research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of aqua­(3-meth­­oxy­cinnamato-κO)bis­­(1,10-phenanthroline-κ2N,N′)cobalt(II) nitrate

crossmark logo

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Frères Mentouri Constantine 1, 25017, Constantine, Algeria, and bLaboratoire Technologie des Matériaux Avancés, École Nationale Polytechnique de Constantine, Nouvelle Ville Universitaire Ali Mendjeli, 25000, Constantine, Algeria
*Correspondence e-mail: asmalehleh25@gmail.com

Edited by J. Reibenspies, Texas A & M University, USA (Received 13 September 2022; accepted 6 October 2022; online 11 October 2022)

The title compound, [Co(C10H9O3)(C12H8N2)2(H2O)]NO3 (I), crystallizes in the triclinic space group P[\overline{1}] with a monomeric [Co(3-meo-cin)(phen)2(H2O)]+ cation and a nitrate anion (3-meo-cin = 3-meth­oxy cinnamic acid) in the asymmetric unit. The CoII ion is coordinated by four N atoms from two 1,10-phenanthroline ligands and two O atoms, the first from a meth­oxy cinnamate ligand and the second from a coordinated water mol­ecule, forming a distorted octa­hedral geometry. Discrete entities of the cation and nitrate anion are formed by water–nitrate O—H⋯O and phen–nitrate C—H⋯O hydrogen bonds. The components are further assembled into chains along the c-axis direction. Layers are than formed by slipped ππ stacking inter­actions parallel to the bc plane. The inter­molecular inter­actions in the crystal structure were qu­anti­fied and analysed using Hirshfeld surface analysis.

1. Chemical context

Cinnamic acid (3-phenyl-2-propenoic acid), a derivative of phenyl alanine, comprises a relatively large family of organic isomers (Ferenc et al., 2012[Ferenc, W., Cristóvão, B., Sarzyński, J. & Sadowski, P. (2012). J. Therm. Anal. Calorim. 110, 739-748.]; Madhurambal et al., 2010[Madhurambal, G., Ravindran, B., Mariappan, M. & Mojumdar, S. C. (2010). J. Therm. Anal. Calorim. 100, 811-815.]). Cinnamic acid and its derivatives exhibit biological activities (Rychlicka et al., 2021[Rychlicka, M., Rot, A. & Gliszczyńska, A. (2021). Foods, 10, 1417-1420.]) including anti­bacterial (Sova, 2012[Sova, M. (2012). Mini Rev. Med. Chem. 12, 749-767.]), anti­fungal (Ruwizhi & Aderibigbe, 2020[Ruwizhi, N. & Aderibigbe, B. A. (2020). Int. J. Mol. Sci. 21, 5712.]) and anti­parasitic properties (Kanaani & Ginsburg, 1992[Kanaani, J. & Ginsburg, H. (1992). Antimicrob. Agents Chemother. 36, 1102-1108.]) as well as a variety of pharmacological properties (Adisakwattana et al., 2008[Adisakwattana, S., Moonsan, P. & Yibchok-anun, S. (2008). J. Agric. Food Chem. 56, 7838-7844.]) including hepatoprotective (Lee et al., 2002[Lee, E. J., Kim, S. R., Kim, J. & Kim, Y. C. (2002). Planta Med. 68, 407-411.]), anti­malarial (Wiesner et al., 2001[Wiesner, J., Mitsch, A., Wissner, P., Jomaa, H. & Schlitzer, M. (2001). Bioorg. Med. Chem. Lett. 11, 423-424.]), anti­oxidant (Natella et al., 1999[Natella, F., Nardini, M., Di Felice, M. & Scaccini, C. (1999). J. Agric. Food Chem. 47, 1453-1459.]), anti­tumoral (Ferenc et al., 2012[Ferenc, W., Cristóvão, B., Sarzyński, J. & Sadowski, P. (2012). J. Therm. Anal. Calorim. 110, 739-748.]), anti­hyperglycemic and anti­tyrosinase activities (Lee, 2002[Lee, H.-S. (2002). J. Agric. Food Chem. 50, 1400-1403.]). Cinnamic acid and related compounds have attracted particular attention over the last few decades, not only for their biological activities, but also for their carboxyl­ate group. The popularity of such aromatic carb­oxy­lic acids as building blocks for generating metal–organic architectures can be explained by their coordination versatility and ability to act as multiple linkers (Lehleh et al., 2015[Lehleh, A., Beghidja, A., Beghidja, C., Welter, R. & Kurmoo, M. (2015). C. R. Chim. 18, 530-539.]; Gu et al., 2020[Gu, J.-Z., Wan, S.-M., Kirillova, M. V. & Kirillov, A. M. (2020). Dalton Trans. 49, 7197-7209.]), high thermal stability, tuneable deprotonation of –COOH groups, remarkable physicochemical properties, as well as the ability to function as hydrogen-bond donors and acceptors, thus facilitating the formation of intricate hydrogen-bonded networks (Gu et al., 2020[Gu, J.-Z., Wan, S.-M., Kirillova, M. V. & Kirillov, A. M. (2020). Dalton Trans. 49, 7197-7209.]; Zhang et al., 2019[Zhang, Y., Yang, J., Zhao, D., Liu, Z., Li, D., Fan, L. & Hu, T. (2019). CrystEngComm, 21, 6130-6135.]; Zhou et al., 2019[Zhou, X., Guo, X., Liu, L., Shi, Z., Pang, Y. & Tai, X. (2019). Crystals, 9, 166.]). Furthermore, bipyridyl-like ligands such as 2,2′-bi­pyridine and 1,10-phenanthroline used as auxiliary ligands, are usually used in the formation of different complexes with a variety of transition metals, because of their versatile roles such as in analytical chemistry, in catalysis, in electrochemistry, in ring-opening metathesis polymerization and biochemistry (Lehleh et al., 2011[Lehleh, A., Beghidja, A., Beghidja, C., Mentré, O. & Welter, R. (2011). C. R. Chim. 14, 462-470.]). Additionally, the pyridine rings can not only inter­act with each other via ππ stacking inter­actions, but also act as hydrogen-bond donors and acceptors (Cao et al., 2014[Cao, X., Mu, B. & Huang, R. (2014). CrystEngComm, 16, 5093-5102.]; Hao et al., 2011[Hao, H.-J., Yin, X.-H., Lin, C.-W., Zhang, F., Luo, Z.-R. & Wu, Q.-L. (2011). J. Chem. Crystallogr. 41, 26-29.]; Lehleh et al., 2011[Lehleh, A., Beghidja, A., Beghidja, C., Mentré, O. & Welter, R. (2011). C. R. Chim. 14, 462-470.]).

[Scheme 1]

In this context, we report the synthesis, structural characterization and Hirshfeld surface analysis of the title compound [Co(C10H9O3)(C12H8N2)2(H2O)] NO3.

2. Structural commentary

The asymmetric unit of the title compound, illustrated in Fig. 1[link], consists of a CoII complex cation and one nitrate anion. The CoII ion is in a distorted octa­hedral geometry, coordinated by two 1,10-phenanthroline (phen) units through both N atoms in the usual bidentate manner, one water mol­ecule and one 3-meth­oxy cinnamate in a monodentate fashion. The Co—Nphen bond distances range from 2.1356 (16) to 2.1488 (17) Å, while the Co—Ocin and Co—Owater bond lengths are 2.0525 (13) and 2.1011 (17) Å, respectively. The axial bond angles around the CoII ions are in the range 166.30 (7)–173.94 (6)° (Table 1[link]). The large deviation of the axial bond angles from an ideal octa­hedral geometry (180°) clearly indicates that the coordination environment around the CoII ion is best described as distorted octa­hedral. The 3-meth­oxy cinnamate mol­ecule shows disorder over two positions with occupancies of 0.735 (6) and 0.265 (6).

Table 1
Selected geometric parameters (Å, °)

Co1—O1W 2.1011 (17) O3—C6_2 1.202 (19)
Co1—N1 2.1484 (18) O3—C10_2 1.56 (3)
Co1—N2 2.1488 (17) O1_1—C1_1 1.252 (5)
Co1—N3 2.1356 (16) O2_1—C1_1 1.229 (6)
Co1—N4 2.1416 (17) C1_1—C2_1 1.485 (6)
Co1—O1_1 2.0525 (13) O1_2—C1_2 1.344 (13)
Co1—O1_2 2.0525 (13) O2_2—C1_2 1.257 (14)
O3—C6_1 1.409 (6) C1_2—C2_2 1.511 (13)
O3—C10_1 1.378 (10) C2_2—C3_2 1.281 (13)
       
O1W—Co1—N1 166.30 (7) O1_1—Co1—O1W 89.41 (7)
O1W—Co1—N2 90.34 (7) O1_1—Co1—N1 85.52 (6)
O1W—Co1—N3 89.59 (7) O1_1—Co1—N2 91.21 (6)
O1W—Co1—N4 95.01 (7) O1_1—Co1—N3 169.27 (6)
N1—Co1—N2 77.08 (7) O1_1—Co1—N4 91.71 (6)
N3—Co1—N1 97.72 (7) O1_2—Co1—O1W 89.41 (7)
N3—Co1—N2 99.48 (6) O1_2—Co1—N1 85.52 (6)
N3—Co1—N4 77.74 (6) O1_2—Co1—N2 91.21 (6)
N4—Co1—N1 97.85 (7) O1_2—Co1—N3 169.27 (6)
N4—Co1—N2 173.94 (6) O1_2—Co1—N4 91.71 (6)
[Figure 1]
Figure 1
An ellipsoid plot of the title compound showing the atom-labelling scheme with ellipsoids drawn at the 50% probability level and H atoms shown as small spheres of arbitrary radii.

3. Supra­molecular features

The structure presents extensive hydrogen bonding with numerical details given in Table 2[link]. The coordinated water mol­ecule (O1W) forms hydrogen bonds with the non-coord­in­ating O atom of the carboxyl­ate group of the 3-meo cinnamate ligand via the H1W) atom, the other water H atom (H2W) being involved in the O1W—H2W⋯Onit hydrogen bond (nit = nitrate anion) linking the nitrate anion to the cationic complex mol­ecule (Fig. 2[link]). The complex moieties are inter­connected via moderate C—H⋯O hydrogen bonds between the 1,10-phenanthroline unit and the coordinating O atom of the 3-meo cinnamate ligand of a neighbouring complex on one side and between the 1,10-phenanthroline mol­ecules and the O atoms of the nitrate anions on the other side, generating supra­molecular hydrogen-bonded chains along the c-axis direction (Fig. 2[link]). The chains are linked through slipped ππ stacking inter­actions with inter­centroid distances ranging from 3.729 (2) to 3.891 (2) Å, the most significant being between the pyridyl rings containing phenanthroline atom N4 of each mol­ecule [Cg4⋯Cg4(1 − x, −y, 1 − z) = 3.7998 (18) Å], forming layers parallel to the bc plane (Fig. 3[link], Table 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O2_1 0.86 1.99 2.743 (4) 146
O1W—H1WA⋯O2_2 0.86 1.50 2.30 (2) 152
O1W—H1WB⋯O4i 0.86 2.55 3.093 (3) 123
O1W—H1WB⋯O5i 0.86 2.06 2.882 (3) 162
C13—H13⋯O6ii 0.93 2.34 3.123 (4) 141
C16—H16⋯O1_1iii 0.93 2.44 3.294 (6) 153
C16—H16⋯O1_2iii 0.93 2.48 3.32 (3) 151
C19—H19⋯O4iv 0.93 2.60 3.508 (5) 167
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+1, -y+1, -z]; (iii) [-x, -y+1, -z]; (iv) [x-1, y, z].

Table 3
π–π stacking inter­actions (Å)

Cg Ring CgCg Distance
Cg1 N1/C11–C14/C21 Cg1⋯Cg3i 3.741 (2)
Cg2 N2/C17–C20/C22 Cg2⋯Cg3ii 3.891 (2)
Cg3 C14–C17/C21/C22 Cg3⋯Cg3ii 3.729 (2)
Cg4 N4/C29–C32/C34 Cg4⋯Cg4iii 3.7998 (18)
Symmetry codes: (i) 1 − x, 1 − y, 2 − z; (ii) 2 − x, 1 − y, 2 − z; (iii) 1 − x, −y, 1 − z.
[Figure 2]
Figure 2
Crystal packing of the title compound shown in projection down the c axis illustrating chain formation along the c-axis direction by C—H⋯O hydrogen bonding (shown as dashed cyan lines).
[Figure 3]
Figure 3
Crystal packing of the title compound showing the layers parallel to the bc plane formed by the ππ stacking inter­actions between the pyridyl rings of the 1,10-phenanthroline units (blue and cyan). Hydrogen bonds are shown by dashed cyan lines.

4. (Hirshfeld surface analysis

To further characterize the inter­molecular inter­actions in the title compound, we carried out a Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) using Crystal Explorer 21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) and generated the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). The HS mapped over dnorm in the range 0.5087 to +1.3878 a.u. is illustrated in Fig. 4[link] using colours to indicate contacts that are shorter (red areas), equal to (white areas), or longer than (blue areas) the sum of the van der Waals radii (Ashfaq et al., 2021[Ashfaq, M., Tahir, M. N., Muhammad, S., Munawar, K. S., Ali, A., Bogdanov, G. & Alarfaji, S. S. (2021). ACS Omega, 6, 31211-31225.]). The red spots on the surface mapped over dnorm (Fig. 4[link]a) indicate the involvement of atoms in hydrogen-bonding inter­actions. The HS mapped over shape-index (Fig. 4[link]b) is used to check for the presence of inter­actions such as C—H⋯π and ππ stacking (Ashfaq et al., 2021[Ashfaq, M., Tahir, M. N., Muhammad, S., Munawar, K. S., Ali, A., Bogdanov, G. & Alarfaji, S. S. (2021). ACS Omega, 6, 31211-31225.]). The existence of adjacent red and blue triangular regions around the aromatic rings confirms the presence of ππ stacking inter­actions in the title compound (Fig. 4[link]b), and the curvedness plots (Fig. 4[link]c) show flat surface patches characteristic of planar stacking.

[Figure 4]
Figure 4
A view of the Hirshfeld surface mapped over (a) dnorm in the range −0.5087 to +1.3878 arbitrary units, (b) shape-index and (c) curvedness.

The two-dimensional fingerprint plots provide quantitative information about the non-covalent inter­actions and the crystal packing in terms of the percentage contribution of the inter­atomic contacts (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]; Ashfaq et al., 2021[Ashfaq, M., Tahir, M. N., Muhammad, S., Munawar, K. S., Ali, A., Bogdanov, G. & Alarfaji, S. S. (2021). ACS Omega, 6, 31211-31225.]). Fig. 5[link] shows the two-dimensional fingerprint plot for the overall inter­actions in the title compound with relative contributions to the Hirshfeld surface. The most important inter­atomic contact is H⋯H as it makes the highest contribution to the crystal packing (42.1%, Fig. 5[link]b). Other major contributors are C⋯H (27.7%, Fig. 5[link]c) and O⋯H (17.7%, Fig. 5[link]d) inter­actions. Smaller contributions are made by C⋯C (6.5%, Fig. 5[link]e) and C⋯O (3.8%, Fig. 5[link]f) inter­actions. Other contacts make a contribution of 2.3% in total and are not discussed in this work.

[Figure 5]
Figure 5
Two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O, (e) C⋯C and (f) C⋯O/O⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Database survey

A survey of the Cambridge Structural Database (CSD, version 5.43; update of June 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that crystal structures had been reported for complexes of 3-meth­oxy cinnamic acid derivatives and a number of metal ions, including copper (Drew et al., 1994[Drew, M. D. B., Mullins, A. P. & Rice, D. A. (1994). Polyhedron, 13, 1631-1637.]), cadmium (Zhang et al., 2013[Zhang, H.-M., Yang, J., He, Y.-C. & Ma, J.-F. (2013). Chem. Asian J. 8, 2787-2791.]), tin (Su et al., 2022[Su, H.-Q., Zhang, R.-F., Guo, Q., Wang, J., Li, Q.-L., Du, X.-M., Ru, J., Zhang, Q.-F. & Ma, C.-L. (2022). J. Mol. Struct. 1247, 131290.]), cerium, neodymium, europium, gadolinium (Khalfaoui et al., 2017[Khalfaoui, O., Beghidja, A., Long, J., Boussadia, A., Beghidja, C., Guari, Y. & Larionova, J. (2017). Dalton Trans. 46, 3943-3952.], 2021[Khalfaoui, O., Beghidja, A., Beghidja, C., Guari, Y., Larionova, J. & Long, J. (2021). Polyhedron, 207, 115366.]) and dysprosium (Khalfaoui et al., 2018[Khalfaoui, O., Beghidja, A., Long, J., Beghidja, C., Guari, Y. & Larionova, J. (2018). Inorganics, 6, 35.], 2017[Khalfaoui, O., Beghidja, A., Long, J., Boussadia, A., Beghidja, C., Guari, Y. & Larionova, J. (2017). Dalton Trans. 46, 3943-3952.]). Only one complex based on copper and 2,5-di­meth­oxy­cinnamic acid with 2,9-dimethyl-1,l0-phenanthroline has been reported (Battaglia et al., 1991[Battaglia, L. P., Corradi, A. B., Zoroddu, M. A., Manca, G., Basosi, R. & Solinas, C. (1991). J. Chem. Soc. Dalton Trans. pp. 2109-2112.]). However, no complexes containing only the cobalt ion and 3-meth­oxy cinnamic acid associated with 1,10-phenanthroline have been documented in the CSD.

6. Synthesis and crystallization

A mixture of Co(NO3)2·6H2O (0.240 g, 1 mmol), 3-meth­oxy cinnamic acid (0.178 g, 1 mmol), NaOH (0.04 g, 1 mmol) and 1,10-phen (0.180 g, 1 mmol) were dissolved in 10 mL of mixed solution (MeOH/H2O: 2/1) in a 20 mL Teflon-lined stainless steel reactor and heated to 393 K for 24 h. It was then allowed to cool to room temperature in a water bath. Green crystals suitable for X-ray analysis were obtained.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Hydrogen atoms of the water mol­ecule were localized in difference-Fourier maps and refined with O—H = 0.85 ±0.01 Å, and with Uiso(H) set to 1.5Ueq(O). The C-bound H atoms were placed in calculated positions with C—H = 0.93 or 0.96 Å and refined using a riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2–1.5Ueq(C)]. The 3-meth­oxy cinnamate mol­ecule shows disorder over two positions with final occupancies of 0.735 (6) and 0.265 (6). The disordered atoms were modelled as anisotropic using EXYZ and EADP constraints.

Table 4
Experimental details

Crystal data
Chemical formula [Co(C10H9O3)(C12H8N2)2(H2O)]NO3
Mr 676.53
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 8.3354 (1), 13.6529 (2), 13.8423 (2)
α, β, γ (°) 101.634 (1), 98.239 (1), 97.819 (1)
V3) 1504.73 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.63
Crystal size (mm) 0.2 × 0.15 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.710, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 19640, 7385, 5301
Rint 0.028
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.128, 0.99
No. of reflections 7385
No. of parameters 527
No. of restraints 205
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.28
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Aqua[3-(3-methoxyphenyl)prop-2-enoato-κO]bis(1,10-phenanthroline-κ2N,N')cobalt(II) nitrate top
Crystal data top
[Co(C10H9O3)(C12H8N2)2(H2O)]NO3Z = 2
Mr = 676.53F(000) = 698
Triclinic, P1Dx = 1.493 Mg m3
a = 8.3354 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.6529 (2) ÅCell parameters from 6690 reflections
c = 13.8423 (2) Åθ = 2.4–26.7°
α = 101.634 (1)°µ = 0.63 mm1
β = 98.239 (1)°T = 296 K
γ = 97.819 (1)°Block, green
V = 1504.73 (4) Å30.2 × 0.15 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
5301 reflections with I > 2σ(I)
φ and ω scansRint = 0.028
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.3°, θmin = 3.6°
Tmin = 0.710, Tmax = 0.746h = 1111
19640 measured reflectionsk = 1818
7385 independent reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.077P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
7385 reflectionsΔρmax = 0.36 e Å3
527 parametersΔρmin = 0.28 e Å3
205 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.65552 (3)0.31049 (2)0.71066 (2)0.03697 (11)
O31.2849 (2)0.03641 (16)1.14993 (16)0.0728 (5)
O1W0.7725 (2)0.30532 (13)0.58544 (12)0.0592 (4)
H1WA0.8354280.2608370.5839270.089*
H1WB0.7011990.2833370.5318870.089*
N10.5861 (2)0.34285 (13)0.85588 (13)0.0395 (4)
N20.7868 (2)0.46154 (12)0.77585 (13)0.0404 (4)
N30.4433 (2)0.34579 (13)0.62737 (14)0.0441 (4)
N40.5046 (2)0.16423 (12)0.65426 (13)0.0399 (4)
C110.4906 (3)0.28302 (19)0.8960 (2)0.0548 (6)
H110.4244690.2252510.8544610.066*
C120.4848 (4)0.3029 (2)0.9986 (2)0.0668 (8)
H120.4165590.2582391.0238170.080*
C130.5762 (4)0.3854 (2)1.0603 (2)0.0676 (8)
H130.5722650.3984361.1284040.081*
C140.6786 (3)0.45249 (18)1.02188 (17)0.0513 (6)
C150.7823 (4)0.5427 (2)1.0813 (2)0.0690 (8)
H150.7836740.5592461.1499950.083*
C160.8774 (4)0.6039 (2)1.0403 (2)0.0707 (9)
H160.9428800.6623271.0811300.085*
C170.8811 (3)0.58178 (16)0.9352 (2)0.0531 (6)
C180.9789 (3)0.64185 (18)0.8874 (3)0.0686 (8)
H181.0425580.7028930.9239610.082*
C190.9811 (3)0.6117 (2)0.7893 (3)0.0716 (8)
H191.0463660.6514270.7577230.086*
C200.8851 (3)0.52090 (18)0.7354 (2)0.0579 (6)
H200.8896070.5003650.6677300.070*
C210.6792 (2)0.42749 (15)0.91820 (15)0.0392 (5)
C220.7835 (2)0.49190 (14)0.87450 (16)0.0395 (5)
C230.4103 (3)0.43484 (18)0.6157 (2)0.0609 (7)
H230.4811350.4929090.6531550.073*
C240.2740 (4)0.4463 (2)0.5498 (2)0.0742 (9)
H240.2547630.5107580.5447390.089*
C250.1699 (3)0.3628 (2)0.4932 (2)0.0656 (7)
H250.0785290.3696870.4495150.079*
C260.2012 (3)0.26581 (17)0.50107 (17)0.0474 (5)
C270.1015 (3)0.1734 (2)0.44251 (18)0.0555 (6)
H270.0122850.1760440.3949540.067*
C280.1349 (3)0.08284 (19)0.45521 (18)0.0540 (6)
H280.0690410.0238180.4158120.065*
C290.2701 (3)0.07560 (16)0.52828 (16)0.0423 (5)
C300.3060 (3)0.01706 (16)0.54857 (19)0.0506 (6)
H300.2416100.0781510.5127480.061*
C310.4351 (3)0.01651 (16)0.62063 (19)0.0523 (6)
H310.4576700.0770920.6358240.063*
C320.5336 (3)0.07515 (15)0.67175 (17)0.0479 (5)
H320.6231430.0742360.7199280.058*
C330.3384 (2)0.26158 (15)0.57085 (16)0.0399 (5)
C340.3733 (2)0.16419 (15)0.58484 (15)0.0380 (4)
O40.7744 (3)0.2759 (2)0.3583 (2)0.1228 (10)
O50.5477 (3)0.2821 (2)0.40039 (18)0.1124 (9)
O60.5855 (4)0.3196 (2)0.26417 (18)0.1145 (9)
N50.6339 (3)0.29278 (15)0.33897 (16)0.0600 (5)
O1_10.84054 (18)0.24890 (11)0.77807 (11)0.0478 (4)0.735 (6)
O2_10.9654 (7)0.1792 (3)0.6607 (3)0.0608 (10)0.735 (6)
C1_10.9379 (13)0.1928 (9)0.7468 (6)0.0434 (12)0.735 (6)
C2_11.0126 (5)0.1398 (3)0.8211 (3)0.0390 (9)0.735 (6)
H2_10.9818350.1502430.8838210.047*0.735 (6)
C3_11.1205 (4)0.0787 (2)0.8031 (2)0.0407 (9)0.735 (6)
H3_11.1534820.0694900.7409600.049*0.735 (6)
C4_11.1908 (5)0.0247 (3)0.8757 (3)0.0398 (9)0.735 (6)
C5_11.2001 (8)0.0580 (4)0.9773 (4)0.0428 (11)0.735 (6)
H5_11.1634750.1181081.0013040.051*0.735 (6)
C6_11.2628 (19)0.0042 (8)1.0448 (5)0.0481 (15)0.735 (6)
C7_11.3155 (14)0.0869 (6)1.0095 (5)0.0598 (15)0.735 (6)
H7_11.3566930.1238601.0540460.072*0.735 (6)
C8_11.3060 (6)0.1216 (4)0.9082 (4)0.0587 (11)0.735 (6)
H8_11.3390900.1829630.8843230.070*0.735 (6)
C9_11.2473 (5)0.0659 (3)0.8403 (3)0.0489 (9)0.735 (6)
H9_11.2456260.0888220.7721450.059*0.735 (6)
C10_11.2348 (14)0.1263 (8)1.1877 (8)0.076 (2)0.735 (6)
H10A_11.3017320.1813601.1710570.114*0.735 (6)
H10B_11.2459140.1369161.2591950.114*0.735 (6)
H10C_11.1217720.1233511.1591190.114*0.735 (6)
O1_20.84054 (18)0.24890 (11)0.77807 (11)0.0478 (4)0.265 (6)
O2_20.966 (2)0.2091 (11)0.6365 (10)0.078 (3)0.265 (6)
C1_20.944 (4)0.205 (2)0.7236 (14)0.054 (5)0.265 (6)
C2_21.0527 (12)0.1394 (7)0.7673 (8)0.052 (3)0.265 (6)
H2_21.1272080.1125050.7299460.062*0.265 (6)
C3_21.0476 (15)0.1187 (10)0.8532 (8)0.056 (3)0.265 (6)
H3_20.9715900.1475230.8878060.067*0.265 (6)
C4_21.1423 (15)0.0572 (9)0.9042 (9)0.051 (3)0.265 (6)
C5_21.170 (2)0.0793 (12)1.0051 (9)0.046 (3)0.265 (6)
H5_21.1259830.1323191.0389050.055*0.265 (6)
C6_21.263 (5)0.026 (2)1.0604 (14)0.056 (5)0.265 (6)
C7_21.317 (4)0.0586 (17)1.0098 (14)0.070 (6)0.265 (6)
H7_21.3723930.0982311.0458140.084*0.265 (6)
C8_21.289 (2)0.0841 (11)0.9059 (13)0.073 (4)0.265 (6)
H8_21.3248890.1405070.8714790.088*0.265 (6)
C9_21.2062 (15)0.0227 (11)0.8547 (8)0.052 (3)0.265 (6)
H9_21.1934660.0359160.7852040.062*0.265 (6)
C10_21.249 (3)0.136 (3)1.214 (2)0.086 (9)0.265 (6)
H10A_21.2840870.1921761.1848540.130*0.265 (6)
H10B_21.3078980.1477901.2809350.130*0.265 (6)
H10C_21.1332170.1304581.2144370.130*0.265 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.04017 (18)0.03443 (16)0.03103 (17)0.00215 (11)0.00248 (12)0.00417 (11)
O30.0776 (13)0.0878 (14)0.0628 (13)0.0218 (11)0.0124 (10)0.0340 (11)
O1W0.0683 (11)0.0677 (11)0.0377 (9)0.0075 (9)0.0080 (8)0.0066 (8)
N10.0388 (9)0.0400 (9)0.0390 (10)0.0053 (7)0.0055 (8)0.0092 (8)
N20.0434 (10)0.0363 (9)0.0377 (10)0.0007 (7)0.0015 (8)0.0077 (7)
N30.0465 (10)0.0401 (9)0.0403 (10)0.0037 (8)0.0035 (8)0.0068 (8)
N40.0428 (9)0.0359 (9)0.0367 (10)0.0026 (7)0.0006 (8)0.0052 (7)
C110.0518 (14)0.0562 (14)0.0625 (16)0.0088 (11)0.0172 (12)0.0230 (12)
C120.0686 (17)0.0821 (19)0.072 (2)0.0291 (15)0.0356 (16)0.0423 (17)
C130.086 (2)0.094 (2)0.0412 (14)0.0505 (18)0.0217 (14)0.0274 (15)
C140.0595 (14)0.0637 (14)0.0337 (12)0.0328 (12)0.0026 (11)0.0065 (11)
C150.088 (2)0.0739 (18)0.0364 (14)0.0410 (16)0.0112 (14)0.0089 (13)
C160.0776 (19)0.0534 (15)0.0586 (18)0.0238 (14)0.0264 (15)0.0208 (13)
C170.0455 (13)0.0368 (11)0.0630 (16)0.0093 (9)0.0126 (11)0.0069 (10)
C180.0519 (15)0.0341 (12)0.103 (3)0.0050 (10)0.0111 (15)0.0021 (14)
C190.0602 (16)0.0489 (15)0.102 (3)0.0084 (12)0.0070 (16)0.0266 (16)
C200.0619 (15)0.0507 (13)0.0598 (16)0.0041 (11)0.0105 (13)0.0187 (12)
C210.0412 (11)0.0419 (11)0.0328 (11)0.0153 (9)0.0005 (9)0.0041 (9)
C220.0379 (11)0.0328 (10)0.0407 (12)0.0075 (8)0.0055 (9)0.0006 (8)
C230.0665 (16)0.0387 (12)0.0687 (18)0.0071 (11)0.0112 (13)0.0095 (11)
C240.0768 (19)0.0530 (15)0.088 (2)0.0171 (14)0.0153 (16)0.0214 (15)
C250.0567 (15)0.0666 (16)0.0705 (18)0.0125 (13)0.0138 (13)0.0245 (14)
C260.0411 (12)0.0569 (13)0.0409 (13)0.0045 (10)0.0007 (10)0.0104 (10)
C270.0436 (13)0.0727 (16)0.0409 (13)0.0014 (11)0.0075 (10)0.0093 (12)
C280.0444 (13)0.0595 (14)0.0432 (14)0.0092 (10)0.0008 (10)0.0043 (11)
C290.0393 (11)0.0441 (11)0.0349 (11)0.0053 (9)0.0077 (9)0.0036 (9)
C300.0529 (14)0.0351 (11)0.0568 (15)0.0061 (9)0.0169 (12)0.0021 (10)
C310.0589 (15)0.0341 (11)0.0625 (16)0.0037 (10)0.0137 (12)0.0088 (10)
C320.0534 (13)0.0405 (11)0.0479 (14)0.0053 (10)0.0029 (11)0.0114 (10)
C330.0399 (11)0.0413 (11)0.0346 (11)0.0022 (9)0.0024 (9)0.0055 (9)
C340.0366 (10)0.0393 (10)0.0341 (11)0.0001 (8)0.0050 (8)0.0043 (8)
O40.0810 (17)0.161 (3)0.128 (2)0.0368 (17)0.0016 (16)0.037 (2)
O50.1084 (19)0.156 (3)0.0656 (15)0.0122 (17)0.0345 (15)0.0190 (16)
O60.165 (2)0.1119 (19)0.0640 (15)0.0105 (17)0.0126 (15)0.0454 (14)
N50.0821 (16)0.0535 (12)0.0391 (12)0.0011 (11)0.0024 (11)0.0121 (9)
O1_10.0471 (8)0.0486 (8)0.0418 (9)0.0106 (7)0.0074 (7)0.0054 (7)
O2_10.0756 (19)0.064 (2)0.049 (2)0.0326 (18)0.0104 (18)0.0135 (16)
C1_10.041 (2)0.039 (3)0.041 (3)0.0009 (16)0.008 (2)0.004 (2)
C2_10.042 (2)0.0394 (17)0.033 (2)0.0064 (13)0.0040 (17)0.0039 (16)
C3_10.0410 (16)0.0412 (16)0.0366 (17)0.0061 (12)0.0021 (13)0.0051 (13)
C4_10.036 (2)0.037 (2)0.045 (2)0.0068 (17)0.0044 (17)0.0073 (19)
C5_10.040 (2)0.038 (2)0.048 (3)0.0077 (16)0.003 (2)0.006 (2)
C6_10.048 (3)0.050 (4)0.048 (2)0.004 (3)0.004 (2)0.020 (2)
C7_10.061 (3)0.060 (4)0.072 (3)0.023 (3)0.016 (2)0.035 (2)
C8_10.058 (2)0.045 (3)0.079 (3)0.020 (2)0.012 (2)0.020 (2)
C9_10.046 (2)0.044 (2)0.057 (2)0.0150 (15)0.0096 (17)0.0080 (18)
C10_10.093 (6)0.080 (4)0.047 (4)0.002 (3)0.009 (3)0.011 (3)
O1_20.0471 (8)0.0486 (8)0.0418 (9)0.0106 (7)0.0074 (7)0.0054 (7)
O2_20.084 (6)0.096 (9)0.076 (7)0.051 (6)0.033 (6)0.030 (6)
C1_20.053 (10)0.037 (9)0.052 (10)0.013 (8)0.028 (7)0.010 (8)
C2_20.047 (5)0.053 (5)0.045 (6)0.009 (4)0.004 (5)0.007 (4)
C3_20.047 (6)0.061 (7)0.050 (7)0.008 (5)0.006 (5)0.000 (5)
C4_20.048 (6)0.046 (6)0.054 (6)0.011 (4)0.007 (5)0.000 (4)
C5_20.053 (8)0.038 (7)0.042 (6)0.005 (5)0.001 (6)0.002 (5)
C6_20.035 (8)0.061 (12)0.076 (9)0.009 (9)0.008 (8)0.023 (7)
C7_20.067 (9)0.065 (12)0.092 (8)0.032 (10)0.002 (7)0.047 (8)
C8_20.076 (8)0.048 (8)0.106 (8)0.034 (6)0.025 (7)0.018 (8)
C9_20.055 (7)0.059 (9)0.047 (6)0.023 (7)0.016 (5)0.011 (6)
C10_20.046 (9)0.117 (16)0.081 (19)0.026 (9)0.001 (9)0.013 (11)
Geometric parameters (Å, º) top
Co1—O1W2.1011 (17)C28—C291.430 (3)
Co1—N12.1484 (18)C29—C301.411 (3)
Co1—N22.1488 (17)C29—C341.399 (3)
Co1—N32.1356 (16)C30—H300.9300
Co1—N42.1416 (17)C30—C311.356 (3)
Co1—O1_12.0525 (13)C31—H310.9300
Co1—O1_22.0525 (13)C31—C321.392 (3)
O3—C6_11.409 (6)C32—H320.9300
O3—C10_11.378 (10)C33—C341.443 (3)
O3—C6_21.202 (19)O4—N51.227 (3)
O3—C10_21.56 (3)O5—N51.207 (3)
O1W—H1WA0.8536O6—N51.201 (3)
O1W—H1WB0.8535O1_1—C1_11.252 (5)
N1—C111.320 (3)O2_1—C1_11.229 (6)
N1—C211.358 (3)C1_1—C2_11.485 (6)
N2—C201.333 (3)C2_1—H2_10.9300
N2—C221.350 (3)C2_1—C3_11.324 (4)
N3—C231.318 (3)C3_1—H3_10.9300
N3—C331.366 (3)C3_1—C4_11.465 (4)
N4—C321.334 (2)C4_1—C5_11.374 (6)
N4—C341.349 (2)C4_1—C9_11.404 (5)
C11—H110.9300C5_1—H5_10.9300
C11—C121.400 (4)C5_1—C6_11.389 (6)
C12—H120.9300C6_1—C7_11.395 (6)
C12—C131.330 (4)C7_1—H7_10.9300
C13—H130.9300C7_1—C8_11.374 (6)
C13—C141.401 (4)C8_1—H8_10.9300
C14—C151.427 (4)C8_1—C9_11.398 (5)
C14—C211.407 (3)C9_1—H9_10.9300
C15—H150.9300C10_1—H10A_10.9600
C15—C161.338 (4)C10_1—H10B_10.9600
C16—H160.9300C10_1—H10C_10.9600
C16—C171.430 (4)O1_2—C1_21.344 (13)
C17—C181.402 (4)O2_2—C1_21.257 (14)
C17—C221.411 (3)C1_2—C2_21.511 (13)
C18—H180.9300C2_2—H2_20.9300
C18—C191.341 (4)C2_2—C3_21.281 (13)
C19—H190.9300C3_2—H3_20.9300
C19—C201.385 (4)C3_2—C4_21.445 (12)
C20—H200.9300C4_2—C5_21.346 (13)
C21—C221.433 (3)C4_2—C9_21.379 (12)
C23—H230.9300C5_2—H5_20.9300
C23—C241.399 (3)C5_2—C6_21.390 (14)
C24—H240.9300C6_2—C7_21.386 (15)
C24—C251.357 (4)C7_2—H7_20.9300
C25—H250.9300C7_2—C8_21.387 (15)
C25—C261.406 (3)C8_2—H8_20.9300
C26—C271.432 (3)C8_2—C9_21.393 (13)
C26—C331.403 (3)C9_2—H9_20.9300
C27—H270.9300C10_2—H10A_20.9600
C27—C281.343 (3)C10_2—H10B_20.9600
C28—H280.9300C10_2—H10C_20.9600
O1W—Co1—N1166.30 (7)C29—C28—H28119.4
O1W—Co1—N290.34 (7)C30—C29—C28123.7 (2)
O1W—Co1—N389.59 (7)C34—C29—C28119.5 (2)
O1W—Co1—N495.01 (7)C34—C29—C30116.8 (2)
N1—Co1—N277.08 (7)C29—C30—H30120.2
N3—Co1—N197.72 (7)C31—C30—C29119.6 (2)
N3—Co1—N299.48 (6)C31—C30—H30120.2
N3—Co1—N477.74 (6)C30—C31—H31120.1
N4—Co1—N197.85 (7)C30—C31—C32119.7 (2)
N4—Co1—N2173.94 (6)C32—C31—H31120.1
O1_1—Co1—O1W89.41 (7)N4—C32—C31122.5 (2)
O1_1—Co1—N185.52 (6)N4—C32—H32118.7
O1_1—Co1—N291.21 (6)C31—C32—H32118.7
O1_1—Co1—N3169.27 (6)N3—C33—C26123.34 (18)
O1_1—Co1—N491.71 (6)N3—C33—C34117.24 (17)
O1_2—Co1—O1W89.41 (7)C26—C33—C34119.42 (19)
O1_2—Co1—N185.52 (6)N4—C34—C29123.39 (18)
O1_2—Co1—N291.21 (6)N4—C34—C33117.16 (17)
O1_2—Co1—N3169.27 (6)C29—C34—C33119.44 (18)
O1_2—Co1—N491.71 (6)O5—N5—O4115.9 (3)
C10_1—O3—C6_1117.1 (5)O6—N5—O4122.1 (3)
C6_2—O3—C10_2117.8 (15)O6—N5—O5121.9 (3)
Co1—O1W—H1WA109.4C1_1—O1_1—Co1134.6 (4)
Co1—O1W—H1WB109.6O1_1—C1_1—C2_1114.6 (4)
H1WA—O1W—H1WB104.3O2_1—C1_1—O1_1123.1 (4)
C11—N1—Co1128.29 (17)O2_1—C1_1—C2_1122.2 (4)
C11—N1—C21117.3 (2)C1_1—C2_1—H2_1118.1
C21—N1—Co1113.07 (13)C3_1—C2_1—C1_1123.8 (4)
C20—N2—Co1128.43 (17)C3_1—C2_1—H2_1118.1
C20—N2—C22117.6 (2)C2_1—C3_1—H3_1118.2
C22—N2—Co1113.33 (13)C2_1—C3_1—C4_1123.6 (4)
C23—N3—Co1129.26 (16)C4_1—C3_1—H3_1118.2
C23—N3—C33117.30 (18)C5_1—C4_1—C3_1122.5 (4)
C33—N3—Co1113.02 (12)C5_1—C4_1—C9_1118.6 (4)
C32—N4—Co1128.27 (14)C9_1—C4_1—C3_1118.8 (4)
C32—N4—C34117.93 (18)C4_1—C5_1—H5_1119.1
C34—N4—Co1113.42 (12)C4_1—C5_1—C6_1121.7 (4)
N1—C11—H11118.6C6_1—C5_1—H5_1119.1
N1—C11—C12122.7 (3)C5_1—C6_1—O3124.9 (5)
C12—C11—H11118.6C5_1—C6_1—C7_1119.6 (5)
C11—C12—H12119.8C7_1—C6_1—O3115.4 (5)
C13—C12—C11120.4 (3)C6_1—C7_1—H7_1120.3
C13—C12—H12119.8C8_1—C7_1—C6_1119.4 (5)
C12—C13—H13120.2C8_1—C7_1—H7_1120.3
C12—C13—C14119.6 (2)C7_1—C8_1—H8_1119.5
C14—C13—H13120.2C7_1—C8_1—C9_1121.0 (4)
C13—C14—C15124.1 (2)C9_1—C8_1—H8_1119.5
C13—C14—C21117.1 (2)C4_1—C9_1—H9_1120.2
C21—C14—C15118.8 (3)C8_1—C9_1—C4_1119.6 (4)
C14—C15—H15119.3C8_1—C9_1—H9_1120.2
C16—C15—C14121.4 (3)O3—C10_1—H10A_1109.5
C16—C15—H15119.3O3—C10_1—H10B_1109.5
C15—C16—H16119.2O3—C10_1—H10C_1109.5
C15—C16—C17121.7 (2)H10A_1—C10_1—H10B_1109.5
C17—C16—H16119.2H10A_1—C10_1—H10C_1109.5
C18—C17—C16124.7 (3)H10B_1—C10_1—H10C_1109.5
C18—C17—C22116.8 (2)C1_2—O1_2—Co1120.1 (7)
C22—C17—C16118.5 (3)O1_2—C1_2—C2_2119.5 (11)
C17—C18—H18119.8O2_2—C1_2—O1_2129.7 (11)
C19—C18—C17120.3 (2)O2_2—C1_2—C2_2110.8 (11)
C19—C18—H18119.8C1_2—C2_2—H2_2118.4
C18—C19—H19120.3C3_2—C2_2—C1_2123.3 (11)
C18—C19—C20119.4 (3)C3_2—C2_2—H2_2118.4
C20—C19—H19120.3C2_2—C3_2—H3_2115.2
N2—C20—C19123.2 (3)C2_2—C3_2—C4_2129.6 (11)
N2—C20—H20118.4C4_2—C3_2—H3_2115.2
C19—C20—H20118.4C5_2—C4_2—C3_2118.3 (11)
N1—C21—C14123.0 (2)C5_2—C4_2—C9_2118.4 (10)
N1—C21—C22117.13 (18)C9_2—C4_2—C3_2123.3 (11)
C14—C21—C22119.9 (2)C4_2—C5_2—H5_2118.9
N2—C22—C17122.7 (2)C4_2—C5_2—C6_2122.2 (12)
N2—C22—C21117.57 (18)C6_2—C5_2—H5_2118.9
C17—C22—C21119.7 (2)O3—C6_2—C5_2126.2 (16)
N3—C23—H23118.4O3—C6_2—C7_2114.4 (15)
N3—C23—C24123.2 (2)C7_2—C6_2—C5_2118.6 (15)
C24—C23—H23118.4C6_2—C7_2—H7_2119.8
C23—C24—H24120.2C6_2—C7_2—C8_2120.4 (13)
C25—C24—C23119.6 (2)C8_2—C7_2—H7_2119.8
C25—C24—H24120.2C7_2—C8_2—H8_2121.0
C24—C25—H25120.2C7_2—C8_2—C9_2118.1 (11)
C24—C25—C26119.5 (2)C9_2—C8_2—H8_2121.0
C26—C25—H25120.2C4_2—C9_2—C8_2121.8 (11)
C25—C26—C27123.7 (2)C4_2—C9_2—H9_2119.1
C33—C26—C25116.9 (2)C8_2—C9_2—H9_2119.1
C33—C26—C27119.4 (2)O3—C10_2—H10A_2109.5
C26—C27—H27119.5O3—C10_2—H10B_2109.5
C28—C27—C26121.0 (2)O3—C10_2—H10C_2109.5
C28—C27—H27119.5H10A_2—C10_2—H10B_2109.5
C27—C28—H28119.4H10A_2—C10_2—H10C_2109.5
C27—C28—C29121.2 (2)H10B_2—C10_2—H10C_2109.5
Co1—N1—C11—C12164.56 (16)C24—C25—C26—C332.0 (4)
Co1—N1—C21—C14167.13 (14)C25—C26—C27—C28178.2 (3)
Co1—N1—C21—C2211.8 (2)C25—C26—C33—N32.4 (3)
Co1—N2—C20—C19170.90 (18)C25—C26—C33—C34177.8 (2)
Co1—N2—C22—C17170.42 (14)C26—C27—C28—C290.6 (4)
Co1—N2—C22—C217.8 (2)C26—C33—C34—N4178.66 (19)
Co1—N3—C23—C24172.6 (2)C26—C33—C34—C290.3 (3)
Co1—N3—C33—C26172.22 (17)C27—C26—C33—N3177.7 (2)
Co1—N3—C33—C347.6 (2)C27—C26—C33—C342.1 (3)
Co1—N4—C32—C31171.81 (17)C27—C28—C29—C30176.6 (2)
Co1—N4—C34—C29171.32 (16)C27—C28—C29—C342.5 (4)
Co1—N4—C34—C339.8 (2)C28—C29—C30—C31178.7 (2)
Co1—O1_1—C1_1—O2_117.0 (18)C28—C29—C34—N4179.1 (2)
Co1—O1_1—C1_1—C2_1160.3 (4)C28—C29—C34—C332.0 (3)
Co1—O1_2—C1_2—O2_213 (5)C29—C30—C31—C321.9 (4)
Co1—O1_2—C1_2—C2_2165.8 (18)C30—C29—C34—N41.7 (3)
O3—C6_1—C7_1—C8_1176.9 (10)C30—C29—C34—C33177.16 (19)
O3—C6_2—C7_2—C8_2175 (3)C30—C31—C32—N41.4 (4)
N1—C11—C12—C130.7 (4)C32—N4—C34—C292.2 (3)
N1—C21—C22—N22.8 (2)C32—N4—C34—C33176.65 (19)
N1—C21—C22—C17178.98 (15)C33—N3—C23—C240.6 (4)
N3—C23—C24—C250.9 (5)C33—C26—C27—C281.7 (4)
N3—C33—C34—N41.5 (3)C34—N4—C32—C310.6 (3)
N3—C33—C34—C29179.61 (19)C34—C29—C30—C310.4 (3)
C11—N1—C21—C140.7 (3)O1_1—C1_1—C2_1—C3_1178.8 (7)
C11—N1—C21—C22179.60 (17)O2_1—C1_1—C2_1—C3_13.8 (15)
C11—C12—C13—C140.1 (4)C1_1—C2_1—C3_1—C4_1178.4 (7)
C12—C13—C14—C15179.6 (2)C2_1—C3_1—C4_1—C5_124.1 (6)
C12—C13—C14—C210.5 (3)C2_1—C3_1—C4_1—C9_1154.3 (4)
C13—C14—C15—C16180.0 (2)C3_1—C4_1—C5_1—C6_1178.1 (9)
C13—C14—C21—N10.1 (3)C3_1—C4_1—C9_1—C8_1176.3 (4)
C13—C14—C21—C22178.81 (18)C4_1—C5_1—C6_1—O3176.2 (10)
C14—C15—C16—C170.5 (4)C4_1—C5_1—C6_1—C7_11.1 (18)
C14—C21—C22—N2176.21 (16)C5_1—C4_1—C9_1—C8_12.1 (7)
C14—C21—C22—C172.0 (3)C5_1—C6_1—C7_1—C8_11 (2)
C15—C14—C21—N1179.32 (17)C6_1—C7_1—C8_1—C9_11.2 (15)
C15—C14—C21—C220.4 (3)C7_1—C8_1—C9_1—C4_12.6 (9)
C15—C16—C17—C18179.3 (2)C9_1—C4_1—C5_1—C6_10.3 (11)
C15—C16—C17—C221.2 (3)C10_1—O3—C6_1—C5_12.4 (18)
C16—C17—C18—C19176.1 (2)C10_1—O3—C6_1—C7_1179.8 (11)
C16—C17—C22—N2175.75 (18)O1_2—C1_2—C2_2—C3_23 (4)
C16—C17—C22—C212.4 (3)O2_2—C1_2—C2_2—C3_2176.3 (19)
C17—C18—C19—C200.3 (4)C1_2—C2_2—C3_2—C4_2180 (2)
C18—C17—C22—N22.5 (3)C2_2—C3_2—C4_2—C5_2151.7 (16)
C18—C17—C22—C21179.31 (18)C2_2—C3_2—C4_2—C9_228 (2)
C18—C19—C20—N21.3 (4)C3_2—C4_2—C5_2—C6_2179 (3)
C20—N2—C22—C171.1 (3)C3_2—C4_2—C9_2—C8_2176.4 (13)
C20—N2—C22—C21179.30 (18)C4_2—C5_2—C6_2—O3175 (3)
C21—N1—C11—C121.1 (3)C4_2—C5_2—C6_2—C7_25 (5)
C21—C14—C15—C160.9 (3)C5_2—C4_2—C9_2—C8_24 (2)
C22—N2—C20—C190.9 (3)C5_2—C6_2—C7_2—C8_25 (6)
C22—C17—C18—C192.1 (3)C6_2—C7_2—C8_2—C9_20 (4)
C23—N3—C33—C261.1 (3)C7_2—C8_2—C9_2—C4_25 (3)
C23—N3—C33—C34179.1 (2)C9_2—C4_2—C5_2—C6_21 (3)
C23—C24—C25—C260.5 (5)C10_2—O3—C6_2—C5_218 (6)
C24—C25—C26—C27178.1 (3)C10_2—O3—C6_2—C7_2172 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2_10.861.992.743 (4)146
O1W—H1WA···O2_20.861.502.30 (2)152
O1W—H1WB···O4i0.862.553.093 (3)123
O1W—H1WB···O5i0.862.062.882 (3)162
C13—H13···O6ii0.932.343.123 (4)141
C16—H16···O1_1iii0.932.443.294 (6)153
C16—H16···O1_2iii0.932.483.32 (3)151
C19—H19···O4iv0.932.603.508 (5)167
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x, y+1, z; (iv) x1, y, z.
ππ stacking interactions (Å) top
CgRingCg···CgDistance
Cg1N1/C11–C14/C21Cg1···Cg3i3.741 (2)
Cg2N2/C17–C20/C22Cg2···Cg3ii3.891 (2)
Cg3C14–C17/C21/C22Cg3···Cg3ii3.729 (2)
Cg4N4/C29–C32/C34Cg4···Cg4iii3.7998 (18)
Symmetry codes: (i) 1 - x, 1 - y, 2 - z; (ii) 2 - x, 1 - y, 2 - z; (iii) 1 - x, -y, 1 - z.
 

Funding information

The authors acknowledge the Algerian Ministry of Higher Education and Scientific Research and the Algerian Direct­or­ate-General for Scientific Research and Technological Development.

References

First citationAdisakwattana, S., Moonsan, P. & Yibchok-anun, S. (2008). J. Agric. Food Chem. 56, 7838–7844.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAshfaq, M., Tahir, M. N., Muhammad, S., Munawar, K. S., Ali, A., Bogdanov, G. & Alarfaji, S. S. (2021). ACS Omega, 6, 31211–31225.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBattaglia, L. P., Corradi, A. B., Zoroddu, M. A., Manca, G., Basosi, R. & Solinas, C. (1991). J. Chem. Soc. Dalton Trans. pp. 2109–2112.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, X., Mu, B. & Huang, R. (2014). CrystEngComm, 16, 5093–5102.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDrew, M. D. B., Mullins, A. P. & Rice, D. A. (1994). Polyhedron, 13, 1631–1637.  CSD CrossRef CAS Web of Science Google Scholar
First citationFerenc, W., Cristóvão, B., Sarzyński, J. & Sadowski, P. (2012). J. Therm. Anal. Calorim. 110, 739–748.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGu, J.-Z., Wan, S.-M., Kirillova, M. V. & Kirillov, A. M. (2020). Dalton Trans. 49, 7197–7209.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHao, H.-J., Yin, X.-H., Lin, C.-W., Zhang, F., Luo, Z.-R. & Wu, Q.-L. (2011). J. Chem. Crystallogr. 41, 26–29.  Web of Science CSD CrossRef CAS Google Scholar
First citationKanaani, J. & Ginsburg, H. (1992). Antimicrob. Agents Chemother. 36, 1102–1108.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKhalfaoui, O., Beghidja, A., Beghidja, C., Guari, Y., Larionova, J. & Long, J. (2021). Polyhedron, 207, 115366.  Web of Science CSD CrossRef Google Scholar
First citationKhalfaoui, O., Beghidja, A., Long, J., Beghidja, C., Guari, Y. & Larionova, J. (2018). Inorganics, 6, 35.  Web of Science CSD CrossRef Google Scholar
First citationKhalfaoui, O., Beghidja, A., Long, J., Boussadia, A., Beghidja, C., Guari, Y. & Larionova, J. (2017). Dalton Trans. 46, 3943–3952.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLee, E. J., Kim, S. R., Kim, J. & Kim, Y. C. (2002). Planta Med. 68, 407–411.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, H.-S. (2002). J. Agric. Food Chem. 50, 1400–1403.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLehleh, A., Beghidja, A., Beghidja, C., Mentré, O. & Welter, R. (2011). C. R. Chim. 14, 462–470.  Web of Science CSD CrossRef CAS Google Scholar
First citationLehleh, A., Beghidja, A., Beghidja, C., Welter, R. & Kurmoo, M. (2015). C. R. Chim. 18, 530–539.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMadhurambal, G., Ravindran, B., Mariappan, M. & Mojumdar, S. C. (2010). J. Therm. Anal. Calorim. 100, 811–815.  Web of Science CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNatella, F., Nardini, M., Di Felice, M. & Scaccini, C. (1999). J. Agric. Food Chem. 47, 1453–1459.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRuwizhi, N. & Aderibigbe, B. A. (2020). Int. J. Mol. Sci. 21, 5712.  Web of Science CrossRef Google Scholar
First citationRychlicka, M., Rot, A. & Gliszczyńska, A. (2021). Foods, 10, 1417–1420.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSova, M. (2012). Mini Rev. Med. Chem. 12, 749–767.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, H.-Q., Zhang, R.-F., Guo, Q., Wang, J., Li, Q.-L., Du, X.-M., Ru, J., Zhang, Q.-F. & Ma, C.-L. (2022). J. Mol. Struct. 1247, 131290.  Web of Science CSD CrossRef Google Scholar
First citationWiesner, J., Mitsch, A., Wissner, P., Jomaa, H. & Schlitzer, M. (2001). Bioorg. Med. Chem. Lett. 11, 423–424.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, H.-M., Yang, J., He, Y.-C. & Ma, J.-F. (2013). Chem. Asian J. 8, 2787–2791.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, Y., Yang, J., Zhao, D., Liu, Z., Li, D., Fan, L. & Hu, T. (2019). CrystEngComm, 21, 6130–6135.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, X., Guo, X., Liu, L., Shi, Z., Pang, Y. & Tai, X. (2019). Crystals, 9, 166.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds