research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, spectroscopic and crystal structure studies of N-{3-cyano-1-[2,6-di­chloro-4-(tri­fluoro­meth­yl)phen­yl]-4-(ethyl­sulfan­yl)-1H-pyrazol-5-yl}-2,2,2-tri­fluoro­acetamide

crossmark logo

aDepartment of Chemistry, B.N.M. Institute of Technology, Bengaluru-560 070, India, bHoneychem Pharma Research Pvt. Ltd., Peenya Industrial Area, Bengaluru-560 058, India, cT. John Institute of Technology, Bengaluru-560 083, India, dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, and eDepartment of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA
*Correspondence e-mail: yathirajan@hotmail.com

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 26 September 2022; accepted 30 September 2022; online 4 October 2022)

The structure of the title compound, C15H8N4Cl2F6OS, a phenyl­pyrazole-based insecticide related to ethiprole, fipronil, and derivatives thereof is presented. The pyrazole ring has four chemically diverse substituents, namely a nitro­gen-bound 2,6-di­chloro-4-tri­fluoro­methyl­phenyl and carbon-bound cyano, ethyl­sulfanyl, and 2,2,2-tri­fluoro­acetamide groups. The pyrazole and phenyl rings are perpendicular, subtending a dihedral angle of 89.80 (5)°. In the crystal, strong N—H⋯O hydrogen bonds link the mol­ecules into chains that extend parallel to the a-axis.

1. Chemical context

The title compound is a phenyl­pyrazole-based insecticide. It is related to ethiprole, an insecticide used to kill or remove insects from crops and grains during storage (Arthur, 2002[Arthur, F. H. (2002). J. Econ. Entomol. 95, 1314-1318.]). Phenyl­pyrazole insecticides render an insect's central nervous system toxic by blocking the body's glutamate-gated chloride channel. Ethiprole itself is a non-systemic insecticide that is effective against a wide range of chewing and sucking insects (Wu, 1998[Wu, T.-T. (1998). US Patent US5814652.]) and is an active ingredient used in many insecticides for crop-protection products. Fipronil (see, for example, Park et al., 2017[Park, H., Kim, J., Kwon, E. & Kim, T. H. (2017). Acta Cryst. E73, 1472-1474.]) and fipronil sulfone belong to the same class of compounds. The design, synthesis, and insecticidal activity of novel phenyl­pyrazoles containing a 2,2,2-tri­chloro-1-alk­oxy­ethyl moiety have been published by Zhao et al. (2010[Zhao, Q., Li, Y., Xiong, L. & Wang, Q. (2010). J. Agric. Food Chem. 58, 4992-4998.]).

[Scheme 1]

The starting material for the title compound, 5-amino-1-[2,6-di­chloro-4-(tri­fluoro­meth­yl)phen­yl]-4-ethyl­sulfanyl-1H-pyrazole-3-carbo­nitrile, is also an important inter­mediate in the preparation of ethiprole. In view of the importance of phenyl­pyrazoles, especially in the context of their use in insecticides, this paper reports the synthesis, crystal structure, and spectroscopic studies of the phenyl­pyrazole derivative, C15H8N4Cl2F6OS (I).

2. Structural commentary

The mol­ecular structure of I (Fig. 1[link]), consists of a pyrazole ring with four chemically diverse substituents. A 2,6-di­chloro-4-tri­fluoro­methyl­phenyl group is attached to atom N1 of the pyrazole ring. A 2,2,2-tri­fluoro­acetamide group is attached to the adjacent carbon of the pyrazole, with ethyl­sulfanyl and cyano substituents attached sequentially at the next two carbon atoms of the pyrazole. The pyrazole and phenyl rings are essentially perpendicular, forming a dihedral angle of 89.80 (5)°. The mean plane of the amide group (r.m.s. deviation = 0.0079 Å) forms a dihedral angle of 74.33 (6)° with the pyrazole ring, while the dihedral angle between the plane of the ethyl­sulfanyl substituent and the pyrazole is 81.31 (8)°. There are no unusual bond lengths, bond angles, or torsion angles in the structure, and no noteworthy intra­molecular inter­actions.

[Figure 1]
Figure 1
An ellipsoid plot (50% probability) of I.

3. Supra­molecular features

There is only one strong inter­molecular hydrogen bond in I, namely N3—H3N⋯O1i (symmetry codes as per Table 1[link]), between c-glide related acetamide groups (Table 1[link]), which propagates to form chains that extend parallel to the a-axis (Fig. 2[link]). The default HTAB command in SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) also flags three C—H⋯F close contacts (Table 1[link]). Two of these, C11—H11⋯F5iii and C13—H13⋯F6iv, are oriented so as to associate 21-screw-related mol­ecules into chains, which again extend parallel to the a-axis (Fig. 3[link]). There are no ππ stacking inter­actions, but inversion-related mol­ecules have their Cl1 atoms mutually located directly over the benzene rings of their inversion-related counterparts [Cl1⋯Cg(C9–C14)v = 3.4967 (6) Å, where Cg represents the ring centroid], as shown in Table 1[link] and Fig. 4[link]. These combine to produce pleated sheets that extend in the ac plane (Fig. 5[link]), which then stack along the b-axis direction. Atom–atom contact coverages derived from a Hirshfeld-surface analysis using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) are given in Table 2[link].

Table 1
Hydrogen bonds and other short contacts (Å, °) in I

Cg(C9–C14) represents the centroid of C9–C14 benzene ring.

Atoms D—H H⋯A DA D—H⋯A
N3—H3N⋯O1i 0.855 (16) 2.034 (16) 2.8172 (13) 151.9 (14)
C5—H5B⋯F2ii 0.99 2.58 3.5641 (16) 173.9
C11—H11⋯F5iii 0.95 2.62 3.4873 (15) 151.8
C13—H13⋯F6iv 0.95 2.39 3.2071 (15) 143.8
Cl1⋯Cg(C9–C14)v     3.4967 (6)  
Symmetry codes: (i) x + [{1\over 2}], y, −z + [{1\over 2}]; (ii) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]; (iii) x + [{1\over 2}], −y + [{3\over 2}], −z + 1; (iv) x − [{1\over 2}], −y + [{3\over 2}], −z + 1; (v) −x + 1, −y + 1, −z + 1.

Table 2
Atom–atom contact coverages (%) in I

Atom contacts % Atom contacts %
H⋯F/F⋯H 23.0 F⋯Cl/Cl⋯F 8.3
N⋯F/F⋯N 7.3 C⋯H/H⋯C 7.1
H⋯Cl/Cl⋯H 7.1 H⋯N/N⋯H 6.9
H⋯O/O⋯H 5.9 H⋯H 4.8
C⋯F/F⋯C 3.8 C⋯Cl/Cl⋯C 3.8
C⋯N/N⋯C 3.4 F⋯S/S⋯F 3.0
S⋯Cl/Cl⋯S 1.9 Cl⋯Cl 1.3
H⋯S/S⋯H 1.3 O⋯Cl/Cl⋯O 1.2
C⋯C 0.9 O⋯N/N⋯O 0.8
N⋯Cl/Cl⋯N 0.7 N⋯N 0.3
O⋯F/F⋯O 0.2 C⋯S/S⋯C 0.2
C⋯O/O⋯C 0.1    
All other atom–atom contact coverages are ∼0.0%
[Figure 2]
Figure 2
A packing plot of I showing strong hydrogen-bonded chains (thick dashed lines) along the a-axis direction.
[Figure 3]
Figure 3
A partial packing plot of I showing zigzag chains along the a-axis direction resulting from weak C—H⋯F contacts (thin dashed lines).
[Figure 4]
Figure 4
Pairs of inversion-related mol­ecules in I showing mutual contacts between Cl and the benzene rings (dotted lines).
[Figure 5]
Figure 5
A partial packing plot of I showing pleated sheets that extend in the ac plane. Diagram generated using Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.43 with updates through June 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 1-phenyl-cyano­pyrazole fragment of I gave 82 hits. A search on this fragment with any nitro­gen-bound substituent at the equivalent of C1 (i.e., the carbon adjacent to the substituted nitro­gen) gave 76 hits, and a subsequent search with 2,6-di­chloro-4-(tri­fluoro­meth­yl)phenyl attached at N1 of the pyrazole ring gave 60 hits. Further addition of any sulfur-bound substituent at the equivalent of C2 gave nine hits, only eight of which are unique. Two of these structures, FOCCUW (Tang, Zhong, Li et al., 2005[Tang, R.-Y., Zhong, P., Li, S.-Y. & Hu, M.-L. (2005). Acta Cryst. E61, o1564-o1565.]) and TOLFUY (Du et al., 2019[Du, Y., Zhou, Q., Huang, Y. & Chen, L. (2019). Z. Krist. New Cryst. Struct. 234, 665-667.]) are dimers. The remaining six, along with three other similar structures, are listed in Table 3[link].

Table 3
Some structures similar to I deposited in the CSD

All entries have 2,6-di­chloro-4-(tri­fluoro­meth­yl)phenyl and cyano groups attached at the equivalent of N1 and C3 of I, respectively. Substituents R′ and R represent groups attached at the equivalent of C1 and C2 in I, respectively.

CSD code R R" Reference
DUKVAJ NHCOCH2Ph SOCF3 Chen et al. (2020[Chen, L., Tang, C., Long, Z. & Wu, Z. (2020). Z. Krist. New Cryst. Struct. 235 721-723.])
EFIXEZ NHCOCHCHPh SOCF3 Chen (2019[Chen, L. (2019). CSD Communication (refcode EFIXEZ). CCDC, Cambridge, England.])
PAZFAY NH2 SCF3 Tang, Zhong, Lin et al. (2005[Tang, R.-Y., Zhong, P., Lin, Q.-L., Hu, M.-L. & Shi, Q. (2005). Acta Cryst. E61, o4374-o4375.])
TOLFAE NHCH2PhOMe SOCF3 Chen & Wu (2019[Chen, L. & Wu, Z. (2019). Z. Krist. New Cryst. Struct. 234, 715-717.])
YEGJAY NH2 SOCF3 Park et al. (2017[Park, H., Kim, J., Kwon, E. & Kim, T. H. (2017). Acta Cryst. E73, 1472-1474.])
ZITNAU NHCHPhF SOCF3 Chen et al. (2019[Chen, L., Wu, Z., Du, Y., Huang, Y. & Jin, S. (2019). J. Mol. Struct. 1196, 555-566.])
GIXDAT NH2 I Li et al. (2007[Li, S.-Y., Zhong, P. & Hu, M.-L. (2007). Z. Krist. New Cryst. Struct. 222, 423-424.])
HILTUS NH2 H Luo et al. (2007[Luo, Y., Zhong, P. & Hu, M. (2007). Acta Cryst. E63, o4077.])
TIDNUP NH2 CF3 Hainzl & Casida (1996[Hainzl, D. & Casida, J. E. (1996). Proc. Nat. Acad. Sci. USA, 93, 12764-12767.])

5. Synthesis, crystallization and spectroscopic details

Tri­fluoro­acetic anhydride (550 µL, 3.8 mmol) was added dropwise to a stirred solution of 5-amino-1-[2,6-di­chloro-4-(tri­fluoro­meth­yl)phen­yl]-4-ethyl­sulfanyl-1H-pyrazole-3-carb­o­nitrile (a gift from Honeychem Pharma: 724 mg, 1.9 mmol), tri­ethyl­amine (412 mg, 5.7 mmol) and DCM (5 ml) at 273 K. The reaction was kept at 273 K for 5 h, warmed to room temperature over 3 h, quenched with water and extracted with DCM three times. An overall scheme for the reaction is shown in Fig. 6[link]. The combined organic extracts were washed with water and brine. The crude residue obtained after drying with sodium sulfate followed by concentration, was purified by column chromatography using ethyl acetate:hexane (2:3) as eluent to give N-{3-cyano-1-[2,6-di­chloro-4-(tri­fluoro­meth­yl)phen­yl]-4-(ethyl­sulfan­yl)-1H-pyrazol-5-yl}-2,2,2-tri­fluoro­acetamide (C15H8Cl2F6N4OS, I, yield = 600 mg, 85%).

[Figure 6]
Figure 6
The overall reaction scheme for the synthesis of I.

The product was dissolved in ethanol at 333 K and stirred for 30 min. The resulting solution was allowed to cool slowly to room temperature with slow evaporation. X-ray-quality crystals appeared in two days (m.p. 366–367 K).

The title compound was characterized by IR and 1H NMR spectroscopies, as follows: FT–IR (ν in cm−1): 3227 (N—H stretching), 2250 (C=N stretching), 1737 (C=O stretching), 1694–1652 (C=C stretching), 1313, 1222 (C—F stretching), 881, 818 (s, Ar–C—H bending), 711, 628 (C—Cl). 1H NMR: DMSO–d6 (400 MHz, δ ppm): 12.42 (b, 1H, NH), 8.36 (s, 2H, Ar—H), 2.90–2.85 (q, 2H, CH2, J = 7.6 Hz), 1.19–1.15 (t, 3H, CH3, J = 7.6 Hz).

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 4[link]. All H atoms were found in difference-Fourier maps. Carbon-bound hydrogens were subsequently included in the refinement using riding models, with constrained distances set to 0.98 Å (RCH3), 0.99 Å (R2CH2) and 0.95 Å (R2CH). The nitro­gen-bound hydrogen-atom coordinates were refined freely. Uiso(H) parameters were set to values of either 1.2Ueq or 1.5Ueq (RCH3 only) of the attached atom.

Table 4
Experimental details

Crystal data
Chemical formula C15H8Cl2F6N4OS
Mr 477.21
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 90
a, b, c (Å) 9.9350 (3), 17.5133 (7), 21.4662 (8)
V3) 3735.0 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.53
Crystal size (mm) 0.30 × 0.23 × 0.19
 
Data collection
Diffractometer Bruker D8 Venture dual source
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.831, 0.958
No. of measured, independent and observed [I > 2σ(I)] reflections 27352, 4271, 3893
Rint 0.036
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.064, 1.04
No. of reflections 4271
No. of parameters 267
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.42, −0.25
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: APEX3 (Bruker, 2016); data reduction: APEX3 (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELX (Sheldrick, 2008) and publCIF (Westrip, 2010).

N-{3-Cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-(ethylsulfanyl)-1H-pyrazol-5-yl}-2,2,2-trifluoroacetamide top
Crystal data top
C15H8Cl2F6N4OSDx = 1.697 Mg m3
Mr = 477.21Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9972 reflections
a = 9.9350 (3) Åθ = 2.5–27.5°
b = 17.5133 (7) ŵ = 0.53 mm1
c = 21.4662 (8) ÅT = 90 K
V = 3735.0 (2) Å3Cut block, colourless
Z = 80.30 × 0.23 × 0.19 mm
F(000) = 1904
Data collection top
Bruker D8 Venture dual source
diffractometer
4271 independent reflections
Radiation source: microsource3893 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.036
φ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1210
Tmin = 0.831, Tmax = 0.958k = 2222
27352 measured reflectionsl = 2727
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0273P)2 + 2.0142P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4271 reflectionsΔρmax = 0.42 e Å3
267 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL-2019/2 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0017 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.63935 (3)0.51208 (2)0.40861 (2)0.01864 (8)
Cl20.09945 (3)0.53537 (2)0.40975 (2)0.02419 (9)
S10.32287 (3)0.38515 (2)0.20184 (2)0.01658 (8)
F10.35596 (9)0.62440 (5)0.15112 (4)0.02447 (19)
F20.38608 (8)0.69639 (4)0.23078 (4)0.02336 (18)
F30.18898 (8)0.68747 (5)0.18872 (4)0.02659 (19)
F40.36645 (9)0.70022 (5)0.59601 (4)0.02648 (19)
F50.30334 (10)0.77508 (5)0.52258 (4)0.0323 (2)
F60.51380 (8)0.75448 (5)0.53817 (4)0.02669 (19)
O10.15013 (9)0.55566 (5)0.24758 (4)0.01724 (19)
N10.36297 (11)0.47239 (6)0.36809 (5)0.0145 (2)
N20.35250 (11)0.39898 (6)0.38684 (5)0.0168 (2)
N30.37119 (10)0.55065 (6)0.27566 (5)0.0130 (2)
H3N0.4502 (17)0.5686 (8)0.2699 (7)0.016*
N40.30803 (13)0.21428 (6)0.33539 (6)0.0255 (3)
C10.36015 (12)0.47954 (7)0.30511 (6)0.0131 (2)
C20.34539 (12)0.40781 (7)0.28031 (6)0.0141 (2)
C30.34127 (13)0.36032 (7)0.33357 (6)0.0155 (2)
C40.32423 (14)0.27879 (7)0.33502 (6)0.0185 (3)
C50.49124 (14)0.35383 (9)0.18065 (6)0.0234 (3)
H5A0.5565330.3957460.1872980.028*
H5B0.5183880.3099100.2068270.028*
C60.48964 (15)0.33069 (9)0.11230 (7)0.0275 (3)
H6A0.4603300.3740980.0868830.041*
H6B0.4272630.2879450.1064580.041*
H6C0.5803180.3151480.0995660.041*
C70.26356 (12)0.58029 (6)0.24545 (5)0.0131 (2)
C80.29906 (13)0.64906 (7)0.20371 (6)0.0166 (3)
C90.37120 (13)0.53275 (7)0.41254 (6)0.0141 (2)
C100.49581 (12)0.55813 (7)0.43330 (6)0.0140 (2)
C110.50542 (12)0.61972 (7)0.47388 (5)0.0145 (2)
H110.5905430.6373950.4879650.017*
C120.38740 (13)0.65467 (7)0.49325 (6)0.0143 (2)
C130.26172 (13)0.62922 (7)0.47417 (6)0.0160 (2)
H130.1821360.6536120.4885220.019*
C140.25432 (13)0.56765 (7)0.43387 (6)0.0156 (2)
C150.39317 (13)0.72121 (7)0.53760 (6)0.0176 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01593 (15)0.01905 (15)0.02095 (16)0.00316 (11)0.00349 (11)0.00045 (11)
Cl20.01509 (16)0.02479 (17)0.03269 (19)0.00092 (12)0.00540 (13)0.00730 (13)
S10.01774 (16)0.01755 (15)0.01445 (15)0.00235 (11)0.00419 (12)0.00360 (11)
F10.0328 (5)0.0231 (4)0.0175 (4)0.0014 (3)0.0079 (3)0.0003 (3)
F20.0286 (4)0.0160 (4)0.0255 (4)0.0086 (3)0.0006 (3)0.0001 (3)
F30.0246 (4)0.0215 (4)0.0336 (5)0.0074 (3)0.0018 (4)0.0101 (3)
F40.0389 (5)0.0253 (4)0.0152 (4)0.0056 (4)0.0072 (3)0.0047 (3)
F50.0409 (5)0.0182 (4)0.0378 (5)0.0121 (4)0.0129 (4)0.0102 (4)
F60.0286 (4)0.0231 (4)0.0285 (4)0.0110 (3)0.0052 (4)0.0093 (3)
O10.0122 (4)0.0175 (4)0.0220 (5)0.0002 (3)0.0008 (4)0.0010 (4)
N10.0183 (5)0.0108 (5)0.0143 (5)0.0006 (4)0.0015 (4)0.0007 (4)
N20.0213 (5)0.0118 (5)0.0172 (5)0.0005 (4)0.0025 (4)0.0006 (4)
N30.0104 (5)0.0123 (5)0.0162 (5)0.0011 (4)0.0003 (4)0.0007 (4)
N40.0355 (7)0.0170 (5)0.0239 (6)0.0005 (5)0.0053 (5)0.0002 (4)
C10.0109 (5)0.0138 (5)0.0146 (6)0.0012 (4)0.0017 (4)0.0001 (4)
C20.0131 (5)0.0145 (6)0.0147 (6)0.0012 (4)0.0017 (5)0.0018 (4)
C30.0164 (6)0.0132 (5)0.0168 (6)0.0008 (5)0.0026 (5)0.0006 (4)
C40.0230 (7)0.0172 (6)0.0153 (6)0.0009 (5)0.0040 (5)0.0005 (5)
C50.0188 (6)0.0332 (7)0.0181 (6)0.0040 (6)0.0001 (5)0.0035 (5)
C60.0248 (7)0.0388 (8)0.0190 (7)0.0018 (6)0.0022 (6)0.0067 (6)
C70.0145 (5)0.0116 (5)0.0132 (5)0.0018 (4)0.0006 (5)0.0026 (4)
C80.0180 (6)0.0142 (6)0.0177 (6)0.0007 (5)0.0001 (5)0.0002 (5)
C90.0200 (6)0.0110 (5)0.0115 (6)0.0001 (4)0.0017 (5)0.0004 (4)
C100.0150 (6)0.0139 (5)0.0131 (6)0.0013 (4)0.0014 (5)0.0024 (4)
C110.0161 (6)0.0144 (5)0.0132 (6)0.0024 (4)0.0014 (5)0.0016 (4)
C120.0195 (6)0.0114 (5)0.0120 (5)0.0000 (4)0.0002 (5)0.0013 (4)
C130.0169 (6)0.0144 (5)0.0166 (6)0.0029 (5)0.0003 (5)0.0003 (4)
C140.0151 (6)0.0150 (5)0.0166 (6)0.0003 (5)0.0027 (5)0.0014 (5)
C150.0209 (6)0.0146 (6)0.0173 (6)0.0005 (5)0.0000 (5)0.0012 (5)
Geometric parameters (Å, º) top
Cl1—C101.7219 (12)C1—C21.3722 (16)
Cl2—C141.7191 (13)C2—C31.4143 (17)
S1—C21.7450 (13)C3—C41.4381 (17)
S1—C51.8181 (14)C5—C61.5222 (19)
F1—C81.3342 (15)C5—H5A0.9900
F2—C81.3312 (15)C5—H5B0.9900
F3—C81.3237 (15)C6—H6A0.9800
F4—C151.3333 (15)C6—H6B0.9800
F5—C151.3381 (15)C6—H6C0.9800
F6—C151.3327 (15)C7—C81.5421 (16)
O1—C71.2075 (15)C9—C101.3888 (17)
N1—N21.3511 (14)C9—C141.3898 (17)
N1—C11.3581 (16)C10—C111.3898 (17)
N1—C91.4264 (15)C11—C121.3865 (17)
N2—C31.3337 (16)C11—H110.9500
N3—C71.3540 (16)C12—C131.3877 (18)
N3—C11.4010 (15)C12—C151.5059 (17)
N3—H3N0.855 (16)C13—C141.3843 (17)
N4—C41.1412 (17)C13—H130.9500
C2—S1—C5101.08 (6)N3—C7—C8113.4 (1)
N2—N1—C1112.5 (1)F3—C8—F2109.04 (10)
N2—N1—C9120.69 (10)F3—C8—F1108.0 (1)
C1—N1—C9126.78 (10)F2—C8—F1107.2 (1)
C3—N2—N1103.54 (10)F3—C8—C7110.44 (10)
C7—N3—C1119.68 (10)F2—C8—C7112.41 (10)
C7—N3—H3N121 (1)F1—C8—C7109.61 (10)
C1—N3—H3N117.7 (10)C10—C9—C14119.89 (11)
N1—C1—C2107.7 (1)C10—C9—N1120.19 (11)
N1—C1—N3121.98 (10)C14—C9—N1119.90 (11)
C2—C1—N3130.32 (12)C9—C10—C11120.71 (11)
C1—C2—C3103.17 (11)C9—C10—Cl1119.31 (9)
C1—C2—S1126.61 (10)C11—C10—Cl1119.97 (10)
C3—C2—S1130.01 (9)C12—C11—C10118.20 (11)
N2—C3—C2113.09 (11)C12—C11—H11120.9
N2—C3—C4119.69 (11)C10—C11—H11120.9
C2—C3—C4127.21 (11)C11—C12—C13122.05 (11)
N4—C4—C3178.42 (15)C11—C12—C15119.94 (11)
C6—C5—S1108.17 (10)C13—C12—C15118.00 (11)
C6—C5—H5A110.1C14—C13—C12118.84 (12)
S1—C5—H5A110.1C14—C13—H13120.6
C6—C5—H5B110.1C12—C13—H13120.6
S1—C5—H5B110.1C13—C14—C9120.27 (12)
H5A—C5—H5B108.4C13—C14—Cl2119.47 (10)
C5—C6—H6A109.5C9—C14—Cl2120.26 (9)
C5—C6—H6B109.5F6—C15—F4106.92 (11)
H6A—C6—H6B109.5F6—C15—F5107.08 (10)
C5—C6—H6C109.5F4—C15—F5106.75 (11)
H6A—C6—H6C109.5F6—C15—C12112.23 (11)
H6B—C6—H6C109.5F4—C15—C12111.94 (10)
O1—C7—N3125.59 (11)F5—C15—C12111.58 (11)
O1—C7—C8120.96 (11)
C1—N1—N2—C30.77 (14)N3—C7—C8—F177.52 (13)
C9—N1—N2—C3177.32 (11)N2—N1—C9—C1091.61 (15)
N2—N1—C1—C20.79 (14)C1—N1—C9—C1090.59 (15)
C9—N1—C1—C2177.16 (11)N2—N1—C9—C1490.12 (14)
N2—N1—C1—N3179.23 (11)C1—N1—C9—C1487.67 (16)
C9—N1—C1—N32.82 (19)C14—C9—C10—C111.93 (18)
C7—N3—C1—N1111.17 (13)N1—C9—C10—C11176.34 (11)
C7—N3—C1—C268.80 (18)C14—C9—C10—Cl1177.67 (9)
N1—C1—C2—C30.45 (13)N1—C9—C10—Cl14.06 (16)
N3—C1—C2—C3179.58 (12)C9—C10—C11—C120.37 (18)
N1—C1—C2—S1174.65 (9)Cl1—C10—C11—C12179.23 (9)
N3—C1—C2—S15.3 (2)C10—C11—C12—C131.06 (18)
C5—S1—C2—C1101.74 (12)C10—C11—C12—C15179.53 (11)
C5—S1—C2—C384.50 (13)C11—C12—C13—C140.90 (18)
N1—N2—C3—C20.47 (14)C15—C12—C13—C14179.39 (11)
N1—N2—C3—C4178.34 (12)C12—C13—C14—C90.69 (18)
C1—C2—C3—N20.02 (14)C12—C13—C14—Cl2179.99 (9)
S1—C2—C3—N2174.87 (10)C10—C9—C14—C132.09 (18)
C1—C2—C3—C4178.68 (13)N1—C9—C14—C13176.18 (11)
S1—C2—C3—C43.8 (2)C10—C9—C14—Cl2178.62 (9)
C2—S1—C5—C6179.48 (10)N1—C9—C14—Cl23.11 (16)
C1—N3—C7—O110.00 (18)C11—C12—C15—F620.04 (16)
C1—N3—C7—C8167.28 (10)C13—C12—C15—F6161.43 (11)
O1—C7—C8—F318.96 (16)C11—C12—C15—F4100.19 (13)
N3—C7—C8—F3163.61 (10)C13—C12—C15—F478.33 (14)
O1—C7—C8—F2140.97 (12)C11—C12—C15—F5140.24 (12)
N3—C7—C8—F241.60 (14)C13—C12—C15—F541.23 (16)
O1—C7—C8—F199.91 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O1i0.855 (16)2.034 (16)2.8172 (13)151.9 (14)
C5—H5B···F2ii0.992.583.5641 (16)174
C11—H11···F5iii0.952.623.4873 (15)152
C13—H13···F6iv0.952.393.2071 (15)144
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1/2, y+3/2, z+1; (iv) x1/2, y+3/2, z+1.
Hydrogen bonds and other short contacts (Å, °) in I top
Cg(C9–C14) represents the centroid of C9–C14 benzene ring.
AtomsD—HH···AD···AD—H···A
N3—H3N···O1i0.855 (16)2.034 (16)2.8172 (13)151.9 (14)
C5—H5B···F2ii0.992.583.5641 (16)173.9
C11—H11···F5iii0.952.623.4873 (15)151.8
C13—H13···F6iv0.952.393.2071 (15)143.8
Cl1···Cg(C9–C14)v3.4967 (6)
Symmetry codes: (i) x + 1/2, y, -z + 1/2; (ii) -x + 1, y - 1/2, -z + 1/2; (iii) x + 1/2, -y + 3/2, -z + 1; (iv) x - 1/2, -y + 3/2, -z + 1; (v) -x + 1, -y + 1, -z + 1.
Atom–atom contact coverages (%) in I top
Atom contacts%Atom contacts%
H···F/F···H23.0F···Cl/Cl···F8.3
N···F/F···N7.3C···H/H···C7.1
H···Cl/Cl···H7.1H···N/N···H6.9
H···O/O···H5.9H···H4.8
C···F/F···C3.8C···Cl/Cl···C3.8
C···N/N···C3.4F···S/S···F3.0
S···Cl/Cl···S1.9Cl···Cl1.3
H···S/S···H1.3O···Cl/Cl···O1.2
C···C0.9O···N/N···O0.8
N···Cl/Cl···N0.7N···N0.3
O···F/F···O0.2C···S/S···C0.2
C···O/O···C0.1
All other atom–atom contact coverages are ~0.0 %
Some structures similar to I deposited in the CSD top
All entries have 2,6-dichloro-4-(trifluoromethyl)phenyl and cyano groups attached at the equivalent of N1 and C3 of I, respectively. Substituents R' and R¨ represent groups attached at the equivalent of C1 and C2 in I, respectively.
CSD codeR'R"Reference
DUKVAJNHCOCH2PhSOCF3Chen et al. (2020)
EFIXEZNHCOCHCHPhSOCF3Chen (2019)
PAZFAYNH2SCF3Tang, Zhong, Lin et al. (2005)
TOLFAENHCH2PhOMeSOCF3Chen & Wu (2019)
YEGJAYNH2SOCF3Park et al. (2017)
ZITNAUNHCHPhFSOCF3Chen et al. (2019)
GIXDATNH2ILi et al. (2007)
HILTUSNH2HLuo et al. (2007)
TIDNUPNH2CF3Hainzl & Casida (1996)
 

Acknowledgements

PP is grateful to the B. N. M. Institute of Technology for research facilities.

Funding information

HSY is grateful to UGC, New Delhi, for the award of BSR Faculty Fellowship for three years. Funding for this research was provided by: NSF (MRI CHE1625732) and the University of Kentucky (Bruker D8 Venture diffractometer).

References

First citationArthur, F. H. (2002). J. Econ. Entomol. 95, 1314–1318.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, L. (2019). CSD Communication (refcode EFIXEZ). CCDC, Cambridge, England.  Google Scholar
First citationChen, L., Tang, C., Long, Z. & Wu, Z. (2020). Z. Krist. New Cryst. Struct. 235 721–723.  CAS Google Scholar
First citationChen, L. & Wu, Z. (2019). Z. Krist. New Cryst. Struct. 234, 715–717.  CAS Google Scholar
First citationChen, L., Wu, Z., Du, Y., Huang, Y. & Jin, S. (2019). J. Mol. Struct. 1196, 555–566.  Web of Science CSD CrossRef CAS Google Scholar
First citationDu, Y., Zhou, Q., Huang, Y. & Chen, L. (2019). Z. Krist. New Cryst. Struct. 234, 665–667.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHainzl, D. & Casida, J. E. (1996). Proc. Nat. Acad. Sci. USA, 93, 12764–12767.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, S.-Y., Zhong, P. & Hu, M.-L. (2007). Z. Krist. New Cryst. Struct. 222, 423–424.  CAS Google Scholar
First citationLuo, Y., Zhong, P. & Hu, M. (2007). Acta Cryst. E63, o4077.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPark, H., Kim, J., Kwon, E. & Kim, T. H. (2017). Acta Cryst. E73, 1472–1474.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, R.-Y., Zhong, P., Li, S.-Y. & Hu, M.-L. (2005). Acta Cryst. E61, o1564–o1565.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, R.-Y., Zhong, P., Lin, Q.-L., Hu, M.-L. & Shi, Q. (2005). Acta Cryst. E61, o4374–o4375.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, T.-T. (1998). US Patent US5814652.  Google Scholar
First citationZhao, Q., Li, Y., Xiong, L. & Wang, Q. (2010). J. Agric. Food Chem. 58, 4992–4998.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds