research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of 2-chloro-1-(3-hy­dr­oxy­phen­yl)ethanone

crossmark logo

aDepartment of Chemistry, B. N. M. Institute of Technology, Bengaluru-560 070, India, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, cDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysore-570 005, India, dT. John Institute of Technology, Bengaluru-560 083, India, and eDepartment of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA
*Correspondence e-mail: yathirajan@hotmail.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 3 October 2022; accepted 7 October 2022; online 20 October 2022)

The structure of 2-chloro-1-(3-hy­droxy­phen­yl)ethanone, C8H7ClO2, an α-halo­ketone is described. The mol­ecule is planar (r.m.s. deviation = 0.0164 Å) and in the crystal, inversion-symmetric dimers are formed as a result of pairs of strong O—H⋯O and weak C—H⋯O hydrogen bonds. A brief comparison is made with structurally related compounds deposited in the CSD. In addition, the synthesis and some spectroscopic details are presented.

1. Chemical context

α-Haloketones have proven to be useful building blocks for the preparation of compounds of various classes because of their high reactivity and selective transformations with a variety of reagents (Erian et al., 2003[Erian, A. W., Sherif, S. M. & Gaber, H. M. (2003). Molecules, 8, 793-865.]). Chlorinated aceto­phenones are widely used in organic synthesis as inter­mediates for the manufacture of active pharmaceutical ingredients (Ott-Dombrowski et al., 2019[Ott-Dombrowski, S., Rüter, H. & Ulrich, R. (2019). European patent EP3498687A1.]). For example, 2-chloro-1-(4-hy­droxy­phen­yl)ethanone is a reagent that is used in the preparation of hy­droxy­pyrimidine derivatives for their HDAC (histone de­acetyl­ase) inhibitory activity (Kemp et al., 2011[Kemp, M. M., Wang, Q., Fuller, J. H., West, N., Martinez, N. M., Morse, E. M., Weïwer, M., Schreiber, S. L., Bradner, J. E. & Koehler, A. N. (2011). Bioorg. Med. Chem. Lett. 21, 4164-4169.]). In light of the importance of α-haloketones, this paper reports the synthesis, crystal structure, and some spectroscopic details for the title compound, C8H7O2Cl, (I).

[Scheme 1]

2. Structural commentary

The mol­ecule of I (Fig. 1[link]) is planar (r.m.s. deviation = 0.0164 Å), with the largest deviation being for Cl1, which is 0.0346 (5) Å from the mean plane through all non-H atoms due to the O2—C7—C8—Cl1 torsion angle of −2.07 (14)°. The hydroxyl hydrogen atom, H1O, which was refined freely, lies 0.045 (16) Å out of the mean plane, with a C2—C3—O1—H1O torsion angle of 1.8 (12)°, its position being mandated by inter­molecular hydrogen bonding (see section 3, Supra­molecular details). All bond lengths and angles fall within the expected ranges for organic structures.

[Figure 1]
Figure 1
An ellipsoid plot (50% probability) of I. Hydrogen atoms are drawn as small circles.

3. Supra­molecular features

The main supra­molecular feature is an inversion dimer resulting from a pair of symmetrically equivalent hydrogen bonds, O1—H1O⋯O2i and O1i—H1Oi⋯O2 [symmetry code: (i) −x + 1, −y + 1, −z + 1], giving an R22(14) motif. The cohesion of this dimer is augmented by a pair of weak hydrogen bonds, C2—H2⋯O2i and C2i—H2i⋯O2 (Table 1[link]). It also, however, brings inversion-related H2 atoms into unfavourably close proximity [H2⋯H2i = 2.22 (3) Å]. These inter­actions are all illustrated in Fig. 2[link]. Other noteworthy inter­molecular contacts are weak C8—H8⋯O1ii [symmetry code: (ii) −x + [{3\over 2}], y − [{1\over 2}], −z + [{3\over 2}]] inter­actions between 21 screw-related mol­ecules, which loosely connect the dimers into layers parallel to (10[\overline{1}]). Almost all of the atom–atom contact coverages qu­anti­fied in a Hirshfeld-surface analysis using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) involve hydrogen (H⋯H = 26.6%, H⋯O/O⋯H = 23.7%, H⋯Cl/Cl⋯H = 21.2%, H⋯C/C⋯H = 15.8%), with all other contact types being <5%. Further details are given in individual Hirshfeld-surface fingerprint plots (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O2i 0.803 (17) 2.004 (18) 2.8029 (12) 173.4 (16)
C2—H2⋯O2i 0.945 (15) 2.547 (15) 3.2633 (14) 132.7 (11)
C8—H8A⋯O1ii 0.99 2.36 3.3485 (14) 176
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
A partial packing plot showing the main supra­molecular motif in I: a hydrogen-bonded dimer between inversion-related [symmetry code: (i) −x + 1, −y + 1, −z + 1] mol­ecules. Strong O—H⋯O hydrogen bonds are shown as thick dashed lines, weaker C—H⋯O inter­actions as open dashed lines, and an unfavourable, forced close contact between hydrogen atoms as a dotted line.
[Figure 3]
Figure 3
Hirshfeld surface fingerprint plots showing the relative contributions of various atom–atom contacts in the packing of I. (a) All contacts, (b) H⋯H (26.6%), (c) H⋯O/O⋯H (23.7%), (d) H⋯Cl/Cl⋯H (21.2%), (e) H⋯C/C⋯H (15.7%), (f) C⋯Cl/Cl⋯C (4.5%), (g) C⋯O/O⋯C (3.6%), (h) C⋯C (3.0%), (i) O⋯O (1.2%). All other contact types are <1%.

4. Database survey

A search of the Cambridge Structure Database (v5.43 with updates as of June 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for a search fragment consisting of the structure of I but with the OH and Cl groups replaced by `any non-H' gave 71 hits. If the Cl site is specified as `any halogen', there are just four hits, only three of which are unique, and all have Br as the halogen. Structure AWOCAS (Aldeborgh et al., 2014[Aldeborgh, H., George, K., Howe, M., Lowman, H., Moustakas, H., Strunsky, N. & Tanski, J. M. (2014). J. Chem. Crystallogr. 44, 70-81.]) is chemically a Br analogue of I, but its crystal structure is quite different (triclinic P[\overline{1}] vs P21/n for I). QAJNAS (Jasinski et al., 2011[Jasinski, J. P., Butcher, R. J., Praveen, A. S., Yathirajan, H. S. & Narayana, B. (2011). Acta Cryst. E67, o29-o30.]) [and QAJNAS01 (Mounir et al., 2013[Mounir, F., Gandour, R. D. & Fronczek, F. (2013). CSD Communication (refcode QAJNAS01). CCDC, Cambridge, England.])] has NO2 in place of the hydroxyl. Lastly, MEXCOJ (Ambekar et al., 2013[Ambekar, S. P., Devarajegowda, H. C., ShylajaKumari, J., Kumar, K. M. & Kotresh, O. (2013). Acta Cryst. E69, o322.]) has OC=OPh in place of the OH in I. Other similar structures in the literature include: LEFNAN (Fun et al., 2012[Fun, H.-K., Quah, C. K., Shetty, D. N., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2424.]), which is the 4-hy­droxy­phenyl analogue of I and crystallizes with the symmetry of P21/c; FUHHOG (Qing & Zhang, 2009[Qing, W.-X. & Zhang, W. (2009). Acta Cryst. E65, o2837.]), which is the bromo analogue of LEFNAN; and CUYDOR (Mei et al., 2015[Mei, Q., Liu, H. & Han, B. (2015). CSD Communication (refcode CUYDOR). CCDC, Cambridge, England.]), which has 4-fluoro­phenyl in place of the halogen of LEFNAN and FUHHOG.

5. Synthesis, crystallization and spectroscopic details

Synthesis and crystallization: For the synthesis of I, sulfuryl chloride (150 mg, 1.1 mmol) was added dropwise to a stirred mixture of 3-hy­droxy­aceto­phenone (100 mg, 0.74 mmol) in 5 ml of methanol and 10 ml of ethyl acetate/di­chloro­methane at 293–303 K. After completion of the addition, it was allowed to return to RT with stirring for 1 h. The reaction was monitored by TLC. Then the solvent was removed under reduced pressure by rotary evaporation to give the desired product in 95% yield. An overall reaction scheme is depicted in Fig. 4[link]. X-ray quality crystals were obtained by crystallization from ethanol (m.p. 352–354 K).

[Figure 4]
Figure 4
The overall reaction scheme for the synthesis of I.

Spectroscopic data: Infrared and NMR spectroscopic details are as follows.

FTIR (γ in cm−1): 3400 (Ar—OH, broad), 2987 (C—H stretching), 1694 (C=C stretching), 1789 (s, C=O stretching), 832 (s, Ar-C—H bending).

1H NMR: CDCl3 (400 MHz, δ ppm): 4.7 (s, 2H, –CH2), 5.671 (s, 1H, –OH), 7.14 (d, 1H, Ar—H, J = 4.8 Hz), 7.36–7.4 (t, 2H, Ar—H, J = 16 Hz), 7.493–7.51 (m, 1H, Ar—H, J = 6.4 Hz).

6. Refinement

Crystal data, data collection, and structure refinement details are given in Table 2[link]. All hydrogen atoms were found in difference-Fourier maps, but subsequently, the carbon-bound hydrogens were included using riding models, with constrained distances set to 0.95 Å (Csp2—H) and 0.99 Å (R2CH2). The hydroxyl hydrogen atom coordinates were refined freely. In all cases, Uiso(H) values were set to 1.2Ueq of the attached atom.

Table 2
Experimental details

Crystal data
Chemical formula C8H7ClO2
Mr 170.59
Crystal system, space group Monoclinic, P21/n
Temperature (K) 90
a, b, c (Å) 4.9172 (2), 12.7016 (4), 11.8573 (3)
β (°) 96.294 (1)
V3) 736.10 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.46
Crystal size (mm) 0.25 × 0.22 × 0.19
 
Data collection
Diffractometer Bruker D8 Venture dual source
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.855, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 12264, 1685, 1569
Rint 0.028
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.067, 1.04
No. of reflections 1685
No. of parameters 106
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.18
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL and SHELX (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: APEX3 (Bruker, 2016); data reduction: APEX3 (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELX (Sheldrick, 2008) and publCIF (Westrip, 2010).

2-Chloro-1-(3-hydroxyphenyl)ethanone top
Crystal data top
C8H7ClO2F(000) = 352
Mr = 170.59Dx = 1.539 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 4.9172 (2) ÅCell parameters from 9994 reflections
b = 12.7016 (4) Åθ = 2.4–27.5°
c = 11.8573 (3) ŵ = 0.46 mm1
β = 96.294 (1)°T = 90 K
V = 736.10 (4) Å3Cut block, colourless
Z = 40.25 × 0.22 × 0.19 mm
Data collection top
Bruker D8 Venture dual source
diffractometer
1685 independent reflections
Radiation source: microsource1569 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.028
φ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 66
Tmin = 0.855, Tmax = 0.971k = 1516
12264 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: mixed
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0323P)2 + 0.366P]
where P = (Fo2 + 2Fc2)/3
1685 reflections(Δ/σ)max < 0.001
106 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.05641 (18)0.59830 (6)0.66167 (7)0.01786 (19)
H1O0.938 (3)0.6217 (12)0.6166 (14)0.021*
O20.38728 (17)0.32908 (6)0.48648 (7)0.01810 (19)
Cl10.22134 (5)0.10971 (2)0.48449 (2)0.01719 (10)
C10.7757 (2)0.33060 (8)0.62318 (9)0.0131 (2)
C20.8093 (2)0.43878 (9)0.60814 (9)0.0140 (2)
H20.686 (3)0.4757 (12)0.5553 (12)0.017*
C31.0190 (2)0.49212 (9)0.67174 (9)0.0139 (2)
C41.1997 (2)0.43790 (9)0.74969 (9)0.0151 (2)
H41.3450370.4742170.7925910.018*
C51.1662 (2)0.33023 (9)0.76434 (9)0.0157 (2)
H51.2895110.2932350.8175240.019*
C60.9546 (2)0.27607 (9)0.70220 (9)0.0147 (2)
H60.9318880.2026680.7133510.018*
C70.5426 (2)0.27915 (8)0.55286 (9)0.0133 (2)
C80.5108 (2)0.16148 (9)0.56861 (10)0.0148 (2)
H8A0.4937300.1467170.6495170.018*
H8B0.6773070.1254260.5484760.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0212 (4)0.0116 (4)0.0191 (4)0.0027 (3)0.0048 (3)0.0006 (3)
O20.0185 (4)0.0146 (4)0.0198 (4)0.0007 (3)0.0042 (3)0.0025 (3)
Cl10.01466 (15)0.01477 (15)0.02144 (16)0.00314 (9)0.00114 (11)0.00204 (10)
C10.0128 (5)0.0128 (5)0.0137 (5)0.0003 (4)0.0021 (4)0.0010 (4)
C20.0143 (5)0.0132 (5)0.0141 (5)0.0006 (4)0.0001 (4)0.0008 (4)
C30.0160 (5)0.0120 (5)0.0141 (5)0.0006 (4)0.0030 (4)0.0012 (4)
C40.0142 (5)0.0162 (5)0.0146 (5)0.0004 (4)0.0004 (4)0.0032 (4)
C50.0159 (5)0.0157 (5)0.0150 (5)0.0033 (4)0.0006 (4)0.0001 (4)
C60.0161 (5)0.0121 (5)0.0159 (5)0.0010 (4)0.0020 (4)0.0000 (4)
C70.0136 (5)0.0129 (5)0.0138 (5)0.0000 (4)0.0029 (4)0.0006 (4)
C80.0125 (5)0.0126 (5)0.0184 (5)0.0011 (4)0.0020 (4)0.0005 (4)
Geometric parameters (Å, º) top
O1—C31.3682 (13)C3—C41.3922 (16)
O1—H1O0.803 (17)C4—C51.3906 (16)
O2—C71.2138 (14)C4—H40.9500
Cl1—C81.7725 (11)C5—C61.3892 (16)
C1—C61.3967 (15)C5—H50.9500
C1—C21.3978 (15)C6—H60.9500
C1—C71.4921 (15)C7—C81.5164 (15)
C2—C31.3857 (15)C8—H8A0.9900
C2—H20.945 (15)C8—H8B0.9900
C3—O1—H1O109.2 (11)C6—C5—H5119.6
C6—C1—C2119.91 (10)C4—C5—H5119.6
C6—C1—C7123.12 (10)C5—C6—C1119.35 (10)
C2—C1—C7116.97 (10)C5—C6—H6120.3
C3—C2—C1120.16 (10)C1—C6—H6120.3
C3—C2—H2120.1 (9)O2—C7—C1121.59 (10)
C1—C2—H2119.7 (9)O2—C7—C8121.91 (10)
O1—C3—C2122.25 (10)C1—C7—C8116.50 (9)
O1—C3—C4117.6 (1)C7—C8—Cl1112.57 (8)
C2—C3—C4120.15 (10)C7—C8—H8A109.1
C5—C4—C3119.57 (10)Cl1—C8—H8A109.1
C5—C4—H4120.2C7—C8—H8B109.1
C3—C4—H4120.2Cl1—C8—H8B109.1
C6—C5—C4120.86 (10)H8A—C8—H8B107.8
C6—C1—C2—C30.24 (16)C2—C1—C6—C50.61 (16)
C7—C1—C2—C3179.06 (10)C7—C1—C6—C5179.86 (10)
C1—C2—C3—O1178.62 (10)C6—C1—C7—O2178.50 (11)
C1—C2—C3—C40.97 (16)C2—C1—C7—O20.77 (15)
O1—C3—C4—C5178.75 (10)C6—C1—C7—C81.61 (15)
C2—C3—C4—C50.85 (16)C2—C1—C7—C8179.11 (9)
C3—C4—C5—C60.00 (17)O2—C7—C8—Cl12.07 (14)
C4—C5—C6—C10.73 (17)C1—C7—C8—Cl1178.05 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.803 (17)2.004 (18)2.8029 (12)173.4 (16)
C2—H2···O2i0.945 (15)2.547 (15)3.2633 (14)132.7 (11)
C8—H8A···O1ii0.992.363.3485 (14)176
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z+3/2.
 

Acknowledgements

PP is grateful to the B. N. M. Institute of Technology, Bengaluru for research facilities.

Funding information

HSY is grateful to UGC, New Delhi for a BSR Faculty Fellowship for three years. Funding for this research was provided by: NSF (MRI CHE1625732) and the University of Kentucky (Bruker D8 Venture diffractometer).

References

First citationAldeborgh, H., George, K., Howe, M., Lowman, H., Moustakas, H., Strunsky, N. & Tanski, J. M. (2014). J. Chem. Crystallogr. 44, 70–81.  Web of Science CSD CrossRef CAS Google Scholar
First citationAmbekar, S. P., Devarajegowda, H. C., ShylajaKumari, J., Kumar, K. M. & Kotresh, O. (2013). Acta Cryst. E69, o322.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationErian, A. W., Sherif, S. M. & Gaber, H. M. (2003). Molecules, 8, 793–865.  Web of Science CrossRef CAS Google Scholar
First citationFun, H.-K., Quah, C. K., Shetty, D. N., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2424.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Praveen, A. S., Yathirajan, H. S. & Narayana, B. (2011). Acta Cryst. E67, o29–o30.  CSD CrossRef IUCr Journals Google Scholar
First citationKemp, M. M., Wang, Q., Fuller, J. H., West, N., Martinez, N. M., Morse, E. M., Weïwer, M., Schreiber, S. L., Bradner, J. E. & Koehler, A. N. (2011). Bioorg. Med. Chem. Lett. 21, 4164–4169.  CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMei, Q., Liu, H. & Han, B. (2015). CSD Communication (refcode CUYDOR). CCDC, Cambridge, England.  Google Scholar
First citationMounir, F., Gandour, R. D. & Fronczek, F. (2013). CSD Communication (refcode QAJNAS01). CCDC, Cambridge, England.  Google Scholar
First citationOtt-Dombrowski, S., Rüter, H. & Ulrich, R. (2019). European patent EP3498687A1.  Google Scholar
First citationQing, W.-X. & Zhang, W. (2009). Acta Cryst. E65, o2837.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds