research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structures, and Hirshfeld analysis of three hexa­hydro­quinoline derivatives

crossmark logo

aDepartment of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA, bDepartment of Chemistry, Ithaca College, 953 Danby Road, Ithaca, NY 14850, USA, and cDepartment of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
*Correspondence e-mail: Nicholas.Natale@mso.umt.edu

Edited by J. Reibenspies, Texas A & M University, USA (Received 18 July 2022; accepted 26 September 2022; online 4 October 2022)

Three hexa­hydro­quinoline derivatives were synthesized and crystallized in an effort to study the structure–activity relationships of these calcium-channel antagonists. The derivatives are ethyl 4-(2-meth­oxy­phen­yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate, C22H27NO4, (I), ethyl 4-(4-meth­oxy­phen­yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carb­ox­yl­ate, C22H27NO4, (II), and ethyl 4-(3,4-di­hydroxy­phen­yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate, C21H24NO5, (III). In these hexa­hydro­quinoline derivatives, common structural features such as a flat-boat conformation of the 1,4-di­hydro­pyridine (1,4-DHP) ring, an envelope conformation of the fused cyclo­hexa­none ring, and a substituted phenyl group at the pseudo-axial position are retained. Hydrogen bonds are the main contributors to the packing of the mol­ecules in these crystals.

1. Chemical context

4-Aryl-1,4-di­hydro­pyridines (DHPs) that bind the L-type voltage-gated calcium channels (VGCC) have been applied in general medical practice for over three decades (Zamponi, 2016[Zamponi, G. (2016). Nat. Rev. Drug Discov. 15, 19-34]). Many modifications on 1,4-DHP have been performed to obtain active compounds such as calcium-channel agonists or antagonists (Martín et al., 1995[Martín, N., Quinteiro, M., Seoane, C., Soto, J., Mora, A., Suárez, M., Ochoa, E., Morales, A. & Bosque, J. (1995). J. Heterocycl. Chem. 32, 235-238.]; Rose, 1990[Rose, U. (1990). Arch. Pharm. Pharm. Med. Chem. 323, 281-286.]; Rose & Dräger, 1992[Rose, U. & Draeger, M. (1992). J. Med. Chem. 35, 2238-2243.]; Trippier et al., 2013[Trippier, P. C., Jansen Labby, K., Hawker, D., Mataka, J. & Silverman, R. (2013). J. Med. Chem. 56, 3121-3147.]). One such modification is fusing a cyclo­hexa­none ring to form hexa­hydro­quinoline (HHQ), in which the orientation of the carbonyl group of the ester substituent at the 5-position in the 1,4-DHP ring has been fixed. This class of compounds has been shown to have calcium-channel antagonistic activity (Aygün Cevher et al., 2019[Aygün Cevher, H., Schaller, D., Gandini, M. A., Kaplan, O., Gambeta, E., Zhang, F. X., Çelebier, M., Tahir, M. N., Zamponi, G. W., Wolber, G. & Gündüz, M. G. (2019). Bioorg. Chem. 91, 103187.]), inhibit the multidrug-resistance transporter (MDR) (Shahraki et al., 2017[Shahraki, O., Edraki, N., Khoshneviszadeh, M., Zargari, F., Ranjbar, S., Saso, L., Firuzi, O. & Miri, R. (2017). Drug. Des. Devel. Ther. 11, 407-418.], 2020[Shahraki, O., Khoshneviszadeh, M., Dehghani, M., Mohabbati, M., Tavakkoli, M., Saso, L., Edraki, N. & Firuzi, O. (2020). Molecules, 25, 1839.]), as well as possessing anti-inflammatory and stem-cell differentiation properties, and have been implicated in slowing neurodegenerative disorders (Trippier et al., 2013[Trippier, P. C., Jansen Labby, K., Hawker, D., Mataka, J. & Silverman, R. (2013). J. Med. Chem. 56, 3121-3147.]). Recently, specific substitutions of the cyclo­hexenone ring were found to have distinct selectivity profiles to different calcium channel subtypes (Schaller et al., 2018[Schaller, D., Gündüz, M. G., Zhang, F. X., Zamponi, G. W. & Wolber, G. (2018). Eur. J. Med. Chem. 155, 1-12.]). Another report also showed that the 4-aryl-hexa­hydro­quinolines, especially the ones containing a meth­oxy moiety, exhibit good anti­oxidant property as radical scavengers (Yang et al., 2011[Yang, X. H., Zhang, P. H., Zhou, Y. H., Liu, C. G., Lin, X. Y. & Cui,J. F. (2011). Arkivoc, x, 327-337.]). In a continuation of our study on the structure–activity relationship of this class of 4-aryl-hexa­hydro­quinolines (Steiger et al., 2014[Steiger, S. A., Monacelli, A. J., Li, C., Hunting, J. L. & Natale, N. R. (2014). Acta Cryst. C70, 790-795.], 2018[Steiger, S. A., Li, C. & Natale, N. R. (2018). Acta Cryst. E74, 1417-1420.], 2020[Steiger, S. A., Li, C., Gates, C. & Natale, N. R. (2020). Acta Cryst. E76, 125-131.]), and to understand stereoelectronic effects, which define selectivity, as well as to explore the scope and limitations of our synthetic methodologies (Steiger et al., 2016[Steiger, S. A., Li, C., Campana, C. F. & Natale, N. R. (2016). Tetrahedron Lett. 57, 423-425.]), we report herein the crystal structures of three 4-aryl-hexa­hydro­quinoline derivatives.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound I contains one independent mol­ecule, which crystallizes in the triclinic P[\overline{1}] space group (Fig. 1[link]). Compounds II and III both crystallize in the monoclinic space group P21/n. The asymmetric unit of compound II contains two independent mol­ecules, A and B (Fig. 2[link]), while compound III has only one independent mol­ecule in the asymmetric unit (Fig. 3[link]). Similar to the other 4-aryl-hexa­hydro­quinoline derivatives that we have reported (Steiger, et al., 2014[Steiger, S. A., Monacelli, A. J., Li, C., Hunting, J. L. & Natale, N. R. (2014). Acta Cryst. C70, 790-795.]; 2018[Steiger, S. A., Li, C. & Natale, N. R. (2018). Acta Cryst. E74, 1417-1420.]; 2020[Steiger, S. A., Li, C., Gates, C. & Natale, N. R. (2020). Acta Cryst. E76, 125-131.]), compounds I, II, and III all share the common structural features such as a flattened boat conformation on the 1,4-DHP ring, envelope conformation of the cyclo­hexa­none ring, and the pseudo-axial position of the 4-aryl group.

[Figure 1]
Figure 1
The asymmetric unit of compound I showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular hydrogen bond between C13—H13B and O2 is shown as a dashed line. The crystal disintegrated below 273 K and the X-ray structure was acquired at room temperature.
[Figure 2]
Figure 2
The asymmetric unit of compound II showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. The inter­molecular hydrogen bond between N1A—H1A and O1B is shown as a dashed line.
[Figure 3]
Figure 3
The asymmetric unit of compound III showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

The shallow-boat confirmation of the 1,4-DHP ring is one of the factors that leads to higher calcium-channel activity (Linden et al., 2004[Linden, A., Şafak, C. & Aydın, F. (2004). Acta Cryst. C60, o711-o713.]) The shallowness of the boat conformation in these three compounds are indicated by the marginal displacements of atom N1 and C4 from the mean plane (the base of the boat) defined by the two double bonds (C2=C3 and C9=C10). The distances between N1 and the mean plane formed by C2/C3/C9/C10 are 0.159 (3), 0.110 (2), 0.110 (3), and 0.181 (2) Å for compounds I, IIA, IIB, and III, respectively. The corresponding distances between C4 and the same mean plane are 0.341 (3), 0.295 (3), 0.253 (3), and 0.399 (2) Å for compounds I, IIA, IIB, and III, respectively.

The pseudo-axial position of the C4-aryl group to the 1,4-DHP ring is another key factor that is essential for pharmacological activity (Langs et al., 1987[Langs, D. A., Strong, P. D. & Triggle, D. J. (1987). Acta Cryst. C43, 707-711.]). In the title compounds, the substituted phenyl rings are almost orthogonal to the base of the 1,4-DHP ring, with the mean plane normal to normal angles being 89.09 (7), 92.52 (6), 93.52 (6), and 90.59 (5)° for compounds I, IIA, IIB, and III, respectively (see Table 1[link] for calculated parameters). It is noteworthy that the para-meth­oxy group on the phenyl ring is flexible and can be either anti- or syn- periplanar to the H atom on C4, i.e. pointing either to (IIA) or away from (IIB) the 1,4-DHP ring.

Table 1
Calculated parameters (Å, °) related to the 1,4-DHP ring

Compound 1,4-DHP mean plane (C2/C3/C10/C9) r.m.s.d N to ring mean plane distance C to ring mean plane distance Phenyl ring to 1,4-DHP mean planes normal-to-normal angle N1—C4—C17—C18 torsion angle
I 0.015 0.159 (3) 0.341 (3) 89.09 (7) 173.28 (16)
IIA 0.005 0.110 (2) 0.295 (3) 92.52 (6) 1.16 (18)
IIB 0.005 0.110 (3) 0.253 (3) 93.52 (6) 13.41 (14)
III 0.001 0.181 (2) 0.399 (2) 90.59 (5) 18.38 (15)

In all three compounds, the cyclo­hexa­none rings adopt the envelope conformation, which can be qu­anti­fied using Cremer & Pople's ring-puckering parameters. Ideally, the envelope conformation would have θ = 54.7° (or θ =125.3° in the case of an absolute configuration change) and φ = n × 60°. The θ and φ values of the title compounds are very close to the ideal angles with deviations less than 10° and are listed in Table 2[link].

Table 2
Parameters (Å, °) related to the envelope conformation on the cyclo­hexa­none ring

Compound Mean plane (C5/C6/C8–C10) r.m.s.d C7 to mean plane distance C11—C7—C4—C17 torsion angle Ring puckering parameters
        Q θ φ
I 0.025 0.636 (3) 2.53 (18) 0.458 (2) 60.7 (3) 117.2 (3)
IIA 0.015 0.644 (2) 7.96 (14) 0.4616 (18) 56.1 (2) 115.7 (3)
IIB 0.019 0.645 (3) 13.85 (14) 0.4638 (19) 121.2 (2) 303.0 (3)
III 0.028 0.6408 (19) 0.8 (1) 0.4623 (15) 56.53 (19) 111.1 (2)

Although the carbonyl on the ester group is conjugated to the adjacent endocyclic double bond and is co-planar to the 1,4-DHP mean plane, the whole ester group is flexible. The C=O bond can be either cis (I, IIA and IIB) or trans (III)[link] to the adjacent double bond, and the extended or curled orientations of the ethyl group are observed in these crystal structures. The disordered ethyl groups in compound I and compound II also indicate the flexibility of the ester group.

3. Supra­molecular features

In compound I, hydrogen bonds between N1—H1 and O1 form a chain perpendicular to the (100) plane. Short contact C23—H23A⋯O2 links alternate enanti­omers to form a pair perpendicular to the (001) plane (Table 3[link], Fig. 4[link]).

Table 3
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 (2) 2.01 (2) 2.870 (2) 165 (2)
C13—H13B⋯O2 0.96 2.13 2.846 (3) 131
C13—H13C⋯O4i 0.96 2.59 3.300 (3) 131
C23—H23A⋯O2ii 0.96 2.57 3.492 (3) 161
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, -y+1, -z+1].
[Figure 4]
Figure 4
The packing of compound I. Inter­molecular hydrogen bonds are shown as dashed lines, and H atoms not involved in these hydrogen bonds are removed for clarity.

In compound II, hydrogen bonds N1A—H1A⋯O1B and N1B—H1B⋯O1A link the two independent mol­ecules A and B to form a chain perpendicular to the (010) plane. Close contacts C23B—H23B⋯O2A and C23A—H23D⋯O2B link the two independent mol­ecules zigzaggedly along the c-axis direction (Table 4[link], Fig. 5[link]).

Table 4
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O1B 0.82 (2) 2.02 (2) 2.827 (2) 167 (2)
N1B—H1B⋯O1Ai 0.87 (2) 1.95 (2) 2.8167 (19) 172 (2)
Symmetry code: (i) [x, y-1, z].
[Figure 5]
Figure 5
The packing of title compound II. H atoms bonds are shown as dashed lines. H atoms not involved in these hydrogen bonds are removed for clarity.

In compound III, a chain is formed by hydrogen bonds N1—H1⋯O1i and O4—H4⋯O2i between alternating enanti­omers and runs perpendicular to the (101) plane. Hydrogen bond O5—H5⋯O1ii links the mol­ecules in a chain perpendicular to the (100) plane and cross-links the other chain to form a sheet of mol­ecules parallel to the (010) plane (Table 5[link], Fig. 6[link]).

Table 5
Hydrogen-bond geometry (Å, °) for III[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.876 (18) 1.971 (19) 2.8378 (15) 169.8 (16)
O4—H4⋯O2i 0.87 (2) 1.82 (2) 2.6894 (14) 175 (2)
O5—H5⋯O1ii 0.85 (2) 2.33 (2) 3.0293 (14) 140 (2)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-1, y, z].
[Figure 6]
Figure 6
The packing of title compound III. Inter­molecular hydrogen bonds (shown in dashed lines) cross link the mol­ecules to form a sheet parallel to the (010) plane. H atoms not involved in these hydrogen bonds are removed for clarity.

4. Hirshfeld surface analysis

Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was performed, and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were generated to qu­antify the inter­molecular inter­actions using Crystal Explorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The Hirshfeld surface of the title compound I is mapped over dnorm in a fixed color scale of −0.5596 (red) to 1.4022 (blue) arbitrary units (Fig. 7[link]). The N—H⋯O hydrogen bond is apparent as red spots on the surface. A σπ inter­action between the ester ethyl group and the phenyl ring is noticeable. The delineated two-dimensional fingerprint plots (Fig. 8[link]) show that the contributions to the overall Hirshfeld surface area arise from H⋯H contacts (65.3%), O⋯H/H⋯O contacts (17.7%), and C⋯H/H⋯C inter­actions (16.4%).

[Figure 7]
Figure 7
Hirshfeld surface of I mapped over dnorm. Short and long contacts are indicated as red and blue regions, respectively. Contacts with distances approximately equal to the sum of the van der Waals radii are colored white. A σ- π inter­action between C15—H15 and phenyl ring is shown as green dashed lines. Hydrogen bond C23—H23A⋯O2 is shown as red dashed lines.
[Figure 8]
Figure 8
The two-dimensional fingerprint plots for I delineated into (a) H⋯H contacts, (b) H⋯O/O⋯H contacts, (c) H⋯C/C⋯H contacts. Other contact contributions less than 1% are omitted.

For compound II, the Hirshfeld surface analysis was performed with two independent mol­ecules, in a fixed color scale of −0.6119 (red) to 1.7055 (blue) arbitrary units. In addition to hydrogen bonds, σπ inter­actions are also identifiable between C6A—H6AB and double bond C2A—C3A (Fig. 9[link]). The delineated two-dimensional fingerprint plots shown in Fig. 10[link] indicate that H⋯H contacts (65.6%) make the main contribution to the overall Hirshfeld surface area. The O⋯H/H⋯O contacts and C⋯H/H⋯C inter­actions contribute 19.4% and 14.0% of the Hirshfeld surface, respectively.

[Figure 9]
Figure 9
Hirshfeld surface of II mapped over dnorm. Short and long contacts are indicated as red and blue regions, respectively. Contacts with distances approximately equal to the sum of the van der Waals radii are colored white. A σπ inter­action (C6A—H6AB to double bond C2A=C3A) is shown as red dashed lines. Hydrogen bonds between N—H and O are shown as green dashed lines.
[Figure 10]
Figure 10
The two-dimensional fingerprint plots for II delineated into (a) H⋯H contacts, (b) H⋯O/O⋯H contacts, (c) H⋯C/C⋯H contacts. Other contact contributions of less than 1% are omitted.

The Hirshfeld surface of the title compound III is mapped over dnorm in a fixed color scale of −0.7001 (red) to 3.4800 (blue) arbitrary units (Fig. 11[link]). Besides the obvious short contacts from hydrogen bonds, a short contact of 2.6137 (14) Å between H8A and C20 is also observed, indicating a σ-π- inter­action between C8—H8A and ring C17–C22. The delineated two-dimensional fingerprint plots shown in Fig. 12[link] indicate that two main contributions to the overall Hirshfeld surface area arise from H⋯H contacts (61.2%) and O⋯H/H⋯O contacts (24.3%). C⋯H/H⋯C inter­actions contribute 13.1% of the Hirshfeld surface.

[Figure 11]
Figure 11
Hirshfeld surface of III mapped over dnorm. Short and long contacts are indicated as red and blue regions, respectively. Contacts with distances approximately equal to the sum of the van der Waals radii are colored white. The close contact between H8A and C20 is shown as a dashed line.
[Figure 12]
Figure 12
The two-dimensional fingerprint plots for III delineated into (a) H⋯H contacts, (b) H⋯O/O⋯H contacts, (c) H⋯C/C⋯H contacts. Other contact contributions of less than 1% are omitted.

5. Database survey

A search for 4-phenyl-5-oxo-hexa­hydro­quinoline-3-carboxyl­ate in the Cambridge Structural Database (CSD version 5.43, November 2021 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) resulted in 53 hits, of which a meta-methoxyl-substituted 4-phenyl-5-oxo-hexa­hydro­quinoline-3-carboxyl­ate (refcode TANVUC; Li, 2017[Li, J. (2017). Z. Kristallogr. New Cryst. Struct. 232, 251-252.]) should be mentioned. Similar to the title compounds I and IIA, the meta-methoxyl group in TANVUC is exo to the 1,4-DHP ring and carbonyl group on the ester is in a cis orientation to the endocyclic double bond. All of the resulting hits display common structural features, such as the flat-boat conformation of the 1,4-DHP ring, the envelope conformation of the fused cyclo­hexa­none ring, and the substituted aryl ring at the pseudo-axial position to the 1,4-DHP ring.

6. Synthesis and crystallization

An oven-dried 100 ml round-bottom flask equipped with a magnetic stir bar was charged with 10 mmol of dimedone, 10 mmol of ethyl aceto­acetate and 5 mol % of ytterbium(III) tri­fluoro­methane­sulfonate. The mixture was then taken up in 30 ml of absolute ethanol, capped and put under an inert atmosphere of argon, after which the solution was allowed to stir at room temperature for 20 min. the appropriate corres­ponding benzaldehyde (10 mmol) and 10 mmol of ammonium acetate were added to the stirring solution, the solution was allowed to stir at room temperature for 48 h. Reaction progress was monitored via TLC. Once the reaction was complete, excess solvent was removed via rotary evaporation. The solution was then purified via silica column chromatography. The products were crystallized from hexane and ethyl acetate (1:4 v/v) as white-to-yellow crystalline solids. Compounds I and III were recrystallized from a minimum of warm methanol, to which hexane was added dropwise to a faint opalescence, and slow evaporation produced diffraction-quality crystals.

Compound I: m.p. 520.5 K. 1H NMR: (CDCl3) δ ppm 7.28 (dd, 1H, J = 7.33 and 1.83 Hz); 7.07 (ddd, 1H, J = 8.24, 7.33 and 1.83 Hz); 6.80 (d, 1H, J = 7.33 Hz); 6.78 (d, 1H, J = 8.24 Hz); 5.69 (s, br, 1H); 5.24 (s, 1H); 4.00 (m, 2H); 3.78 (s, 3H); 2.31 (d, 1H, J = 23.81 Hz); 2.30 (s, 3H); 2.13 (q, 2H, J = 16.49 Hz); 2.11 (d, 1H, J = 32.84 Hz); 1.17 (t, 3H, J = 7.2 Hz); 1.06 (s, 3H); 0.92 (s, 3H). 13C NMR: (CDCl3) δ ppm 195.32; 167.98; 157.61; 148.12; 142.99; 134.51; 131.39; 127.34; 120.06; 111.26; 110.90; 105.26; 59.70; 55.46; 50.80; 41.47; 33.58; 32.69; 29.59; 26.99; 19.53; 14.23. HPLC–MS: calculated for [C22H27NO4+H]+ 370.46, observed m/z 370.1865 ([M + 1]+, 100% rel. intensity). Compound II: m.p. 517–527 K. 1H NMR: (CDCl3) δ ppm 7.20 (d, 2H, J = 9.16 Hz); 6.72 (d, 2H, J = 9.16 Hz); 5.76 (s, br, 1H); 4.05 (q, 2H, J = 7.33 Hz); 3.73 (s, 3H); 2.36 (s, 3H); 2.32 (d, 1H, J = 16.03 Hz); 2.22 (d, 1H, J = 16.03); 2.16 (t, 2H, J = 17.40 Hz); 1.19 (t, 3H, J = 7.33 Hz); 1.06 (s, 3H); 0.93 (s, 3H). 13C NMR: (CDCl3) δppm 195.58; 167.57; 157.83; 147.56; 143.05; 139.62; 129.06; 113.31; 112.61; 106.47; 59.91; 55.21; 50.79; 41.29; 35.75; 32.84; 29.52; 27.30; 19.61; 14.32. HPLC–MS: calculated for [C22H27NO4+H]+ 370.46, observed m/z 370.1873 ([M + 1]+, 100% rel. intensity). Compound III: 1H NMR: (acetone-d6) δ ppm 7.97 (s, 1H); 7.54 (s, 1H); 7.45 (s, 1H); 6.77 (t, 1H, J = 1.14 Hz); 6.59 (d, 2H, J = 1.14 Hz); 4.88 (s, 1H); 4.00 (q, 2H, J = 7.2 Hz); 2.42 (d, 1H, J = 16.94 Hz); 2.31 (s, 3H); 2.30 (dd, 1H, J = 16.94 and 1.37 Hz); 2.15 (d, 1H, J = 16.03 Hz); 2.00 (dd, 1H, J = 16.03 and 1.37 Hz); 1.16 (t, 3H, J = 7.2 Hz); 1.02 (s, 3H); 0.90 (s, 3H). 13C NMR: (acetone-d6) δ ppm 193.99; 167.22; 148.25; 144.26; 144.13; 143.04; 140.03; 119.24; 115.27; 114.44; 111.46; 104.96; 58.99; 50.60; 40.03; 35.49; 32.22; 26.35; 22.47; 17.99; 13.84. HPLC–MS: calculated for [C21H25NO5+H]+ 372.43, observed m/z 372.1657 ([M + 1]+, 100% rel. intensity).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. Carbon-bound hydrogen atoms on all three compounds were fixed geometrically and treated as riding with C—H = 0.95–0.98 Å and refined with Uiso(H) = 1.2Ueq (CH, CH2) or 1.5Ueq (CH3). Hydrogen atoms attached to nitro­gen and oxygen were found in difference-Fourier map and refined freely. Eight reflections (010, 0[\overline{1}]0, 0[\overline{1}][\overline{1}], 011, 00[\overline{1}], 001, 002, and 00[\overline{2}]) in compound I and eight reflections (040, 020, 123, [\overline{7}]23, 076, 031, 112, and 516) in compound III were omitted because of poor agreement between the observed and calculated intensities.

Table 6
Experimental details

  I II III
Crystal data
Chemical formula C22H27NO4 C22H27NO4 C21H25NO5
Mr 369.44 369.44 371.42
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 300 120 100
a, b, c (Å) 7.2941 (2), 9.6773 (3), 14.4302 (4) 15.3492 (15), 14.0314 (14), 18.3862 (18) 9.2745 (3), 22.1655 (7), 11.3475 (4)
α, β, γ (°) 82.1992 (17), 88.3216 (16), 75.9397 (16) 90, 90.0834 (17), 90 90, 108.2014 (17), 90
V3) 978.92 (5) 3959.8 (7) 2216.03 (13)
Z 2 8 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.09 0.09 0.08
Crystal size (mm) 0.35 × 0.19 × 0.14 0.35 × 0.15 × 0.14 0.64 × 0.13 × 0.06
 
Data collection
Diffractometer Bruker SMART BREEZE CCD Bruker APEXII CCD Bruker SMART BREEZE CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 34490, 34490, 22410 66519, 8085, 7121 40175, 5517, 4263
Rint 0.055 0.046
(sin θ/λ)max−1) 0.670 0.625 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.145, 1.03 0.039, 0.093, 1.04 0.045, 0.123, 1.04
No. of reflections 34490 8085 5517
No. of parameters 285 536 260
No. of restraints 39 39 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.17 0.33, −0.30 0.41, −0.21
Computer programs: APEX2 (Bruker, 2012[Bruker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Data of compound I were acquired at room temperature due to the disintegration of the crystals at low temperatures. The sample measured was identified as two crystals, mis-oriented by 0.24° approximately about the [001] reciprocal-space axis. For the purposes of data collection and subsequent structure refinement, the structure was treated using facilities for handling twinning by non-merohedry, namely HKLF5 data in SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), yielding a ratio of 0.866 (2):0.134 (2) for the two crystals. In compound I, the ethyl group on the carb­oxy­lic ester is disordered and was modeled at 50% occupancy at each site. Atomic displacement equivalency restraints and bond-length restraints (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) were applied to the carbon atoms and the single-bond oxygen atom of the disordered ester group.

The crystals of compound II were found to be pseudo-merohedric twins by a 180° rotation about the c axis. Application of the twin operation (−1, 0, 0, 0, −1, 0, 0, 0, 1) yielded a twin component ratio of 0.6938 (8):0.3062 (8). The ester group on mol­ecule B is also disordered. Atomic displacement equivalency restraints were applied to the two carbons and the single bond oxygen on the ethyl group. Restraints were applied to bond lengths on the atoms of the ester as well.

Compound III was co-crystallized with hexa­nes. However, being a mixture of disordered hexane isomers, the refinement around the hexa­nes did not give satisfactory results. The OLEX2 SMTBX (Rees et al., 2005[Rees, B., Jenner, L. & Yusupov, M. (2005). Acta Cryst. D61, 1299-1301.]) solvent-masking procedure was used to calculate and mask the solvent-accessible void. There are 192 electrons found in a volume of 464 Å3 in one void per unit cell. This is consistent with the presence of one C6H14 mol­ecule per asymmetric unit, which accounts for 200 electrons per unit cell.

Supporting information


Computing details top

For all structures, data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Ethyl 4-(2-methoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (I) top
Crystal data top
C22H27NO4Z = 2
Mr = 369.44F(000) = 396
Triclinic, P1Dx = 1.253 Mg m3
a = 7.2941 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.6773 (3) ÅCell parameters from 7681 reflections
c = 14.4302 (4) Åθ = 2.5–22.8°
α = 82.1992 (17)°µ = 0.09 mm1
β = 88.3216 (16)°T = 300 K
γ = 75.9397 (16)°Prism, colourless
V = 978.92 (5) Å30.35 × 0.19 × 0.14 mm
Data collection top
Bruker SMART BREEZE CCD
diffractometer
22410 reflections with I > 2σ(I)
Radiation source: 2 kW sealed X-ray tubeθmax = 28.4°, θmin = 2.9°
φ and ω scansh = 99
34490 measured reflectionsk = 1212
34490 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0533P)2 + 0.1957P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
34490 reflectionsΔρmax = 0.25 e Å3
285 parametersΔρmin = 0.17 e Å3
39 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin. Twin law (-1 0 0 0 -1 0 0.0123 -0.407 1) was applied and the structure was refined using HKLF5 data, yielding a ratio of 0.866 (2):0.134 (2) for the two twin components.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.25132 (18)0.32563 (17)0.92561 (11)0.0527 (4)
O20.6827 (3)0.6344 (2)0.60678 (12)0.0767 (6)
O40.2571 (2)0.3067 (2)0.67486 (12)0.0678 (5)
N10.8600 (2)0.39276 (19)0.87300 (13)0.0423 (5)
H10.973 (3)0.384 (2)0.8957 (16)0.059 (7)*
C20.8111 (3)0.4770 (2)0.78765 (15)0.0392 (5)
C30.6490 (3)0.4763 (2)0.74504 (14)0.0367 (5)
C40.5269 (3)0.3751 (2)0.78681 (13)0.0353 (5)
H40.3939050.4258690.7770760.042*
C50.4146 (3)0.3084 (2)0.95350 (14)0.0356 (5)
C60.4605 (3)0.2630 (2)1.05554 (14)0.0428 (5)
H6A0.3857000.1959921.0800770.051*
H6B0.4216540.3468581.0879120.051*
C70.6677 (3)0.1929 (2)1.07869 (14)0.0415 (5)
C80.7858 (3)0.2895 (2)1.02836 (14)0.0415 (5)
H8A0.7721880.3733301.0603300.050*
H8B0.9177880.2380441.0319040.050*
C90.7317 (3)0.3380 (2)0.92783 (14)0.0343 (5)
C100.5631 (2)0.3384 (2)0.89123 (13)0.0332 (5)
C110.7238 (3)0.0433 (2)1.04788 (19)0.0628 (7)
H11A0.6467470.0156151.0797130.094*
H11B0.8543090.0004891.0630060.094*
H11C0.7055840.0511530.9815820.094*
C120.7000 (4)0.1791 (3)1.18439 (16)0.0682 (8)
H12A0.6676840.2728521.2040850.102*
H12B0.8304890.1346011.1986170.102*
H12C0.6221300.1212221.2166620.102*
C130.9461 (3)0.5694 (3)0.75745 (17)0.0561 (6)
H13A0.9284990.6455030.7955940.084*
H13B0.9226700.6097450.6931260.084*
H13C1.0735470.5120330.7643200.084*
C140.5891 (3)0.5687 (2)0.65630 (15)0.0449 (5)
C170.5638 (3)0.2400 (2)0.73826 (14)0.0390 (5)
C180.4292 (3)0.2107 (2)0.68159 (15)0.0457 (5)
C190.4721 (4)0.0891 (3)0.63638 (17)0.0579 (7)
H190.3822140.0718000.5979680.069*
C200.6446 (4)0.0051 (3)0.64774 (18)0.0659 (7)
H200.6717140.0864560.6172780.079*
C210.7777 (4)0.0195 (3)0.70378 (19)0.0685 (8)
H210.8951720.0451390.7121770.082*
C220.7362 (3)0.1416 (2)0.74789 (16)0.0532 (6)
H220.8280680.1579800.7854960.064*
C230.1214 (4)0.2879 (4)0.61208 (19)0.0818 (9)
H23A0.1745110.2855960.5504850.123*
H23B0.0113910.3663920.6108370.123*
H23C0.0865780.1992080.6324730.123*
O30.4114 (15)0.559 (2)0.6315 (8)0.048 (2)0.67 (7)
C150.3262 (10)0.6449 (8)0.5454 (4)0.0569 (15)0.777 (19)
H15A0.2519740.5915240.5164760.068*0.777 (19)
H15B0.4256640.6608740.5021990.068*0.777 (19)
C160.2017 (8)0.7873 (7)0.5621 (3)0.0705 (16)0.87 (2)
H16A0.1456690.8381480.5040550.106*0.87 (2)
H16B0.2759850.8428130.5874850.106*0.87 (2)
H16C0.1040030.7721890.6055090.106*0.87 (2)
O3A0.415 (3)0.601 (5)0.6407 (19)0.059 (4)0.33 (7)
C15A0.370 (3)0.698 (3)0.5526 (14)0.061 (5)0.223 (19)
H15C0.4055620.7874410.5550210.073*0.223 (19)
H15D0.4324890.6532960.5000410.073*0.223 (19)
C16A0.169 (5)0.720 (8)0.546 (3)0.095 (11)0.13 (2)
H16D0.1248510.7788360.4886850.142*0.13 (2)
H16E0.1109470.7672370.5979620.142*0.13 (2)
H16F0.1376500.6290160.5486320.142*0.13 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0281 (8)0.0690 (11)0.0605 (10)0.0152 (7)0.0053 (7)0.0009 (8)
O20.0943 (14)0.0879 (14)0.0531 (11)0.0447 (12)0.0001 (10)0.0141 (10)
O40.0469 (10)0.0883 (13)0.0737 (12)0.0127 (9)0.0184 (8)0.0322 (10)
N10.0260 (9)0.0524 (12)0.0487 (11)0.0131 (8)0.0046 (8)0.0003 (9)
C20.0344 (11)0.0393 (12)0.0436 (13)0.0091 (9)0.0055 (9)0.0055 (10)
C30.0365 (11)0.0347 (11)0.0378 (12)0.0062 (9)0.0022 (9)0.0060 (9)
C40.0275 (10)0.0407 (12)0.0367 (12)0.0062 (8)0.0040 (8)0.0039 (9)
C50.0297 (10)0.0340 (11)0.0438 (12)0.0080 (8)0.0012 (9)0.0066 (9)
C60.0383 (12)0.0474 (13)0.0429 (13)0.0111 (10)0.0027 (10)0.0057 (10)
C70.0412 (12)0.0423 (12)0.0394 (12)0.0084 (10)0.0043 (9)0.0016 (10)
C80.0352 (11)0.0449 (13)0.0447 (13)0.0093 (10)0.0094 (9)0.0054 (10)
C90.0292 (10)0.0357 (11)0.0386 (12)0.0083 (8)0.0011 (9)0.0061 (9)
C100.0275 (10)0.0351 (11)0.0367 (11)0.0064 (8)0.0034 (8)0.0053 (9)
C110.0600 (15)0.0419 (14)0.0818 (19)0.0060 (12)0.0071 (14)0.0017 (13)
C120.0687 (17)0.090 (2)0.0428 (15)0.0203 (15)0.0092 (12)0.0054 (14)
C130.0487 (14)0.0604 (15)0.0646 (16)0.0262 (12)0.0055 (12)0.0040 (13)
C140.0553 (15)0.0398 (13)0.0385 (13)0.0086 (11)0.0041 (11)0.0074 (10)
C170.0411 (12)0.0416 (12)0.0352 (12)0.0130 (10)0.0012 (9)0.0027 (10)
C180.0457 (13)0.0524 (14)0.0432 (13)0.0196 (11)0.0011 (10)0.0066 (11)
C190.0748 (18)0.0606 (16)0.0493 (15)0.0332 (15)0.0029 (13)0.0142 (13)
C200.095 (2)0.0472 (15)0.0603 (17)0.0204 (15)0.0043 (15)0.0175 (13)
C210.0742 (18)0.0518 (16)0.0733 (19)0.0020 (13)0.0064 (15)0.0167 (14)
C220.0511 (14)0.0502 (14)0.0563 (15)0.0044 (11)0.0088 (11)0.0130 (12)
C230.0526 (15)0.135 (3)0.0679 (19)0.0298 (17)0.0130 (14)0.0334 (18)
O30.052 (2)0.048 (5)0.042 (2)0.010 (2)0.0128 (16)0.003 (3)
C150.067 (3)0.060 (3)0.041 (2)0.015 (2)0.0144 (19)0.003 (2)
C160.083 (3)0.058 (3)0.063 (3)0.009 (2)0.0144 (19)0.006 (2)
O3A0.062 (5)0.057 (9)0.044 (5)0.004 (6)0.010 (4)0.008 (6)
C15A0.077 (9)0.057 (10)0.038 (7)0.005 (8)0.009 (6)0.012 (7)
C16A0.104 (19)0.10 (2)0.074 (16)0.016 (18)0.034 (14)0.016 (18)
Geometric parameters (Å, º) top
O1—C51.233 (2)C13—H13A0.9600
O2—C141.200 (2)C13—H13B0.9600
O4—C181.366 (3)C13—H13C0.9600
O4—C231.420 (3)C14—O31.382 (10)
N1—H10.88 (2)C14—O3A1.25 (3)
N1—C21.386 (3)C17—C181.399 (3)
N1—C91.366 (2)C17—C221.378 (3)
C2—C31.350 (3)C18—C191.388 (3)
C2—C131.502 (3)C19—H190.9300
C3—C41.532 (3)C19—C201.362 (3)
C3—C141.471 (3)C20—H200.9300
C4—H40.9800C20—C211.366 (3)
C4—C101.516 (3)C21—H210.9300
C4—C171.529 (3)C21—C221.383 (3)
C5—C61.502 (3)C22—H220.9300
C5—C101.446 (3)C23—H23A0.9600
C6—H6A0.9700C23—H23B0.9600
C6—H6B0.9700C23—H23C0.9600
C6—C71.525 (3)O3—C151.460 (10)
C7—C81.521 (3)C15—H15A0.9700
C7—C111.528 (3)C15—H15B0.9700
C7—C121.533 (3)C15—C161.501 (8)
C8—H8A0.9700C16—H16A0.9600
C8—H8B0.9700C16—H16B0.9600
C8—C91.496 (3)C16—H16C0.9600
C9—C101.351 (2)O3A—C15A1.47 (2)
C11—H11A0.9600C15A—H15C0.9700
C11—H11B0.9600C15A—H15D0.9700
C11—H11C0.9600C15A—C16A1.43 (4)
C12—H12A0.9600C16A—H16D0.9600
C12—H12B0.9600C16A—H16E0.9600
C12—H12C0.9600C16A—H16F0.9600
C18—O4—C23118.3 (2)H13A—C13—H13B109.5
C2—N1—H1118.3 (15)H13A—C13—H13C109.5
C9—N1—H1118.9 (15)H13B—C13—H13C109.5
C9—N1—C2122.25 (17)O2—C14—C3126.6 (2)
N1—C2—C13112.68 (18)O2—C14—O3123.1 (5)
C3—C2—N1119.51 (18)O2—C14—O3A116.9 (14)
C3—C2—C13127.6 (2)O3—C14—C3110.0 (5)
C2—C3—C4120.45 (17)O3A—C14—C3115.2 (11)
C2—C3—C14120.91 (19)C18—C17—C4122.77 (19)
C14—C3—C4118.61 (18)C22—C17—C4120.36 (18)
C3—C4—H4108.2C22—C17—C18116.9 (2)
C10—C4—C3109.37 (15)O4—C18—C17116.32 (19)
C10—C4—H4108.2O4—C18—C19123.2 (2)
C10—C4—C17111.63 (16)C19—C18—C17120.5 (2)
C17—C4—C3111.17 (16)C18—C19—H19119.7
C17—C4—H4108.2C20—C19—C18120.6 (2)
O1—C5—C6119.83 (18)C20—C19—H19119.7
O1—C5—C10121.75 (18)C19—C20—H20119.9
C10—C5—C6118.34 (16)C19—C20—C21120.2 (2)
C5—C6—H6A108.4C21—C20—H20119.9
C5—C6—H6B108.4C20—C21—H21120.3
C5—C6—C7115.67 (17)C20—C21—C22119.3 (2)
H6A—C6—H6B107.4C22—C21—H21120.3
C7—C6—H6A108.4C17—C22—C21122.5 (2)
C7—C6—H6B108.4C17—C22—H22118.7
C6—C7—C11110.41 (18)C21—C22—H22118.7
C6—C7—C12109.80 (18)O4—C23—H23A109.5
C8—C7—C6107.87 (16)O4—C23—H23B109.5
C8—C7—C11110.68 (19)O4—C23—H23C109.5
C8—C7—C12109.10 (18)H23A—C23—H23B109.5
C11—C7—C12108.95 (19)H23A—C23—H23C109.5
C7—C8—H8A108.9H23B—C23—H23C109.5
C7—C8—H8B108.9C14—O3—C15118.3 (9)
H8A—C8—H8B107.7O3—C15—H15A109.1
C9—C8—C7113.37 (16)O3—C15—H15B109.1
C9—C8—H8A108.9O3—C15—C16112.5 (9)
C9—C8—H8B108.9H15A—C15—H15B107.8
N1—C9—C8116.06 (17)C16—C15—H15A109.1
C10—C9—N1119.62 (18)C16—C15—H15B109.1
C10—C9—C8124.19 (18)C15—C16—H16A109.5
C5—C10—C4120.18 (16)C15—C16—H16B109.5
C9—C10—C4120.76 (17)C15—C16—H16C109.5
C9—C10—C5119.03 (18)H16A—C16—H16B109.5
C7—C11—H11A109.5H16A—C16—H16C109.5
C7—C11—H11B109.5H16B—C16—H16C109.5
C7—C11—H11C109.5C14—O3A—C15A111 (2)
H11A—C11—H11B109.5O3A—C15A—H15C111.3
H11A—C11—H11C109.5O3A—C15A—H15D111.3
H11B—C11—H11C109.5H15C—C15A—H15D109.2
C7—C12—H12A109.5C16A—C15A—O3A102 (2)
C7—C12—H12B109.5C16A—C15A—H15C111.3
C7—C12—H12C109.5C16A—C15A—H15D111.3
H12A—C12—H12B109.5C15A—C16A—H16D109.5
H12A—C12—H12C109.5C15A—C16A—H16E109.5
H12B—C12—H12C109.5C15A—C16A—H16F109.5
C2—C13—H13A109.5H16D—C16A—H16E109.5
C2—C13—H13B109.5H16D—C16A—H16F109.5
C2—C13—H13C109.5H16E—C16A—H16F109.5
O1—C5—C6—C7158.59 (18)C6—C5—C10—C4175.97 (18)
O1—C5—C10—C47.4 (3)C6—C5—C10—C96.2 (3)
O1—C5—C10—C9170.39 (19)C6—C7—C8—C947.3 (2)
O2—C14—O3—C156 (2)C7—C8—C9—N1163.74 (17)
O2—C14—O3A—C15A10 (4)C7—C8—C9—C1020.4 (3)
O4—C18—C19—C20178.1 (2)C8—C9—C10—C4173.83 (18)
N1—C2—C3—C44.4 (3)C8—C9—C10—C58.4 (3)
N1—C2—C3—C14177.57 (19)C9—N1—C2—C317.4 (3)
N1—C9—C10—C410.5 (3)C9—N1—C2—C13158.14 (19)
N1—C9—C10—C5167.32 (18)C10—C4—C17—C18125.8 (2)
C2—N1—C9—C8161.64 (19)C10—C4—C17—C2255.3 (2)
C2—N1—C9—C1014.4 (3)C10—C5—C6—C724.7 (3)
C2—C3—C4—C1025.1 (3)C11—C7—C8—C973.6 (2)
C2—C3—C4—C1798.6 (2)C12—C7—C8—C9166.52 (19)
C2—C3—C14—O211.7 (3)C13—C2—C3—C4179.3 (2)
C2—C3—C14—O3174.2 (9)C13—C2—C3—C142.7 (3)
C2—C3—C14—O3A155 (3)C14—C3—C4—C10156.85 (17)
C3—C4—C10—C5149.48 (17)C14—C3—C4—C1779.4 (2)
C3—C4—C10—C928.3 (2)C14—O3—C15—C1693.5 (15)
C3—C4—C17—C18111.8 (2)C14—O3A—C15A—C16A179 (5)
C3—C4—C17—C2267.1 (2)C17—C4—C10—C587.1 (2)
C3—C14—O3—C15179.4 (11)C17—C4—C10—C995.2 (2)
C3—C14—O3A—C15A178 (2)C17—C18—C19—C201.2 (3)
C4—C3—C14—O2166.3 (2)C18—C17—C22—C210.4 (3)
C4—C3—C14—O37.7 (9)C18—C19—C20—C210.2 (4)
C4—C3—C14—O3A27 (3)C19—C20—C21—C220.7 (4)
C4—C17—C18—O43.0 (3)C20—C21—C22—C170.5 (4)
C4—C17—C18—C19177.7 (2)C22—C17—C18—O4178.08 (19)
C4—C17—C22—C21178.6 (2)C22—C17—C18—C191.3 (3)
C5—C6—C7—C850.3 (2)C23—O4—C18—C17174.8 (2)
C5—C6—C7—C1170.8 (2)C23—O4—C18—C195.8 (3)
C5—C6—C7—C12169.07 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.88 (2)2.01 (2)2.870 (2)165 (2)
C13—H13B···O20.962.132.846 (3)131
C13—H13C···O4i0.962.593.300 (3)131
C23—H23A···O2ii0.962.573.492 (3)161
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.
Ethyl 4-(4-methoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (II) top
Crystal data top
C22H27NO4F(000) = 1584
Mr = 369.44Dx = 1.239 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 15.3492 (15) ÅCell parameters from 9980 reflections
b = 14.0314 (14) Åθ = 2.3–26.4°
c = 18.3862 (18) ŵ = 0.09 mm1
β = 90.0834 (17)°T = 120 K
V = 3959.8 (7) Å3Rod, colourless
Z = 80.35 × 0.15 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.055
φ and ω scansθmax = 26.4°, θmin = 1.3°
66519 measured reflectionsh = 1919
8085 independent reflectionsk = 1717
7121 reflections with I > 2σ(I)l = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0433P)2 + 1.0284P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
8085 reflectionsΔρmax = 0.33 e Å3
536 parametersΔρmin = 0.30 e Å3
39 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin. Application of the twin law (-1, 0, 0, 0, -1, 0, 0, 0, 1) yielded a twin domain ratio of 0.6938 (8):0.3062 (8).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.45938 (8)1.14027 (8)0.37758 (7)0.0261 (3)
O2A0.83266 (9)0.94867 (10)0.38491 (8)0.0353 (3)
O3A0.76656 (8)1.07646 (9)0.33709 (7)0.0239 (3)
O4A0.58302 (9)1.01706 (9)0.04318 (7)0.0279 (3)
N1A0.57551 (10)0.83505 (11)0.40985 (8)0.0195 (3)
H1A0.5659 (13)0.7789 (15)0.4186 (11)0.023 (5)*
C2A0.66070 (11)0.86446 (12)0.39877 (9)0.0196 (4)
C3A0.67643 (11)0.95409 (12)0.37482 (9)0.0186 (4)
C4A0.60238 (10)1.01965 (12)0.35175 (9)0.0175 (3)
H4A0.6160411.0853970.3693980.021*
C5A0.44879 (11)1.05602 (12)0.39480 (9)0.0182 (4)
C6A0.36366 (11)1.02348 (12)0.42708 (10)0.0200 (4)
H6AA0.3159821.0622020.4060080.024*
H6AB0.3648501.0357340.4801000.024*
C7A0.34314 (11)0.91751 (12)0.41443 (9)0.0193 (4)
C8A0.42224 (11)0.85979 (12)0.43937 (9)0.0186 (3)
H8AA0.4248600.8606090.4931730.022*
H8AB0.4147480.7927480.4237850.022*
C9A0.50663 (11)0.89679 (12)0.40982 (9)0.0170 (3)
C10A0.51830 (11)0.98787 (12)0.38714 (9)0.0167 (3)
C11A0.32322 (12)0.90078 (13)0.33413 (10)0.0248 (4)
H11D0.2751900.9423310.3189730.037*
H11E0.3066040.8340470.3267150.037*
H11F0.3750710.9152310.3051080.037*
C12A0.26398 (12)0.88893 (13)0.45999 (11)0.0266 (4)
H12D0.2764700.9001630.5115740.040*
H12E0.2512890.8212170.4523470.040*
H12F0.2135020.9271130.4452430.040*
C13A0.72712 (12)0.79058 (13)0.41851 (11)0.0263 (4)
H13D0.7529140.8062810.4658040.039*
H13E0.7728690.7891710.3814020.039*
H13F0.6990270.7279660.4212390.039*
C14A0.76640 (11)0.98918 (13)0.36709 (9)0.0214 (4)
C15A0.85044 (12)1.11883 (14)0.32108 (11)0.0289 (4)
H15E0.8933851.0687080.3088590.035*
H15F0.8721771.1547900.3637300.035*
C16A0.83761 (13)1.18449 (14)0.25765 (12)0.0352 (5)
H16G0.8110911.1492550.2172710.053*
H16H0.8940951.2100400.2423220.053*
H16I0.7992551.2370920.2718910.053*
C17A0.59364 (10)1.02320 (12)0.26930 (9)0.0177 (4)
C18A0.57574 (11)0.93988 (12)0.23039 (9)0.0214 (4)
H18A0.5659520.8820520.2559690.026*
C19A0.57207 (11)0.94030 (13)0.15539 (10)0.0218 (4)
H19A0.5600180.8829870.1297760.026*
C20A0.58598 (11)1.02449 (13)0.11729 (9)0.0217 (4)
C21A0.60189 (11)1.10830 (13)0.15485 (10)0.0232 (4)
H21A0.6102071.1664560.1293320.028*
C22A0.60553 (11)1.10619 (12)0.23063 (10)0.0216 (4)
H22A0.6165361.1636990.2563210.026*
C23A0.58707 (15)1.10334 (15)0.00256 (11)0.0359 (5)
H23D0.5819011.0889870.0494280.054*
H23E0.6428661.1350610.0118790.054*
H23F0.5392421.1453580.0172810.054*
O1B0.53248 (9)0.63931 (8)0.41653 (7)0.0275 (3)
O2B0.16407 (8)0.44710 (11)0.34002 (8)0.0367 (3)
O4B0.45174 (10)0.69033 (9)0.07234 (7)0.0325 (3)
N1B0.41867 (10)0.33580 (11)0.37064 (9)0.0232 (3)
H1B0.4275 (14)0.2749 (16)0.3763 (12)0.037 (6)*
C2B0.33400 (11)0.36815 (12)0.36142 (10)0.0224 (4)
C3B0.31849 (11)0.46259 (13)0.35623 (10)0.0226 (4)
C4B0.39216 (11)0.53471 (12)0.35400 (10)0.0201 (4)
H4B0.3757820.5893070.3861490.024*
C5B0.54390 (12)0.55231 (12)0.41031 (9)0.0207 (4)
C6B0.62933 (12)0.50822 (13)0.43392 (10)0.0236 (4)
H6BA0.6292570.5025530.4875870.028*
H6BB0.6771550.5521310.4204840.028*
C7B0.64891 (12)0.41011 (13)0.40149 (10)0.0223 (4)
C8B0.56843 (11)0.34797 (12)0.41231 (10)0.0221 (4)
H8BA0.5762110.2875740.3852470.026*
H8BB0.5629280.3320750.4645610.026*
C9B0.48608 (11)0.39520 (12)0.38717 (10)0.0195 (4)
C10B0.47532 (11)0.49112 (12)0.38389 (10)0.0190 (4)
C11B0.67057 (13)0.41894 (14)0.32069 (10)0.0290 (4)
H11A0.6811450.3554220.3003740.044*
H11B0.7228490.4582540.3147530.044*
H11C0.6216080.4488060.2951200.044*
C12B0.72593 (12)0.36470 (15)0.44191 (12)0.0314 (5)
H12A0.7116070.3584400.4936200.047*
H12B0.7775870.4051060.4364840.047*
H12C0.7377960.3015280.4214600.047*
C13B0.26813 (12)0.28863 (14)0.35968 (12)0.0323 (5)
H13A0.2979540.2274230.3659800.048*
H13B0.2375820.2891670.3128450.048*
H13C0.2260000.2975640.3990950.048*
C14B0.22780 (13)0.49593 (14)0.34891 (12)0.0317 (4)
C17B0.40645 (11)0.57381 (12)0.27734 (10)0.0204 (4)
C18B0.41311 (12)0.51382 (13)0.21751 (10)0.0235 (4)
H18B0.4074940.4469670.2242040.028*
C19B0.42785 (12)0.54948 (13)0.14796 (10)0.0247 (4)
H19B0.4322020.5073460.1076850.030*
C20B0.43611 (11)0.64698 (13)0.13795 (10)0.0231 (4)
C21B0.42916 (11)0.70792 (12)0.19706 (10)0.0231 (4)
H21B0.4342680.7748300.1903980.028*
C22B0.41482 (12)0.67106 (12)0.26552 (10)0.0220 (4)
H22B0.4105560.7133820.3056880.026*
C23B0.46826 (19)0.62980 (17)0.01175 (12)0.0469 (6)
H23A0.4817870.6687420.0310180.070*
H23B0.4165800.5908830.0017990.070*
H23C0.5177790.5881120.0227550.070*
O3B0.2269 (3)0.5956 (3)0.3723 (4)0.0335 (6)0.432 (8)
C15B0.1402 (3)0.6417 (4)0.3742 (3)0.0372 (7)0.465 (5)
H15A0.1383040.6896950.4136460.045*0.465 (5)
H15B0.0945620.5934440.3836260.045*0.465 (5)
C16B0.1245 (4)0.6886 (5)0.3024 (3)0.0467 (11)0.465 (5)
H16A0.1239330.6402690.2639420.070*0.465 (5)
H16B0.1710210.7347760.2927920.070*0.465 (5)
H16C0.0682460.7216420.3033510.070*0.465 (5)
O3C0.21906 (19)0.5876 (2)0.3397 (3)0.0334 (5)0.568 (8)
C15C0.1290 (2)0.6186 (3)0.3293 (3)0.0363 (7)0.535 (5)
H15C0.1075080.5967370.2812870.044*0.535 (5)
H15D0.0914850.5904250.3673750.044*0.535 (5)
C16C0.1252 (3)0.7220 (3)0.3332 (3)0.0423 (10)0.535 (5)
H16D0.1647430.7494570.2970270.063*0.535 (5)
H16E0.1426090.7429500.3819110.063*0.535 (5)
H16F0.0655170.7433170.3232170.063*0.535 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0244 (6)0.0130 (6)0.0411 (8)0.0011 (5)0.0035 (6)0.0025 (5)
O2A0.0192 (7)0.0410 (8)0.0458 (9)0.0025 (6)0.0023 (6)0.0152 (7)
O3A0.0159 (6)0.0237 (7)0.0323 (7)0.0027 (5)0.0006 (5)0.0033 (5)
O4A0.0322 (7)0.0335 (7)0.0180 (7)0.0002 (6)0.0006 (5)0.0040 (5)
N1A0.0205 (7)0.0116 (7)0.0264 (8)0.0011 (6)0.0005 (6)0.0012 (6)
C2A0.0206 (9)0.0202 (9)0.0180 (9)0.0027 (7)0.0015 (7)0.0033 (7)
C3A0.0174 (8)0.0211 (9)0.0172 (8)0.0029 (7)0.0001 (7)0.0001 (7)
C4A0.0176 (8)0.0147 (8)0.0201 (9)0.0010 (6)0.0002 (7)0.0001 (7)
C5A0.0211 (9)0.0153 (8)0.0182 (8)0.0009 (7)0.0017 (7)0.0008 (7)
C6A0.0211 (9)0.0169 (9)0.0221 (9)0.0026 (7)0.0024 (7)0.0022 (7)
C7A0.0186 (8)0.0176 (8)0.0216 (9)0.0006 (7)0.0004 (7)0.0010 (7)
C8A0.0219 (9)0.0146 (8)0.0194 (9)0.0019 (7)0.0000 (7)0.0005 (6)
C9A0.0210 (8)0.0145 (8)0.0156 (8)0.0015 (7)0.0021 (7)0.0002 (7)
C10A0.0181 (8)0.0160 (8)0.0161 (8)0.0009 (7)0.0015 (7)0.0010 (7)
C11A0.0224 (9)0.0259 (10)0.0260 (10)0.0016 (7)0.0045 (7)0.0046 (8)
C12A0.0227 (9)0.0234 (10)0.0337 (11)0.0014 (8)0.0040 (8)0.0002 (8)
C13A0.0242 (9)0.0220 (9)0.0325 (11)0.0054 (7)0.0024 (8)0.0009 (8)
C14A0.0212 (9)0.0249 (9)0.0180 (9)0.0015 (7)0.0019 (7)0.0001 (7)
C15A0.0172 (9)0.0315 (10)0.0380 (11)0.0060 (8)0.0015 (8)0.0021 (9)
C16A0.0258 (10)0.0281 (11)0.0518 (13)0.0037 (8)0.0069 (9)0.0071 (10)
C17A0.0137 (8)0.0190 (9)0.0204 (9)0.0022 (7)0.0005 (7)0.0008 (7)
C18A0.0221 (9)0.0171 (9)0.0249 (9)0.0007 (7)0.0005 (7)0.0027 (7)
C19A0.0215 (9)0.0202 (9)0.0236 (9)0.0013 (7)0.0013 (7)0.0018 (7)
C20A0.0162 (8)0.0305 (10)0.0183 (9)0.0004 (7)0.0003 (7)0.0035 (7)
C21A0.0209 (9)0.0232 (9)0.0253 (10)0.0046 (7)0.0007 (7)0.0066 (8)
C22A0.0210 (9)0.0199 (9)0.0240 (9)0.0032 (7)0.0016 (7)0.0012 (7)
C23A0.0439 (12)0.0408 (12)0.0230 (10)0.0123 (10)0.0000 (9)0.0099 (9)
O1B0.0316 (7)0.0147 (6)0.0361 (8)0.0032 (5)0.0028 (6)0.0020 (6)
O2B0.0181 (7)0.0555 (10)0.0366 (8)0.0001 (7)0.0001 (6)0.0014 (7)
O4B0.0461 (9)0.0282 (7)0.0234 (7)0.0002 (6)0.0002 (6)0.0053 (6)
N1B0.0199 (7)0.0121 (7)0.0378 (9)0.0002 (6)0.0020 (7)0.0013 (7)
C2B0.0194 (9)0.0217 (9)0.0261 (9)0.0015 (7)0.0002 (7)0.0032 (7)
C3B0.0192 (9)0.0240 (9)0.0246 (9)0.0010 (7)0.0029 (7)0.0044 (8)
C4B0.0193 (9)0.0153 (8)0.0258 (9)0.0034 (7)0.0029 (7)0.0006 (7)
C5B0.0224 (9)0.0187 (9)0.0209 (9)0.0017 (7)0.0041 (7)0.0009 (7)
C6B0.0225 (9)0.0221 (9)0.0262 (10)0.0057 (7)0.0002 (7)0.0008 (7)
C7B0.0193 (9)0.0212 (9)0.0265 (10)0.0011 (7)0.0018 (7)0.0042 (7)
C8B0.0206 (9)0.0167 (8)0.0288 (10)0.0017 (7)0.0009 (7)0.0028 (7)
C9B0.0188 (8)0.0180 (9)0.0218 (9)0.0015 (7)0.0015 (7)0.0012 (7)
C10B0.0200 (9)0.0150 (8)0.0220 (9)0.0002 (7)0.0030 (7)0.0004 (7)
C11B0.0278 (10)0.0287 (10)0.0306 (11)0.0054 (8)0.0068 (8)0.0029 (8)
C12B0.0215 (10)0.0331 (11)0.0396 (12)0.0022 (8)0.0004 (8)0.0102 (9)
C13B0.0238 (10)0.0266 (10)0.0464 (12)0.0043 (8)0.0029 (9)0.0054 (9)
C14B0.0222 (7)0.0316 (8)0.0411 (10)0.0077 (6)0.0042 (7)0.0096 (8)
C17B0.0158 (8)0.0191 (9)0.0263 (9)0.0024 (7)0.0013 (7)0.0025 (7)
C18B0.0227 (9)0.0160 (9)0.0319 (10)0.0016 (7)0.0005 (8)0.0006 (7)
C19B0.0239 (9)0.0238 (9)0.0263 (10)0.0000 (7)0.0022 (8)0.0026 (8)
C20B0.0197 (9)0.0244 (9)0.0252 (9)0.0003 (7)0.0018 (7)0.0046 (7)
C21B0.0227 (9)0.0154 (8)0.0313 (10)0.0008 (7)0.0008 (8)0.0031 (7)
C22B0.0217 (9)0.0159 (8)0.0285 (10)0.0047 (7)0.0002 (7)0.0003 (7)
C23B0.0762 (18)0.0404 (13)0.0241 (11)0.0068 (12)0.0019 (11)0.0017 (10)
O3B0.0235 (9)0.0329 (10)0.0440 (13)0.0081 (9)0.0033 (10)0.0089 (11)
C15B0.0271 (12)0.0375 (13)0.0470 (15)0.0070 (11)0.0016 (12)0.0084 (13)
C16B0.0342 (18)0.051 (2)0.055 (2)0.0052 (18)0.0014 (18)0.0084 (19)
O3C0.0231 (8)0.0314 (9)0.0456 (12)0.0106 (7)0.0001 (9)0.0067 (10)
C15C0.0255 (11)0.0327 (12)0.0507 (15)0.0126 (10)0.0021 (11)0.0033 (11)
C16C0.0303 (16)0.0355 (18)0.061 (2)0.0114 (15)0.0032 (16)0.0035 (17)
Geometric parameters (Å, º) top
O1A—C5A1.235 (2)N1B—H1B0.87 (2)
O2A—C14A1.210 (2)N1B—C2B1.387 (2)
O3A—C14A1.343 (2)N1B—C9B1.363 (2)
O3A—C15A1.449 (2)C2B—C3B1.350 (2)
O4A—C20A1.367 (2)C2B—C13B1.506 (2)
O4A—C23A1.424 (2)C3B—C4B1.518 (2)
N1A—H1A0.82 (2)C3B—C14B1.474 (3)
N1A—C2A1.386 (2)C4B—H4B1.0000
N1A—C9A1.367 (2)C4B—C10B1.518 (2)
C2A—C3A1.354 (2)C4B—C17B1.529 (2)
C2A—C13A1.498 (2)C5B—C6B1.513 (3)
C3A—C4A1.522 (2)C5B—C10B1.442 (2)
C3A—C14A1.473 (2)C6B—H6BA0.9900
C4A—H4A1.0000C6B—H6BB0.9900
C4A—C10A1.513 (2)C6B—C7B1.530 (3)
C4A—C17A1.523 (2)C7B—C8B1.525 (2)
C5A—C6A1.507 (2)C7B—C11B1.528 (3)
C5A—C10A1.440 (2)C7B—C12B1.534 (3)
C6A—H6AA0.9900C8B—H8BA0.9900
C6A—H6AB0.9900C8B—H8BB0.9900
C6A—C7A1.538 (2)C8B—C9B1.500 (2)
C7A—C8A1.529 (2)C9B—C10B1.357 (2)
C7A—C11A1.526 (2)C11B—H11A0.9800
C7A—C12A1.530 (2)C11B—H11B0.9800
C8A—H8AA0.9900C11B—H11C0.9800
C8A—H8AB0.9900C12B—H12A0.9800
C8A—C9A1.498 (2)C12B—H12B0.9800
C9A—C10A1.356 (2)C12B—H12C0.9800
C11A—H11D0.9800C13B—H13A0.9800
C11A—H11E0.9800C13B—H13B0.9800
C11A—H11F0.9800C13B—H13C0.9800
C12A—H12D0.9800C14B—O3B1.464 (5)
C12A—H12E0.9800C14B—O3C1.305 (4)
C12A—H12F0.9800C17B—C18B1.389 (3)
C13A—H13D0.9800C17B—C22B1.388 (2)
C13A—H13E0.9800C18B—H18B0.9500
C13A—H13F0.9800C18B—C19B1.392 (3)
C15A—H15E0.9900C19B—H19B0.9500
C15A—H15F0.9900C19B—C20B1.386 (2)
C15A—C16A1.499 (3)C20B—C21B1.387 (3)
C16A—H16G0.9800C21B—H21B0.9500
C16A—H16H0.9800C21B—C22B1.379 (3)
C16A—H16I0.9800C22B—H22B0.9500
C17A—C18A1.398 (2)C23B—H23A0.9800
C17A—C22A1.377 (2)C23B—H23B0.9800
C18A—H18A0.9500C23B—H23C0.9800
C18A—C19A1.380 (2)O3B—C15B1.480 (5)
C19A—H19A0.9500C15B—H15A0.9900
C19A—C20A1.390 (3)C15B—H15B0.9900
C20A—C21A1.385 (3)C15B—C16B1.495 (7)
C21A—H21A0.9500C16B—H16A0.9800
C21A—C22A1.395 (3)C16B—H16B0.9800
C22A—H22A0.9500C16B—H16C0.9800
C23A—H23D0.9800O3C—C15C1.461 (4)
C23A—H23E0.9800C15C—H15C0.9900
C23A—H23F0.9800C15C—H15D0.9900
O1B—C5B1.239 (2)C15C—C16C1.454 (6)
O2B—C14B1.205 (2)C16C—H16D0.9800
O4B—C20B1.372 (2)C16C—H16E0.9800
O4B—C23B1.424 (3)C16C—H16F0.9800
C14A—O3A—C15A117.37 (14)C2B—C3B—C14B118.97 (17)
C20A—O4A—C23A117.16 (15)C14B—C3B—C4B119.29 (15)
C2A—N1A—H1A119.1 (14)C3B—C4B—H4B107.9
C9A—N1A—H1A118.1 (14)C3B—C4B—C17B111.84 (15)
C9A—N1A—C2A122.74 (15)C10B—C4B—C3B110.35 (14)
N1A—C2A—C13A113.58 (15)C10B—C4B—H4B107.9
C3A—C2A—N1A119.53 (15)C10B—C4B—C17B110.91 (14)
C3A—C2A—C13A126.84 (16)C17B—C4B—H4B107.9
C2A—C3A—C4A121.22 (15)O1B—C5B—C6B119.96 (16)
C2A—C3A—C14A120.62 (15)O1B—C5B—C10B120.96 (16)
C14A—C3A—C4A118.09 (15)C10B—C5B—C6B119.02 (15)
C3A—C4A—H4A108.1C5B—C6B—H6BA108.5
C3A—C4A—C17A111.21 (14)C5B—C6B—H6BB108.5
C10A—C4A—C3A109.82 (13)C5B—C6B—C7B115.26 (15)
C10A—C4A—H4A108.1H6BA—C6B—H6BB107.5
C10A—C4A—C17A111.34 (14)C7B—C6B—H6BA108.5
C17A—C4A—H4A108.1C7B—C6B—H6BB108.5
O1A—C5A—C6A120.38 (15)C6B—C7B—C12B109.67 (16)
O1A—C5A—C10A120.86 (16)C8B—C7B—C6B107.70 (14)
C10A—C5A—C6A118.72 (14)C8B—C7B—C11B110.52 (15)
C5A—C6A—H6AA108.7C8B—C7B—C12B108.84 (15)
C5A—C6A—H6AB108.7C11B—C7B—C6B110.43 (15)
C5A—C6A—C7A114.27 (14)C11B—C7B—C12B109.64 (15)
H6AA—C6A—H6AB107.6C7B—C8B—H8BA109.0
C7A—C6A—H6AA108.7C7B—C8B—H8BB109.0
C7A—C6A—H6AB108.7H8BA—C8B—H8BB107.8
C8A—C7A—C6A107.72 (13)C9B—C8B—C7B112.93 (14)
C8A—C7A—C12A109.13 (14)C9B—C8B—H8BA109.0
C11A—C7A—C6A109.63 (14)C9B—C8B—H8BB109.0
C11A—C7A—C8A111.51 (14)N1B—C9B—C8B115.97 (15)
C11A—C7A—C12A109.35 (14)C10B—C9B—N1B120.28 (16)
C12A—C7A—C6A109.46 (14)C10B—C9B—C8B123.67 (16)
C7A—C8A—H8AA108.9C5B—C10B—C4B119.68 (15)
C7A—C8A—H8AB108.9C9B—C10B—C4B121.19 (15)
H8AA—C8A—H8AB107.7C9B—C10B—C5B119.12 (16)
C9A—C8A—C7A113.21 (14)C7B—C11B—H11A109.5
C9A—C8A—H8AA108.9C7B—C11B—H11B109.5
C9A—C8A—H8AB108.9C7B—C11B—H11C109.5
N1A—C9A—C8A116.70 (14)H11A—C11B—H11B109.5
C10A—C9A—N1A119.66 (15)H11A—C11B—H11C109.5
C10A—C9A—C8A123.56 (15)H11B—C11B—H11C109.5
C5A—C10A—C4A118.62 (14)C7B—C12B—H12A109.5
C9A—C10A—C4A121.53 (15)C7B—C12B—H12B109.5
C9A—C10A—C5A119.83 (15)C7B—C12B—H12C109.5
C7A—C11A—H11D109.5H12A—C12B—H12B109.5
C7A—C11A—H11E109.5H12A—C12B—H12C109.5
C7A—C11A—H11F109.5H12B—C12B—H12C109.5
H11D—C11A—H11E109.5C2B—C13B—H13A109.5
H11D—C11A—H11F109.5C2B—C13B—H13B109.5
H11E—C11A—H11F109.5C2B—C13B—H13C109.5
C7A—C12A—H12D109.5H13A—C13B—H13B109.5
C7A—C12A—H12E109.5H13A—C13B—H13C109.5
C7A—C12A—H12F109.5H13B—C13B—H13C109.5
H12D—C12A—H12E109.5O2B—C14B—C3B126.73 (18)
H12D—C12A—H12F109.5O2B—C14B—O3B125.1 (2)
H12E—C12A—H12F109.5O2B—C14B—O3C117.4 (2)
C2A—C13A—H13D109.5O3B—C14B—C3B106.6 (2)
C2A—C13A—H13E109.5O3C—C14B—C3B114.9 (2)
C2A—C13A—H13F109.5C18B—C17B—C4B121.57 (15)
H13D—C13A—H13E109.5C22B—C17B—C4B120.71 (16)
H13D—C13A—H13F109.5C22B—C17B—C18B117.71 (17)
H13E—C13A—H13F109.5C17B—C18B—H18B119.3
O2A—C14A—O3A122.52 (16)C17B—C18B—C19B121.46 (16)
O2A—C14A—C3A127.20 (17)C19B—C18B—H18B119.3
O3A—C14A—C3A110.28 (14)C18B—C19B—H19B120.3
O3A—C15A—H15E110.3C20B—C19B—C18B119.46 (17)
O3A—C15A—H15F110.3C20B—C19B—H19B120.3
O3A—C15A—C16A107.13 (15)O4B—C20B—C19B124.77 (17)
H15E—C15A—H15F108.5O4B—C20B—C21B115.41 (15)
C16A—C15A—H15E110.3C19B—C20B—C21B119.81 (17)
C16A—C15A—H15F110.3C20B—C21B—H21B120.1
C15A—C16A—H16G109.5C22B—C21B—C20B119.77 (16)
C15A—C16A—H16H109.5C22B—C21B—H21B120.1
C15A—C16A—H16I109.5C17B—C22B—H22B119.1
H16G—C16A—H16H109.5C21B—C22B—C17B121.79 (17)
H16G—C16A—H16I109.5C21B—C22B—H22B119.1
H16H—C16A—H16I109.5O4B—C23B—H23A109.5
C18A—C17A—C4A119.95 (15)O4B—C23B—H23B109.5
C22A—C17A—C4A122.03 (15)O4B—C23B—H23C109.5
C22A—C17A—C18A117.99 (16)H23A—C23B—H23B109.5
C17A—C18A—H18A119.5H23A—C23B—H23C109.5
C19A—C18A—C17A121.04 (16)H23B—C23B—H23C109.5
C19A—C18A—H18A119.5C14B—O3B—C15B115.7 (4)
C18A—C19A—H19A120.0O3B—C15B—H15A110.0
C18A—C19A—C20A120.08 (17)O3B—C15B—H15B110.0
C20A—C19A—H19A120.0O3B—C15B—C16B108.4 (5)
O4A—C20A—C19A115.63 (16)H15A—C15B—H15B108.4
O4A—C20A—C21A124.56 (16)C16B—C15B—H15A110.0
C21A—C20A—C19A119.81 (16)C16B—C15B—H15B110.0
C20A—C21A—H21A120.4C15B—C16B—H16A109.5
C20A—C21A—C22A119.13 (16)C15B—C16B—H16B109.5
C22A—C21A—H21A120.4C15B—C16B—H16C109.5
C17A—C22A—C21A121.92 (17)H16A—C16B—H16B109.5
C17A—C22A—H22A119.0H16A—C16B—H16C109.5
C21A—C22A—H22A119.0H16B—C16B—H16C109.5
O4A—C23A—H23D109.5C14B—O3C—C15C114.0 (3)
O4A—C23A—H23E109.5O3C—C15C—H15C109.8
O4A—C23A—H23F109.5O3C—C15C—H15D109.8
H23D—C23A—H23E109.5H15C—C15C—H15D108.3
H23D—C23A—H23F109.5C16C—C15C—O3C109.2 (4)
H23E—C23A—H23F109.5C16C—C15C—H15C109.8
C20B—O4B—C23B117.05 (15)C16C—C15C—H15D109.8
C2B—N1B—H1B118.7 (15)C15C—C16C—H16D109.5
C9B—N1B—H1B117.1 (15)C15C—C16C—H16E109.5
C9B—N1B—C2B122.57 (15)C15C—C16C—H16F109.5
N1B—C2B—C13B112.90 (15)H16D—C16C—H16E109.5
C3B—C2B—N1B119.68 (16)H16D—C16C—H16F109.5
C3B—C2B—C13B127.41 (17)H16E—C16C—H16F109.5
C2B—C3B—C4B121.67 (15)
O1A—C5A—C6A—C7A153.92 (16)O2B—C14B—O3B—C15B9.3 (6)
O1A—C5A—C10A—C4A5.0 (2)O2B—C14B—O3C—C15C7.8 (5)
O1A—C5A—C10A—C9A176.67 (16)O4B—C20B—C21B—C22B179.01 (16)
O4A—C20A—C21A—C22A178.33 (16)N1B—C2B—C3B—C4B5.1 (3)
N1A—C2A—C3A—C4A6.9 (2)N1B—C2B—C3B—C14B177.98 (17)
N1A—C2A—C3A—C14A176.06 (15)N1B—C9B—C10B—C4B6.9 (3)
N1A—C9A—C10A—C4A8.8 (2)N1B—C9B—C10B—C5B172.28 (16)
N1A—C9A—C10A—C5A172.89 (15)C2B—N1B—C9B—C8B166.25 (16)
C2A—N1A—C9A—C8A166.11 (15)C2B—N1B—C9B—C10B10.6 (3)
C2A—N1A—C9A—C10A10.6 (2)C2B—C3B—C4B—C10B19.6 (2)
C2A—C3A—C4A—C10A22.8 (2)C2B—C3B—C4B—C17B104.42 (19)
C2A—C3A—C4A—C17A100.92 (19)C2B—C3B—C14B—O2B7.6 (3)
C2A—C3A—C14A—O2A5.7 (3)C2B—C3B—C14B—O3B158.7 (3)
C2A—C3A—C14A—O3A174.96 (15)C2B—C3B—C14B—O3C176.0 (3)
C3A—C4A—C10A—C5A157.86 (15)C3B—C4B—C10B—C5B158.71 (15)
C3A—C4A—C10A—C9A23.8 (2)C3B—C4B—C10B—C9B20.4 (2)
C3A—C4A—C17A—C18A60.5 (2)C3B—C4B—C17B—C18B48.7 (2)
C3A—C4A—C17A—C22A117.40 (18)C3B—C4B—C17B—C22B132.47 (17)
C4A—C3A—C14A—O2A177.13 (18)C3B—C14B—O3B—C15B175.9 (4)
C4A—C3A—C14A—O3A2.2 (2)C3B—C14B—O3C—C15C177.3 (3)
C4A—C17A—C18A—C19A176.55 (16)C4B—C3B—C14B—O2B169.4 (2)
C4A—C17A—C22A—C21A176.66 (16)C4B—C3B—C14B—O3B24.3 (3)
C5A—C6A—C7A—C8A51.96 (19)C4B—C3B—C14B—O3C1.0 (4)
C5A—C6A—C7A—C11A69.55 (18)C4B—C17B—C18B—C19B178.71 (16)
C5A—C6A—C7A—C12A170.51 (15)C4B—C17B—C22B—C21B178.92 (16)
C6A—C5A—C10A—C4A177.41 (15)C5B—C6B—C7B—C8B49.4 (2)
C6A—C5A—C10A—C9A0.9 (2)C5B—C6B—C7B—C11B71.33 (19)
C6A—C7A—C8A—C9A48.74 (18)C5B—C6B—C7B—C12B167.74 (15)
C7A—C8A—C9A—N1A160.18 (15)C6B—C5B—C10B—C4B174.81 (15)
C7A—C8A—C9A—C10A23.2 (2)C6B—C5B—C10B—C9B6.0 (2)
C8A—C9A—C10A—C4A174.68 (15)C6B—C7B—C8B—C9B50.18 (19)
C8A—C9A—C10A—C5A3.6 (3)C7B—C8B—C9B—N1B157.48 (16)
C9A—N1A—C2A—C3A11.6 (2)C7B—C8B—C9B—C10B25.8 (2)
C9A—N1A—C2A—C13A166.11 (16)C8B—C9B—C10B—C4B176.56 (16)
C10A—C4A—C17A—C18A62.3 (2)C8B—C9B—C10B—C5B4.3 (3)
C10A—C4A—C17A—C22A119.77 (17)C9B—N1B—C2B—C3B11.5 (3)
C10A—C5A—C6A—C7A28.5 (2)C9B—N1B—C2B—C13B167.51 (17)
C11A—C7A—C8A—C9A71.59 (18)C10B—C4B—C17B—C18B74.9 (2)
C12A—C7A—C8A—C9A167.50 (14)C10B—C4B—C17B—C22B103.88 (18)
C13A—C2A—C3A—C4A175.76 (16)C10B—C5B—C6B—C7B22.6 (2)
C13A—C2A—C3A—C14A1.3 (3)C11B—C7B—C8B—C9B70.53 (19)
C14A—O3A—C15A—C16A151.27 (16)C12B—C7B—C8B—C9B169.02 (16)
C14A—C3A—C4A—C10A160.11 (14)C13B—C2B—C3B—C4B176.03 (18)
C14A—C3A—C4A—C17A76.19 (19)C13B—C2B—C3B—C14B0.9 (3)
C15A—O3A—C14A—O2A4.7 (3)C14B—C3B—C4B—C10B163.53 (17)
C15A—O3A—C14A—C3A175.91 (15)C14B—C3B—C4B—C17B72.5 (2)
C17A—C4A—C10A—C5A78.52 (19)C14B—O3B—C15B—C16B91.8 (6)
C17A—C4A—C10A—C9A99.81 (19)C14B—O3C—C15C—C16C169.5 (5)
C17A—C18A—C19A—C20A0.2 (3)C17B—C4B—C10B—C5B76.8 (2)
C18A—C17A—C22A—C21A1.3 (3)C17B—C4B—C10B—C9B104.08 (19)
C18A—C19A—C20A—O4A178.51 (16)C17B—C18B—C19B—C20B0.0 (3)
C18A—C19A—C20A—C21A1.2 (3)C18B—C17B—C22B—C21B0.1 (3)
C19A—C20A—C21A—C22A1.4 (3)C18B—C19B—C20B—O4B179.16 (16)
C20A—C21A—C22A—C17A0.1 (3)C18B—C19B—C20B—C21B0.4 (3)
C22A—C17A—C18A—C19A1.5 (3)C19B—C20B—C21B—C22B0.6 (3)
C23A—O4A—C20A—C19A173.05 (16)C20B—C21B—C22B—C17B0.4 (3)
C23A—O4A—C20A—C21A7.2 (3)C22B—C17B—C18B—C19B0.1 (3)
O1B—C5B—C6B—C7B160.26 (16)C23B—O4B—C20B—C19B5.9 (3)
O1B—C5B—C10B—C4B8.1 (2)C23B—O4B—C20B—C21B173.67 (18)
O1B—C5B—C10B—C9B171.09 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O1B0.82 (2)2.02 (2)2.827 (2)167 (2)
N1B—H1B···O1Ai0.87 (2)1.95 (2)2.8167 (19)172 (2)
Symmetry code: (i) x, y1, z.
Ethyl 4-(3,4-dihydroxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (III) top
Crystal data top
C21H25NO5F(000) = 792
Mr = 371.42Dx = 1.113 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.2745 (3) ÅCell parameters from 9215 reflections
b = 22.1655 (7) Åθ = 2.5–28.3°
c = 11.3475 (4) ŵ = 0.08 mm1
β = 108.2014 (17)°T = 100 K
V = 2216.03 (13) Å3Plate, brown
Z = 40.64 × 0.13 × 0.06 mm
Data collection top
Bruker SMART BREEZE CCD
diffractometer
Rint = 0.046
Radiation source: 2 kW sealed X-ray tubeθmax = 28.4°, θmin = 2.5°
φ and ω scansh = 1212
40175 measured reflectionsk = 2929
5517 independent reflectionsl = 1515
4263 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0628P)2 + 0.7593P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
5517 reflectionsΔρmax = 0.41 e Å3
260 parametersΔρmin = 0.21 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Disordered hexanes molecules were identified in the final stage of refinement. The disorder of the hexanes was dealt with by application of the Olex2/smtbx_masks (Rees, et al., 2005), which allows for the mathematical compensation of the electron contribution of disordered solvent contained in the voids to the calculated diffraction intensities.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.16874 (11)0.16574 (4)0.51737 (9)0.0186 (2)
O20.97871 (12)0.34503 (5)0.68766 (9)0.0208 (2)
O40.45936 (11)0.14086 (5)0.41764 (10)0.0240 (2)
O50.49133 (12)0.12980 (5)0.65976 (10)0.0218 (2)
O30.87314 (12)0.41878 (4)0.55338 (9)0.0216 (2)
N10.78891 (13)0.29217 (5)0.26502 (10)0.0156 (2)
C51.08644 (15)0.18180 (6)0.41329 (12)0.0149 (3)
C80.89609 (15)0.21511 (6)0.16440 (12)0.0160 (3)
H8A0.9584200.2405360.1273730.019*
H8B0.7927070.2127500.1041280.019*
C40.93969 (14)0.25570 (6)0.50871 (11)0.0139 (3)
H4A1.0371340.2575510.5786280.017*
C61.10852 (15)0.15446 (6)0.29827 (12)0.0174 (3)
H6A1.1487560.1130460.3180850.021*
H6B1.1859310.1783020.2752540.021*
C170.82560 (15)0.21896 (6)0.55115 (12)0.0149 (3)
C180.69686 (15)0.19536 (6)0.46308 (12)0.0160 (3)
H180.6845310.2002090.3773010.019*
C220.84222 (16)0.21058 (6)0.67665 (12)0.0177 (3)
H220.9301640.2253970.7379450.021*
C200.60235 (15)0.15836 (6)0.62458 (13)0.0173 (3)
C90.88732 (14)0.24475 (6)0.28105 (12)0.0145 (3)
C20.79999 (15)0.33426 (6)0.35723 (12)0.0155 (3)
C190.58740 (15)0.16513 (6)0.49897 (12)0.0169 (3)
C30.88223 (15)0.31999 (6)0.47602 (12)0.0149 (3)
C130.71604 (17)0.39170 (7)0.30927 (13)0.0215 (3)
H13A0.7880560.4224850.3008870.032*
H13B0.6645220.4058400.3674960.032*
H13C0.6408110.3842300.2281430.032*
C100.97144 (14)0.22778 (6)0.39745 (12)0.0145 (3)
C140.91478 (15)0.36129 (6)0.58100 (12)0.0158 (3)
C121.00654 (17)0.13217 (7)0.07145 (13)0.0222 (3)
H12A0.9148600.1308020.0007860.033*
H12B1.0533570.0920770.0856030.033*
H12C1.0784370.1612010.0562430.033*
C70.96430 (15)0.15158 (6)0.18598 (12)0.0163 (3)
C210.73077 (16)0.18065 (7)0.71252 (12)0.0185 (3)
H210.7429400.1754750.7981930.022*
C110.85119 (17)0.10672 (7)0.20946 (14)0.0224 (3)
H11A0.8255710.1189270.2835070.034*
H11B0.8965730.0663560.2222250.034*
H11C0.7588980.1060990.1377160.034*
C150.90744 (19)0.46064 (7)0.65759 (14)0.0261 (3)
H15A1.0180400.4616760.7011110.031*
H15B0.8549280.4481880.7173730.031*
C160.8524 (2)0.52160 (7)0.60416 (16)0.0379 (4)
H16A0.8990730.5318410.5403030.057*
H16B0.8803690.5519640.6701890.057*
H16C0.7417200.5207180.5671490.057*
H10.741 (2)0.3036 (8)0.1889 (17)0.024 (4)*
H40.467 (2)0.1431 (10)0.343 (2)0.043 (6)*
H50.412 (3)0.1256 (10)0.597 (2)0.050 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0193 (5)0.0216 (5)0.0118 (5)0.0028 (4)0.0004 (4)0.0001 (4)
O20.0256 (5)0.0223 (5)0.0116 (5)0.0036 (4)0.0016 (4)0.0014 (4)
O40.0182 (5)0.0382 (6)0.0143 (5)0.0089 (4)0.0033 (4)0.0007 (5)
O50.0209 (5)0.0285 (6)0.0175 (5)0.0020 (4)0.0084 (4)0.0032 (4)
O30.0317 (6)0.0170 (5)0.0131 (5)0.0018 (4)0.0024 (4)0.0023 (4)
N10.0169 (5)0.0181 (6)0.0089 (5)0.0018 (4)0.0000 (4)0.0000 (4)
C50.0150 (6)0.0160 (6)0.0128 (6)0.0027 (5)0.0031 (5)0.0007 (5)
C80.0165 (6)0.0198 (7)0.0101 (6)0.0003 (5)0.0018 (5)0.0002 (5)
C40.0132 (6)0.0173 (6)0.0090 (6)0.0014 (5)0.0002 (5)0.0004 (5)
C60.0154 (6)0.0216 (7)0.0135 (6)0.0037 (5)0.0020 (5)0.0017 (5)
C170.0159 (6)0.0148 (6)0.0135 (6)0.0027 (5)0.0041 (5)0.0010 (5)
C180.0167 (6)0.0199 (7)0.0109 (6)0.0018 (5)0.0035 (5)0.0014 (5)
C220.0197 (6)0.0192 (7)0.0123 (6)0.0011 (5)0.0021 (5)0.0009 (5)
C200.0187 (6)0.0179 (7)0.0163 (7)0.0025 (5)0.0068 (5)0.0024 (5)
C90.0134 (6)0.0161 (6)0.0136 (6)0.0030 (5)0.0034 (5)0.0010 (5)
C20.0152 (6)0.0170 (7)0.0141 (6)0.0008 (5)0.0042 (5)0.0003 (5)
C190.0154 (6)0.0192 (7)0.0142 (6)0.0016 (5)0.0021 (5)0.0002 (5)
C30.0148 (6)0.0168 (7)0.0123 (6)0.0000 (5)0.0033 (5)0.0003 (5)
C130.0264 (7)0.0210 (7)0.0148 (7)0.0053 (6)0.0031 (6)0.0016 (5)
C100.0148 (6)0.0162 (6)0.0115 (6)0.0013 (5)0.0030 (5)0.0008 (5)
C140.0143 (6)0.0178 (7)0.0147 (6)0.0005 (5)0.0037 (5)0.0002 (5)
C120.0233 (7)0.0277 (8)0.0147 (6)0.0043 (6)0.0048 (6)0.0035 (6)
C70.0161 (6)0.0197 (7)0.0120 (6)0.0011 (5)0.0027 (5)0.0018 (5)
C210.0231 (7)0.0210 (7)0.0113 (6)0.0034 (5)0.0050 (5)0.0018 (5)
C110.0239 (7)0.0213 (7)0.0210 (7)0.0028 (6)0.0054 (6)0.0038 (6)
C150.0369 (9)0.0198 (7)0.0168 (7)0.0017 (6)0.0016 (6)0.0048 (6)
C160.0608 (12)0.0201 (8)0.0272 (8)0.0067 (8)0.0055 (8)0.0037 (7)
Geometric parameters (Å, º) top
O1—C51.2413 (16)C18—C191.3798 (19)
O2—C141.2240 (16)C22—H220.9500
O4—C191.3662 (16)C22—C211.392 (2)
O4—H40.87 (2)C20—C191.3964 (19)
O5—C201.3701 (17)C20—C211.3842 (19)
O5—H50.85 (2)C9—C101.3605 (18)
O3—C141.3400 (17)C2—C31.3625 (18)
O3—C151.4578 (17)C2—C131.5029 (19)
N1—C91.3666 (17)C3—C141.4573 (18)
N1—C21.3814 (17)C13—H13A0.9800
N1—H10.876 (18)C13—H13B0.9800
C5—C61.5099 (18)C13—H13C0.9800
C5—C101.4453 (19)C12—H12A0.9800
C8—H8A0.9900C12—H12B0.9800
C8—H8B0.9900C12—H12C0.9800
C8—C91.5026 (18)C12—C71.5316 (19)
C8—C71.5317 (19)C7—C111.528 (2)
C4—H4A1.0000C21—H210.9500
C4—C171.5275 (18)C11—H11A0.9800
C4—C31.5260 (19)C11—H11B0.9800
C4—C101.5153 (18)C11—H11C0.9800
C6—H6A0.9900C15—H15A0.9900
C6—H6B0.9900C15—H15B0.9900
C6—C71.5336 (18)C15—C161.504 (2)
C17—C181.3973 (18)C16—H16A0.9800
C17—C221.3961 (18)C16—H16B0.9800
C18—H180.9500C16—H16C0.9800
C19—O4—H4108.5 (14)C2—C3—C4120.15 (12)
C20—O5—H5109.9 (15)C2—C3—C14124.88 (12)
C14—O3—C15116.21 (11)C14—C3—C4114.86 (11)
C9—N1—C2122.01 (11)C2—C13—H13A109.5
C9—N1—H1117.7 (12)C2—C13—H13B109.5
C2—N1—H1116.6 (12)C2—C13—H13C109.5
O1—C5—C6119.89 (12)H13A—C13—H13B109.5
O1—C5—C10122.08 (12)H13A—C13—H13C109.5
C10—C5—C6118.01 (11)H13B—C13—H13C109.5
H8A—C8—H8B107.7C5—C10—C4120.82 (11)
C9—C8—H8A108.9C9—C10—C5119.53 (12)
C9—C8—H8B108.9C9—C10—C4119.62 (12)
C9—C8—C7113.23 (11)O2—C14—O3121.77 (12)
C7—C8—H8A108.9O2—C14—C3122.42 (13)
C7—C8—H8B108.9O3—C14—C3115.80 (11)
C17—C4—H4A108.4H12A—C12—H12B109.5
C3—C4—H4A108.4H12A—C12—H12C109.5
C3—C4—C17110.54 (11)H12B—C12—H12C109.5
C10—C4—H4A108.4C7—C12—H12A109.5
C10—C4—C17112.27 (11)C7—C12—H12B109.5
C10—C4—C3108.83 (11)C7—C12—H12C109.5
C5—C6—H6A108.6C8—C7—C6107.70 (11)
C5—C6—H6B108.6C12—C7—C8108.96 (11)
C5—C6—C7114.61 (11)C12—C7—C6109.20 (11)
H6A—C6—H6B107.6C11—C7—C8110.75 (11)
C7—C6—H6A108.6C11—C7—C6110.50 (11)
C7—C6—H6B108.6C11—C7—C12109.67 (12)
C18—C17—C4119.69 (11)C22—C21—H21119.7
C22—C17—C4121.73 (12)C20—C21—C22120.64 (13)
C22—C17—C18118.51 (12)C20—C21—H21119.7
C17—C18—H18119.5C7—C11—H11A109.5
C19—C18—C17120.91 (12)C7—C11—H11B109.5
C19—C18—H18119.5C7—C11—H11C109.5
C17—C22—H22119.8H11A—C11—H11B109.5
C21—C22—C17120.41 (12)H11A—C11—H11C109.5
C21—C22—H22119.8H11B—C11—H11C109.5
O5—C20—C19120.20 (12)O3—C15—H15A110.4
O5—C20—C21120.70 (12)O3—C15—H15B110.4
C21—C20—C19119.10 (13)O3—C15—C16106.51 (12)
N1—C9—C8115.90 (11)H15A—C15—H15B108.6
C10—C9—N1119.90 (12)C16—C15—H15A110.4
C10—C9—C8124.20 (12)C16—C15—H15B110.4
N1—C2—C13112.97 (11)C15—C16—H16A109.5
C3—C2—N1118.61 (12)C15—C16—H16B109.5
C3—C2—C13128.42 (13)C15—C16—H16C109.5
O4—C19—C18123.80 (12)H16A—C16—H16B109.5
O4—C19—C20115.81 (12)H16A—C16—H16C109.5
C18—C19—C20120.38 (12)H16B—C16—H16C109.5
O1—C5—C6—C7150.87 (13)C22—C17—C18—C190.8 (2)
O1—C5—C10—C44.0 (2)C9—N1—C2—C317.94 (19)
O1—C5—C10—C9178.22 (13)C9—N1—C2—C13161.87 (12)
O5—C20—C19—O41.13 (19)C9—C8—C7—C647.01 (15)
O5—C20—C19—C18178.15 (13)C9—C8—C7—C12165.35 (11)
O5—C20—C21—C22178.88 (13)C9—C8—C7—C1173.93 (14)
N1—C9—C10—C5173.59 (12)C2—N1—C9—C8160.56 (12)
N1—C9—C10—C48.57 (19)C2—N1—C9—C1018.4 (2)
N1—C2—C3—C49.26 (19)C2—C3—C14—O2173.96 (13)
N1—C2—C3—C14174.56 (12)C2—C3—C14—O37.4 (2)
C5—C6—C7—C853.26 (15)C19—C20—C21—C221.4 (2)
C5—C6—C7—C12171.44 (12)C3—C4—C17—C1879.11 (15)
C5—C6—C7—C1167.84 (15)C3—C4—C17—C2297.69 (14)
C8—C9—C10—C55.3 (2)C3—C4—C10—C5151.08 (12)
C8—C9—C10—C4172.52 (12)C3—C4—C10—C931.10 (16)
C4—C17—C18—C19176.06 (12)C13—C2—C3—C4170.96 (13)
C4—C17—C22—C21175.27 (12)C13—C2—C3—C145.2 (2)
C4—C3—C14—O22.40 (19)C10—C5—C6—C731.05 (17)
C4—C3—C14—O3176.26 (11)C10—C4—C17—C1842.63 (16)
C6—C5—C10—C4178.00 (12)C10—C4—C17—C22140.57 (13)
C6—C5—C10—C90.18 (19)C10—C4—C3—C231.57 (16)
C17—C4—C3—C292.17 (14)C10—C4—C3—C14151.88 (11)
C17—C4—C3—C1484.38 (13)C14—O3—C15—C16179.42 (14)
C17—C4—C10—C586.21 (14)C7—C8—C9—N1160.98 (11)
C17—C4—C10—C991.60 (15)C7—C8—C9—C1020.07 (19)
C17—C18—C19—O4179.79 (13)C21—C20—C19—O4178.62 (13)
C17—C18—C19—C201.0 (2)C21—C20—C19—C182.1 (2)
C17—C22—C21—C200.5 (2)C15—O3—C14—O20.38 (19)
C18—C17—C22—C211.6 (2)C15—O3—C14—C3179.05 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.876 (18)1.971 (19)2.8378 (15)169.8 (16)
O4—H4···O2i0.87 (2)1.82 (2)2.6894 (14)175 (2)
O5—H5···O1ii0.85 (2)2.33 (2)3.0293 (14)140 (2)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x1, y, z.
Calculated parameters (Å, °)related to the 1,4-DHP ring top
Compound1,4-DHP mean plane (C2/C3/C10/C9) r.m.s.dN to ring mean plane distanceC to ring mean plane distancePhenyl ring to 1,4-DHP mean planes normal-to-normal angleN1—C4—C17—C18 torsion angle
I0.0150.159 (3)0.341 (3)89.09 (7)173.28 (16)
IIA0.0050.110 (2)0.295 (3)92.52 (6)1.16 (18)
IIB0.0050.110 (3)0.253 (3)93.52 (6)13.41 (14)
III0.0010.181 (2)0.399 (2)90.59 (5)18.38 (15)
Parameters (Å, °) related to the envelope conformation on the cyclohexanone ring top
CompoundMean plane (C5/C6/C8–C10) r.m.s.dC7 to mean plane distanceC11—C7—C4—C17 torsion angleRing puckering parameters
Qθφ
I0.0250.636 (3)2.53 (18)0.458 (2)60.7 (3)117.2 (3)
IIA0.0150.644 (2)7.96 (14)0.4616 (18)56.1 (2)115.7 (3)
IIB0.0190.645 (3)13.85 (14)0.4638 (19)121.2 (2)303.0 (3)
III0.0280.6408 (19)0.8 (1)0.4623 (15)56.53 (19)111.1 (2)
 

Footnotes

Current address: Washington State University, Pullman WA, USA, scott.steiger@wsu.edu.

Acknowledgements

The authors thank the University of Montana for grant 325490. CL thanks all the faculty in the ACA Summer Course 2016, from whom CL has learned a lot in refining disordered and twinned structures. The authors also thank Eric Schultz for mass spectra, supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award No. P30GM140963.

Funding information

Funding for this research was provided by: University of Montana (grant No. 325490 to Nicholas R. Natale); National Institutes of Health, National Institute of General Medical Sciences (grant No. P30GM140963 to Nicholas R. Natale).

References

First citationAygün Cevher, H., Schaller, D., Gandini, M. A., Kaplan, O., Gambeta, E., Zhang, F. X., Çelebier, M., Tahir, M. N., Zamponi, G. W., Wolber, G. & Gündüz, M. G. (2019). Bioorg. Chem. 91, 103187.  Web of Science PubMed Google Scholar
First citationBruker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2016). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLangs, D. A., Strong, P. D. & Triggle, D. J. (1987). Acta Cryst. C43, 707–711.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, J. (2017). Z. Kristallogr. New Cryst. Struct. 232, 251–252.  Web of Science CSD CrossRef CAS Google Scholar
First citationLinden, A., Şafak, C. & Aydın, F. (2004). Acta Cryst. C60, o711–o713.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMartín, N., Quinteiro, M., Seoane, C., Soto, J., Mora, A., Suárez, M., Ochoa, E., Morales, A. & Bosque, J. (1995). J. Heterocycl. Chem. 32, 235–238.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationRees, B., Jenner, L. & Yusupov, M. (2005). Acta Cryst. D61, 1299–1301.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRose, U. (1990). Arch. Pharm. Pharm. Med. Chem. 323, 281–286.  CrossRef CAS Web of Science Google Scholar
First citationRose, U. & Draeger, M. (1992). J. Med. Chem. 35, 2238–2243.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationSchaller, D., Gündüz, M. G., Zhang, F. X., Zamponi, G. W. & Wolber, G. (2018). Eur. J. Med. Chem. 155, 1–12.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShahraki, O., Edraki, N., Khoshneviszadeh, M., Zargari, F., Ranjbar, S., Saso, L., Firuzi, O. & Miri, R. (2017). Drug. Des. Devel. Ther. 11, 407–418.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShahraki, O., Khoshneviszadeh, M., Dehghani, M., Mohabbati, M., Tavakkoli, M., Saso, L., Edraki, N. & Firuzi, O. (2020). Molecules, 25, 1839.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiger, S. A., Li, C., Campana, C. F. & Natale, N. R. (2016). Tetrahedron Lett. 57, 423–425.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSteiger, S. A., Li, C., Gates, C. & Natale, N. R. (2020). Acta Cryst. E76, 125–131.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSteiger, S. A., Li, C. & Natale, N. R. (2018). Acta Cryst. E74, 1417–1420.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSteiger, S. A., Monacelli, A. J., Li, C., Hunting, J. L. & Natale, N. R. (2014). Acta Cryst. C70, 790–795.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTrippier, P. C., Jansen Labby, K., Hawker, D., Mataka, J. & Silverman, R. (2013). J. Med. Chem. 56, 3121–3147.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYang, X. H., Zhang, P. H., Zhou, Y. H., Liu, C. G., Lin, X. Y. & Cui,J. F. (2011). Arkivoc, x, 327–337.  Google Scholar
First citationZamponi, G. (2016). Nat. Rev. Drug Discov. 15, 19–34  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds