research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­{3-(3,5-di­chloro­phen­yl)-5-[6-(1H-pyrazol-1-yl)pyridin-2-yl]-4H-1,2,4-triazol-4-ido}iron(II) methanol disolvate

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine, and bDepartment of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41-A, Iasi 700487, Romania
*Correspondence e-mail: znovkat@yahoo.com

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 26 September 2022; accepted 31 October 2022; online 4 November 2022)

The asymmetric unit of the title compound, [FeII(C16H9Cl2N6)2]·2CH3OH, consists of half of a charge-neutral complex mol­ecule and a discrete methanol mol­ecule. The planar anionic tridentate ligand 2-[5-(3,5-di­chloro­phen­yl)-4H-1,2,4-triazol-3-ato]-6-(1H-pyrazol-1-yl)pyridine coordinates to the FeII ion through the N atoms of the pyrazole, pyridine and triazole groups, forming a coordination sphere of the central ion that deviates moderately from an octa­hedral geometry. The average Fe—N bond distance is 1.953 Å, indicating the low-spin state of the FeII ion. The cone-like-shaped mol­ecules, nested into each other, are linked through double weak C—H(pz)⋯π(ph) inter­actions into mono-periodic columns, which are further linked through weak C—H⋯N′/C′ inter­actions into di-periodic layers. The layers inter­act through double weak C–H(ph)⋯Cl bonds with neighbouring mol­ecules. Energy framework analysis at the B3LYP/6–31 G(d,p) theory level reproduces the strong inter­action within the layers and the weaker inter­layer inter­actions. Inter­molecular contacts were qu­anti­fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, the relative contributions of the contacts to the crystal packing being H⋯H 26.1%, H⋯C/C⋯H 24.4%, H⋯Cl/Cl⋯H 18.9% and H⋯N/N⋯H 12.1%.

1. Chemical context

Meridional tridentate ligands, to which different bis­azole­pyridines belong, are a common choice for the synthesis of FeII spin-crossover compounds able to switch between a high-spin state (t2g4eg2, total spin S = 2) and the low-spin state (t2g6eg0, total spin S = 0) due to temperature change, irradiation or external pressure (Goodwin, 2004[Goodwin, H. A. (2004). Top. Curr. Chem. 233, 59-90.]; Halcrow et al., 2019[Halcrow, M. A., Capel Berdiell, I., Pask, C. M. & Kulmaczewski, R. (2019). Inorg. Chem. 58, 9811-9821.]). In the case of asymmetric ligands with one of the azole groups carrying a hydrogen on the nitro­gen heteroatom, deprotonation can produce neutral [Fe(ligand)2] complexes that can be high-spin (Schäfer et al., 2013[Schäfer, B., Rajnák, C., Šalitroš, I., Fuhr, O., Klar, D., Schmitz-Antoniak, C., Weschke, E., Wende, H. & Ruben, M. (2013). Chem. Commun. 49, 10986-10988.]), low-spin (Shiga et al., 2019[Shiga, T., Saiki, R., Akiyama, L., Kumai, R., Natke, D., Renz, F., Cameron, J. M., Newton, G. N. & Oshio, H. (2019). Angew. Chem. Int. Ed. 58, 5658-5662.]) or spin crossover (Seredyuk et al., 2014[Seredyuk, M., Znovjyak, K. O., Kusz, J., Nowak, M., Muñoz, M. C. & Real, J. A. (2014). Dalton Trans. 43, 16387-16394.]), depending on the constituent organic groups, solvent mol­ecules and the way that the mol­ecules inter­act in the lattice (Seredyuk et al., 2022[Seredyuk, M., Znovjyak, K., Valverde-Muñoz, F. J., da Silva, I., Muñoz, M. C., Moroz, Y. S. & Real, J. A. (2022). J. Am. Chem. Soc. 144, 14297-14309.]).

Having an inter­est in FeII spin-crossover complexes formed by polydentate ligands (Bonhommeau et al., 2012[Bonhommeau, S., Lacroix, P. G., Talaga, D., Bousseksou, A., Seredyuk, M., Fritsky, I. O. & Rodriguez, V. (2012). J. Phys. Chem. C, 116, 11251-11255.]; Valverde-Muñoz et al., 2020[Valverde-Muñoz, F.-J., Seredyuk, M., Muñoz, M. C., Molnár, G., Bibik, Y. S. & Real, J. A. (2020). Angew. Chem. Int. Ed. 59, 18632-18638.]; Piñeiro-López et al., 2021[Piñeiro-López, L., Valverde-Muñoz, F.-J., Trzop, E., Muñoz, M. C., Seredyuk, M., Castells-Gil, J., da Silva, I., Martí-Gastaldo, C., Collet, E. & Real, J. A. (2021). Chem. Sci. 12, 1317-1326.]), we report here on a structural characterization of a new complex [FeIIL2]0 based on asymmetric deprotonable ligand L = 2-[5-(3,5-di­chloro­phen­yl)-4H-1,2,4-triazol-3-yl]-6-(1H-pyrazol-1-yl)pyridine.

[Scheme 1]

2. Structural commentary

The asymmetric unit comprises half of the mol­ecule and a discrete MeOH mol­ecule forming an O26—H26⋯N16 hydrogen bond with the triazole (trz) ring and a weak C5—H5⋯O26 bond with the pyridine (py) ring (Fig. 1[link]). The FeII ion has a pseudo-octa­hedral coordination environment composed of the nitro­gen donor atoms of the pyrazole (pz), py, and trz heterocycles with an averaged <Fe—N> distance of 1.953 Å (V[FeN6] = 9.610 Å3) that is typical for low-spin complexes with an N6 coordination environment (Gütlich & Goodwin, 2004[Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1-47.]). The pz, py, trz, and phenyl rings of the ligand lie essentially in the same plane (r.m.s.deviation = 0.156 Å).

[Figure 1]
Figure 1
The mol­ecular structure of half of the title compound with displacement ellipsoids drawn at the 50% probability level. The strong O—H⋯N and weak C—H⋯O/N/C/Cl hydrogen bonds are shown with the nearest neighbours. Symmetry codes: (i) −1 + x, [{1\over 2}] − y, [{1\over 2}] − z; (ii) −[{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z; (iii) −[{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z; (iv) 2 − x, 1 − y, −z.

The average trigonal distortion parameters Σ = Σ112(|90 − φi|), where φi is the N—Fe—N′ angle (Drew et al., 1995[Drew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035-1038.]), and Θ = Σ124(|60 − θi|), where θi is the angle generated by the superposition of two opposite faces of the octa­hedron (Chang et al., 1990[Chang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814-6827.]), are 91.2 and 291.5°, respectively. The values reveal a deviation of the coordination environment from an ideal octa­hedron in the expected range for complexes with similar bis­azole­pyridine ligands (see below). The calculated continuous shape measure [CShM(Oh)] value relative to the ideal octa­hedral symmetry is 2.16 (Kershaw Cook et al., 2015[Kershaw Cook, L. J., Mohammed, R., Sherborne, G., Roberts, T. D., Alvarez, S. & Halcrow, M. A. (2015). Coord. Chem. Rev. 289-290, 2-12.]).

3. Supra­molecular features

As a result of their tapered shape, neighbouring complex mol­ecules are embedded in each other and inter­act through two weak inter­molecular C—H(pz)⋯π(phi) contacts between the pyrazole (pz) and phenyl (ph) groups [the C(12)(pz)⋯Cg(phi) distance is 3.458 Å and the angle between the ring planes is 80.0°; symmetry code: (i) −1 + x, [{1\over 2}] − y, [{1\over 2}] − z]. The formed one-dimensional supra­molecular columns protrude along the a-axis with a stacking periodicity equal to 10.4669 (6) Å (= cell parameter a) (Fig. 2[link]a). As a result of weak inter­molecular C—H(pz,py)⋯N/C(pz,trz)/O(MeOH) hydrogen bonds in the range 2.826 (5)–3.779 (5) Å (Table 1[link]), neighbouring columns are joined into corrugated di-periodic layers in the ac plane (Fig. 2[link]b,c). The layers stack along the b-axis direction, forming weak C—H(ph)⋯Cl(phii) [symmetry code: (ii) 2 − x, 1 − y, −z] inter­layer inter­actions shorter than the sum of the van der Waals radii, two per each phenyl group (Fig. 2[link]c). The voids between the layers are occupied by methanol mol­ecules, which participate in the strong and weak hydrogen bonding mentioned above. A complete list of inter­molecular inter­actions is given in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O26 0.95 2.41 3.256 (6) 149
C7—H7⋯N25i 0.95 2.48 3.406 (5) 165
C11—H11⋯O26ii 0.95 2.23 3.144 (6) 162
C13—H13⋯N25i 0.95 2.52 3.363 (6) 148
C20—H20⋯Cl23iii 0.95 2.86 3.779 (5) 162
O26—H26⋯N16 0.88 (5) 1.96 (5) 2.826 (5) 166 (5)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+2, -y+1, -z].
[Figure 2]
Figure 2
(a) A fragment of mono-periodic supra­molecular column formed by stacking of mol­ecules along the a axis; (b) supra­molecular di-periodic layers formed by stacking of the supra­molecular columns in the ac plane. For a better representation, each column has a different colour; (c) stacking of the di-periodic layers along the b axis. The methanol mol­ecules are not shown for clarity.

4. Hirshfeld surface and 2D fingerprint plots

A Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using Crystal Explorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.5982 (red) to 1.2057 (blue) a.u. (Fig. 3[link]a). The pale-red spots indicate short contacts and negative dnorm values on the surface correspond to the inter­actions described above. The overall two-dimensional fingerprint plot is illustrated in Fig. 4[link]. The Hirshfeld surfaces mapped over dnorm are shown for the H⋯H, H⋯C/C⋯H, H⋯Cl/Cl⋯H and H⋯N/N⋯H contacts, and the two-dimensional fingerprint plots, associated with their relative contributions to the Hirshfeld surface. At 26.1%, the largest contribution to the overall crystal packing is from H⋯H inter­actions, which are located mostly in the middle region of the fingerprint plot. H⋯C/C⋯H contacts contribute 24.4% and H⋯Cl/Cl⋯H 18.9%, resulting in a pair of characteristic wings. The H⋯N/N⋯H contacts, represented by a pair of sharp spikes in the fingerprint plot, make a 12.1% contribution to the Hirshfeld surface. The electrostatic potential energy calculated using the B3LYP/6-31G(d,p) basis set localizes the negative charge on the trz-ph moieties of the complex mol­ecule, while the pz-py moieties are relatively positively charged (Fig. 3[link]b). The polar nature of the mol­ecule justifies the realized stacking in columns.

[Figure 3]
Figure 3
(a) A projection of dnorm mapped on Hirshfeld surfaces, showing the inter­molecular inter­actions within the mol­ecule. Red/blue and white areas represent regions where contacts are shorter/larger than the sum and close to the sum of the van der Waals radii, respectively. (b) Electrostatic potential for the title compound derived from a B3LYP/6–31 G(d,p) wavefunction mapped on the Hirshfeld surface in the range −0.1043 (red) to 0.1064 a.u. (blue).
[Figure 4]
Figure 4
(a) The overall two-dimensional fingerprint plot and those delineated into specified inter­actions. (b) Hirshfeld surface representations with the function dnorm plotted onto the surface for the different inter­actions.

5. Energy framework analysis

The energy framework (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) with total energy values (Etot) calculated using the wavefunction at the B3LYP/6-31G(d,p) theory level are shown in Fig. 5[link]a. The cylindrical radii are proportional to the relative strength of the corresponding energies. The major contribution to the inter­mol­ecular inter­actions comes from dispersion forces (Edis), reflecting the dominant type of inter­actions in the network of the electroneutral mol­ecules (see the table in Fig. 5[link]). The energy framework topology reproduces the topology of inter­molecular inter­actions within and between supra­molecular layers, including the electron-density distribution within the mol­ecule analysed above using mapped Hirshfeld surfaces. The weak hydrogen bonding between the mol­ecules within the supra­molecular columns and between the columns within the layers correspond to inter­action energies of −48.6 and −67.9 kJ mol−1, respectively (Fig. 5[link]b). As for the inter­layer inter­actions, the double supra­mol­ecular C—­H⋯Clii [symmetry code: (ii) 2 − x, 1 − y, −z] bonding between neighbouring phenyl rings leads to an inter­action energy of −5.6 kJ mol−1, while the stacking of the moieties corresponds to an inter­action energy of −21.7 kJ mol−1 (Fig. 5[link]c). The colour-coded inter­action mappings within a radius of 3.8 Å of a central reference mol­ecule for the title compound together with full details of the various contributions to the total energy (Eele, Epol, Edis, Erep) are shown in the table in Fig. 5[link].

[Figure 5]
Figure 5
(a) The calculated energy frameworks, showing the total energy diagrams (Etot), (b) decomposition of the energy framework into the part corresponding to the inter­actions within a supra­molecular layer and (c) inter­layer inter­actions. In the table the corresponding colour-coded energy values Etot are provided, including their Eele, Epol, Edis, and Erep components. Tube size is set at 100 scale, the blue colour corresponds to the attractive inter­action, yellow to the repulsive inter­action.

6. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, last update February 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals similar neutral FeII complexes with a deprotonable azole based on pyrazole-pyridine-benzimidazole, viz. XODCEB (Shiga et al., 2019[Shiga, T., Saiki, R., Akiyama, L., Kumai, R., Natke, D., Renz, F., Cameron, J. M., Newton, G. N. & Oshio, H. (2019). Angew. Chem. Int. Ed. 58, 5658-5662.]) and pyrazole-pyridine-tetra­zole, IGERIX and LUTGEO (Gentili et al., 2015[Gentili, D., Demitri, N., Schäfer, B., Liscio, F., Bergenti, I., Ruani, G., Ruben, M. & Cavallini, M. (2015). J. Mater. Chem. C. 3, 7836-7844.]; Senthil Kumar et al., 2015[Senthil Kumar, K., Šalitroš, I., Heinrich, B., Fuhr, O. & Ruben, M. (2015). J. Mater. Chem. C. 3, 11635-11644.]). The Fe—N distances for these complexes in the low-spin state are close to the value in the title compound, while in the high-spin state it is larger by ∼0.2 Å. The trigonal distortion indices change correspondingly, and in the low-spin state they are systematically lower than in the high-spin state. Table 2[link] collates the structural parameters of the complexes and of the title compound.

Table 2
Computed distortion indices (Å, °) for the title compound and similar complexes from the literature

CSD refcode Spin state <Fe—N> Σ Θ CShM(Oh)
Title compound Low-spin 1.953 91.2 291.5 2.16
XODCEBa Low-spin 1.950 87.4 276.6 1.92
IGERIXb High-spin 2.179 149.7 553.2 6.06
IGERIX01b Low-spin 1.986 105.6 350.6 2.85
LUTGEOc Low-spin 1.933 85.0 309.6 2.10
Notes: (a) Shiga et al. (2019[Shiga, T., Saiki, R., Akiyama, L., Kumai, R., Natke, D., Renz, F., Cameron, J. M., Newton, G. N. & Oshio, H. (2019). Angew. Chem. Int. Ed. 58, 5658-5662.]); (b) Gentili et al. (2015[Gentili, D., Demitri, N., Schäfer, B., Liscio, F., Bergenti, I., Ruani, G., Ruben, M. & Cavallini, M. (2015). J. Mater. Chem. C. 3, 7836-7844.]); (c) Senthil Kumar et al. (2015[Senthil Kumar, K., Šalitroš, I., Heinrich, B., Fuhr, O. & Ruben, M. (2015). J. Mater. Chem. C. 3, 11635-11644.]).

7. Synthesis and crystallization

The synthesis of the title compound was performed using a layering technique in a standard test tube. The layering sequence was as follows: the bottom layer contains a solution of [Fe(L2)](BF4)2 prepared by dissolving L = [2-(3,5-di­chloro­phen­yl)-4H-1,2,4-triazol-3-yl]-6-(1H-pyrazol-1-yl)pyri­dine (100 mg, 0.280 mmol) and Fe(BF4)2·6H2O (47 mg, 0.140 mmol) in boiling acetone, to which chloro­form (5 ml) was then added. The middle layer was a methanol–chloro­form mixture (1:10, 10 ml), which was covered by a layer of methanol (10 ml), to which 100 µl of NEt3 was added dropwise. The tube was sealed, and thin lustrous black plate-like single crystals appeared in 3–4 weeks (yield ca 60%). Elemental analysis calculated for C34H26Cl4FeN12O2: C, 49.06; H, 3.15; N, 20.19. Found: C, 49.24; H, 3.05; N, 20.10.

8. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were placed in calculated positions using idealized geometries, with C—H = 0.98 Å for methyl groups and 0.95 Å for aromatic H atoms, and refined using a riding model with Uiso(H) = 1.2–1.5Ueq(C); the hydrogen atom H26 was refined freely.

Table 3
Experimental details

Crystal data
Chemical formula [Fe(C16H9Cl2N6)2]·2CH4O
Mr 832.32
Crystal system, space group Orthorhombic, Pnna
Temperature (K) 180
a, b, c (Å) 10.4669 (6), 26.5890 (16), 12.8313 (7)
V3) 3571.0 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.77
Crystal size (mm) 0.12 × 0.08 × 0.03
 
Data collection
Diffractometer Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.772, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 13877, 3650, 2093
Rint 0.100
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.133, 1.02
No. of reflections 3650
No. of parameters 244
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.44, −0.50
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2022); cell refinement: CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Bis{3-(3,5-dichlorophenyl)-5-[6-(1H-pyrazol-1-yl)pyridin-2-yl]-4H-1,2,4-triazol-4-ido}iron(II) methanol disolvate top
Crystal data top
[Fe(C16H9Cl2N6)2]·2CH4ODx = 1.548 Mg m3
Mr = 832.32Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnnaCell parameters from 3167 reflections
a = 10.4669 (6) Åθ = 2.2–25.7°
b = 26.5890 (16) ŵ = 0.77 mm1
c = 12.8313 (7) ÅT = 180 K
V = 3571.0 (4) Å3Plate, dark red
Z = 40.12 × 0.08 × 0.03 mm
F(000) = 1696
Data collection top
Xcalibur, Eos
diffractometer
Rint = 0.100
ω scansθmax = 26.4°, θmin = 1.8°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
h = 138
Tmin = 0.772, Tmax = 1.000k = 3333
13877 measured reflectionsl = 1415
3650 independent reflections3 standard reflections every 1 reflections
2093 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.068H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0367P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3650 reflectionsΔρmax = 0.44 e Å3
244 parametersΔρmin = 0.50 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C30.5057 (4)0.32367 (15)0.3495 (3)0.0204 (10)
C40.4305 (4)0.30235 (16)0.4341 (3)0.0207 (10)
C50.4296 (4)0.31360 (16)0.5392 (3)0.0261 (11)
H50.4861680.3381410.5669740.031*
C60.3448 (4)0.28840 (16)0.6032 (3)0.0269 (11)
H60.3437780.2956100.6756940.032*
C70.2607 (4)0.25265 (16)0.5633 (3)0.0240 (10)
H70.2019480.2352350.6067390.029*
C80.2672 (4)0.24384 (15)0.4571 (3)0.0203 (10)
C110.1361 (4)0.17150 (16)0.2626 (3)0.0278 (11)
H110.1348640.1588470.1933270.033*
C120.0477 (4)0.15849 (17)0.3399 (4)0.0329 (12)
H120.0229090.1362830.3329370.039*
C130.0835 (4)0.18423 (16)0.4272 (3)0.0263 (11)
H130.0422700.1835200.4931740.032*
C150.6226 (4)0.36305 (15)0.2470 (3)0.0226 (10)
C170.7161 (4)0.39837 (15)0.2033 (3)0.0230 (10)
C180.7328 (5)0.40295 (16)0.0965 (3)0.0316 (12)
H180.6807230.3839940.0503130.038*
C190.8241 (5)0.43469 (18)0.0572 (4)0.0406 (14)
C200.8995 (5)0.46402 (18)0.1219 (4)0.0379 (13)
H200.9609000.4865910.0939340.046*
C210.8827 (4)0.45949 (16)0.2281 (4)0.0308 (12)
C220.7938 (4)0.42684 (16)0.2695 (3)0.0284 (11)
H220.7852390.4237070.3429160.034*
Cl230.84640 (18)0.43743 (7)0.07653 (11)0.0872 (7)
Cl240.97624 (13)0.49547 (5)0.31098 (11)0.0546 (4)
Fe10.35555 (8)0.2500000.2500000.0188 (2)
N20.4852 (3)0.30368 (12)0.2542 (2)0.0181 (8)
N90.3518 (3)0.26658 (12)0.3953 (2)0.0186 (8)
N100.2211 (3)0.20353 (12)0.2984 (3)0.0205 (8)
N140.1893 (3)0.21100 (12)0.4017 (3)0.0211 (9)
N160.5911 (3)0.36088 (13)0.3493 (3)0.0222 (9)
N250.5611 (3)0.32899 (13)0.1872 (2)0.0211 (9)
C270.7592 (6)0.4265 (2)0.5709 (4)0.0617 (18)
H27A0.8435470.4213090.5395900.093*
H27B0.7683950.4307110.6464440.093*
H27C0.7198710.4566890.5411310.093*
O260.6821 (4)0.38493 (13)0.5506 (3)0.0541 (12)
H260.659 (5)0.382 (2)0.485 (4)0.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.024 (3)0.021 (2)0.016 (2)0.001 (2)0.001 (2)0.0012 (18)
C40.019 (3)0.026 (2)0.017 (2)0.003 (2)0.002 (2)0.001 (2)
C50.026 (3)0.035 (3)0.018 (2)0.005 (2)0.002 (2)0.000 (2)
C60.033 (3)0.034 (3)0.014 (2)0.002 (2)0.000 (2)0.004 (2)
C70.024 (3)0.029 (3)0.019 (2)0.003 (2)0.004 (2)0.002 (2)
C80.022 (3)0.016 (2)0.023 (2)0.002 (2)0.001 (2)0.0016 (19)
C110.031 (3)0.026 (2)0.027 (3)0.008 (2)0.006 (2)0.001 (2)
C120.026 (3)0.036 (3)0.037 (3)0.015 (2)0.003 (2)0.001 (2)
C130.019 (3)0.030 (3)0.030 (3)0.008 (2)0.003 (2)0.008 (2)
C150.026 (3)0.018 (2)0.024 (2)0.003 (2)0.001 (2)0.006 (2)
C170.018 (3)0.021 (2)0.030 (3)0.002 (2)0.000 (2)0.000 (2)
C180.035 (3)0.034 (3)0.026 (3)0.013 (2)0.002 (2)0.002 (2)
C190.047 (4)0.045 (3)0.030 (3)0.012 (3)0.010 (3)0.009 (3)
C200.029 (3)0.038 (3)0.046 (3)0.013 (3)0.008 (3)0.011 (3)
C210.028 (3)0.022 (2)0.043 (3)0.004 (2)0.001 (2)0.005 (2)
C220.027 (3)0.027 (3)0.031 (3)0.002 (2)0.000 (2)0.005 (2)
Cl230.1066 (15)0.1186 (15)0.0365 (9)0.0712 (13)0.0153 (10)0.0100 (9)
Cl240.0470 (9)0.0536 (9)0.0631 (10)0.0229 (8)0.0128 (8)0.0011 (7)
Fe10.0207 (5)0.0225 (5)0.0132 (4)0.0000.0000.0013 (4)
N20.019 (2)0.0223 (18)0.0134 (18)0.0009 (16)0.0027 (17)0.0002 (16)
N90.021 (2)0.0197 (19)0.0154 (18)0.0006 (17)0.0019 (17)0.0007 (15)
N100.020 (2)0.022 (2)0.019 (2)0.0008 (17)0.0005 (17)0.0017 (16)
N140.022 (2)0.025 (2)0.016 (2)0.0007 (18)0.0035 (17)0.0010 (16)
N160.022 (2)0.027 (2)0.017 (2)0.0023 (18)0.0021 (17)0.0025 (17)
N250.023 (2)0.022 (2)0.019 (2)0.0022 (18)0.0059 (17)0.0041 (16)
C270.071 (5)0.062 (4)0.053 (4)0.024 (4)0.001 (3)0.019 (3)
O260.073 (3)0.059 (3)0.030 (2)0.036 (2)0.008 (2)0.001 (2)
Geometric parameters (Å, º) top
C3—C41.456 (5)C17—C221.398 (6)
C3—N21.351 (5)C18—H180.9500
C3—N161.333 (5)C18—C191.371 (6)
C4—C51.382 (5)C19—C201.386 (6)
C4—N91.353 (5)C19—Cl231.733 (5)
C5—H50.9500C20—H200.9500
C5—C61.383 (6)C20—C211.379 (6)
C6—H60.9500C21—C221.380 (6)
C6—C71.393 (5)C21—Cl241.733 (5)
C7—H70.9500C22—H220.9500
C7—C81.385 (5)Fe1—N21.970 (3)
C8—N91.334 (5)Fe1—N2i1.970 (3)
C8—N141.391 (5)Fe1—N9i1.916 (3)
C11—H110.9500Fe1—N91.916 (3)
C11—C121.400 (6)Fe1—N10i1.973 (3)
C11—N101.315 (5)Fe1—N101.973 (3)
C12—H120.9500N2—N251.350 (4)
C12—C131.366 (6)N10—N141.381 (4)
C13—H130.9500C27—H27A0.9800
C13—N141.357 (5)C27—H27B0.9800
C15—C171.468 (6)C27—H27C0.9800
C15—N161.355 (5)C27—O261.393 (6)
C15—N251.350 (5)O26—H260.88 (5)
C17—C181.387 (5)
N2—C3—C4115.8 (4)C20—C21—C22121.4 (4)
N16—C3—C4130.8 (4)C20—C21—Cl24119.1 (4)
N16—C3—N2113.4 (4)C22—C21—Cl24119.5 (4)
C5—C4—C3130.3 (4)C17—C22—H22120.0
N9—C4—C3109.2 (3)C21—C22—C17119.9 (4)
N9—C4—C5120.5 (4)C21—C22—H22120.0
C4—C5—H5120.7N2i—Fe1—N292.94 (18)
C4—C5—C6118.6 (4)N2i—Fe1—N1092.64 (13)
C6—C5—H5120.7N2i—Fe1—N10i159.46 (13)
C5—C6—H6119.4N2—Fe1—N10i92.64 (13)
C5—C6—C7121.3 (4)N2—Fe1—N10159.46 (13)
C7—C6—H6119.4N9i—Fe1—N2i79.69 (14)
C6—C7—H7121.8N9i—Fe1—N2101.95 (13)
C8—C7—C6116.5 (4)N9—Fe1—N279.68 (14)
C8—C7—H7121.8N9—Fe1—N2i101.95 (13)
C7—C8—N14125.5 (4)N9i—Fe1—N9177.7 (2)
N9—C8—C7122.8 (4)N9i—Fe1—N10i79.82 (14)
N9—C8—N14111.7 (3)N9i—Fe1—N1098.49 (14)
C12—C11—H11124.5N9—Fe1—N1079.82 (14)
N10—C11—H11124.5N9—Fe1—N10i98.49 (14)
N10—C11—C12111.1 (4)N10i—Fe1—N1089.01 (19)
C11—C12—H12127.0C3—N2—Fe1114.8 (3)
C13—C12—C11106.0 (4)N25—N2—C3106.6 (3)
C13—C12—H12127.0N25—N2—Fe1138.5 (3)
C12—C13—H13126.6C4—N9—Fe1120.5 (3)
N14—C13—C12106.8 (4)C8—N9—C4120.3 (3)
N14—C13—H13126.6C8—N9—Fe1119.2 (3)
N16—C15—C17124.0 (4)C11—N10—Fe1141.1 (3)
N25—C15—C17122.0 (4)C11—N10—N14105.4 (3)
N25—C15—N16114.0 (4)N14—N10—Fe1112.6 (2)
C18—C17—C15121.2 (4)C13—N14—C8133.2 (4)
C18—C17—C22118.6 (4)C13—N14—N10110.7 (3)
C22—C17—C15120.2 (4)N10—N14—C8116.1 (3)
C17—C18—H18119.8C3—N16—C15101.3 (3)
C19—C18—C17120.4 (4)N2—N25—C15104.7 (3)
C19—C18—H18119.8H27A—C27—H27B109.5
C18—C19—C20121.5 (4)H27A—C27—H27C109.5
C18—C19—Cl23119.0 (4)H27B—C27—H27C109.5
C20—C19—Cl23119.6 (4)O26—C27—H27A109.5
C19—C20—H20121.0O26—C27—H27B109.5
C21—C20—C19118.1 (4)O26—C27—H27C109.5
C21—C20—H20121.0C27—O26—H26114 (4)
C3—C4—C5—C6178.0 (4)C18—C17—C22—C211.4 (7)
C3—C4—N9—C8175.6 (3)C18—C19—C20—C211.7 (8)
C3—C4—N9—Fe11.7 (5)C19—C20—C21—C220.0 (7)
C3—N2—N25—C150.3 (4)C19—C20—C21—Cl24179.7 (4)
C4—C3—N2—Fe10.6 (5)C20—C21—C22—C171.5 (7)
C4—C3—N2—N25178.7 (3)C22—C17—C18—C190.2 (7)
C4—C3—N16—C15178.2 (4)Cl23—C19—C20—C21177.5 (4)
C4—C5—C6—C70.5 (7)Cl24—C21—C22—C17178.8 (3)
C5—C4—N9—C83.9 (6)Fe1—N2—N25—C15177.2 (3)
C5—C4—N9—Fe1178.7 (3)Fe1—N10—N14—C88.8 (4)
C5—C6—C7—C80.2 (6)Fe1—N10—N14—C13170.2 (3)
C6—C7—C8—N92.3 (6)N2—C3—C4—C5179.1 (4)
C6—C7—C8—N14177.8 (4)N2—C3—C4—N91.4 (5)
C7—C8—N9—C44.4 (6)N2—C3—N16—C150.2 (4)
C7—C8—N9—Fe1178.2 (3)N9—C4—C5—C61.5 (6)
C7—C8—N14—C138.4 (7)N9—C8—N14—C13171.8 (4)
C7—C8—N14—N10173.0 (4)N9—C8—N14—N106.9 (5)
C11—C12—C13—N140.3 (5)N10—C11—C12—C130.5 (5)
C11—N10—N14—C8179.7 (3)N14—C8—N9—C4175.7 (3)
C11—N10—N14—C131.3 (4)N14—C8—N9—Fe11.7 (5)
C12—C11—N10—Fe1166.3 (3)N16—C3—C4—C52.5 (8)
C12—C11—N10—N141.1 (5)N16—C3—C4—N9177.0 (4)
C12—C13—N14—C8179.7 (4)N16—C3—N2—Fe1178.1 (3)
C12—C13—N14—N101.0 (5)N16—C3—N2—N250.1 (5)
C15—C17—C18—C19177.5 (4)N16—C15—C17—C18172.0 (4)
C15—C17—C22—C21179.1 (4)N16—C15—C17—C2210.3 (6)
C17—C15—N16—C3179.5 (4)N16—C15—N25—N20.5 (5)
C17—C15—N25—N2179.6 (3)N25—C15—C17—C188.9 (6)
C17—C18—C19—C201.8 (8)N25—C15—C17—C22168.7 (4)
C17—C18—C19—Cl23177.4 (4)N25—C15—N16—C30.4 (4)
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O260.952.413.256 (6)149
C7—H7···N25ii0.952.483.406 (5)165
C11—H11···O26iii0.952.233.144 (6)162
C13—H13···N25ii0.952.523.363 (6)148
C20—H20···Cl23iv0.952.863.779 (5)162
O26—H26···N160.88 (5)1.96 (5)2.826 (5)166 (5)
Symmetry codes: (ii) x1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2; (iv) x+2, y+1, z.
Computed distortion indices (Å, °) for the title compound and similar complexes from the literature top
CSD refcodeSpin state<Fe—N>ΣΘCShM(Oh)
Title compoundLow-spin1.95391.0290.92.16
XODCEBaLow-spin1.95087.4276.61.92
IGERIXbHigh-spin2.179149.7553.26.06
IGERIX01bLow-spin1.986105.6350.62.85
LUTGEOcLow-spin1.93385.0309.62.10
Notes: (a) Shiga et al. (2019); (b) Gentili et al. (2015); (c) Senthil Kumar et al. (2015).
 

Acknowledgements

Author contributions are as follows: Conceptualization, KZ and MS; methodology, KZ; formal analysis, IOF; synthesis, SOM; single-crystal measurements, SS; writing (original draft), MS; writing (review and editing of the manuscript), TYS, MS; visualization and calculations, VMA; funding acquisition, KZ, MS.

Funding information

Funding for this research was provided by a grant from the Ministry of Education and Science of Ukraine for perspective development of the scientific direction `Mathematical sciences and natural sciences' at Taras Shevchenko National University of Kyiv and by the Ministry of Education and Science of Ukraine (grant Nos. 22BF037-03, 22BF037-04).

References

First citationBonhommeau, S., Lacroix, P. G., Talaga, D., Bousseksou, A., Seredyuk, M., Fritsky, I. O. & Rodriguez, V. (2012). J. Phys. Chem. C, 116, 11251–11255.  Web of Science CrossRef CAS Google Scholar
First citationChang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814–6827.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDrew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035–1038.  CSD CrossRef Web of Science Google Scholar
First citationGentili, D., Demitri, N., Schäfer, B., Liscio, F., Bergenti, I., Ruani, G., Ruben, M. & Cavallini, M. (2015). J. Mater. Chem. C. 3, 7836–7844.  Web of Science CSD CrossRef CAS Google Scholar
First citationGoodwin, H. A. (2004). Top. Curr. Chem. 233, 59–90.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1–47.  Google Scholar
First citationHalcrow, M. A., Capel Berdiell, I., Pask, C. M. & Kulmaczewski, R. (2019). Inorg. Chem. 58, 9811–9821.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKershaw Cook, L. J., Mohammed, R., Sherborne, G., Roberts, T. D., Alvarez, S. & Halcrow, M. A. (2015). Coord. Chem. Rev. 289–290, 2–12.  Web of Science CSD CrossRef CAS Google Scholar
First citationPiñeiro-López, L., Valverde-Muñoz, F.-J., Trzop, E., Muñoz, M. C., Seredyuk, M., Castells-Gil, J., da Silva, I., Martí-Gastaldo, C., Collet, E. & Real, J. A. (2021). Chem. Sci. 12, 1317–1326.  Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSchäfer, B., Rajnák, C., Šalitroš, I., Fuhr, O., Klar, D., Schmitz-Antoniak, C., Weschke, E., Wende, H. & Ruben, M. (2013). Chem. Commun. 49, 10986–10988.  Google Scholar
First citationSenthil Kumar, K., Šalitroš, I., Heinrich, B., Fuhr, O. & Ruben, M. (2015). J. Mater. Chem. C. 3, 11635–11644.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeredyuk, M., Znovjyak, K., Valverde-Muñoz, F. J., da Silva, I., Muñoz, M. C., Moroz, Y. S. & Real, J. A. (2022). J. Am. Chem. Soc. 144, 14297–14309.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSeredyuk, M., Znovjyak, K. O., Kusz, J., Nowak, M., Muñoz, M. C. & Real, J. A. (2014). Dalton Trans. 43, 16387–16394.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShiga, T., Saiki, R., Akiyama, L., Kumai, R., Natke, D., Renz, F., Cameron, J. M., Newton, G. N. & Oshio, H. (2019). Angew. Chem. Int. Ed. 58, 5658–5662.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValverde-Muñoz, F.-J., Seredyuk, M., Muñoz, M. C., Molnár, G., Bibik, Y. S. & Real, J. A. (2020). Angew. Chem. Int. Ed. 59, 18632–18638.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds