research communications
H-pyrazol-1-yl)pyridin-2-yl]-4H-1,2,4-triazol-4-ido}iron(II) methanol disolvate
of bis{3-(3,5-dichlorophenyl)-5-[6-(1aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine, and bDepartment of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41-A, Iasi 700487, Romania
*Correspondence e-mail: znovkat@yahoo.com
The II(C16H9Cl2N6)2]·2CH3OH, consists of half of a charge-neutral complex molecule and a discrete methanol molecule. The planar anionic tridentate ligand 2-[5-(3,5-dichlorophenyl)-4H-1,2,4-triazol-3-ato]-6-(1H-pyrazol-1-yl)pyridine coordinates to the FeII ion through the N atoms of the pyrazole, pyridine and triazole groups, forming a coordination sphere of the central ion that deviates moderately from an octahedral geometry. The average Fe—N bond distance is 1.953 Å, indicating the low-spin state of the FeII ion. The cone-like-shaped molecules, nested into each other, are linked through double weak C—H(pz)⋯π(ph) interactions into mono-periodic columns, which are further linked through weak C—H⋯N′/C′ interactions into di-periodic layers. The layers interact through double weak C–H(ph)⋯Cl bonds with neighbouring molecules. Energy framework analysis at the B3LYP/6–31 G(d,p) theory level reproduces the strong interaction within the layers and the weaker interlayer interactions. Intermolecular contacts were quantified using Hirshfeld surface analysis and two-dimensional fingerprint plots, the relative contributions of the contacts to the crystal packing being H⋯H 26.1%, H⋯C/C⋯H 24.4%, H⋯Cl/Cl⋯H 18.9% and H⋯N/N⋯H 12.1%.
of the title compound, [FeKeywords: crystal structure; iron(II) complexes; neutral complexes.
CCDC reference: 2216680
1. Chemical context
Meridional tridentate ligands, to which different bisazolepyridines belong, are a common choice for the synthesis of FeII spin-crossover compounds able to switch between a high-spin state (t2g4eg2, total spin S = 2) and the low-spin state (t2g6eg0, total spin S = 0) due to temperature change, irradiation or external pressure (Goodwin, 2004; Halcrow et al., 2019). In the case of asymmetric ligands with one of the azole groups carrying a hydrogen on the nitrogen heteroatom, deprotonation can produce neutral [Fe(ligand)2] complexes that can be high-spin (Schäfer et al., 2013), low-spin (Shiga et al., 2019) or spin crossover (Seredyuk et al., 2014), depending on the constituent organic groups, solvent molecules and the way that the molecules interact in the lattice (Seredyuk et al., 2022).
Having an interest in FeII spin-crossover complexes formed by polydentate ligands (Bonhommeau et al., 2012; Valverde-Muñoz et al., 2020; Piñeiro-López et al., 2021), we report here on a structural characterization of a new complex [FeIIL2]0 based on asymmetric deprotonable ligand L = 2-[5-(3,5-dichlorophenyl)-4H-1,2,4-triazol-3-yl]-6-(1H-pyrazol-1-yl)pyridine.
2. Structural commentary
The ). The FeII ion has a pseudo-octahedral coordination environment composed of the nitrogen donor atoms of the pyrazole (pz), py, and trz heterocycles with an averaged <Fe—N> distance of 1.953 Å (V[FeN6] = 9.610 Å3) that is typical for low-spin complexes with an N6 coordination environment (Gütlich & Goodwin, 2004). The pz, py, trz, and phenyl rings of the ligand lie essentially in the same plane (r.m.s.deviation = 0.156 Å).
comprises half of the molecule and a discrete MeOH molecule forming an O26—H26⋯N16 hydrogen bond with the triazole (trz) ring and a weak C5—H5⋯O26 bond with the pyridine (py) ring (Fig. 1The average trigonal distortion parameters Σ = Σ112(|90 − φi|), where φi is the N—Fe—N′ angle (Drew et al., 1995), and Θ = Σ124(|60 − θi|), where θi is the angle generated by the superposition of two opposite faces of the octahedron (Chang et al., 1990), are 91.2 and 291.5°, respectively. The values reveal a deviation of the coordination environment from an ideal octahedron in the expected range for complexes with similar bisazolepyridine ligands (see below). The calculated continuous shape measure [CShM(Oh)] value relative to the ideal octahedral symmetry is 2.16 (Kershaw Cook et al., 2015).
3. Supramolecular features
As a result of their tapered shape, neighbouring complex molecules are embedded in each other and interact through two weak intermolecular C—H(pz)⋯π(phi) contacts between the pyrazole (pz) and phenyl (ph) groups [the C(12)(pz)⋯Cg(phi) distance is 3.458 Å and the angle between the ring planes is 80.0°; symmetry code: (i) −1 + x, − y, − z]. The formed one-dimensional supramolecular columns protrude along the a-axis with a stacking periodicity equal to 10.4669 (6) Å (= cell parameter a) (Fig. 2a). As a result of weak intermolecular C—H(pz,py)⋯N/C(pz,trz)/O(MeOH) hydrogen bonds in the range 2.826 (5)–3.779 (5) Å (Table 1), neighbouring columns are joined into corrugated di-periodic layers in the ac plane (Fig. 2b,c). The layers stack along the b-axis direction, forming weak C—H(ph)⋯Cl(phii) [symmetry code: (ii) 2 − x, 1 − y, −z] interlayer interactions shorter than the sum of the van der Waals radii, two per each phenyl group (Fig. 2c). The voids between the layers are occupied by methanol molecules, which participate in the strong and weak hydrogen bonding mentioned above. A complete list of intermolecular interactions is given in Table 1.
4. Hirshfeld surface and 2D fingerprint plots
A Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using Crystal Explorer (Spackman et al., 2021), with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.5982 (red) to 1.2057 (blue) a.u. (Fig. 3a). The pale-red spots indicate short contacts and negative dnorm values on the surface correspond to the interactions described above. The overall two-dimensional fingerprint plot is illustrated in Fig. 4. The Hirshfeld surfaces mapped over dnorm are shown for the H⋯H, H⋯C/C⋯H, H⋯Cl/Cl⋯H and H⋯N/N⋯H contacts, and the two-dimensional fingerprint plots, associated with their relative contributions to the Hirshfeld surface. At 26.1%, the largest contribution to the overall crystal packing is from H⋯H interactions, which are located mostly in the middle region of the fingerprint plot. H⋯C/C⋯H contacts contribute 24.4% and H⋯Cl/Cl⋯H 18.9%, resulting in a pair of characteristic wings. The H⋯N/N⋯H contacts, represented by a pair of sharp spikes in the fingerprint plot, make a 12.1% contribution to the Hirshfeld surface. The electrostatic calculated using the B3LYP/6-31G(d,p) basis set localizes the negative charge on the trz-ph moieties of the complex molecule, while the pz-py moieties are relatively positively charged (Fig. 3b). The polar nature of the molecule justifies the realized stacking in columns.
5. Energy framework analysis
The energy framework (Spackman et al., 2021) with total energy values (Etot) calculated using the wavefunction at the B3LYP/6-31G(d,p) theory level are shown in Fig. 5a. The cylindrical radii are proportional to the relative strength of the corresponding energies. The major contribution to the intermolecular interactions comes from dispersion forces (Edis), reflecting the dominant type of interactions in the network of the electroneutral molecules (see the table in Fig. 5). The energy framework topology reproduces the topology of intermolecular interactions within and between supramolecular layers, including the electron-density distribution within the molecule analysed above using mapped Hirshfeld surfaces. The weak hydrogen bonding between the molecules within the supramolecular columns and between the columns within the layers correspond to interaction energies of −48.6 and −67.9 kJ mol−1, respectively (Fig. 5b). As for the interlayer interactions, the double supramolecular C—H⋯Clii [symmetry code: (ii) 2 − x, 1 − y, −z] bonding between neighbouring phenyl rings leads to an interaction energy of −5.6 kJ mol−1, while the stacking of the moieties corresponds to an interaction energy of −21.7 kJ mol−1 (Fig. 5c). The colour-coded interaction mappings within a radius of 3.8 Å of a central reference molecule for the title compound together with full details of the various contributions to the total energy (Eele, Epol, Edis, Erep) are shown in the table in Fig. 5.
6. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, last update February 2021; Groom et al., 2016) reveals similar neutral FeII complexes with a deprotonable azole based on pyrazole-pyridine-benzimidazole, viz. XODCEB (Shiga et al., 2019) and pyrazole-pyridine-tetrazole, IGERIX and LUTGEO (Gentili et al., 2015; Senthil Kumar et al., 2015). The Fe—N distances for these complexes in the low-spin state are close to the value in the title compound, while in the high-spin state it is larger by ∼0.2 Å. The trigonal distortion indices change correspondingly, and in the low-spin state they are systematically lower than in the high-spin state. Table 2 collates the structural parameters of the complexes and of the title compound.
7. Synthesis and crystallization
The synthesis of the title compound was performed using a layering technique in a standard test tube. The layering sequence was as follows: the bottom layer contains a solution of [Fe(L2)](BF4)2 prepared by dissolving L = [2-(3,5-dichlorophenyl)-4H-1,2,4-triazol-3-yl]-6-(1H-pyrazol-1-yl)pyridine (100 mg, 0.280 mmol) and Fe(BF4)2·6H2O (47 mg, 0.140 mmol) in boiling acetone, to which chloroform (5 ml) was then added. The middle layer was a methanol–chloroform mixture (1:10, 10 ml), which was covered by a layer of methanol (10 ml), to which 100 µl of NEt3 was added dropwise. The tube was sealed, and thin lustrous black plate-like single crystals appeared in 3–4 weeks (yield ca 60%). Elemental analysis calculated for C34H26Cl4FeN12O2: C, 49.06; H, 3.15; N, 20.19. Found: C, 49.24; H, 3.05; N, 20.10.
8. details
Crystal data, data collection and structure . H atoms were placed in calculated positions using idealized geometries, with C—H = 0.98 Å for methyl groups and 0.95 Å for aromatic H atoms, and refined using a riding model with Uiso(H) = 1.2–1.5Ueq(C); the hydrogen atom H26 was refined freely.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2216680
https://doi.org/10.1107/S2056989022010507/ex2061sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022010507/ex2061Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2022); cell
CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).[Fe(C16H9Cl2N6)2]·2CH4O | Dx = 1.548 Mg m−3 |
Mr = 832.32 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pnna | Cell parameters from 3167 reflections |
a = 10.4669 (6) Å | θ = 2.2–25.7° |
b = 26.5890 (16) Å | µ = 0.77 mm−1 |
c = 12.8313 (7) Å | T = 180 K |
V = 3571.0 (4) Å3 | Plate, dark red |
Z = 4 | 0.12 × 0.08 × 0.03 mm |
F(000) = 1696 |
Xcalibur, Eos diffractometer | Rint = 0.100 |
ω scans | θmax = 26.4°, θmin = 1.8° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) | h = −13→8 |
Tmin = 0.772, Tmax = 1.000 | k = −33→33 |
13877 measured reflections | l = −14→15 |
3650 independent reflections | 3 standard reflections every 1 reflections |
2093 reflections with I > 2σ(I) | intensity decay: none |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.068 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.133 | w = 1/[σ2(Fo2) + (0.0367P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
3650 reflections | Δρmax = 0.44 e Å−3 |
244 parameters | Δρmin = −0.50 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C3 | 0.5057 (4) | 0.32367 (15) | 0.3495 (3) | 0.0204 (10) | |
C4 | 0.4305 (4) | 0.30235 (16) | 0.4341 (3) | 0.0207 (10) | |
C5 | 0.4296 (4) | 0.31360 (16) | 0.5392 (3) | 0.0261 (11) | |
H5 | 0.486168 | 0.338141 | 0.566974 | 0.031* | |
C6 | 0.3448 (4) | 0.28840 (16) | 0.6032 (3) | 0.0269 (11) | |
H6 | 0.343778 | 0.295610 | 0.675694 | 0.032* | |
C7 | 0.2607 (4) | 0.25265 (16) | 0.5633 (3) | 0.0240 (10) | |
H7 | 0.201948 | 0.235235 | 0.606739 | 0.029* | |
C8 | 0.2672 (4) | 0.24384 (15) | 0.4571 (3) | 0.0203 (10) | |
C11 | 0.1361 (4) | 0.17150 (16) | 0.2626 (3) | 0.0278 (11) | |
H11 | 0.134864 | 0.158847 | 0.193327 | 0.033* | |
C12 | 0.0477 (4) | 0.15849 (17) | 0.3399 (4) | 0.0329 (12) | |
H12 | −0.022909 | 0.136283 | 0.332937 | 0.039* | |
C13 | 0.0835 (4) | 0.18423 (16) | 0.4272 (3) | 0.0263 (11) | |
H13 | 0.042270 | 0.183520 | 0.493174 | 0.032* | |
C15 | 0.6226 (4) | 0.36305 (15) | 0.2470 (3) | 0.0226 (10) | |
C17 | 0.7161 (4) | 0.39837 (15) | 0.2033 (3) | 0.0230 (10) | |
C18 | 0.7328 (5) | 0.40295 (16) | 0.0965 (3) | 0.0316 (12) | |
H18 | 0.680723 | 0.383994 | 0.050313 | 0.038* | |
C19 | 0.8241 (5) | 0.43469 (18) | 0.0572 (4) | 0.0406 (14) | |
C20 | 0.8995 (5) | 0.46402 (18) | 0.1219 (4) | 0.0379 (13) | |
H20 | 0.960900 | 0.486591 | 0.093934 | 0.046* | |
C21 | 0.8827 (4) | 0.45949 (16) | 0.2281 (4) | 0.0308 (12) | |
C22 | 0.7938 (4) | 0.42684 (16) | 0.2695 (3) | 0.0284 (11) | |
H22 | 0.785239 | 0.423707 | 0.342916 | 0.034* | |
Cl23 | 0.84640 (18) | 0.43743 (7) | −0.07653 (11) | 0.0872 (7) | |
Cl24 | 0.97624 (13) | 0.49547 (5) | 0.31098 (11) | 0.0546 (4) | |
Fe1 | 0.35555 (8) | 0.250000 | 0.250000 | 0.0188 (2) | |
N2 | 0.4852 (3) | 0.30368 (12) | 0.2542 (2) | 0.0181 (8) | |
N9 | 0.3518 (3) | 0.26658 (12) | 0.3953 (2) | 0.0186 (8) | |
N10 | 0.2211 (3) | 0.20353 (12) | 0.2984 (3) | 0.0205 (8) | |
N14 | 0.1893 (3) | 0.21100 (12) | 0.4017 (3) | 0.0211 (9) | |
N16 | 0.5911 (3) | 0.36088 (13) | 0.3493 (3) | 0.0222 (9) | |
N25 | 0.5611 (3) | 0.32899 (13) | 0.1872 (2) | 0.0211 (9) | |
C27 | 0.7592 (6) | 0.4265 (2) | 0.5709 (4) | 0.0617 (18) | |
H27A | 0.843547 | 0.421309 | 0.539590 | 0.093* | |
H27B | 0.768395 | 0.430711 | 0.646444 | 0.093* | |
H27C | 0.719871 | 0.456689 | 0.541131 | 0.093* | |
O26 | 0.6821 (4) | 0.38493 (13) | 0.5506 (3) | 0.0541 (12) | |
H26 | 0.659 (5) | 0.382 (2) | 0.485 (4) | 0.081* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C3 | 0.024 (3) | 0.021 (2) | 0.016 (2) | 0.001 (2) | −0.001 (2) | −0.0012 (18) |
C4 | 0.019 (3) | 0.026 (2) | 0.017 (2) | −0.003 (2) | 0.002 (2) | −0.001 (2) |
C5 | 0.026 (3) | 0.035 (3) | 0.018 (2) | −0.005 (2) | −0.002 (2) | 0.000 (2) |
C6 | 0.033 (3) | 0.034 (3) | 0.014 (2) | −0.002 (2) | 0.000 (2) | −0.004 (2) |
C7 | 0.024 (3) | 0.029 (3) | 0.019 (2) | −0.003 (2) | 0.004 (2) | −0.002 (2) |
C8 | 0.022 (3) | 0.016 (2) | 0.023 (2) | 0.002 (2) | 0.001 (2) | −0.0016 (19) |
C11 | 0.031 (3) | 0.026 (2) | 0.027 (3) | −0.008 (2) | −0.006 (2) | −0.001 (2) |
C12 | 0.026 (3) | 0.036 (3) | 0.037 (3) | −0.015 (2) | −0.003 (2) | 0.001 (2) |
C13 | 0.019 (3) | 0.030 (3) | 0.030 (3) | −0.008 (2) | 0.003 (2) | 0.008 (2) |
C15 | 0.026 (3) | 0.018 (2) | 0.024 (2) | 0.003 (2) | −0.001 (2) | 0.006 (2) |
C17 | 0.018 (3) | 0.021 (2) | 0.030 (3) | 0.002 (2) | 0.000 (2) | 0.000 (2) |
C18 | 0.035 (3) | 0.034 (3) | 0.026 (3) | −0.013 (2) | 0.002 (2) | 0.002 (2) |
C19 | 0.047 (4) | 0.045 (3) | 0.030 (3) | −0.012 (3) | 0.010 (3) | 0.009 (3) |
C20 | 0.029 (3) | 0.038 (3) | 0.046 (3) | −0.013 (3) | 0.008 (3) | 0.011 (3) |
C21 | 0.028 (3) | 0.022 (2) | 0.043 (3) | −0.004 (2) | 0.001 (2) | −0.005 (2) |
C22 | 0.027 (3) | 0.027 (3) | 0.031 (3) | −0.002 (2) | 0.000 (2) | 0.005 (2) |
Cl23 | 0.1066 (15) | 0.1186 (15) | 0.0365 (9) | −0.0712 (13) | 0.0153 (10) | 0.0100 (9) |
Cl24 | 0.0470 (9) | 0.0536 (9) | 0.0631 (10) | −0.0229 (8) | −0.0128 (8) | −0.0011 (7) |
Fe1 | 0.0207 (5) | 0.0225 (5) | 0.0132 (4) | 0.000 | 0.000 | −0.0013 (4) |
N2 | 0.019 (2) | 0.0223 (18) | 0.0134 (18) | 0.0009 (16) | 0.0027 (17) | 0.0002 (16) |
N9 | 0.021 (2) | 0.0197 (19) | 0.0154 (18) | 0.0006 (17) | 0.0019 (17) | 0.0007 (15) |
N10 | 0.020 (2) | 0.022 (2) | 0.019 (2) | 0.0008 (17) | 0.0005 (17) | −0.0017 (16) |
N14 | 0.022 (2) | 0.025 (2) | 0.016 (2) | −0.0007 (18) | 0.0035 (17) | 0.0010 (16) |
N16 | 0.022 (2) | 0.027 (2) | 0.017 (2) | −0.0023 (18) | 0.0021 (17) | 0.0025 (17) |
N25 | 0.023 (2) | 0.022 (2) | 0.019 (2) | 0.0022 (18) | 0.0059 (17) | 0.0041 (16) |
C27 | 0.071 (5) | 0.062 (4) | 0.053 (4) | −0.024 (4) | −0.001 (3) | −0.019 (3) |
O26 | 0.073 (3) | 0.059 (3) | 0.030 (2) | −0.036 (2) | −0.008 (2) | 0.001 (2) |
C3—C4 | 1.456 (5) | C17—C22 | 1.398 (6) |
C3—N2 | 1.351 (5) | C18—H18 | 0.9500 |
C3—N16 | 1.333 (5) | C18—C19 | 1.371 (6) |
C4—C5 | 1.382 (5) | C19—C20 | 1.386 (6) |
C4—N9 | 1.353 (5) | C19—Cl23 | 1.733 (5) |
C5—H5 | 0.9500 | C20—H20 | 0.9500 |
C5—C6 | 1.383 (6) | C20—C21 | 1.379 (6) |
C6—H6 | 0.9500 | C21—C22 | 1.380 (6) |
C6—C7 | 1.393 (5) | C21—Cl24 | 1.733 (5) |
C7—H7 | 0.9500 | C22—H22 | 0.9500 |
C7—C8 | 1.385 (5) | Fe1—N2 | 1.970 (3) |
C8—N9 | 1.334 (5) | Fe1—N2i | 1.970 (3) |
C8—N14 | 1.391 (5) | Fe1—N9i | 1.916 (3) |
C11—H11 | 0.9500 | Fe1—N9 | 1.916 (3) |
C11—C12 | 1.400 (6) | Fe1—N10i | 1.973 (3) |
C11—N10 | 1.315 (5) | Fe1—N10 | 1.973 (3) |
C12—H12 | 0.9500 | N2—N25 | 1.350 (4) |
C12—C13 | 1.366 (6) | N10—N14 | 1.381 (4) |
C13—H13 | 0.9500 | C27—H27A | 0.9800 |
C13—N14 | 1.357 (5) | C27—H27B | 0.9800 |
C15—C17 | 1.468 (6) | C27—H27C | 0.9800 |
C15—N16 | 1.355 (5) | C27—O26 | 1.393 (6) |
C15—N25 | 1.350 (5) | O26—H26 | 0.88 (5) |
C17—C18 | 1.387 (5) | ||
N2—C3—C4 | 115.8 (4) | C20—C21—C22 | 121.4 (4) |
N16—C3—C4 | 130.8 (4) | C20—C21—Cl24 | 119.1 (4) |
N16—C3—N2 | 113.4 (4) | C22—C21—Cl24 | 119.5 (4) |
C5—C4—C3 | 130.3 (4) | C17—C22—H22 | 120.0 |
N9—C4—C3 | 109.2 (3) | C21—C22—C17 | 119.9 (4) |
N9—C4—C5 | 120.5 (4) | C21—C22—H22 | 120.0 |
C4—C5—H5 | 120.7 | N2i—Fe1—N2 | 92.94 (18) |
C4—C5—C6 | 118.6 (4) | N2i—Fe1—N10 | 92.64 (13) |
C6—C5—H5 | 120.7 | N2i—Fe1—N10i | 159.46 (13) |
C5—C6—H6 | 119.4 | N2—Fe1—N10i | 92.64 (13) |
C5—C6—C7 | 121.3 (4) | N2—Fe1—N10 | 159.46 (13) |
C7—C6—H6 | 119.4 | N9i—Fe1—N2i | 79.69 (14) |
C6—C7—H7 | 121.8 | N9i—Fe1—N2 | 101.95 (13) |
C8—C7—C6 | 116.5 (4) | N9—Fe1—N2 | 79.68 (14) |
C8—C7—H7 | 121.8 | N9—Fe1—N2i | 101.95 (13) |
C7—C8—N14 | 125.5 (4) | N9i—Fe1—N9 | 177.7 (2) |
N9—C8—C7 | 122.8 (4) | N9i—Fe1—N10i | 79.82 (14) |
N9—C8—N14 | 111.7 (3) | N9i—Fe1—N10 | 98.49 (14) |
C12—C11—H11 | 124.5 | N9—Fe1—N10 | 79.82 (14) |
N10—C11—H11 | 124.5 | N9—Fe1—N10i | 98.49 (14) |
N10—C11—C12 | 111.1 (4) | N10i—Fe1—N10 | 89.01 (19) |
C11—C12—H12 | 127.0 | C3—N2—Fe1 | 114.8 (3) |
C13—C12—C11 | 106.0 (4) | N25—N2—C3 | 106.6 (3) |
C13—C12—H12 | 127.0 | N25—N2—Fe1 | 138.5 (3) |
C12—C13—H13 | 126.6 | C4—N9—Fe1 | 120.5 (3) |
N14—C13—C12 | 106.8 (4) | C8—N9—C4 | 120.3 (3) |
N14—C13—H13 | 126.6 | C8—N9—Fe1 | 119.2 (3) |
N16—C15—C17 | 124.0 (4) | C11—N10—Fe1 | 141.1 (3) |
N25—C15—C17 | 122.0 (4) | C11—N10—N14 | 105.4 (3) |
N25—C15—N16 | 114.0 (4) | N14—N10—Fe1 | 112.6 (2) |
C18—C17—C15 | 121.2 (4) | C13—N14—C8 | 133.2 (4) |
C18—C17—C22 | 118.6 (4) | C13—N14—N10 | 110.7 (3) |
C22—C17—C15 | 120.2 (4) | N10—N14—C8 | 116.1 (3) |
C17—C18—H18 | 119.8 | C3—N16—C15 | 101.3 (3) |
C19—C18—C17 | 120.4 (4) | N2—N25—C15 | 104.7 (3) |
C19—C18—H18 | 119.8 | H27A—C27—H27B | 109.5 |
C18—C19—C20 | 121.5 (4) | H27A—C27—H27C | 109.5 |
C18—C19—Cl23 | 119.0 (4) | H27B—C27—H27C | 109.5 |
C20—C19—Cl23 | 119.6 (4) | O26—C27—H27A | 109.5 |
C19—C20—H20 | 121.0 | O26—C27—H27B | 109.5 |
C21—C20—C19 | 118.1 (4) | O26—C27—H27C | 109.5 |
C21—C20—H20 | 121.0 | C27—O26—H26 | 114 (4) |
C3—C4—C5—C6 | 178.0 (4) | C18—C17—C22—C21 | 1.4 (7) |
C3—C4—N9—C8 | −175.6 (3) | C18—C19—C20—C21 | 1.7 (8) |
C3—C4—N9—Fe1 | 1.7 (5) | C19—C20—C21—C22 | 0.0 (7) |
C3—N2—N25—C15 | −0.3 (4) | C19—C20—C21—Cl24 | 179.7 (4) |
C4—C3—N2—Fe1 | 0.6 (5) | C20—C21—C22—C17 | −1.5 (7) |
C4—C3—N2—N25 | 178.7 (3) | C22—C17—C18—C19 | 0.2 (7) |
C4—C3—N16—C15 | −178.2 (4) | Cl23—C19—C20—C21 | −177.5 (4) |
C4—C5—C6—C7 | −0.5 (7) | Cl24—C21—C22—C17 | 178.8 (3) |
C5—C4—N9—C8 | 3.9 (6) | Fe1—N2—N25—C15 | 177.2 (3) |
C5—C4—N9—Fe1 | −178.7 (3) | Fe1—N10—N14—C8 | −8.8 (4) |
C5—C6—C7—C8 | 0.2 (6) | Fe1—N10—N14—C13 | 170.2 (3) |
C6—C7—C8—N9 | 2.3 (6) | N2—C3—C4—C5 | 179.1 (4) |
C6—C7—C8—N14 | −177.8 (4) | N2—C3—C4—N9 | −1.4 (5) |
C7—C8—N9—C4 | −4.4 (6) | N2—C3—N16—C15 | 0.2 (4) |
C7—C8—N9—Fe1 | 178.2 (3) | N9—C4—C5—C6 | −1.5 (6) |
C7—C8—N14—C13 | 8.4 (7) | N9—C8—N14—C13 | −171.8 (4) |
C7—C8—N14—N10 | −173.0 (4) | N9—C8—N14—N10 | 6.9 (5) |
C11—C12—C13—N14 | −0.3 (5) | N10—C11—C12—C13 | −0.5 (5) |
C11—N10—N14—C8 | 179.7 (3) | N14—C8—N9—C4 | 175.7 (3) |
C11—N10—N14—C13 | −1.3 (4) | N14—C8—N9—Fe1 | −1.7 (5) |
C12—C11—N10—Fe1 | −166.3 (3) | N16—C3—C4—C5 | −2.5 (8) |
C12—C11—N10—N14 | 1.1 (5) | N16—C3—C4—N9 | 177.0 (4) |
C12—C13—N14—C8 | 179.7 (4) | N16—C3—N2—Fe1 | −178.1 (3) |
C12—C13—N14—N10 | 1.0 (5) | N16—C3—N2—N25 | 0.1 (5) |
C15—C17—C18—C19 | −177.5 (4) | N16—C15—C17—C18 | −172.0 (4) |
C15—C17—C22—C21 | 179.1 (4) | N16—C15—C17—C22 | 10.3 (6) |
C17—C15—N16—C3 | −179.5 (4) | N16—C15—N25—N2 | 0.5 (5) |
C17—C15—N25—N2 | 179.6 (3) | N25—C15—C17—C18 | 8.9 (6) |
C17—C18—C19—C20 | −1.8 (8) | N25—C15—C17—C22 | −168.7 (4) |
C17—C18—C19—Cl23 | 177.4 (4) | N25—C15—N16—C3 | −0.4 (4) |
Symmetry code: (i) x, −y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O26 | 0.95 | 2.41 | 3.256 (6) | 149 |
C7—H7···N25ii | 0.95 | 2.48 | 3.406 (5) | 165 |
C11—H11···O26iii | 0.95 | 2.23 | 3.144 (6) | 162 |
C13—H13···N25ii | 0.95 | 2.52 | 3.363 (6) | 148 |
C20—H20···Cl23iv | 0.95 | 2.86 | 3.779 (5) | 162 |
O26—H26···N16 | 0.88 (5) | 1.96 (5) | 2.826 (5) | 166 (5) |
Symmetry codes: (ii) x−1/2, −y+1/2, z+1/2; (iii) x−1/2, −y+1/2, z−1/2; (iv) −x+2, −y+1, −z. |
CSD refcode | Spin state | <Fe—N> | Σ | Θ | CShM(Oh) |
Title compound | Low-spin | 1.953 | 91.0 | 290.9 | 2.16 |
XODCEBa | Low-spin | 1.950 | 87.4 | 276.6 | 1.92 |
IGERIXb | High-spin | 2.179 | 149.7 | 553.2 | 6.06 |
IGERIX01b | Low-spin | 1.986 | 105.6 | 350.6 | 2.85 |
LUTGEOc | Low-spin | 1.933 | 85.0 | 309.6 | 2.10 |
Notes: (a) Shiga et al. (2019); (b) Gentili et al. (2015); (c) Senthil Kumar et al. (2015). |
Acknowledgements
Author contributions are as follows: Conceptualization, KZ and MS; methodology, KZ; formal analysis, IOF; synthesis, SOM; single-crystal measurements, SS; writing (original draft), MS; writing (review and editing of the manuscript), TYS, MS; visualization and calculations, VMA; funding acquisition, KZ, MS.
Funding information
Funding for this research was provided by a grant from the Ministry of Education and Science of Ukraine for perspective development of the scientific direction `Mathematical sciences and natural sciences' at Taras Shevchenko National University of Kyiv and by the Ministry of Education and Science of Ukraine (grant Nos. 22BF037-03, 22BF037-04).
References
Bonhommeau, S., Lacroix, P. G., Talaga, D., Bousseksou, A., Seredyuk, M., Fritsky, I. O. & Rodriguez, V. (2012). J. Phys. Chem. C, 116, 11251–11255. Web of Science CrossRef CAS Google Scholar
Chang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814–6827. CSD CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Drew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035–1038. CSD CrossRef Web of Science Google Scholar
Gentili, D., Demitri, N., Schäfer, B., Liscio, F., Bergenti, I., Ruani, G., Ruben, M. & Cavallini, M. (2015). J. Mater. Chem. C. 3, 7836–7844. Web of Science CSD CrossRef CAS Google Scholar
Goodwin, H. A. (2004). Top. Curr. Chem. 233, 59–90. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1–47. Google Scholar
Halcrow, M. A., Capel Berdiell, I., Pask, C. M. & Kulmaczewski, R. (2019). Inorg. Chem. 58, 9811–9821. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kershaw Cook, L. J., Mohammed, R., Sherborne, G., Roberts, T. D., Alvarez, S. & Halcrow, M. A. (2015). Coord. Chem. Rev. 289–290, 2–12. Web of Science CSD CrossRef CAS Google Scholar
Piñeiro-López, L., Valverde-Muñoz, F.-J., Trzop, E., Muñoz, M. C., Seredyuk, M., Castells-Gil, J., da Silva, I., Martí-Gastaldo, C., Collet, E. & Real, J. A. (2021). Chem. Sci. 12, 1317–1326. Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Schäfer, B., Rajnák, C., Šalitroš, I., Fuhr, O., Klar, D., Schmitz-Antoniak, C., Weschke, E., Wende, H. & Ruben, M. (2013). Chem. Commun. 49, 10986–10988. Google Scholar
Senthil Kumar, K., Šalitroš, I., Heinrich, B., Fuhr, O. & Ruben, M. (2015). J. Mater. Chem. C. 3, 11635–11644. Web of Science CSD CrossRef CAS Google Scholar
Seredyuk, M., Znovjyak, K., Valverde-Muñoz, F. J., da Silva, I., Muñoz, M. C., Moroz, Y. S. & Real, J. A. (2022). J. Am. Chem. Soc. 144, 14297–14309. Web of Science CSD CrossRef CAS PubMed Google Scholar
Seredyuk, M., Znovjyak, K. O., Kusz, J., Nowak, M., Muñoz, M. C. & Real, J. A. (2014). Dalton Trans. 43, 16387–16394. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shiga, T., Saiki, R., Akiyama, L., Kumai, R., Natke, D., Renz, F., Cameron, J. M., Newton, G. N. & Oshio, H. (2019). Angew. Chem. Int. Ed. 58, 5658–5662. Web of Science CSD CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Valverde-Muñoz, F.-J., Seredyuk, M., Muñoz, M. C., Molnár, G., Bibik, Y. S. & Real, J. A. (2020). Angew. Chem. Int. Ed. 59, 18632–18638. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.