research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of catena-poly[[bis­­(semicarbazide-κ2N,O)copper(II)]-μ-sulfato-κ2O:O′]

crossmark logo

aInstitute of General and Inorganic Chemistry of the Uzbekistan Academy of Sciences, M. Ulugbek Str. 77a, Tashkent 700125, Uzbekistan, and bInstitute of Bioorganic Chemistry Academy of Sciences of Uzbekistan, M. Ulugbek Str. 83, Tashkent 700125, Uzbekistan
*Correspondence e-mail: atom.uz@mail.ru

Edited by M. Weil, Vienna University of Technology, Austria (Received 21 September 2022; accepted 15 October 2022; online 20 October 2022)

The title polymer, [Cu(SO4)(CH5N3O)2]n, has been synthesized from aqueous solutions of CuSO4 and semicarbazide. In the crystal structure, the CuII atoms are chelated by two neutral semicarbazide mol­ecules through the oxygen atom and a nitro­gen atom of the amino group. The remaining two positions of the Jahn–Teller-distorted octa­hedral coordination sphere are occupied by oxygen atoms of two sulfate anions in the axial positions. The coordination bonds of the latter associate the polyhedra into polymeric chains running parallel to the c axis. There is a weak intra­molecular hydrogen bond between the N—H group and an oxygen atom of the SO42– anion. Thirteen relatively weak inter­molecular hydrogen-bonding inter­actions link the chains into a three-dimensional network. Hirshfeld surface analysis revealed that 64.7% of the inter­molecular inter­actions are from O⋯H/H⋯O contacts and 20.1% from H⋯H contacts. Other inter­actions such as N⋯H/H⋯N or C⋯H/H⋯C contribute less to the crystal packing.

1. Chemical context

Semicarbazide (SEC), a water-soluble white solid, is a deriv­ative of urea with formula O=C(NH2)(N2H3). It is used in the preparation of pharmaceuticals including nitro­furan anti­bacterials (furazolidone, nitro­furazone, nitro­furan­toin) and related compounds (Vass et al., 2008[Vass, M., Hruska, K. & Franek, M. (2008). Vet. Med. (Praha), 53, 469-500.]). Originally, SEC was primarily detected as a nitro­furazone veterinary metabolite, but over time it was found that azodicarbonamide and flour stored in sealed cans could lead to the formation of SEC as well (Tian et al., 2014[Tian, W.-R., Sang, Y.-X. & Wang, X.-H. (2014). Food Addit. Contam., Part A, 31, 1850-1860.]). Therefore, the toxicity of SEC as a food contaminant is of crucial inter­est. SEC hydro­chloride has an oral LD50 of 225 mg kg−1 in mice and 123 mg kg−1 in the rat. Some studies suggest that SEC hydro­chloride is a mutagen, an animal carcinogen and a teratogen. As a result of the lack of data in humans and an overall limited evidence of carcinogenicity in animals, SEC was classified by the Inter­national Agency for Research on Cancer as a Group 3 agent, i.e. not classifiable as to its carcinogenicity to humans (Takahashi et al., 2014[Takahashi, M., Yoshida, M., Inoue, K., Morikawa, T., Nishikawa, A. & Ogawa, K. (2014). Food Chem. Toxicol. 73, 84-94.]). However, SEC products (semicarbazones and thiosemicarbazones) are known to have anti­viral, anti-infective and anti­neoplastic activities through binding to copper or iron in cells (Becalski et al., 2004[Becalski, A., Lau, B. P.-Y., Lewis, D. & Seaman, S. W. (2004). J. Agric. Food Chem. 52, 5730-5734.]; Tian et al., 2014[Tian, W.-R., Sang, Y.-X. & Wang, X.-H. (2014). Food Addit. Contam., Part A, 31, 1850-1860.]). It is well known that the biopharmaceutical properties of active pharmaceutical ingredients may be improved by metal complex formation (Khudoyberganov et al., 2022[Khudoyberganov, O. I., Ruzmetov, A., Ibragimov, A. B., Ashurov, J. M., Khasanov, S. B., Eshchanov, E. U. & Ibragimov, B. T. (2022). Chem. Data Collect. 37, 100802.]; Ruzmetov et al., 2022a[Ruzmetov, A., Ibragimov, A., Ashurov, J., Boltaeva, Z., Ibragimov, B. & Usmanov, S. (2022a). Acta Cryst. E78, 660-664.],b[Ruzmetov, A. K., Ibragimov, A. B., Myachina, O. V., Kim, R. N., Mamasalieva, L. E., Ashurov, J. M. & Ibragimov, B. T. (2022b). Chem. Data Collect. 38, 100845.]). In turn, this phenomenon may lead to a reduction in the toxicity of haza­rdous organic substances in coordination compounds (Egorova & Ananikov, 2017[Egorova, K. S. & Ananikov, V. P. (2017). Organometallics, 36, 4071-4090.]; Flora & Pachauri et al., 2010[Flora, S. J. S. & Pachauri, V. (2010). Int. J. Environ. Res. Public Health, 7, 2745-2788.]; Ahmed et al., 2020[Ahmed, S. A., Hasan, M. N., Bagchi, D., Altass, H. M., Morad, M., Jassas, R. S., Hameed, A. M., Patwari, J., Alessa, H., Alharbi, A. & Pal, S. K. (2020). ACS Omega, 5, 15666-15672.]). Therefore, it is of great inter­est to study the metal complex formation of SEC. In this context, we report here the synthesis, crystal structure and Hirshfeld surface analysis of a new copper complex of SEC with sulfate anions as co-ligands, [Cu(CH5N3O)2(SO4)]n.

[Scheme 1]

2. Structural commentary

The expanded asymmetric unit of the title polymer is shown in Fig. 1[link]. The CuII atom is chelated by two SEC mol­ecules through the oxygen atoms (O1 and O2) and the nitro­gen atoms (N1 and N4) of NH2 groups, leading to a slightly distorted square-planar coordination environment with bond lengths in the range between 1.9218 (17) and 2.015 (2) Å and bond angles between 81.50 (7) and 101.89 (8)°. Two remote oxygen atoms, O6 and O3i, of two SO42– anions augment the coordination sphere (Table 1[link]). As a result of the Jahn–Teller effect, a substantial elongation of the two axial Cu—O bonds is observed and the coordination sphere around CuII becomes a distinctly distorted octa­hedron.

Table 1
Selected bond lengths (Å)

Cu1—O1 1.9549 (17) Cu1—N4 2.015 (2)
Cu1—O2 1.9218 (17) Cu1—O6 2.3776 (18)
Cu1—N1 1.9769 (19) Cu1—O3i 2.6947 (19)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The expanded asymmetric part of the title compound [Cu(SEC)2(SO4)]n with the atom-numbering scheme. The intra­molecular hydrogen bond is indicated by a dashed line. Displacement ellipsoids are plotted at the 50% probability level. [Symmetry codes: (i) x, −y + [{1\over 2}], z - 1/2; (ii) x, −y + [{1\over 2}], z + [{1\over 2}]].

Coordination bonds involving the SO42– ligands associate individual polyhedra into polymeric chains running parallel to the c axis (Fig. 2[link]). A weak intra­molecular hydrogen bond between N4—H4 and oxygen atom O4 of the SO4 anion (Table 2[link]), enclosing a six-membered ring with graph-set notation S11(6) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]), consolidates the conformation (Fig. 1[link]). The lengths of the S—O bonds are very similar, showing a distribution between 1.4702 (17) and 1.4769 (17) Å, in very good agreement with the mean value of 1.473 Å for S—O bonds (Gagné & Hawthorne, 2018[Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63-78.]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.89 2.06 2.928 (3) 164
N1—H1B⋯O4ii 0.89 2.43 3.302 (3) 167
N1—H1B⋯O5ii 0.89 2.24 2.871 (3) 128
N2—H2⋯O5iii 0.86 1.97 2.751 (3) 151
N3—H3A⋯O3iv 0.86 2.20 2.985 (3) 152
N3—H3B⋯O1v 0.86 2.59 3.036 (3) 113
N4—H4A⋯O4 0.89 2.47 3.125 (3) 131
N4—H4A⋯O5ii 0.89 2.57 3.097 (3) 119
N4—H4B⋯O5i 0.89 2.49 3.309 (3) 152
N5—H5⋯O6vi 0.86 2.59 3.228 (3) 132
N5—H5⋯O4vii 0.86 2.39 2.954 (3) 123
N6—H6A⋯O1viii 0.86 2.51 3.123 (3) 129
N6—H6A⋯O2viii 0.86 2.17 2.971 (3) 154
N6—H6A⋯O6vi 0.86 2.03 2.845 (3) 157
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, -y+1, -z+1]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+1, -y+1, -z+1]; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [x, y-1, z]; (vii) [-x, -y, -z+1]; (viii) [-x+1, -y, -z+1].
[Figure 2]
Figure 2
The formation of polymeric chains. Intra­molecular hydrogen bonds are indicated by dotted lines.

3. Supra­molecular features

For hydrogen-bonding inter­actions, there are six proton acceptor and ten proton donor functionalities, forming a complex system of 13 inter­molecular hydrogen bonds (Table 2[link]). Within this network, bifurcated hydrogen bonds involving hydrogen atoms H4A, H5 and H6A are noted. Each of the atoms O4 and O5 is an acceptor for four hydrogen bonds whereas atoms O1 and O6 are hydrogen-bonded to two hydrogen atoms, and O2 and O3 to one hydrogen atom each. The hydrogen bonds form numerous different associates with various dimensions, e.g. there are many rings with graph-set notations ranging from R11(n) to R66(n). The hydrogen bonds indicated in Table 2[link] link the polymeric chains into a three-dimensional network (Fig. 3[link]).

[Figure 3]
Figure 3
The crystal structure of the title compound. Inter­molecular hydrogen bonds are indicated by dashed lines.

4. Hirshfeld surface analysis

Hirshfeld surfaces were calculated and two-dimensional fingerprints generated using CrystalExplorer2021 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Fig. 4[link] shows the Hirshfeld surface of the title compound with dnorm (normalized contact distance) plotted over the range −0.5974 to 1.0842 a.u. The inter­actions given in Table 2[link] play a key role in the mol­ecular packing of the complex, and nearly two thirds (or 64.7%) of inter­molecular inter­actions correspond to O⋯H/H⋯O contacts The overall two-dimensional fingerprint plot and those delineated into O⋯H/H⋯O, H⋯H, N⋯H/H⋯N, C⋯H/H⋯C and Cu⋯O/O⋯C inter­actions are shown in Fig. 5[link]. The 2.5% contribution of the Cu⋯O/O⋯Cu contact is explained by the existence of the very long Cu—O3 bond, which is considered by CrystalExplorer to be an inter­molecular contact.

[Figure 4]
Figure 4
View of the Hirshfeld surface plotted over dnorm.
[Figure 5]
Figure 5
The full two-dimensional fingerprint plot of [Cu(SEC)2(SO4)]n showing all inter­actions and those delineated into O⋯H/H⋯O, H⋯H, N⋯H/H⋯N, C⋯H/H⋯C and C⋯O/O⋯C inter­actions. The di and de values are the closest inter­nal and external distances (Å) from given points on the Hirshfeld surface.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, update of November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for semicarbazide metal complexes gave 45 hits. In all entries, neutral semicarbazide mol­ecules coordinate in a chelating fashion enclosing five-membered rings with exception of the Pd complex NAZYES (Bergs et al., 1997[Bergs, R., Sünkel, K., Robl, C. & Beck, W. (1997). J. Organomet. Chem. 533, 247-255.]) where a single semicarbazide mol­ecule coordinates monodentately through an NH2 group. In 21 mixed-ligand complexes, chloride ions serve as co-ligands except in the structure with refcode SEGWAC (Chuklanova et al., 1988[Chuklanova, E. B., Toktomamatov, A., Murzubraimov, B. & Gusev, A. I. (1988). Russ. J. Coord. Chem. 14, 519-522.]) where all four ligand positions of the ZnII atom are occupied by Cl ligands and protonated semicarbazide mol­ecules present as non-coord­inating mol­ecules. Chloride anions likewise are non-coord­inating in four cases, and NO3 anions in five structures. Water mol­ecules of crystallization are encountered in 13 complexes. There is only one coordination polymer among the identified compounds, SCACCU10 (Chiesi Villa et al., 1971[Chiesi Villa, A., Gaetani Manfredotti, A., Nardelli, M. & Pelizzi, G. (1971). J. Cryst. Mol. Struct. 1, 245-251.]). The coordination polyhedron of most of the metal complexes is an octa­hedron while a tetra­hedron is revealed in six cases and penta-coord­ination is found in three structures. Inclusion of the SO42− anion into the coordination sphere of the central metal cation is reported only for the title compound.

6. Synthesis and crystallization

0.02 g (0.2 mol) of semicarbazide hydro­chloride, 0.022 g (0.09 mol) of copper sulfate and 0.0054 g (0.09 mol) of mono­ethano­lamine were dissolved separately in 1 ml of water at room temperature. The three solutions were mixed and left in a thermostat at 298 K. After two days, blue crystals started to precipitate. The crystals were filtered off, washed with ethanol and dried.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. N-bound hydrogen atoms were placed in calculated positions and refined in the riding-model approximation with Uiso(H) = 1.2Ueq(N), N—H = 0.89 Å for the N1 and N4 nitro­gen atoms and N—H = 0.86 for the remaining nitro­gen atoms.

Table 3
Experimental details

Crystal data
Chemical formula [Cu(SO4)(CH5N3O)2]
Mr 309.76
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 10.5555 (2), 6.8624 (1), 12.9061 (2)
β (°) 97.265 (2)
V3) 927.36 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 5.82
Crystal size (mm) 0.18 × 0.16 × 0.14
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku, 2020[Rigaku (2020). CrysAlis PRO. Rigaku Corporation, Wroclaw, Poland.])
Tmin, Tmax 0.084, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8102, 1785, 1656
Rint 0.037
(sin θ/λ)max−1) 0.613
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.080, 1.07
No. of reflections 1785
No. of parameters 146
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.42
Computer programs: CrysAlis PRO (Rigaku, 2020[Rigaku (2020). CrysAlis PRO. Rigaku Corporation, Wroclaw, Poland.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku, 2020); cell refinement: CrysAlis PRO (Rigaku, 2020); data reduction: CrysAlis PRO (Rigaku, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

catena-Poly[[bis(semicarbazide-κ2N,O)copper(II)]-µ-sulfato-κ2O:O'] top
Crystal data top
[Cu(SO4)(CH5N3O)2]F(000) = 628
Mr = 309.76Dx = 2.219 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 10.5555 (2) ÅCell parameters from 4840 reflections
b = 6.8624 (1) Åθ = 3.5–70.8°
c = 12.9061 (2) ŵ = 5.82 mm1
β = 97.265 (2)°T = 293 K
V = 927.36 (3) Å3Block, light blue
Z = 40.18 × 0.16 × 0.14 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
1785 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1656 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.037
Detector resolution: 10.0000 pixels mm-1θmax = 71.1°, θmin = 4.2°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlisPro; Rigaku, 2020)
k = 86
Tmin = 0.084, Tmax = 1.000l = 1515
8102 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0437P)2 + 0.5652P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.32 e Å3
1785 reflectionsΔρmin = 0.41 e Å3
146 parametersExtinction correction: SHELXL-2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0019 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.25619 (3)0.28648 (5)0.38274 (3)0.02624 (15)
S10.15524 (5)0.43123 (8)0.62353 (4)0.02198 (17)
O10.40378 (15)0.4485 (2)0.36355 (13)0.0265 (4)
O20.36126 (16)0.0997 (2)0.46464 (15)0.0320 (4)
O40.06548 (18)0.2652 (3)0.61509 (14)0.0327 (4)
O30.26979 (17)0.3862 (3)0.69698 (15)0.0390 (5)
N10.16194 (18)0.4839 (3)0.29178 (15)0.0240 (4)
H1A0.1294860.4304440.2313760.029*
H1B0.0981810.5330340.3225570.029*
N40.11789 (19)0.0915 (3)0.40077 (17)0.0284 (4)
H4A0.0577850.1460070.4337870.034*
H4B0.0818600.0490580.3388150.034*
N50.1763 (2)0.0647 (3)0.46025 (18)0.0311 (5)
H50.1328730.1614480.4791560.037*
N20.2496 (2)0.6315 (3)0.27463 (18)0.0333 (5)
H20.2255890.7365810.2415050.040*
N60.3650 (2)0.2015 (3)0.53428 (18)0.0318 (5)
H6A0.4460890.1948300.5524410.038*
H6B0.3237730.3046310.5478140.038*
N30.4573 (2)0.7341 (3)0.29420 (19)0.0369 (5)
H3A0.5365650.7180130.3176420.044*
H3B0.4333120.8369570.2589680.044*
C10.3723 (2)0.6007 (3)0.31234 (18)0.0238 (5)
C20.3037 (2)0.0535 (3)0.48563 (18)0.0240 (5)
O50.09208 (18)0.6011 (3)0.66402 (17)0.0407 (5)
O60.19228 (18)0.4786 (3)0.52040 (13)0.0333 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0189 (2)0.0213 (2)0.0375 (2)0.00162 (12)0.00018 (15)0.00774 (14)
S10.0190 (3)0.0238 (3)0.0234 (3)0.0045 (2)0.0034 (2)0.0019 (2)
O10.0184 (8)0.0231 (8)0.0378 (9)0.0007 (6)0.0025 (7)0.0065 (7)
O20.0225 (9)0.0225 (8)0.0491 (11)0.0053 (7)0.0035 (8)0.0109 (8)
O40.0322 (10)0.0292 (9)0.0356 (10)0.0134 (7)0.0001 (8)0.0053 (7)
O30.0233 (9)0.0524 (12)0.0391 (10)0.0035 (8)0.0043 (8)0.0060 (9)
N10.0187 (10)0.0263 (10)0.0271 (10)0.0015 (8)0.0036 (8)0.0003 (8)
N40.0196 (10)0.0276 (10)0.0374 (11)0.0021 (8)0.0007 (8)0.0011 (9)
N50.0251 (11)0.0225 (9)0.0453 (12)0.0067 (8)0.0030 (9)0.0045 (9)
N20.0246 (11)0.0277 (11)0.0468 (13)0.0013 (8)0.0014 (9)0.0164 (10)
N60.0282 (12)0.0234 (10)0.0432 (13)0.0014 (8)0.0016 (9)0.0102 (9)
N30.0319 (13)0.0342 (12)0.0446 (13)0.0088 (9)0.0050 (10)0.0145 (10)
C10.0240 (12)0.0231 (11)0.0256 (11)0.0011 (9)0.0086 (9)0.0000 (9)
C20.0250 (12)0.0212 (11)0.0262 (11)0.0032 (9)0.0040 (9)0.0011 (9)
O50.0284 (10)0.0392 (10)0.0548 (12)0.0009 (8)0.0065 (9)0.0220 (9)
O60.0425 (11)0.0316 (9)0.0276 (9)0.0112 (8)0.0115 (8)0.0017 (7)
Geometric parameters (Å, º) top
Cu1—O11.9549 (17)N1—N21.408 (3)
Cu1—O21.9218 (17)N4—H4A0.8900
Cu1—N11.9769 (19)N4—H4B0.8900
Cu1—N42.015 (2)N4—N51.414 (3)
Cu1—O62.3776 (18)N5—H50.8600
Cu1—O3i2.6947 (19)N5—C21.345 (3)
S1—O41.4769 (17)N2—H20.8600
S1—O31.4719 (18)N2—C11.341 (3)
S1—O51.4714 (19)N6—H6A0.8600
S1—O61.4702 (17)N6—H6B0.8600
O1—C11.258 (3)N6—C21.320 (3)
O2—C21.261 (3)N3—H3A0.8600
N1—H1A0.8900N3—H3B0.8600
N1—H1B0.8900N3—C11.324 (3)
O1—Cu1—N183.36 (7)N2—N1—H1A110.3
O1—Cu1—N4173.06 (8)N2—N1—H1B110.3
O1—Cu1—O694.90 (7)Cu1—N4—H4A110.3
O2—Cu1—O192.02 (7)Cu1—N4—H4B110.3
O2—Cu1—N1174.70 (8)H4A—N4—H4B108.6
O2—Cu1—N482.52 (8)N5—N4—Cu1107.04 (14)
O2—Cu1—O699.05 (7)N5—N4—H4A110.3
N1—Cu1—N4101.89 (8)N5—N4—H4B110.3
N1—Cu1—O683.95 (7)N4—N5—H5121.8
N4—Cu1—O690.21 (8)C2—N5—N4116.32 (19)
O2—Cu1—O3i96.00 (7)C2—N5—H5121.8
O1—Cu1—O3i90.24 (7)N1—N2—H2121.5
N1—Cu1—O3i81.50 (7)C1—N2—N1116.94 (19)
N4—Cu1—O3i86.13 (9)C1—N2—H2121.5
O6—Cu1—O3i163.90 (6)H6A—N6—H6B120.0
O3—S1—O4110.64 (11)C2—N6—H6A120.0
O5—S1—O4108.79 (11)C2—N6—H6B120.0
O5—S1—O3108.05 (12)H3A—N3—H3B120.0
O6—S1—O4110.20 (10)C1—N3—H3A120.0
O6—S1—O3109.80 (11)C1—N3—H3B120.0
O6—S1—O5109.31 (12)O1—C1—N2120.0 (2)
C1—O1—Cu1112.13 (15)O1—C1—N3121.8 (2)
C2—O2—Cu1114.46 (15)N3—C1—N2118.2 (2)
Cu1—N1—H1A110.3O2—C2—N5119.3 (2)
Cu1—N1—H1B110.3O2—C2—N6121.6 (2)
H1A—N1—H1B108.5N6—C2—N5119.1 (2)
N2—N1—Cu1107.15 (14)S1—O6—Cu1133.39 (11)
Cu1—O1—C1—N22.6 (3)O3—S1—O6—Cu176.86 (17)
Cu1—O1—C1—N3177.26 (19)N1—N2—C1—O12.4 (3)
Cu1—O2—C2—N57.0 (3)N1—N2—C1—N3177.7 (2)
Cu1—O2—C2—N6174.70 (19)N4—N5—C2—O26.7 (3)
Cu1—N1—N2—C15.9 (3)N4—N5—C2—N6175.0 (2)
Cu1—N4—N5—C22.9 (2)O5—S1—O6—Cu1164.78 (14)
O4—S1—O6—Cu145.26 (18)
Symmetry code: (i) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.892.062.928 (3)164
N1—H1B···O4ii0.892.433.302 (3)167
N1—H1B···O5ii0.892.242.871 (3)128
N2—H2···O5iii0.861.972.751 (3)151
N3—H3A···O3iv0.862.202.985 (3)152
N3—H3B···O1v0.862.593.036 (3)113
N4—H4A···O40.892.473.125 (3)131
N4—H4A···O5ii0.892.573.097 (3)119
N4—H4B···O5i0.892.493.309 (3)152
N5—H5···O6vi0.862.593.228 (3)132
N5—H5···O4vii0.862.392.954 (3)123
N6—H6A···O1viii0.862.513.123 (3)129
N6—H6A···O2viii0.862.172.971 (3)154
N6—H6A···O6vi0.862.032.845 (3)157
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z+1; (iii) x, y+3/2, z1/2; (iv) x+1, y+1, z+1; (v) x+1, y+1/2, z+1/2; (vi) x, y1, z; (vii) x, y, z+1; (viii) x+1, y, z+1.
 

Funding information

The authors would like to thank the Uzbekistan government for direct financial support of this research.

References

First citationAhmed, S. A., Hasan, M. N., Bagchi, D., Altass, H. M., Morad, M., Jassas, R. S., Hameed, A. M., Patwari, J., Alessa, H., Alharbi, A. & Pal, S. K. (2020). ACS Omega, 5, 15666–15672.  CrossRef CAS PubMed Google Scholar
First citationBecalski, A., Lau, B. P.-Y., Lewis, D. & Seaman, S. W. (2004). J. Agric. Food Chem. 52, 5730–5734.  CrossRef PubMed CAS Google Scholar
First citationBergs, R., Sünkel, K., Robl, C. & Beck, W. (1997). J. Organomet. Chem. 533, 247–255.  CSD CrossRef CAS Web of Science Google Scholar
First citationChiesi Villa, A., Gaetani Manfredotti, A., Nardelli, M. & Pelizzi, G. (1971). J. Cryst. Mol. Struct. 1, 245–251.  CSD CrossRef CAS Google Scholar
First citationChuklanova, E. B., Toktomamatov, A., Murzubraimov, B. & Gusev, A. I. (1988). Russ. J. Coord. Chem. 14, 519–522.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEgorova, K. S. & Ananikov, V. P. (2017). Organometallics, 36, 4071–4090.  CrossRef CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFlora, S. J. S. & Pachauri, V. (2010). Int. J. Environ. Res. Public Health, 7, 2745–2788.  CrossRef CAS PubMed Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63–78.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKhudoyberganov, O. I., Ruzmetov, A., Ibragimov, A. B., Ashurov, J. M., Khasanov, S. B., Eshchanov, E. U. & Ibragimov, B. T. (2022). Chem. Data Collect. 37, 100802.  CSD CrossRef Google Scholar
First citationRigaku (2020). CrysAlis PRO. Rigaku Corporation, Wroclaw, Poland.  Google Scholar
First citationRuzmetov, A., Ibragimov, A., Ashurov, J., Boltaeva, Z., Ibragimov, B. & Usmanov, S. (2022a). Acta Cryst. E78, 660–664.  CSD CrossRef IUCr Journals Google Scholar
First citationRuzmetov, A. K., Ibragimov, A. B., Myachina, O. V., Kim, R. N., Mamasalieva, L. E., Ashurov, J. M. & Ibragimov, B. T. (2022b). Chem. Data Collect. 38, 100845.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, M., Yoshida, M., Inoue, K., Morikawa, T., Nishikawa, A. & Ogawa, K. (2014). Food Chem. Toxicol. 73, 84–94.  CrossRef CAS PubMed Google Scholar
First citationTian, W.-R., Sang, Y.-X. & Wang, X.-H. (2014). Food Addit. Contam., Part A, 31, 1850–1860.  Google Scholar
First citationVass, M., Hruska, K. & Franek, M. (2008). Vet. Med. (Praha), 53, 469–500.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds