research communications
2Cr0.84Ni0.09Os1.07O6
of the cubic double-perovskite SraNational Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
*Correspondence e-mail: jiechen@gmail.com, Matsushita.Yoshitaka@nims.go.jp
The 2Cr0.84Ni0.09Os1.07O6, grown at high pressure, was solved using intensity data measured at 113 K. The Os site was modelled with a partial Ni occupancy, and the Cr site was modelled with both Os and Ni partial occupancy. The refined structure shows that this cubic form is stable at 113 K.
of the cubic double-perovskite SrKeywords: crystal structure; osmate; oxide; high-pressure synthesis; cubic double perovskite.
CCDC reference: 2213752
1. Chemical context
Recently, so called double-perovskites (DP) having AB′B′′O6 (A = divalent ions such as alkali earth or Pb, B′/B′′ = 3d/4d/5d transition metals) composition have attracted attention in the field of solid-state physics/chemistry due to their potential as materials for applications in, for example, spintronics, multiferroics, and/or magneto-caloric materials. In 1998, Sr2FeMoO6, which has the DP structure, was reported as having half-metallic behavior with a high Curie temperature (TC = 420 K) (Kobayashi et al., 1998). After this discovery, many analogous DP compounds showing half-metallic and ferrimagnetic behavior have been reported (Table 1). The main contributors to the specific physical properties are the electronic states of the B′ and B′′ elements. As an example, Sr2CrOsO6, which shows the highest TC, has its majority-spin orbital empty while the minority-spin orbital is fully occupied. Both Cr3+ (3d3, t2g3) and Os5+ (5d3, t2g3) activate primarily for this state (Mandal et al., 2008). To enhance the property, we have introduced other transition metals into the B′ and B′′ sites and examined for the exchange effects of such alternate transition metals at these sites. For this study, the samples were synthesized by high-pressure techniques; this was required to achieve the effective substitution.
2. Structural commentary
The 2Cr0.84Ni0.09Os1.07O6 has cubic symmetry of Fmm, having one Sr, one Os, one Cr, and one O atom on crystallographically independent sites in the It corresponds to the fully Cr-containing end-member Sr2CrOsO6 and the low Ni-substituted Sr2Cr0.75Ni0.25OsO6 (Chen et al., 2020), not the end-member of the Ni side of the composition, Sr2NiOsO6, which has tetragonal symmetry I4/m (Macquart et al., 2005), or the high Ni-substituted Sr2Cr0.50Ni0.50OsO6 (HT: I4/m and LT: C2/m; Chen et al., 2020).
of SrIn the structure (Fig. 1), the transition metals located at both Cr (B′) and Os (B′′) sites show elemental disordering behavior: 96.1 (13)% Os + 3.8 (13)% Ni at the Os site and 85.5 (3)% Cr + 12.1 (3)% Os + 2.4 (3)% Ni at the Cr site. Both the Cr and Os sites form three-dimensional framework structures connected by corner sharing of the coordination octahedra, having Os—O = 1.926 (4) Å (coordination volume CV = 9.5405 Å3) and Cr—O = 1.987 (4) Å (CV = 10.4516 Å3) (Fig. 1). The Sr atoms, which are twelve coordinate, are located in the voids of the three-dimensional structure, Sr—O = 2.76739 (11) Å (CV: 49.9388 Å3). From this result, the cubic Sr2Cr0.85Ni0.06Os1.08O6 structure is shown to be stable down to at least 113K.
3. Synthesis and crystallization
A black-colored single crystal of Sr2Cr0.84Ni0.09Os1.07O6 was obtained as a by-product of the synthesis of the polycrystalline Sr2Cr1-xNixOsO6 (x = 0.5). The polycrystalline product was synthesized from powders of SrO (99.9%, Strem Chemicals, Inc., USA), CrO2 (Magtrieve, Sigma-Aldrich Co., USA), NiO (99.97%, High Purity Chemicals Co., Ltd., Japan), OsO2 [lab-made: Os powder (99.95%, Nanjing Dongrui Platinum Co., Ltd.) was heated at 673 under flowing O2 gas, the process was repeated three times]. The thoroughly mixed powders (SrO:CrO2:NiO: OsO2:KClO4 = 2:0.5:0.5:1:0.225 mol) were pressed into a pellet and sealed in a Pt capsule. All the processes were carried out in an Ar-filled A pressure of 6 GPa was continuously applied by a belt-type pressure apparatus (Kobe Steel, Ltd., Japan), the capsule was heated to 1873 K and held at that temperature for 1 h. The temperature was then quenched to room temperature, following which the pressure was gradually released.
4. Refinement
Crystal data, data collection and structure . To ensure stability, displacement parameters of disordered atoms on the same sites were constrained and the sums of occupancies were restrained (SHELXL commands EADP and SUMP, respectively.)
details are summarized in Table 2
|
Supporting information
CCDC reference: 2213752
https://doi.org/10.1107/S205698902201012X/pk2669sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902201012X/pk2669Isup2.hkl
Data collection: CrystalClear (Rigaku, 2002); cell
CrystalClear (Rigaku, 2002); data reduction: CrystalClear (Rigaku, 2002); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: VESTA (Momma & Izumi, 2011).Cr0.84Ni0.09O6Os1.07Sr2 | Mo Kα radiation, λ = 0.71073 Å |
Mr = 524.37 | Cell parameters from 3313 reflections |
Cubic, Fm3m | θ = 4.5–46.0° |
a = 7.8269 (3) Å | µ = 52.66 mm−1 |
V = 479.48 (6) Å3 | T = 113 K |
Z = 4 | Chunk, black |
F(000) = 913 | 0.10 × 0.10 × 0.07 mm |
Dx = 7.264 Mg m−3 |
Rigaku AFC11 Saturn724+ (4x4 bin mode) diffractometer | 143 independent reflections |
Radiation source: Rigaku rotating anode | 143 reflections with I > 2σ(I) |
Confocal monochromator | Rint = 0.054 |
Detector resolution: 28.5714 pixels mm-1 | θmax = 46.0°, θmin = 4.5° |
dtprofit.ref scans | h = −15→11 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2002) | k = −15→11 |
Tmin = 0.056, Tmax = 0.184 | l = −15→15 |
3159 measured reflections |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0244P)2 + 3.1506P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.019 | (Δ/σ)max = 0.001 |
wR(F2) = 0.047 | Δρmax = 2.87 e Å−3 |
S = 1.34 | Δρmin = −2.25 e Å−3 |
143 reflections | Extinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
12 parameters | Extinction coefficient: 0.0047 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Sr | 0.250000 | 0.250000 | 0.250000 | 0.0075 (3) | |
O | 0.500000 | 0.500000 | 0.2461 (5) | 0.0232 (9) | |
Os | 0.500000 | 0.500000 | 0.000000 | 0.00480 (13) | 0.962 (13) |
Ni' | 0.500000 | 0.500000 | 0.000000 | 0.00480 (13) | 0.037 (13) |
Cr | 0.500000 | 0.500000 | 0.500000 | 0.0065 (3) | 0.838 (3) |
Os' | 0.500000 | 0.500000 | 0.500000 | 0.0065 (3) | 0.112 (3) |
Ni" | 0.500000 | 0.500000 | 0.500000 | 0.0065 (3) | 0.050 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sr | 0.0075 (3) | 0.0075 (3) | 0.0075 (3) | 0.000 | 0.000 | 0.000 |
O | 0.0309 (14) | 0.0309 (14) | 0.0077 (13) | 0.000 | 0.000 | 0.000 |
Os | 0.00480 (13) | 0.00480 (13) | 0.00480 (13) | 0.000 | 0.000 | 0.000 |
Ni' | 0.00480 (13) | 0.00480 (13) | 0.00480 (13) | 0.000 | 0.000 | 0.000 |
Cr | 0.0065 (3) | 0.0065 (3) | 0.0065 (3) | 0.000 | 0.000 | 0.000 |
Os' | 0.0065 (3) | 0.0065 (3) | 0.0065 (3) | 0.000 | 0.000 | 0.000 |
Ni" | 0.0065 (3) | 0.0065 (3) | 0.0065 (3) | 0.000 | 0.000 | 0.000 |
Sr—Oi | 2.7674 (1) | Sr—Oix | 2.7674 (1) |
Sr—Oii | 2.7674 (1) | Sr—Ox | 2.7674 (1) |
Sr—Oiii | 2.7674 (1) | Sr—Oxi | 2.7674 (1) |
Sr—Oiv | 2.7674 (1) | O—Ni' | 1.926 (4) |
Sr—Ov | 2.7674 (1) | O—Os | 1.926 (4) |
Sr—O | 2.7674 (1) | O—Ni" | 1.987 (4) |
Sr—Ovi | 2.7674 (1) | O—Os' | 1.987 (4) |
Sr—Ovii | 2.7674 (1) | O—Cr | 1.987 (4) |
Sr—Oviii | 2.7674 (1) | ||
Oi—Sr—Oii | 58.98 (13) | Oix—Ni'—Srxv | 125.3 |
Oi—Sr—Oiii | 119.996 (1) | Oxiv—Ni'—Srxv | 54.7 |
Oii—Sr—Oiii | 178.75 (16) | Oxv—Ni'—Srxv | 54.7 |
Oi—Sr—Oiv | 58.98 (13) | Srxii—Ni'—Srxv | 70.5 |
Oii—Sr—Oiv | 58.98 (13) | Srxvi—Ni'—Srxv | 109.5 |
Oiii—Sr—Oiv | 119.996 (1) | Sr—Ni'—Srxv | 180.0 |
Oi—Sr—Ov | 119.996 (1) | Srx—Ni'—Srxv | 109.5 |
Oii—Sr—Ov | 119.996 (1) | O—Ni'—Srxi | 54.7 |
Oiii—Sr—Ov | 61.02 (13) | Ovii—Ni'—Srxi | 54.7 |
Oiv—Sr—Ov | 178.75 (16) | Oxiii—Ni'—Srxi | 125.3 |
Oi—Sr—O | 178.75 (16) | Oix—Ni'—Srxi | 125.3 |
Oii—Sr—O | 119.996 (1) | Oxiv—Ni'—Srxi | 54.7 |
Oiii—Sr—O | 61.02 (13) | Oxv—Ni'—Srxi | 125.3 |
Oiv—Sr—O | 119.996 (1) | Srxii—Ni'—Srxi | 70.5 |
Ov—Sr—O | 61.02 (13) | Srxvi—Ni'—Srxi | 109.5 |
Oi—Sr—Ovi | 61.02 (13) | Sr—Ni'—Srxi | 70.5 |
Oii—Sr—Ovi | 90.007 (2) | Srx—Ni'—Srxi | 109.5 |
Oiii—Sr—Ovi | 90.007 (2) | Srxv—Ni'—Srxi | 109.5 |
Oiv—Sr—Ovi | 119.996 (1) | Oxvii—Cr—Oiii | 180.0 |
Ov—Sr—Ovi | 58.98 (13) | Oxvii—Cr—Oxviii | 90.000 (1) |
O—Sr—Ovi | 119.996 (1) | Oiii—Cr—Oxviii | 90.0 |
Oi—Sr—Ovii | 119.996 (1) | Oxvii—Cr—Ov | 90.0 |
Oii—Sr—Ovii | 90.007 (2) | Oiii—Cr—Ov | 90.000 (1) |
Oiii—Sr—Ovii | 90.007 (2) | Oxviii—Cr—Ov | 180.0 |
Oiv—Sr—Ovii | 61.02 (13) | Oxvii—Cr—Oxix | 90.0 |
Ov—Sr—Ovii | 119.996 (1) | Oiii—Cr—Oxix | 90.0 |
O—Sr—Ovii | 58.98 (13) | Oxviii—Cr—Oxix | 90.0 |
Ovi—Sr—Ovii | 178.75 (16) | Ov—Cr—Oxix | 90.0 |
Oi—Sr—Oviii | 61.02 (13) | Oxvii—Cr—O | 90.0 |
Oii—Sr—Oviii | 119.996 (1) | Oiii—Cr—O | 90.0 |
Oiii—Sr—Oviii | 58.98 (13) | Oxviii—Cr—O | 90.0 |
Oiv—Sr—Oviii | 90.007 (2) | Ov—Cr—O | 90.0 |
Ov—Sr—Oviii | 90.007 (2) | Oxix—Cr—O | 180.0 |
O—Sr—Oviii | 119.996 (1) | Oxvii—Cr—Sr | 125.3 |
Ovi—Sr—Oviii | 61.02 (13) | Oiii—Cr—Sr | 54.7 |
Ovii—Sr—Oviii | 119.996 (1) | Oxviii—Cr—Sr | 125.3 |
Oi—Sr—Oix | 119.996 (1) | Ov—Cr—Sr | 54.7 |
Oii—Sr—Oix | 61.02 (13) | Oxix—Cr—Sr | 125.3 |
Oiii—Sr—Oix | 119.996 (1) | O—Cr—Sr | 54.7 |
Oiv—Sr—Oix | 90.007 (2) | Oxvii—Cr—Srxix | 54.7 |
Ov—Sr—Oix | 90.007 (2) | Oiii—Cr—Srxix | 125.3 |
O—Sr—Oix | 58.98 (13) | Oxviii—Cr—Srxix | 54.7 |
Ovi—Sr—Oix | 119.996 (1) | Ov—Cr—Srxix | 125.3 |
Ovii—Sr—Oix | 58.98 (13) | Oxix—Cr—Srxix | 54.7 |
Oviii—Sr—Oix | 178.75 (16) | O—Cr—Srxix | 125.3 |
Oi—Sr—Ox | 90.007 (2) | Sr—Cr—Srxix | 180.0 |
Oii—Sr—Ox | 61.02 (13) | Oxvii—Cr—Srxi | 125.3 |
Oiii—Sr—Ox | 119.996 (1) | Oiii—Cr—Srxi | 54.7 |
Oiv—Sr—Ox | 119.996 (1) | Oxviii—Cr—Srxi | 54.7 |
Ov—Sr—Ox | 58.98 (13) | Ov—Cr—Srxi | 125.3 |
O—Sr—Ox | 90.007 (2) | Oxix—Cr—Srxi | 125.264 (1) |
Ovi—Sr—Ox | 58.98 (13) | O—Cr—Srxi | 54.7 |
Ovii—Sr—Ox | 119.996 (1) | Sr—Cr—Srxi | 70.5 |
Oviii—Sr—Ox | 119.996 (1) | Srxix—Cr—Srxi | 109.5 |
Oix—Sr—Ox | 61.02 (13) | Oxvii—Cr—Srxx | 125.3 |
Oi—Sr—Oxi | 90.007 (2) | Oiii—Cr—Srxx | 54.7 |
Oii—Sr—Oxi | 119.996 (1) | Oxviii—Cr—Srxx | 125.264 (1) |
Oiii—Sr—Oxi | 58.98 (13) | Ov—Cr—Srxx | 54.7 |
Oiv—Sr—Oxi | 61.02 (13) | Oxix—Cr—Srxx | 54.7 |
Ov—Sr—Oxi | 119.996 (1) | O—Cr—Srxx | 125.3 |
O—Sr—Oxi | 90.007 (2) | Sr—Cr—Srxx | 70.5 |
Ovi—Sr—Oxi | 119.996 (1) | Srxix—Cr—Srxx | 109.5 |
Ovii—Sr—Oxi | 61.02 (13) | Srxi—Cr—Srxx | 109.5 |
Oviii—Sr—Oxi | 58.98 (13) | Oxvii—Cr—Srxii | 54.7 |
Oix—Sr—Oxi | 119.996 (1) | Oiii—Cr—Srxii | 125.3 |
Ox—Sr—Oxi | 178.75 (16) | Oxviii—Cr—Srxii | 54.7 |
Ni'—O—Os | 0.0 | Ov—Cr—Srxii | 125.3 |
Ni'—O—Ni" | 180.0 | Oxix—Cr—Srxii | 125.3 |
Os—O—Ni" | 180.0 | O—Cr—Srxii | 54.7 |
Ni'—O—Os' | 180.0 | Sr—Cr—Srxii | 109.5 |
Os—O—Os' | 180.0 | Srxix—Cr—Srxii | 70.5 |
Ni"—O—Os' | 0.0 | Srxi—Cr—Srxii | 70.5 |
Ni'—O—Cr | 180.0 | Srxx—Cr—Srxii | 180.0 |
Os—O—Cr | 180.0 | Oxvii—Cr—Srxxi | 125.3 |
Ni"—O—Cr | 0.0 | Oiii—Cr—Srxxi | 54.7 |
Os'—O—Cr | 0.0 | Oxviii—Cr—Srxxi | 54.7 |
Ni'—O—Srxii | 90.63 (8) | Ov—Cr—Srxxi | 125.3 |
Os—O—Srxii | 90.63 (8) | Oxix—Cr—Srxxi | 54.7 |
Ni"—O—Srxii | 89.37 (8) | O—Cr—Srxxi | 125.3 |
Os'—O—Srxii | 89.37 (8) | Sr—Cr—Srxxi | 109.5 |
Cr—O—Srxii | 89.37 (8) | Srxix—Cr—Srxxi | 70.5 |
Ni'—O—Sr | 90.63 (8) | Srxi—Cr—Srxxi | 70.5 |
Os—O—Sr | 90.63 (8) | Srxx—Cr—Srxxi | 70.5 |
Ni"—O—Sr | 89.37 (8) | Srxii—Cr—Srxxi | 109.5 |
Os'—O—Sr | 89.37 (8) | Oxvii—Os'—Oiii | 180.0 |
Cr—O—Sr | 89.37 (8) | Oxvii—Os'—Oxviii | 90.000 (1) |
Srxii—O—Sr | 178.75 (16) | Oiii—Os'—Oxviii | 90.0 |
Ni'—O—Srx | 90.63 (8) | Oxvii—Os'—Ov | 90.0 |
Os—O—Srx | 90.63 (8) | Oiii—Os'—Ov | 90.000 (1) |
Ni"—O—Srx | 89.37 (8) | Oxviii—Os'—Ov | 180.0 |
Os'—O—Srx | 89.37 (8) | Oxvii—Os'—Oxix | 90.0 |
Cr—O—Srx | 89.37 (8) | Oiii—Os'—Oxix | 90.0 |
Srxii—O—Srx | 89.993 (2) | Oxviii—Os'—Oxix | 90.0 |
Sr—O—Srx | 89.993 (2) | Ov—Os'—Oxix | 90.0 |
Ni'—O—Srxi | 90.63 (8) | Oxvii—Os'—O | 90.0 |
Os—O—Srxi | 90.63 (8) | Oiii—Os'—O | 90.0 |
Ni"—O—Srxi | 89.37 (8) | Oxviii—Os'—O | 90.0 |
Os'—O—Srxi | 89.37 (8) | Ov—Os'—O | 90.0 |
Cr—O—Srxi | 89.37 (8) | Oxix—Os'—O | 180.0 |
Srxii—O—Srxi | 89.993 (2) | Oxvii—Os'—Sr | 125.3 |
Sr—O—Srxi | 89.993 (2) | Oiii—Os'—Sr | 54.7 |
Srx—O—Srxi | 178.75 (16) | Oxviii—Os'—Sr | 125.3 |
O—Os—Ovii | 90.0 | Ov—Os'—Sr | 54.7 |
O—Os—Oxiii | 90.0 | Oxix—Os'—Sr | 125.3 |
Ovii—Os—Oxiii | 180.0 | O—Os'—Sr | 54.7 |
O—Os—Oix | 90.0 | Oxvii—Os'—Srxix | 54.7 |
Ovii—Os—Oix | 90.0 | Oiii—Os'—Srxix | 125.3 |
Oxiii—Os—Oix | 90.0 | Oxviii—Os'—Srxix | 54.7 |
O—Os—Oxiv | 90.0 | Ov—Os'—Srxix | 125.3 |
Ovii—Os—Oxiv | 90.0 | Oxix—Os'—Srxix | 54.7 |
Oxiii—Os—Oxiv | 90.0 | O—Os'—Srxix | 125.3 |
Oix—Os—Oxiv | 180.0 | Sr—Os'—Srxix | 180.0 |
O—Os—Oxv | 180.0 | Oxvii—Os'—Srxi | 125.3 |
Ovii—Os—Oxv | 90.0 | Oiii—Os'—Srxi | 54.7 |
Oxiii—Os—Oxv | 90.0 | Oxviii—Os'—Srxi | 54.7 |
Oix—Os—Oxv | 90.0 | Ov—Os'—Srxi | 125.3 |
Oxiv—Os—Oxv | 90.0 | Oxix—Os'—Srxi | 125.264 (1) |
O—Os—Srxii | 54.7 | O—Os'—Srxi | 54.7 |
Ovii—Os—Srxii | 125.3 | Sr—Os'—Srxi | 70.5 |
Oxiii—Os—Srxii | 54.7 | Srxix—Os'—Srxi | 109.5 |
Oix—Os—Srxii | 125.3 | Oxvii—Os'—Srxx | 125.3 |
Oxiv—Os—Srxii | 54.7 | Oiii—Os'—Srxx | 54.7 |
Oxv—Os—Srxii | 125.3 | Oxviii—Os'—Srxx | 125.264 (1) |
O—Os—Srxvi | 125.3 | Ov—Os'—Srxx | 54.7 |
Ovii—Os—Srxvi | 54.7 | Oxix—Os'—Srxx | 54.7 |
Oxiii—Os—Srxvi | 125.3 | O—Os'—Srxx | 125.3 |
Oix—Os—Srxvi | 54.7 | Sr—Os'—Srxx | 70.5 |
Oxiv—Os—Srxvi | 125.3 | Srxix—Os'—Srxx | 109.5 |
Oxv—Os—Srxvi | 54.7 | Srxi—Os'—Srxx | 109.5 |
Srxii—Os—Srxvi | 180.0 | Oxvii—Os'—Srxii | 54.7 |
O—Os—Sr | 54.7 | Oiii—Os'—Srxii | 125.3 |
Ovii—Os—Sr | 54.7 | Oxviii—Os'—Srxii | 54.7 |
Oxiii—Os—Sr | 125.3 | Ov—Os'—Srxii | 125.3 |
Oix—Os—Sr | 54.7 | Oxix—Os'—Srxii | 125.3 |
Oxiv—Os—Sr | 125.3 | O—Os'—Srxii | 54.7 |
Oxv—Os—Sr | 125.3 | Sr—Os'—Srxii | 109.5 |
Srxii—Os—Sr | 109.5 | Srxix—Os'—Srxii | 70.5 |
Srxvi—Os—Sr | 70.5 | Srxi—Os'—Srxii | 70.5 |
O—Os—Srx | 54.7 | Srxx—Os'—Srxii | 180.0 |
Ovii—Os—Srx | 125.3 | Oxvii—Os'—Srxxi | 125.3 |
Oxiii—Os—Srx | 54.7 | Oiii—Os'—Srxxi | 54.7 |
Oix—Os—Srx | 54.7 | Oxviii—Os'—Srxxi | 54.7 |
Oxiv—Os—Srx | 125.3 | Ov—Os'—Srxxi | 125.3 |
Oxv—Os—Srx | 125.3 | Oxix—Os'—Srxxi | 54.7 |
Srxii—Os—Srx | 70.5 | O—Os'—Srxxi | 125.3 |
Srxvi—Os—Srx | 109.5 | Sr—Os'—Srxxi | 109.5 |
Sr—Os—Srx | 70.5 | Srxix—Os'—Srxxi | 70.5 |
O—Os—Srxv | 125.3 | Srxi—Os'—Srxxi | 70.5 |
Ovii—Os—Srxv | 125.3 | Srxx—Os'—Srxxi | 70.5 |
Oxiii—Os—Srxv | 54.7 | Srxii—Os'—Srxxi | 109.5 |
Oix—Os—Srxv | 125.3 | Oxvii—Ni"—Oiii | 180.0 |
Oxiv—Os—Srxv | 54.7 | Oxvii—Ni"—Oxviii | 90.000 (1) |
Oxv—Os—Srxv | 54.7 | Oiii—Ni"—Oxviii | 90.0 |
Srxii—Os—Srxv | 70.5 | Oxvii—Ni"—Ov | 90.0 |
Srxvi—Os—Srxv | 109.5 | Oiii—Ni"—Ov | 90.000 (1) |
Sr—Os—Srxv | 180.0 | Oxviii—Ni"—Ov | 180.0 |
Srx—Os—Srxv | 109.5 | Oxvii—Ni"—Oxix | 90.0 |
O—Os—Srxi | 54.7 | Oiii—Ni"—Oxix | 90.0 |
Ovii—Os—Srxi | 54.7 | Oxviii—Ni"—Oxix | 90.0 |
Oxiii—Os—Srxi | 125.3 | Ov—Ni"—Oxix | 90.0 |
Oix—Os—Srxi | 125.3 | Oxvii—Ni"—O | 90.0 |
Oxiv—Os—Srxi | 54.7 | Oiii—Ni"—O | 90.0 |
Oxv—Os—Srxi | 125.3 | Oxviii—Ni"—O | 90.0 |
Srxii—Os—Srxi | 70.5 | Ov—Ni"—O | 90.0 |
Srxvi—Os—Srxi | 109.5 | Oxix—Ni"—O | 180.0 |
Sr—Os—Srxi | 70.5 | Oxvii—Ni"—Sr | 125.3 |
Srx—Os—Srxi | 109.5 | Oiii—Ni"—Sr | 54.7 |
Srxv—Os—Srxi | 109.5 | Oxviii—Ni"—Sr | 125.3 |
O—Ni'—Ovii | 90.0 | Ov—Ni"—Sr | 54.7 |
O—Ni'—Oxiii | 90.0 | Oxix—Ni"—Sr | 125.3 |
Ovii—Ni'—Oxiii | 180.0 | O—Ni"—Sr | 54.7 |
O—Ni'—Oix | 90.0 | Oxvii—Ni"—Srxix | 54.7 |
Ovii—Ni'—Oix | 90.0 | Oiii—Ni"—Srxix | 125.3 |
Oxiii—Ni'—Oix | 90.0 | Oxviii—Ni"—Srxix | 54.7 |
O—Ni'—Oxiv | 90.0 | Ov—Ni"—Srxix | 125.3 |
Ovii—Ni'—Oxiv | 90.0 | Oxix—Ni"—Srxix | 54.7 |
Oxiii—Ni'—Oxiv | 90.0 | O—Ni"—Srxix | 125.3 |
Oix—Ni'—Oxiv | 180.0 | Sr—Ni"—Srxix | 180.0 |
O—Ni'—Oxv | 180.0 | Oxvii—Ni"—Srxi | 125.3 |
Ovii—Ni'—Oxv | 90.0 | Oiii—Ni"—Srxi | 54.7 |
Oxiii—Ni'—Oxv | 90.0 | Oxviii—Ni"—Srxi | 54.7 |
Oix—Ni'—Oxv | 90.0 | Ov—Ni"—Srxi | 125.3 |
Oxiv—Ni'—Oxv | 90.0 | Oxix—Ni"—Srxi | 125.264 (1) |
O—Ni'—Srxii | 54.7 | O—Ni"—Srxi | 54.7 |
Ovii—Ni'—Srxii | 125.3 | Sr—Ni"—Srxi | 70.5 |
Oxiii—Ni'—Srxii | 54.7 | Srxix—Ni"—Srxi | 109.5 |
Oix—Ni'—Srxii | 125.3 | Oxvii—Ni"—Srxx | 125.3 |
Oxiv—Ni'—Srxii | 54.7 | Oiii—Ni"—Srxx | 54.7 |
Oxv—Ni'—Srxii | 125.3 | Oxviii—Ni"—Srxx | 125.264 (1) |
O—Ni'—Srxvi | 125.3 | Ov—Ni"—Srxx | 54.7 |
Ovii—Ni'—Srxvi | 54.7 | Oxix—Ni"—Srxx | 54.7 |
Oxiii—Ni'—Srxvi | 125.3 | O—Ni"—Srxx | 125.3 |
Oix—Ni'—Srxvi | 54.7 | Sr—Ni"—Srxx | 70.5 |
Oxiv—Ni'—Srxvi | 125.3 | Srxix—Ni"—Srxx | 109.5 |
Oxv—Ni'—Srxvi | 54.7 | Srxi—Ni"—Srxx | 109.5 |
Srxii—Ni'—Srxvi | 180.0 | Oxvii—Ni"—Srxii | 54.7 |
O—Ni'—Sr | 54.7 | Oiii—Ni"—Srxii | 125.3 |
Ovii—Ni'—Sr | 54.7 | Oxviii—Ni"—Srxii | 54.7 |
Oxiii—Ni'—Sr | 125.3 | Ov—Ni"—Srxii | 125.3 |
Oix—Ni'—Sr | 54.7 | Oxix—Ni"—Srxii | 125.3 |
Oxiv—Ni'—Sr | 125.3 | O—Ni"—Srxii | 54.7 |
Oxv—Ni'—Sr | 125.3 | Sr—Ni"—Srxii | 109.5 |
Srxii—Ni'—Sr | 109.5 | Srxix—Ni"—Srxii | 70.5 |
Srxvi—Ni'—Sr | 70.5 | Srxi—Ni"—Srxii | 70.5 |
O—Ni'—Srx | 54.7 | Srxx—Ni"—Srxii | 180.0 |
Ovii—Ni'—Srx | 125.3 | Oxvii—Ni"—Srxxi | 125.3 |
Oxiii—Ni'—Srx | 54.7 | Oiii—Ni"—Srxxi | 54.7 |
Oix—Ni'—Srx | 54.7 | Oxviii—Ni"—Srxxi | 54.7 |
Oxiv—Ni'—Srx | 125.3 | Ov—Ni"—Srxxi | 125.3 |
Oxv—Ni'—Srx | 125.3 | Oxix—Ni"—Srxxi | 54.7 |
Srxii—Ni'—Srx | 70.5 | O—Ni"—Srxxi | 125.3 |
Srxvi—Ni'—Srx | 109.5 | Sr—Ni"—Srxxi | 109.5 |
Sr—Ni'—Srx | 70.5 | Srxix—Ni"—Srxxi | 70.5 |
O—Ni'—Srxv | 125.3 | Srxi—Ni"—Srxxi | 70.5 |
Ovii—Ni'—Srxv | 125.3 | Srxx—Ni"—Srxxi | 70.5 |
Oxiii—Ni'—Srxv | 54.7 | Srxii—Ni"—Srxxi | 109.5 |
Symmetry codes: (i) x−1/2, y−1/2, z; (ii) y−1/2, z, x−1/2; (iii) y, z, x; (iv) z, x−1/2, y−1/2; (v) z, x, y; (vi) −y+1/2, −z+1/2, −x+1; (vii) −y+1, −z+1/2, −x+1/2; (viii) −z+1/2, −x+1/2, −y+1; (ix) −z+1/2, −x+1, −y+1/2; (x) −x+1/2, −y+1, −z+1/2; (xi) −x+1, −y+1/2, −z+1/2; (xii) x+1/2, y+1/2, z; (xiii) y, z+1/2, x−1/2; (xiv) z+1/2, x, y−1/2; (xv) −x+1, −y+1, −z; (xvi) −x+1/2, −y+1/2, −z; (xvii) −y+1, −z+1, −x+1; (xviii) −z+1, −x+1, −y+1; (xix) −x+1, −y+1, −z+1; (xx) −x+1/2, −y+1/2, −z+1; (xxi) x+1/2, y, z+1/2. |
Compound | Sr2FeMoO6 | Sr2CrReO6 | Sr2CrMoO6 | Sr2FeReO6 | Sr2CrWO6 | Sr2CrOsO6 |
TC (K) | 420 | 635 | 450 | 400 | 390 | 725 / 660 |
Reference | Kobayashi et al. (1998) | De Teresa et al. (2005) and Kato et al. (2002) | Moritomo et al. (2000) | Kobayashi et al. (1999) | Philipp et al. (2003) | Krockenberger et al. (2007) and Morrow et al. (2016) |
Funding information
Funding for this research was provided by: KAKENHI 19H05819 and 22H04601.
References
Chen, J., Wang, X., Hu, Z., Tjeng, L. H., Agrestini, S., Valvidares, M., Chen, K., Nataf, L., Baudelet, F., Nagao, M., Inaguma, Y., Belik, A. A., Tsujimoto, Y., Matsushita, Y., Kolodiazhnyi, T., Sereika, R., Tanaka, M. & Yamaura, K. (2020). Phys. Rev. B, 102, 184418. CrossRef Google Scholar
De Teresa, J. M., Serrate, D., Ritter, C., Blasco, J., Ibarra, M. R., Morellon, L. & Tokarz, W. (2005). Phys. Rev. B, 71, 092408. CrossRef Google Scholar
Kato, H., Okuda, T., Okimoto, Y., Tomioka, Y., Takenoya, Y., Ohkubo, A., Kawasaki, M. & Tokura, Y. (2002). Appl. Phys. Lett. 81, 328–330. Web of Science CrossRef CAS Google Scholar
Kobayashi, K.-I., Kimura, T., Sawada, H., Terakura, K. & Tokura, Y. (1998). Nature, 395, 677–680. Web of Science CrossRef CAS Google Scholar
Kobayashi, K.-I., Kimura, T., Tomioka, Y., Sawada, H., Terakura, K. & Tokura, Y. (1999). Phys. Rev. B, 59, 11159–11162. CrossRef CAS Google Scholar
Krockenberger, Y., Mogare, K., Reehuis, M., Tovar, M., Jansen, G., Vaitheeswaran, V., Kanchana, F., Bultmark, A., Delin, F., Wilhelm, A., Rogalev, A., Winkler, A. & Alff, L. (2007). Phys. Rev. B, 75, 020404R). CrossRef Google Scholar
Macquart, R., Kim, S.-J., Gemmill, W. R., Stalick, J. K., Lee, Y. J., Vogt, T. & zur Loye, H. C. (2005). Inorg. Chem. 44, 9676–9683. CrossRef ICSD PubMed CAS Google Scholar
Mandal, T. K., Felser, C., Greenblatt, M. & Kübler, J. (2008). Phys. Rev. B, 78, 134431. CrossRef Google Scholar
Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276. Web of Science CrossRef CAS IUCr Journals Google Scholar
Moritomo, Y., Xu, S., Machida, A., Akimoto, T., Nishibori, E., Takata, M. & Sakata, M. (2000). Phys. Rev. B, 61, R7827–R7830. CrossRef CAS Google Scholar
Morrow, R., Soliz, J. R., Hauser, A. J., Gallagher, J. C., Susner, M. A., Sumption, M. D., Aczel, A. A., Yan, J., Yang, F. & Woodward, P. M. (2016). J. Solid State Chem. 238, 46–52. CrossRef ICSD CAS Google Scholar
Philipp, J. B., Majewski, P., Alff, L., Erb, A., Gross, R., Graf, T., Brandt, M. S., Simon, J., Walther, T., Mader, W., Topwal, D. & Sarma, D. D. (2003). Phys. Rev. B, 68, 144431. Web of Science CrossRef Google Scholar
Rigaku (2002). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.