansh = 911
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2021)
k = 1618
Tmin = 0.988, Tmax = 1.000l = 1919
14088 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.0138P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4534 reflectionsΔρmax = 0.32 e Å3
287 parametersΔρmin = 0.43 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.5000000.0000000.5000000.02584 (15)
Ni20.0000000.5000000.5000000.02872 (16)
O10.4273 (2)0.05862 (11)0.60827 (13)0.0353 (5)
O30.0632 (2)0.39590 (12)0.58677 (14)0.0414 (6)
O40.1125 (2)0.36910 (12)0.66423 (15)0.0447 (6)
O20.4878 (2)0.20071 (13)0.60647 (14)0.0467 (6)
O60.1510 (3)0.05141 (13)0.75736 (16)0.0520 (6)
O50.0511 (2)0.02739 (14)0.77650 (18)0.0554 (7)
H50.0008200.0642040.7947300.083*
N20.7014 (3)0.01412 (16)0.57185 (18)0.0457 (7)
H20.7011450.0204460.6244090.055*
N40.1739 (3)0.46959 (16)0.44077 (17)0.0430 (7)
H40.1673400.5071980.3897220.052*
N30.1428 (3)0.57669 (15)0.58082 (17)0.0471 (7)
H30.1714230.5415630.6328090.057*
N10.4558 (3)0.12013 (14)0.55014 (17)0.0449 (7)
H10.4652820.1642830.5058610.054*
C150.0616 (3)0.11465 (16)0.71803 (17)0.0285 (7)
C140.0002 (3)0.19775 (16)0.70186 (17)0.0298 (7)
H140.0904880.2098660.7166430.036*
C160.1962 (3)0.09647 (17)0.69488 (17)0.0303 (7)
H160.2366520.0406750.7048470.036*
C110.2702 (3)0.16131 (16)0.65700 (17)0.0277 (7)
C130.0737 (3)0.26238 (16)0.66354 (17)0.0276 (7)
C120.2094 (3)0.24429 (16)0.64298 (17)0.0294 (7)
H120.2601290.2884900.6194790.035*
C180.0012 (3)0.34979 (17)0.63708 (19)0.0315 (7)
C170.4080 (3)0.13921 (18)0.62309 (18)0.0320 (7)
C190.0245 (4)0.04389 (19)0.75310 (19)0.0342 (7)
C100.2721 (4)0.5851 (2)0.5387 (2)0.0638 (12)
H10A0.3540960.6018510.5806110.077*
H10B0.2570720.6305640.4949680.077*
C90.3017 (4)0.4978 (2)0.4984 (3)0.0638 (12)
H9A0.3820150.5040400.4666140.077*
H9B0.3270240.4538200.5427830.077*
C30.8229 (4)0.0180 (3)0.5312 (3)0.0659 (12)
H3A0.8321110.0185230.4817700.079*
H3B0.9112490.0125260.5715490.079*
C40.7132 (4)0.1070 (2)0.5974 (2)0.0665 (12)
H4A0.7895130.1140010.6457720.080*
H4B0.7371250.1424640.5502690.080*
C80.1819 (4)0.3768 (2)0.4105 (2)0.0617 (12)
H8A0.1946360.3373220.4595970.074*
H8B0.2646070.3702230.3808240.074*
C20.1962 (4)0.1130 (3)0.4971 (3)0.0791 (14)
H2A0.2180680.1475550.4488330.095*
H2B0.1051010.1341490.5112270.095*
C10.3115 (5)0.1306 (2)0.5727 (3)0.0694 (13)
H1A0.2994790.0900740.6187930.083*
H1B0.3006380.1901720.5932960.083*
C60.0876 (5)0.6599 (2)0.6088 (2)0.0658 (12)
H6A0.0668680.6991000.5598510.079*
H6B0.1613390.6876040.6500010.079*
C70.0465 (5)0.6485 (2)0.6492 (2)0.0715 (13)
H7A0.0648490.7034050.6773960.086*
H7B0.0280170.6035710.6933180.086*
C50.5729 (5)0.1376 (2)0.6218 (2)0.0699 (13)
H5A0.5777200.2002470.6345370.084*
H5B0.5539570.1064610.6728150.084*
O1W0.1024 (3)0.15256 (17)0.8190 (3)0.0910 (11)
H1WA0.0645870.1951400.8496070.137*
H1WB0.1917890.1559910.8224480.137*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0253 (3)0.0224 (3)0.0308 (3)0.0006 (2)0.0073 (2)0.0004 (2)
Ni20.0254 (3)0.0257 (3)0.0350 (3)0.0011 (2)0.0041 (3)0.0068 (2)
O10.0420 (13)0.0267 (11)0.0410 (13)0.0045 (9)0.0185 (11)0.0043 (9)
O30.0428 (14)0.0343 (11)0.0494 (14)0.0083 (10)0.0142 (11)0.0191 (10)
O40.0421 (14)0.0413 (12)0.0554 (15)0.0157 (10)0.0229 (12)0.0162 (10)
O20.0449 (15)0.0371 (12)0.0647 (16)0.0149 (10)0.0293 (13)0.0184 (11)
O60.0456 (16)0.0403 (13)0.0755 (18)0.0032 (11)0.0268 (14)0.0123 (11)
O50.0472 (15)0.0363 (12)0.0852 (19)0.0030 (11)0.0187 (14)0.0283 (12)
N20.0368 (18)0.0553 (17)0.0431 (18)0.0092 (13)0.0003 (14)0.0133 (13)
N40.0342 (17)0.0477 (15)0.0477 (18)0.0095 (13)0.0082 (14)0.0201 (13)
N30.058 (2)0.0397 (15)0.0406 (17)0.0138 (13)0.0039 (15)0.0103 (12)
N10.069 (2)0.0270 (13)0.0444 (18)0.0054 (13)0.0263 (16)0.0009 (12)
C150.0353 (18)0.0260 (15)0.0243 (16)0.0008 (13)0.0046 (14)0.0023 (11)
C140.0329 (18)0.0288 (15)0.0294 (17)0.0026 (12)0.0105 (14)0.0021 (12)
C160.0395 (19)0.0246 (15)0.0271 (16)0.0040 (13)0.0056 (14)0.0011 (12)
C110.0305 (18)0.0275 (15)0.0253 (16)0.0009 (12)0.0053 (14)0.0026 (12)
C130.0338 (18)0.0276 (15)0.0218 (15)0.0031 (12)0.0052 (13)0.0009 (11)
C120.0345 (18)0.0247 (15)0.0299 (17)0.0015 (12)0.0077 (14)0.0024 (12)
C180.035 (2)0.0265 (16)0.0315 (17)0.0047 (13)0.0001 (15)0.0008 (12)
C170.0337 (19)0.0302 (17)0.0315 (17)0.0001 (14)0.0025 (15)0.0028 (13)
C190.041 (2)0.0280 (17)0.0348 (18)0.0018 (14)0.0103 (16)0.0022 (12)
C100.043 (2)0.082 (3)0.060 (3)0.031 (2)0.015 (2)0.027 (2)
C90.031 (2)0.085 (3)0.075 (3)0.0057 (19)0.006 (2)0.032 (2)
C30.026 (2)0.100 (3)0.073 (3)0.003 (2)0.009 (2)0.036 (2)
C40.078 (3)0.069 (3)0.046 (2)0.035 (2)0.013 (2)0.0007 (19)
C80.087 (3)0.047 (2)0.062 (3)0.034 (2)0.046 (3)0.0191 (18)
C20.049 (3)0.084 (3)0.113 (4)0.037 (2)0.041 (3)0.041 (3)
C10.092 (4)0.047 (2)0.081 (3)0.029 (2)0.055 (3)0.010 (2)
C60.107 (4)0.043 (2)0.045 (2)0.023 (2)0.002 (2)0.0031 (17)
C70.128 (4)0.042 (2)0.047 (2)0.010 (2)0.022 (3)0.0051 (17)
C50.121 (4)0.045 (2)0.043 (2)0.017 (2)0.012 (3)0.0146 (17)
O1W0.0553 (18)0.0570 (17)0.170 (3)0.0166 (14)0.047 (2)0.0672 (18)
Geometric parameters (Å, º) top
Ni1—O12.1242 (19)C16—H160.9300
Ni1—O1i2.1242 (19)C16—C111.388 (4)
Ni1—N22.064 (3)C11—C121.384 (3)
Ni1—N2i2.064 (3)C11—C171.509 (4)
Ni1—N1i2.051 (2)C13—C121.388 (4)
Ni1—N12.051 (2)C13—C181.518 (4)
Ni2—O3ii2.1129 (18)C12—H120.9300
Ni2—O32.1129 (18)C10—H10A0.9700
Ni2—N4ii2.050 (3)C10—H10B0.9700
Ni2—N42.050 (3)C10—C91.510 (5)
Ni2—N32.063 (2)C9—H9A0.9700
Ni2—N3ii2.063 (2)C9—H9B0.9700
O1—C171.261 (3)C3—H3A0.9700
O3—C181.262 (3)C3—H3B0.9700
O4—C181.243 (3)C3—C2i1.508 (5)
O2—C171.247 (3)C4—H4A0.9700
O6—C191.205 (3)C4—H4B0.9700
O5—H50.8200C4—C51.500 (5)
O5—C191.314 (4)C8—H8A0.9700
N2—H20.9800C8—H8B0.9700
N2—C31.472 (4)C8—C7ii1.512 (5)
N2—C41.463 (4)C2—H2A0.9700
N4—H40.9800C2—H2B0.9700
N4—C91.455 (4)C2—C11.508 (5)
N4—C81.490 (4)C1—H1A0.9700
N3—H30.9800C1—H1B0.9700
N3—C101.473 (4)C6—H6A0.9700
N3—C61.457 (4)C6—H6B0.9700
N1—H10.9800C6—C71.503 (5)
N1—C11.459 (4)C7—H7A0.9700
N1—C51.477 (4)C7—H7B0.9700
C15—C141.393 (4)C5—H5A0.9700
C15—C161.394 (4)C5—H5B0.9700
C15—C191.497 (4)O1W—H1WA0.8501
C14—H140.9300O1W—H1WB0.8501
C14—C131.389 (4)
O1i—Ni1—O1180.0C11—C12—H12119.6
N2—Ni1—O188.88 (9)C13—C12—H12119.6
N2i—Ni1—O191.12 (9)O3—C18—C13115.2 (3)
N2—Ni1—O1i91.11 (9)O4—C18—O3125.9 (3)
N2i—Ni1—O1i88.88 (9)O4—C18—C13118.9 (3)
N2—Ni1—N2i180.0O1—C17—C11115.8 (2)
N1i—Ni1—O1i87.34 (8)O2—C17—O1125.2 (3)
N1—Ni1—O187.34 (8)O2—C17—C11118.8 (2)
N1—Ni1—O1i92.66 (8)O6—C19—O5123.8 (3)
N1i—Ni1—O192.65 (8)O6—C19—C15122.9 (3)
N1—Ni1—N285.31 (11)O5—C19—C15113.2 (3)
N1i—Ni1—N2i85.31 (11)N3—C10—H10A109.8
N1—Ni1—N2i94.69 (11)N3—C10—H10B109.8
N1i—Ni1—N294.69 (11)N3—C10—C9109.3 (3)
N1—Ni1—N1i180.00 (16)H10A—C10—H10B108.3
O3—Ni2—O3ii180.0C9—C10—H10A109.8
N4—Ni2—O3ii92.22 (9)C9—C10—H10B109.8
N4—Ni2—O387.78 (9)N4—C9—C10109.5 (3)
N4ii—Ni2—O392.22 (9)N4—C9—H9A109.8
N4ii—Ni2—O3ii87.78 (9)N4—C9—H9B109.8
N4ii—Ni2—N4180.0C10—C9—H9A109.8
N4ii—Ni2—N394.62 (11)C10—C9—H9B109.8
N4—Ni2—N385.38 (11)H9A—C9—H9B108.2
N4—Ni2—N3ii94.62 (11)N2—C3—H3A109.2
N4ii—Ni2—N3ii85.38 (11)N2—C3—H3B109.2
N3—Ni2—O3ii94.18 (9)N2—C3—C2i112.2 (3)
N3ii—Ni2—O3ii85.83 (9)H3A—C3—H3B107.9
N3—Ni2—O385.82 (9)C2i—C3—H3A109.2
N3ii—Ni2—O394.18 (9)C2i—C3—H3B109.2
N3—Ni2—N3ii180.0N2—C4—H4A109.8
C17—O1—Ni1128.73 (18)N2—C4—H4B109.8
C18—O3—Ni2135.10 (19)N2—C4—C5109.5 (3)
C19—O5—H5109.5H4A—C4—H4B108.2
Ni1—N2—H2106.9C5—C4—H4A109.8
C3—N2—Ni1115.6 (2)C5—C4—H4B109.8
C3—N2—H2106.9N4—C8—H8A109.4
C4—N2—Ni1106.0 (2)N4—C8—H8B109.4
C4—N2—H2106.9N4—C8—C7ii111.1 (3)
C4—N2—C3114.0 (3)H8A—C8—H8B108.0
Ni2—N4—H4106.6C7ii—C8—H8A109.4
C9—N4—Ni2106.7 (2)C7ii—C8—H8B109.4
C9—N4—H4106.6C3i—C2—H2A108.2
C9—N4—C8113.6 (3)C3i—C2—H2B108.2
C8—N4—Ni2116.0 (2)C3i—C2—C1116.2 (3)
C8—N4—H4106.6H2A—C2—H2B107.4
Ni2—N3—H3106.4C1—C2—H2A108.2
C10—N3—Ni2105.9 (2)C1—C2—H2B108.2
C10—N3—H3106.4N1—C1—C2111.8 (3)
C6—N3—Ni2116.5 (2)N1—C1—H1A109.3
C6—N3—H3106.4N1—C1—H1B109.3
C6—N3—C10114.6 (3)C2—C1—H1A109.3
Ni1—N1—H1106.6C2—C1—H1B109.3
C1—N1—Ni1116.0 (2)H1A—C1—H1B107.9
C1—N1—H1106.6N3—C6—H6A109.0
C1—N1—C5113.9 (3)N3—C6—H6B109.0
C5—N1—Ni1106.4 (2)N3—C6—C7112.8 (3)
C5—N1—H1106.6H6A—C6—H6B107.8
C14—C15—C16120.0 (2)C7—C6—H6A109.0
C14—C15—C19118.8 (3)C7—C6—H6B109.0
C16—C15—C19121.0 (2)C8ii—C7—H7A108.2
C15—C14—H14120.2C8ii—C7—H7B108.2
C13—C14—C15119.7 (3)C6—C7—C8ii116.4 (3)
C13—C14—H14120.2C6—C7—H7A108.2
C15—C16—H16119.9C6—C7—H7B108.2
C11—C16—C15120.3 (2)H7A—C7—H7B107.3
C11—C16—H16119.9N1—C5—C4109.3 (3)
C16—C11—C17120.4 (2)N1—C5—H5A109.8
C12—C11—C16119.4 (3)N1—C5—H5B109.8
C12—C11—C17120.0 (2)C4—C5—H5A109.8
C14—C13—C18120.1 (3)C4—C5—H5B109.8
C12—C13—C14119.8 (2)H5A—C5—H5B108.3
C12—C13—C18119.8 (2)H1WA—O1W—H1WB104.5
C11—C12—C13120.9 (3)
Ni1—O1—C17—O239.4 (4)C14—C13—C18—O413.4 (4)
Ni1—O1—C17—C11135.4 (2)C16—C15—C14—C130.7 (4)
Ni1—N2—C3—C2i54.6 (4)C16—C15—C19—O6164.3 (3)
Ni1—N2—C4—C540.7 (3)C16—C15—C19—O514.1 (4)
Ni1—N1—C1—C256.5 (4)C16—C11—C12—C132.3 (4)
Ni1—N1—C5—C439.1 (3)C16—C11—C17—O120.0 (4)
Ni2—O3—C18—O419.0 (5)C16—C11—C17—O2164.8 (3)
Ni2—O3—C18—C13159.41 (19)C12—C11—C17—O1153.7 (3)
Ni2—N4—C9—C1039.8 (3)C12—C11—C17—O221.5 (4)
Ni2—N4—C8—C7ii55.9 (3)C12—C13—C18—O39.5 (4)
Ni2—N3—C10—C939.6 (3)C12—C13—C18—O4171.9 (3)
Ni2—N3—C6—C754.0 (4)C18—C13—C12—C11172.1 (2)
N2—C4—C5—N155.0 (4)C17—C11—C12—C13171.5 (3)
N3—C10—C9—N454.9 (4)C19—C15—C14—C13175.3 (3)
N3—C6—C7—C8ii70.5 (4)C19—C15—C16—C11175.6 (3)
C15—C14—C13—C121.1 (4)C10—N3—C6—C7178.4 (3)
C15—C14—C13—C18173.6 (2)C9—N4—C8—C7ii179.8 (3)
C15—C16—C11—C120.4 (4)C3—N2—C4—C5169.0 (3)
C15—C16—C11—C17173.3 (3)C3i—C2—C1—N171.5 (4)
C14—C15—C16—C111.1 (4)C4—N2—C3—C2i177.9 (3)
C14—C15—C19—O610.2 (5)C8—N4—C9—C10169.0 (3)
C14—C15—C19—O5171.4 (3)C1—N1—C5—C4168.3 (3)
C14—C13—C12—C112.6 (4)C6—N3—C10—C9169.5 (3)
C14—C13—C18—O3165.2 (3)C5—N1—C1—C2179.4 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O1W0.821.722.531 (3)170
N2—H2···O6iii0.982.383.199 (4)141
N4—H4···O4ii0.982.092.959 (3)147
N1—H1···O2i0.981.972.872 (3)153
O1W—H1WA···O2iv0.851.832.664 (3)168
O1W—H1WB···O4v0.851.922.747 (3)165
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1; (iii) x+1, y, z; (iv) x+1/2, y1/2, z+3/2; (v) x1/2, y1/2, z+3/2.
Selected geometric parameters (Å, °) top
III
Ni1—N12.056 (3)Ni1—N12.051 (2)
Ni1—N22.066 (2)Ni1—N22.064 (3)
Ni1—N32.053 (3)Ni2—N32.063 (2)
Ni1—N42.046 (3)Ni2—N42.050 (3)
Ni1—O12.1106 (18)Ni1—O12.1242 (19)
Ni1—O3i2.1377 (18)Ni2—O32.1129 (18)
N1—Ni1—N485.55 (15)N1—Ni1—N285.31 (11)
N2—Ni1—N384.92 (14)N3—Ni2—N485.38 (11)
N1—Ni1—N293.13 (14)N1—Ni1—N2ii94.69 (11)
N3—Ni1—N496.41 (15)N3—Ni1—N4iii94.62 (11)
Symmetry codes: (i) -x + 3/2, y + 1/2, -z + 3/2; (ii) -x + 1, -y, -z + 1; (iii) -x, -y + 1, -z + 1.
 

References

First citationBosnich, B., Tobe, M. L. & Webb, G. A. (1965). Inorg. Chem. 4, 1109–1112.  CrossRef CAS Web of Science Google Scholar
First citationChoi, H. J., Lee, T. S. & Suh, M. P. (1999). Angew. Chem. Int. Ed. 38, 1405–1408.  Web of Science CrossRef CAS Google Scholar
First citationChoi, H. J., Lee, T. S. & Suh, M. P. (2001). J. Inclusion Phenom. Macrocyclic Chem. 41, 155–162.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, H. J. & Suh, M. P. (1998). J. Am. Chem. Soc. 120, 10622–10628.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345–371.  CrossRef CAS Google Scholar
First citationLampeka, Ya. D., Tsymbal, L. V., Barna, A. V., Shuĺga, Y. L., Shova, S. & Arion, V. B. (2012). Dalton Trans. 41, 4118–4125.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLu, T.-B., Xiang, H., Luck, R. L., Jiang, L., Mao, Z.-W. & Ji, L.-N. (2002). New J. Chem. 26, 969–971.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, T.-B., Xiang, H., Luck, R. L., Mao, Z.-W., Wang, D., Chen, C. & Ji, L.-N. (2001). CrystEngComm, 3, 168–169.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMeng, X.-R., Zhong, D.-C., Jiang, L., Li, H.-Y. & Lu, T.-B. (2011). Cryst. Growth Des. 11, 2020–2025.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Jagaln, V. B., Harrison, A., Parkin, A. & Johnstone, R. (2006). Private CommunicationGoogle Scholar
First citationRao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRyoo, J. J., Shin, J. W., Dho, H.-S. & Min, K. S. (2010). Inorg. Chem. 49, 7232–7234.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Kim, D.-W. & Moon, D. (2016). Polyhedron, 105, 62–70.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154–165.  Web of Science CrossRef CAS Google Scholar
First citationSuh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39–79. San Diego: Academic Press.  Google Scholar
First citationSuh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTadokoro, M., Suda, T., Shouji, T., Ohno, K., Honda, K., Takeuchi, A., Yoshizawa, M., Isoda, K., Kamebuchi, H. & Matsui, H. (2015). Bull. Chem. Soc. Jpn, 88, 1707–1715.  Web of Science CSD CrossRef CAS Google Scholar
First citationTao, B., Cheng, F., Jiang, X. & Xia, H. (2012). J. Mol. Struct. 1028, 176–180.  Web of Science CSD CrossRef CAS Google Scholar
First citationTsymbal, L. V., Andriichuk, I. L., Shova, S., Trzybiński, D., Woźniak, K., Arion, V. B. & Lampeka, Ya. D. (2021). Cryst. Growth Des. 21, 2355–2370.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds