research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the cubic double-perovskite Sr2Cr0.84Ni0.09Os1.07O6

crossmark logo

aNational Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
*Correspondence e-mail: jiechen@gmail.com, Matsushita.Yoshitaka@nims.go.jp

Edited by S. Parkin, University of Kentucky, USA (Received 19 July 2022; accepted 18 October 2022; online 20 October 2022)

The crystal structure of the cubic double-perovskite Sr2Cr0.84Ni0.09Os1.07O6, grown at high pressure, was solved using intensity data measured at 113 K. The Os site was modelled with a partial Ni occupancy, and the Cr site was modelled with both Os and Ni partial occupancy. The refined structure shows that this cubic form is stable at 113 K.

1. Chemical context

Recently, so called double-perovskites (DP) having ABB′′O6 (A = divalent ions such as alkali earth or Pb, B′/B′′ = 3d/4d/5d transition metals) composition have attracted attention in the field of solid-state physics/chemistry due to their potential as materials for applications in, for example, spintronics, multiferroics, and/or magneto-caloric materials. In 1998, Sr2FeMoO6, which has the DP structure, was reported as having half-metallic behavior with a high Curie temperature (TC = 420 K) (Kobayashi et al., 1998[Kobayashi, K.-I., Kimura, T., Sawada, H., Terakura, K. & Tokura, Y. (1998). Nature, 395, 677-680.]). After this discovery, many analogous DP compounds showing half-metallic and ferrimagnetic behavior have been reported (Table 1[link]). The main contributors to the specific physical properties are the electronic states of the B′ and B′′ elements. As an example, Sr2CrOsO6, which shows the highest TC, has its majority-spin orbital empty while the minority-spin orbital is fully occupied. Both Cr3+ (3d3, t2g3) and Os5+ (5d3, t2g3) activate primarily for this state (Mandal et al., 2008[Mandal, T. K., Felser, C., Greenblatt, M. & Kübler, J. (2008). Phys. Rev. B, 78, 134431.]). To enhance the property, we have introduced other transition metals into the B′ and B′′ sites and examined for the exchange effects of such alternate transition metals at these sites. For this study, the samples were synthesized by high-pressure techniques; this was required to achieve the effective substitution.

Table 1
Typical half-metallic and ferrimagnetic double perovskites

Compound Sr2FeMoO6 Sr2CrReO6 Sr2CrMoO6 Sr2FeReO6 Sr2CrWO6 Sr2CrOsO6
TC (K) 420 635 450 400 390 725 / 660
Reference Kobayashi et al. (1998[Kobayashi, K.-I., Kimura, T., Sawada, H., Terakura, K. & Tokura, Y. (1998). Nature, 395, 677-680.]) De Teresa et al. (2005[De Teresa, J. M., Serrate, D., Ritter, C., Blasco, J., Ibarra, M. R., Morellon, L. & Tokarz, W. (2005). Phys. Rev. B, 71, 092408.]) and Kato et al. (2002[Kato, H., Okuda, T., Okimoto, Y., Tomioka, Y., Takenoya, Y., Ohkubo, A., Kawasaki, M. & Tokura, Y. (2002). Appl. Phys. Lett. 81, 328-330.]) Moritomo et al. (2000[Moritomo, Y., Xu, S., Machida, A., Akimoto, T., Nishibori, E., Takata, M. & Sakata, M. (2000). Phys. Rev. B, 61, R7827-R7830.]) Kobayashi et al. (1999[Kobayashi, K.-I., Kimura, T., Tomioka, Y., Sawada, H., Terakura, K. & Tokura, Y. (1999). Phys. Rev. B, 59, 11159-11162.]) Philipp et al. (2003[Philipp, J. B., Majewski, P., Alff, L., Erb, A., Gross, R., Graf, T., Brandt, M. S., Simon, J., Walther, T., Mader, W., Topwal, D. & Sarma, D. D. (2003). Phys. Rev. B, 68, 144431.]) Krockenberger et al. (2007[Krockenberger, Y., Mogare, K., Reehuis, M., Tovar, M., Jansen, G., Vaitheeswaran, V., Kanchana, F., Bultmark, A., Delin, F., Wilhelm, A., Rogalev, A., Winkler, A. & Alff, L. (2007). Phys. Rev. B, 75, 020404R).]) and Morrow et al. (2016[Morrow, R., Soliz, J. R., Hauser, A. J., Gallagher, J. C., Susner, M. A., Sumption, M. D., Aczel, A. A., Yan, J., Yang, F. & Woodward, P. M. (2016). J. Solid State Chem. 238, 46-52.])

2. Structural commentary

The crystal structure of Sr2Cr0.84Ni0.09Os1.07O6 has cubic symmetry of space group Fm[\overline{3}]m, having one Sr, one Os, one Cr, and one O atom on crystallographically independent sites in the asymmetric unit. It corresponds to the fully Cr-containing end-member Sr2CrOsO6 and the low Ni-substituted Sr2Cr0.75Ni0.25OsO6 (Chen et al., 2020[Chen, J., Wang, X., Hu, Z., Tjeng, L. H., Agrestini, S., Valvidares, M., Chen, K., Nataf, L., Baudelet, F., Nagao, M., Inaguma, Y., Belik, A. A., Tsujimoto, Y., Matsushita, Y., Kolodiazhnyi, T., Sereika, R., Tanaka, M. & Yamaura, K. (2020). Phys. Rev. B, 102, 184418.]), not the end-member of the Ni side of the composition, Sr2NiOsO6, which has tetra­gonal symmetry I4/m (Macquart et al., 2005[Macquart, R., Kim, S.-J., Gemmill, W. R., Stalick, J. K., Lee, Y. J., Vogt, T. & zur Loye, H. C. (2005). Inorg. Chem. 44, 9676-9683.]), or the high Ni-substituted Sr2Cr0.50Ni0.50OsO6 (HT: I4/m and LT: C2/m; Chen et al., 2020[Chen, J., Wang, X., Hu, Z., Tjeng, L. H., Agrestini, S., Valvidares, M., Chen, K., Nataf, L., Baudelet, F., Nagao, M., Inaguma, Y., Belik, A. A., Tsujimoto, Y., Matsushita, Y., Kolodiazhnyi, T., Sereika, R., Tanaka, M. & Yamaura, K. (2020). Phys. Rev. B, 102, 184418.]).

In the structure (Fig. 1[link]), the transition metals located at both Cr (B′) and Os (B′′) sites show elemental disordering behavior: 96.1 (13)% Os + 3.8 (13)% Ni at the Os site and 85.5 (3)% Cr + 12.1 (3)% Os + 2.4 (3)% Ni at the Cr site. Both the Cr and Os sites form three-dimensional framework structures connected by corner sharing of the coordination octa­hedra, having Os—O = 1.926 (4) Å (coordination volume CV = 9.5405 Å3) and Cr—O = 1.987 (4) Å (CV = 10.4516 Å3) (Fig. 1[link]). The Sr atoms, which are twelve coordinate, are located in the voids of the three-dimensional structure, Sr—O = 2.76739 (11) Å (CV: 49.9388 Å3). From this result, the cubic Sr2Cr0.85Ni0.06Os1.08O6 structure is shown to be stable down to at least 113K.

[Figure 1]
Figure 1
Displacement ellipsoid (probability 50%) and polyhedron view of the cubic double-perovskite Sr2Cr0.84Ni0.09Os1.07O6. Blue and light-brown polyhedra are CrO6 and OsO6, respectively. Red and green ellipsoids are oxygen and Sr, respectively. Figure drawn using VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]).

3. Synthesis and crystallization

A black-colored single crystal of Sr2Cr0.84Ni0.09Os1.07O6 was obtained as a by-product of the synthesis of the polycrystalline Sr2Cr1-xNixOsO6 (x = 0.5). The polycrystalline product was synthesized from powders of SrO (99.9%, Strem Chemicals, Inc., USA), CrO2 (Magtrieve, Sigma-Aldrich Co., USA), NiO (99.97%, High Purity Chemicals Co., Ltd., Japan), OsO2 [lab-made: Os powder (99.95%, Nanjing Dongrui Platinum Co., Ltd.) was heated at 673 under flowing O2 gas, the process was repeated three times]. The thoroughly mixed powders (SrO:CrO2:NiO: OsO2:KClO4 = 2:0.5:0.5:1:0.225 mol) were pressed into a pellet and sealed in a Pt capsule. All the processes were carried out in an Ar-filled glove box. A pressure of 6 GPa was continuously applied by a belt-type pressure apparatus (Kobe Steel, Ltd., Japan), the capsule was heated to 1873 K and held at that temperature for 1 h. The temperature was then quenched to room temperature, following which the pressure was gradually released.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. To ensure refinement stability, displacement parameters of disordered atoms on the same sites were constrained and the sums of occupancies were restrained (SHELXL commands EADP and SUMP, respectively.)

Table 2
Experimental details

Crystal data
Chemical formula Cr0.84Ni0.09O6Os1.07Sr2
Mr 524.37
Crystal system, space group Cubic, Fm[\overline{3}]m
Temperature (K) 113
a (Å) 7.8269 (3)
V3) 479.48 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 52.66
Crystal size (mm) 0.10 × 0.10 × 0.07
 
Data collection
Diffractometer Rigaku AFC11 Saturn724+ (4x4 bin mode)
Absorption correction Multi-scan (CrystalClear; Rigaku, 2002[Rigaku (2002). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.])
Tmin, Tmax 0.056, 0.184
No. of measured, independent and observed [I > 2σ(I)] reflections 3159, 143, 143
Rint 0.054
(sin θ/λ)max−1) 1.012
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.047, 1.34
No. of reflections 143
No. of parameters 12
No. of restraints 1
Δρmax, Δρmin (e Å−3) 2.87, −2.25
Computer programs: CrystalClear (Rigaku, 2002[Rigaku (2002). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]).

Supporting information


Computing details top

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear (Rigaku, 2002); data reduction: CrystalClear (Rigaku, 2002); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: VESTA (Momma & Izumi, 2011).

(I) top
Crystal data top
Cr0.84Ni0.09O6Os1.07Sr2Mo Kα radiation, λ = 0.71073 Å
Mr = 524.37Cell parameters from 3313 reflections
Cubic, Fm3mθ = 4.5–46.0°
a = 7.8269 (3) ŵ = 52.66 mm1
V = 479.48 (6) Å3T = 113 K
Z = 4Chunk, black
F(000) = 9130.10 × 0.10 × 0.07 mm
Dx = 7.264 Mg m3
Data collection top
Rigaku AFC11 Saturn724+ (4x4 bin mode)
diffractometer
143 independent reflections
Radiation source: Rigaku rotating anode143 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.054
Detector resolution: 28.5714 pixels mm-1θmax = 46.0°, θmin = 4.5°
dtprofit.ref scansh = 1511
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
k = 1511
Tmin = 0.056, Tmax = 0.184l = 1515
3159 measured reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0244P)2 + 3.1506P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.019(Δ/σ)max = 0.001
wR(F2) = 0.047Δρmax = 2.87 e Å3
S = 1.34Δρmin = 2.25 e Å3
143 reflectionsExtinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
12 parametersExtinction coefficient: 0.0047 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sr0.2500000.2500000.2500000.0075 (3)
O0.5000000.5000000.2461 (5)0.0232 (9)
Os0.5000000.5000000.0000000.00480 (13)0.962 (13)
Ni'0.5000000.5000000.0000000.00480 (13)0.037 (13)
Cr0.5000000.5000000.5000000.0065 (3)0.838 (3)
Os'0.5000000.5000000.5000000.0065 (3)0.112 (3)
Ni"0.5000000.5000000.5000000.0065 (3)0.050 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr0.0075 (3)0.0075 (3)0.0075 (3)0.0000.0000.000
O0.0309 (14)0.0309 (14)0.0077 (13)0.0000.0000.000
Os0.00480 (13)0.00480 (13)0.00480 (13)0.0000.0000.000
Ni'0.00480 (13)0.00480 (13)0.00480 (13)0.0000.0000.000
Cr0.0065 (3)0.0065 (3)0.0065 (3)0.0000.0000.000
Os'0.0065 (3)0.0065 (3)0.0065 (3)0.0000.0000.000
Ni"0.0065 (3)0.0065 (3)0.0065 (3)0.0000.0000.000
Geometric parameters (Å, º) top
Sr—Oi2.7674 (1)Sr—Oix2.7674 (1)
Sr—Oii2.7674 (1)Sr—Ox2.7674 (1)
Sr—Oiii2.7674 (1)Sr—Oxi2.7674 (1)
Sr—Oiv2.7674 (1)O—Ni'1.926 (4)
Sr—Ov2.7674 (1)O—Os1.926 (4)
Sr—O2.7674 (1)O—Ni"1.987 (4)
Sr—Ovi2.7674 (1)O—Os'1.987 (4)
Sr—Ovii2.7674 (1)O—Cr1.987 (4)
Sr—Oviii2.7674 (1)
Oi—Sr—Oii58.98 (13)Oix—Ni'—Srxv125.3
Oi—Sr—Oiii119.996 (1)Oxiv—Ni'—Srxv54.7
Oii—Sr—Oiii178.75 (16)Oxv—Ni'—Srxv54.7
Oi—Sr—Oiv58.98 (13)Srxii—Ni'—Srxv70.5
Oii—Sr—Oiv58.98 (13)Srxvi—Ni'—Srxv109.5
Oiii—Sr—Oiv119.996 (1)Sr—Ni'—Srxv180.0
Oi—Sr—Ov119.996 (1)Srx—Ni'—Srxv109.5
Oii—Sr—Ov119.996 (1)O—Ni'—Srxi54.7
Oiii—Sr—Ov61.02 (13)Ovii—Ni'—Srxi54.7
Oiv—Sr—Ov178.75 (16)Oxiii—Ni'—Srxi125.3
Oi—Sr—O178.75 (16)Oix—Ni'—Srxi125.3
Oii—Sr—O119.996 (1)Oxiv—Ni'—Srxi54.7
Oiii—Sr—O61.02 (13)Oxv—Ni'—Srxi125.3
Oiv—Sr—O119.996 (1)Srxii—Ni'—Srxi70.5
Ov—Sr—O61.02 (13)Srxvi—Ni'—Srxi109.5
Oi—Sr—Ovi61.02 (13)Sr—Ni'—Srxi70.5
Oii—Sr—Ovi90.007 (2)Srx—Ni'—Srxi109.5
Oiii—Sr—Ovi90.007 (2)Srxv—Ni'—Srxi109.5
Oiv—Sr—Ovi119.996 (1)Oxvii—Cr—Oiii180.0
Ov—Sr—Ovi58.98 (13)Oxvii—Cr—Oxviii90.000 (1)
O—Sr—Ovi119.996 (1)Oiii—Cr—Oxviii90.0
Oi—Sr—Ovii119.996 (1)Oxvii—Cr—Ov90.0
Oii—Sr—Ovii90.007 (2)Oiii—Cr—Ov90.000 (1)
Oiii—Sr—Ovii90.007 (2)Oxviii—Cr—Ov180.0
Oiv—Sr—Ovii61.02 (13)Oxvii—Cr—Oxix90.0
Ov—Sr—Ovii119.996 (1)Oiii—Cr—Oxix90.0
O—Sr—Ovii58.98 (13)Oxviii—Cr—Oxix90.0
Ovi—Sr—Ovii178.75 (16)Ov—Cr—Oxix90.0
Oi—Sr—Oviii61.02 (13)Oxvii—Cr—O90.0
Oii—Sr—Oviii119.996 (1)Oiii—Cr—O90.0
Oiii—Sr—Oviii58.98 (13)Oxviii—Cr—O90.0
Oiv—Sr—Oviii90.007 (2)Ov—Cr—O90.0
Ov—Sr—Oviii90.007 (2)Oxix—Cr—O180.0
O—Sr—Oviii119.996 (1)Oxvii—Cr—Sr125.3
Ovi—Sr—Oviii61.02 (13)Oiii—Cr—Sr54.7
Ovii—Sr—Oviii119.996 (1)Oxviii—Cr—Sr125.3
Oi—Sr—Oix119.996 (1)Ov—Cr—Sr54.7
Oii—Sr—Oix61.02 (13)Oxix—Cr—Sr125.3
Oiii—Sr—Oix119.996 (1)O—Cr—Sr54.7
Oiv—Sr—Oix90.007 (2)Oxvii—Cr—Srxix54.7
Ov—Sr—Oix90.007 (2)Oiii—Cr—Srxix125.3
O—Sr—Oix58.98 (13)Oxviii—Cr—Srxix54.7
Ovi—Sr—Oix119.996 (1)Ov—Cr—Srxix125.3
Ovii—Sr—Oix58.98 (13)Oxix—Cr—Srxix54.7
Oviii—Sr—Oix178.75 (16)O—Cr—Srxix125.3
Oi—Sr—Ox90.007 (2)Sr—Cr—Srxix180.0
Oii—Sr—Ox61.02 (13)Oxvii—Cr—Srxi125.3
Oiii—Sr—Ox119.996 (1)Oiii—Cr—Srxi54.7
Oiv—Sr—Ox119.996 (1)Oxviii—Cr—Srxi54.7
Ov—Sr—Ox58.98 (13)Ov—Cr—Srxi125.3
O—Sr—Ox90.007 (2)Oxix—Cr—Srxi125.264 (1)
Ovi—Sr—Ox58.98 (13)O—Cr—Srxi54.7
Ovii—Sr—Ox119.996 (1)Sr—Cr—Srxi70.5
Oviii—Sr—Ox119.996 (1)Srxix—Cr—Srxi109.5
Oix—Sr—Ox61.02 (13)Oxvii—Cr—Srxx125.3
Oi—Sr—Oxi90.007 (2)Oiii—Cr—Srxx54.7
Oii—Sr—Oxi119.996 (1)Oxviii—Cr—Srxx125.264 (1)
Oiii—Sr—Oxi58.98 (13)Ov—Cr—Srxx54.7
Oiv—Sr—Oxi61.02 (13)Oxix—Cr—Srxx54.7
Ov—Sr—Oxi119.996 (1)O—Cr—Srxx125.3
O—Sr—Oxi90.007 (2)Sr—Cr—Srxx70.5
Ovi—Sr—Oxi119.996 (1)Srxix—Cr—Srxx109.5
Ovii—Sr—Oxi61.02 (13)Srxi—Cr—Srxx109.5
Oviii—Sr—Oxi58.98 (13)Oxvii—Cr—Srxii54.7
Oix—Sr—Oxi119.996 (1)Oiii—Cr—Srxii125.3
Ox—Sr—Oxi178.75 (16)Oxviii—Cr—Srxii54.7
Ni'—O—Os0.0Ov—Cr—Srxii125.3
Ni'—O—Ni"180.0Oxix—Cr—Srxii125.3
Os—O—Ni"180.0O—Cr—Srxii54.7
Ni'—O—Os'180.0Sr—Cr—Srxii109.5
Os—O—Os'180.0Srxix—Cr—Srxii70.5
Ni"—O—Os'0.0Srxi—Cr—Srxii70.5
Ni'—O—Cr180.0Srxx—Cr—Srxii180.0
Os—O—Cr180.0Oxvii—Cr—Srxxi125.3
Ni"—O—Cr0.0Oiii—Cr—Srxxi54.7
Os'—O—Cr0.0Oxviii—Cr—Srxxi54.7
Ni'—O—Srxii90.63 (8)Ov—Cr—Srxxi125.3
Os—O—Srxii90.63 (8)Oxix—Cr—Srxxi54.7
Ni"—O—Srxii89.37 (8)O—Cr—Srxxi125.3
Os'—O—Srxii89.37 (8)Sr—Cr—Srxxi109.5
Cr—O—Srxii89.37 (8)Srxix—Cr—Srxxi70.5
Ni'—O—Sr90.63 (8)Srxi—Cr—Srxxi70.5
Os—O—Sr90.63 (8)Srxx—Cr—Srxxi70.5
Ni"—O—Sr89.37 (8)Srxii—Cr—Srxxi109.5
Os'—O—Sr89.37 (8)Oxvii—Os'—Oiii180.0
Cr—O—Sr89.37 (8)Oxvii—Os'—Oxviii90.000 (1)
Srxii—O—Sr178.75 (16)Oiii—Os'—Oxviii90.0
Ni'—O—Srx90.63 (8)Oxvii—Os'—Ov90.0
Os—O—Srx90.63 (8)Oiii—Os'—Ov90.000 (1)
Ni"—O—Srx89.37 (8)Oxviii—Os'—Ov180.0
Os'—O—Srx89.37 (8)Oxvii—Os'—Oxix90.0
Cr—O—Srx89.37 (8)Oiii—Os'—Oxix90.0
Srxii—O—Srx89.993 (2)Oxviii—Os'—Oxix90.0
Sr—O—Srx89.993 (2)Ov—Os'—Oxix90.0
Ni'—O—Srxi90.63 (8)Oxvii—Os'—O90.0
Os—O—Srxi90.63 (8)Oiii—Os'—O90.0
Ni"—O—Srxi89.37 (8)Oxviii—Os'—O90.0
Os'—O—Srxi89.37 (8)Ov—Os'—O90.0
Cr—O—Srxi89.37 (8)Oxix—Os'—O180.0
Srxii—O—Srxi89.993 (2)Oxvii—Os'—Sr125.3
Sr—O—Srxi89.993 (2)Oiii—Os'—Sr54.7
Srx—O—Srxi178.75 (16)Oxviii—Os'—Sr125.3
O—Os—Ovii90.0Ov—Os'—Sr54.7
O—Os—Oxiii90.0Oxix—Os'—Sr125.3
Ovii—Os—Oxiii180.0O—Os'—Sr54.7
O—Os—Oix90.0Oxvii—Os'—Srxix54.7
Ovii—Os—Oix90.0Oiii—Os'—Srxix125.3
Oxiii—Os—Oix90.0Oxviii—Os'—Srxix54.7
O—Os—Oxiv90.0Ov—Os'—Srxix125.3
Ovii—Os—Oxiv90.0Oxix—Os'—Srxix54.7
Oxiii—Os—Oxiv90.0O—Os'—Srxix125.3
Oix—Os—Oxiv180.0Sr—Os'—Srxix180.0
O—Os—Oxv180.0Oxvii—Os'—Srxi125.3
Ovii—Os—Oxv90.0Oiii—Os'—Srxi54.7
Oxiii—Os—Oxv90.0Oxviii—Os'—Srxi54.7
Oix—Os—Oxv90.0Ov—Os'—Srxi125.3
Oxiv—Os—Oxv90.0Oxix—Os'—Srxi125.264 (1)
O—Os—Srxii54.7O—Os'—Srxi54.7
Ovii—Os—Srxii125.3Sr—Os'—Srxi70.5
Oxiii—Os—Srxii54.7Srxix—Os'—Srxi109.5
Oix—Os—Srxii125.3Oxvii—Os'—Srxx125.3
Oxiv—Os—Srxii54.7Oiii—Os'—Srxx54.7
Oxv—Os—Srxii125.3Oxviii—Os'—Srxx125.264 (1)
O—Os—Srxvi125.3Ov—Os'—Srxx54.7
Ovii—Os—Srxvi54.7Oxix—Os'—Srxx54.7
Oxiii—Os—Srxvi125.3O—Os'—Srxx125.3
Oix—Os—Srxvi54.7Sr—Os'—Srxx70.5
Oxiv—Os—Srxvi125.3Srxix—Os'—Srxx109.5
Oxv—Os—Srxvi54.7Srxi—Os'—Srxx109.5
Srxii—Os—Srxvi180.0Oxvii—Os'—Srxii54.7
O—Os—Sr54.7Oiii—Os'—Srxii125.3
Ovii—Os—Sr54.7Oxviii—Os'—Srxii54.7
Oxiii—Os—Sr125.3Ov—Os'—Srxii125.3
Oix—Os—Sr54.7Oxix—Os'—Srxii125.3
Oxiv—Os—Sr125.3O—Os'—Srxii54.7
Oxv—Os—Sr125.3Sr—Os'—Srxii109.5
Srxii—Os—Sr109.5Srxix—Os'—Srxii70.5
Srxvi—Os—Sr70.5Srxi—Os'—Srxii70.5
O—Os—Srx54.7Srxx—Os'—Srxii180.0
Ovii—Os—Srx125.3Oxvii—Os'—Srxxi125.3
Oxiii—Os—Srx54.7Oiii—Os'—Srxxi54.7
Oix—Os—Srx54.7Oxviii—Os'—Srxxi54.7
Oxiv—Os—Srx125.3Ov—Os'—Srxxi125.3
Oxv—Os—Srx125.3Oxix—Os'—Srxxi54.7
Srxii—Os—Srx70.5O—Os'—Srxxi125.3
Srxvi—Os—Srx109.5Sr—Os'—Srxxi109.5
Sr—Os—Srx70.5Srxix—Os'—Srxxi70.5
O—Os—Srxv125.3Srxi—Os'—Srxxi70.5
Ovii—Os—Srxv125.3Srxx—Os'—Srxxi70.5
Oxiii—Os—Srxv54.7Srxii—Os'—Srxxi109.5
Oix—Os—Srxv125.3Oxvii—Ni"—Oiii180.0
Oxiv—Os—Srxv54.7Oxvii—Ni"—Oxviii90.000 (1)
Oxv—Os—Srxv54.7Oiii—Ni"—Oxviii90.0
Srxii—Os—Srxv70.5Oxvii—Ni"—Ov90.0
Srxvi—Os—Srxv109.5Oiii—Ni"—Ov90.000 (1)
Sr—Os—Srxv180.0Oxviii—Ni"—Ov180.0
Srx—Os—Srxv109.5Oxvii—Ni"—Oxix90.0
O—Os—Srxi54.7Oiii—Ni"—Oxix90.0
Ovii—Os—Srxi54.7Oxviii—Ni"—Oxix90.0
Oxiii—Os—Srxi125.3Ov—Ni"—Oxix90.0
Oix—Os—Srxi125.3Oxvii—Ni"—O90.0
Oxiv—Os—Srxi54.7Oiii—Ni"—O90.0
Oxv—Os—Srxi125.3Oxviii—Ni"—O90.0
Srxii—Os—Srxi70.5Ov—Ni"—O90.0
Srxvi—Os—Srxi109.5Oxix—Ni"—O180.0
Sr—Os—Srxi70.5Oxvii—Ni"—Sr125.3
Srx—Os—Srxi109.5Oiii—Ni"—Sr54.7
Srxv—Os—Srxi109.5Oxviii—Ni"—Sr125.3
O—Ni'—Ovii90.0Ov—Ni"—Sr54.7
O—Ni'—Oxiii90.0Oxix—Ni"—Sr125.3
Ovii—Ni'—Oxiii180.0O—Ni"—Sr54.7
O—Ni'—Oix90.0Oxvii—Ni"—Srxix54.7
Ovii—Ni'—Oix90.0Oiii—Ni"—Srxix125.3
Oxiii—Ni'—Oix90.0Oxviii—Ni"—Srxix54.7
O—Ni'—Oxiv90.0Ov—Ni"—Srxix125.3
Ovii—Ni'—Oxiv90.0Oxix—Ni"—Srxix54.7
Oxiii—Ni'—Oxiv90.0O—Ni"—Srxix125.3
Oix—Ni'—Oxiv180.0Sr—Ni"—Srxix180.0
O—Ni'—Oxv180.0Oxvii—Ni"—Srxi125.3
Ovii—Ni'—Oxv90.0Oiii—Ni"—Srxi54.7
Oxiii—Ni'—Oxv90.0Oxviii—Ni"—Srxi54.7
Oix—Ni'—Oxv90.0Ov—Ni"—Srxi125.3
Oxiv—Ni'—Oxv90.0Oxix—Ni"—Srxi125.264 (1)
O—Ni'—Srxii54.7O—Ni"—Srxi54.7
Ovii—Ni'—Srxii125.3Sr—Ni"—Srxi70.5
Oxiii—Ni'—Srxii54.7Srxix—Ni"—Srxi109.5
Oix—Ni'—Srxii125.3Oxvii—Ni"—Srxx125.3
Oxiv—Ni'—Srxii54.7Oiii—Ni"—Srxx54.7
Oxv—Ni'—Srxii125.3Oxviii—Ni"—Srxx125.264 (1)
O—Ni'—Srxvi125.3Ov—Ni"—Srxx54.7
Ovii—Ni'—Srxvi54.7Oxix—Ni"—Srxx54.7
Oxiii—Ni'—Srxvi125.3O—Ni"—Srxx125.3
Oix—Ni'—Srxvi54.7Sr—Ni"—Srxx70.5
Oxiv—Ni'—Srxvi125.3Srxix—Ni"—Srxx109.5
Oxv—Ni'—Srxvi54.7Srxi—Ni"—Srxx109.5
Srxii—Ni'—Srxvi180.0Oxvii—Ni"—Srxii54.7
O—Ni'—Sr54.7Oiii—Ni"—Srxii125.3
Ovii—Ni'—Sr54.7Oxviii—Ni"—Srxii54.7
Oxiii—Ni'—Sr125.3Ov—Ni"—Srxii125.3
Oix—Ni'—Sr54.7Oxix—Ni"—Srxii125.3
Oxiv—Ni'—Sr125.3O—Ni"—Srxii54.7
Oxv—Ni'—Sr125.3Sr—Ni"—Srxii109.5
Srxii—Ni'—Sr109.5Srxix—Ni"—Srxii70.5
Srxvi—Ni'—Sr70.5Srxi—Ni"—Srxii70.5
O—Ni'—Srx54.7Srxx—Ni"—Srxii180.0
Ovii—Ni'—Srx125.3Oxvii—Ni"—Srxxi125.3
Oxiii—Ni'—Srx54.7Oiii—Ni"—Srxxi54.7
Oix—Ni'—Srx54.7Oxviii—Ni"—Srxxi54.7
Oxiv—Ni'—Srx125.3Ov—Ni"—Srxxi125.3
Oxv—Ni'—Srx125.3Oxix—Ni"—Srxxi54.7
Srxii—Ni'—Srx70.5O—Ni"—Srxxi125.3
Srxvi—Ni'—Srx109.5Sr—Ni"—Srxxi109.5
Sr—Ni'—Srx70.5Srxix—Ni"—Srxxi70.5
O—Ni'—Srxv125.3Srxi—Ni"—Srxxi70.5
Ovii—Ni'—Srxv125.3Srxx—Ni"—Srxxi70.5
Oxiii—Ni'—Srxv54.7Srxii—Ni"—Srxxi109.5
Symmetry codes: (i) x1/2, y1/2, z; (ii) y1/2, z, x1/2; (iii) y, z, x; (iv) z, x1/2, y1/2; (v) z, x, y; (vi) y+1/2, z+1/2, x+1; (vii) y+1, z+1/2, x+1/2; (viii) z+1/2, x+1/2, y+1; (ix) z+1/2, x+1, y+1/2; (x) x+1/2, y+1, z+1/2; (xi) x+1, y+1/2, z+1/2; (xii) x+1/2, y+1/2, z; (xiii) y, z+1/2, x1/2; (xiv) z+1/2, x, y1/2; (xv) x+1, y+1, z; (xvi) x+1/2, y+1/2, z; (xvii) y+1, z+1, x+1; (xviii) z+1, x+1, y+1; (xix) x+1, y+1, z+1; (xx) x+1/2, y+1/2, z+1; (xxi) x+1/2, y, z+1/2.
Typical half-metallic and ferrimagnetic double perovskites top
CompoundSr2FeMoO6Sr2CrReO6Sr2CrMoO6Sr2FeReO6Sr2CrWO6Sr2CrOsO6
TC (K)420635450400390725 / 660
ReferenceKobayashi et al. (1998)De Teresa et al. (2005) and Kato et al. (2002)Moritomo et al. (2000)Kobayashi et al. (1999)Philipp et al. (2003)Krockenberger et al. (2007) and Morrow et al. (2016)
 

Funding information

Funding for this research was provided by: KAKENHI 19H05819 and 22H04601.

References

First citationChen, J., Wang, X., Hu, Z., Tjeng, L. H., Agrestini, S., Valvidares, M., Chen, K., Nataf, L., Baudelet, F., Nagao, M., Inaguma, Y., Belik, A. A., Tsujimoto, Y., Matsushita, Y., Kolodiazhnyi, T., Sereika, R., Tanaka, M. & Yamaura, K. (2020). Phys. Rev. B, 102, 184418.  CrossRef Google Scholar
First citationDe Teresa, J. M., Serrate, D., Ritter, C., Blasco, J., Ibarra, M. R., Morellon, L. & Tokarz, W. (2005). Phys. Rev. B, 71, 092408.  CrossRef Google Scholar
First citationKato, H., Okuda, T., Okimoto, Y., Tomioka, Y., Takenoya, Y., Ohkubo, A., Kawasaki, M. & Tokura, Y. (2002). Appl. Phys. Lett. 81, 328–330.  Web of Science CrossRef CAS Google Scholar
First citationKobayashi, K.-I., Kimura, T., Sawada, H., Terakura, K. & Tokura, Y. (1998). Nature, 395, 677–680.  Web of Science CrossRef CAS Google Scholar
First citationKobayashi, K.-I., Kimura, T., Tomioka, Y., Sawada, H., Terakura, K. & Tokura, Y. (1999). Phys. Rev. B, 59, 11159–11162.  CrossRef CAS Google Scholar
First citationKrockenberger, Y., Mogare, K., Reehuis, M., Tovar, M., Jansen, G., Vaitheeswaran, V., Kanchana, F., Bultmark, A., Delin, F., Wilhelm, A., Rogalev, A., Winkler, A. & Alff, L. (2007). Phys. Rev. B, 75, 020404R).  CrossRef Google Scholar
First citationMacquart, R., Kim, S.-J., Gemmill, W. R., Stalick, J. K., Lee, Y. J., Vogt, T. & zur Loye, H. C. (2005). Inorg. Chem. 44, 9676–9683.  CrossRef ICSD PubMed CAS Google Scholar
First citationMandal, T. K., Felser, C., Greenblatt, M. & Kübler, J. (2008). Phys. Rev. B, 78, 134431.  CrossRef Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoritomo, Y., Xu, S., Machida, A., Akimoto, T., Nishibori, E., Takata, M. & Sakata, M. (2000). Phys. Rev. B, 61, R7827–R7830.  CrossRef CAS Google Scholar
First citationMorrow, R., Soliz, J. R., Hauser, A. J., Gallagher, J. C., Susner, M. A., Sumption, M. D., Aczel, A. A., Yan, J., Yang, F. & Woodward, P. M. (2016). J. Solid State Chem. 238, 46–52.  CrossRef ICSD CAS Google Scholar
First citationPhilipp, J. B., Majewski, P., Alff, L., Erb, A., Gross, R., Graf, T., Brandt, M. S., Simon, J., Walther, T., Mader, W., Topwal, D. & Sarma, D. D. (2003). Phys. Rev. B, 68, 144431.  Web of Science CrossRef Google Scholar
First citationRigaku (2002). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds